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Summary

Let Y . ,  b e  the real topological vector space o f real-valued rapidly
decreasing functions and let O('9',.) b e  the group of rotations of Y r .

Then every one-parameter subgroup of 0(9 9 , )  induces a flow in .9°*„ the

conjugate space of Y r w i t h  the Gaussian White Noise as an invariant

measure.
The author constructed a  group o f functions which is isomorphic

to a  subgroup of e (Y r )  and some of its one-parameter subgroups.
But the problem whether it contains sufficiently many one-para-

meter subgroups has been a  problem . In Part I  of the present paper,
w e answ er th is problem  affirm atively by constructing tw o classes of
one-parameter subgroups in a concrete way.

In  Part II, w e construct an infinite dimensional L ie subgroup of
0 9"r )  and the corresponding L ie  a lgeb ra . N am ely , w e co n struct a
topological subgroup 13 o f 0(.9° ,.)  w hich is coordinated by the nuclear
space and the algebra a  o f generators o f one-parameter subgroups
of 3 which is closed under the commutation. Furthermore, we establish
the exponential map from a into Oh and prove continuity.
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Introduction.

L e t  <99  b e  t h e  com plex topological vector space o f  all rap id ly
decreasing C - -functions o n  t h e  re a l lin e , th e  topology o f  which is de-
fined by countable number o f  norms:

11$11h,p= s u p  .2cP $( k ) (x )1  <+ (k, p=0, 1, 2, 3, •••,),

an d  le t b e  t h e  real topological vector space consisting o f  all real-
valued functions in  .9'.

W e  sa y  th a t a  lin ear homeomorphism g from onto  itse lf is a
rotation of if

(1) 10.(x)12 dx Wx)I2 dx

f o r  ev ery  e (x )  in  Y . W e  a lso  d e f in e  a  ro ta t io n  o f  .99 ,. i n  t h e  same
m an n er. L e t  U(,5° )  a n d  (9(<9',.) be th e  group o f  a ll  ro ta tions of .9° and

.99 „  respectively.

L e t rA  be th e  Fourier transform defined by

1 ( E) (A) —  —  e(x)e - i ' dx
rt

fo r  $(x ) in  .9°. Then ,̀i" belongs to U(.5°).

L e t q2(x) be a  complex-valued locally square-summable function on
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the real line a n d  le t  f (x ) be the absolutely continuous function defined

by

(2) fq,(x) = 5 ko( y) r d y, — 00 <x + 00.
0

We further assume the following two conditions:

l im f w(x ) = + 00

(A.1)
( lim f , ( x )=  —0°

(A.2) ço(x)--/- 0, a.e.

Then we can define a transformation giço1 of a function Œ(x) by

( 3 ) (fl[V ie)(x)=49(x)E(L(x)).

Obviously gig)] satisfies (1).

L e t  oily, b e  the collection of locally square-summable functions

v ( x )  which satisfy (A.1) and  (A .2 ) and  for which gEço] belong to
6/./(Y).

T h e  author determined th e class o f  functions g l , g  explicitly as

follows.

Theorem  A .  (H. Sato [1], Theorem 1). A  function v (x ) belongs

to  dit,y if  an d  only  i f  it satisf ies the following four conditions.

(S.1) v (x ) is  a  C -  -function.

(S.2) ço(x)71-0, — co <x <  o o .

(S.3) F o r arbitrary  non-negativ e integers k , p , there  ex ists  a  positive

num ber r=r(k, p )  such that

H i l l I ç9( k ) (x )xP I0

ix i-+ - lf,,(x )Ir •

(S.4) Fo r every  non-negative integer p  there ex ists a positiv e  number

p =p (p )  such that
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If ( x ) l b  lim • —0.
ixi-+-1.17 1P 1V(x)1

W e  s a y  t h a t  a  fu n c tio n  y o (x ) is  s lo w ly  in c re a s in g  if i t  i s  a
C- -function and for every  non-negative  in teger k ,  th e re  e x is ts  a non-

negative integer p =p ( k )  such that

(4)
o (k) x )1

411k - p= sup ' rr +I  <  0 0 .
' 1 + HcIP

A s  a  corollary o f T heorem  A , w e can  easily  p ro ve  the following

theorem . (see  H . Sato [1], Theorem  2).

T heorem  B .  Let yo(x) be a function on the real line such that

inflgo(x)1 > 0 .

T hen  v (x ) be longs to  q i,v  if  and on ly  if  ço (x ) is  a slowly increasing
function.

On the o ther hand, q i,v  i s  a  g ro u p  w ith  respect to  the operation

0  defined by

(5) (490 0 )(x )= -4 0 (x )0 (f , (x ) )

for e v e ry  yo, Ø  in  611,y and the m ap g: [yo l i s  a  group isomor-

phism  of 01/,y, o n to  a  subgroup o f U (Y ). (H . Sato [11). In particular,

define a subgroup 02/!:9 , o f  0/49
, b y

(6) or:9, = {ço(x)E real-valued.}

T h e n  g  i s  a  group isom orphism  o f o ry ,  o n to  a  subgroup of (Y,.).

Moreover define a subgroup 0/4.9, of 07i,v by

(7) 6/11,5 = Iço(x) E yo(x )=g—  x )}

and define for every  ço in o/ev

(8)

Then .6 i s  a  g rou p  iso m o rp h ism  o f Û *  o n to  a  subgroup of (9(99r).
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Therefore, every one-parameter subgroup of QI o ror 0719 , corresponds to

a  one-parameter subgroup of ( . 9 9
7 )  through the map n or ;II, respec-

tively.

In Part I we give two classes of one-parameter subgroups of 0(,99  r)

by constructing those of 01/!:9 , and 671!.

In Section 1 we define the velocity function h(t, x : f )  correspond-

ing to a bounded continuous function f  and prove several properties of

h(t, x: f).
With these notations, we prove the following theorem in Section

2.

Theorem 1 .  L et f  be a  real v alued, bounded and  slowly increas-
ing function and put

(9) Vt(x)=exp Çof (h ( r ,  x : f ) ) d r , — 00 t, x <  co.

T hen .kot l _ < t ‹ ,_ f orm s a  one-parameter subgroup of 01.17:9,  Consequently,
{nryotlY__< t ‹ ,__ is  a  one-parameter subgroup o f  (9(.99 r ).

In Section 3, we prove

Theorem 2 .  L et f  be  a  real bounded even and  slowly increasing
f unction a n d  le t  g  b e  a  real odd slow ly  increasing f unction. T hen
{çpi l__< 1 < „  defined by

Ci   1  
(10) Vi(x)=exP.)o 2 

f  ( h ( r ,  x  f ) )+  i  g ( h ( r ,  x :  . f ) ) d r ,

— co < t ,  x <  0 0 ,

f orm s a  one-param eter subgroup o f  6li!'v .  Consequently O W }  _0 < ,< „
is  a  one-parameter subgroup of  0(,9' r).

These theorems show that 0 9' r )  contains sufficiently rich family

of one-parameter subgroups.
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Utilising th e  results in  P a r t  I ,  we c o n s tru c t, in  P a r t II , a n  infinite

dimensional L ie  subgroup 6  o f C(Y r )  which is coordinated by .9°„ and
construct a  L i e  algebra a consisting o f  generators o f  one-parameter

subgroups o f  03, which is a  topological vector space isomorphic to Y r 3

a n d  is closed under th e  c o m m u ta t io n . Furthermore, we succeed in
establishing t h e  exponential map from a  into 6  a n d  proving its con-

tinuity.

T . Hida, I. Kubo, H. Nomoto a n d  H. Yoshizawa [2] have construc-

ted a  three dimensional L ie  group which induces flows on the invariant
measure space o f th e  W h ite  N o ise , a n d  th e  associated L ie  algebra. In
this paper we construct a n  infinite dimensional L ie  subgroup o f  (9 ( 5 r).

To begin with, we define a n  infinite dimensional L ie  group without

differentiable s t ru c tu re , its one-parameter subgroup a n d  a n  infinite

dimensional L ie  algebra.

L e t I  b e  a  locally convex Hausdorff topological vector space.

Definition 1 .  A n  1-L ie group is  a  topological group with a

homeomorphism 0 from  6  onto a n  o p e n  subset o f  I. W e  s a y  I  i s

th e  coordinate space o f  6  a n d  0 is th e  coordinate function.

L e t 6  be a n  1-Lie group with th e  coordinate function q5.

Definition 2 .  A  subset {gtI__< t ‹ ,_ o f  t h e  1-Lie group 6  is  a

one-parameter subgroup o f  6  i f  it satisfies th e  following two conditions:

Igsgt—gs+t,

go= I

where I is th e  unity o f  6 ;

(P .2 ) 0( ) is continuous and contiously differentiable in  t  with respect

to th e  topology o f  1.

—  oo < t, s <  co ,

(P.1)

Definition 3 .  W e call ci a  L ie  algebra i f  i t  is  a  locally convex

Hausdorff topological vector space an d  there is given a  rule o f  bilinear
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composition (X , Y ).--[X , Y ]  in  a  which is continuous and satisfies

[X , X ]=0 ,

[ X ,  17 , Z11+117 , [Z, X 11-1-1Z, [X , Y11= 0,

for every X , Y  and Z  in a.

W e start w ith  defin ing a  subgroup 6  of (9(9 ' r )  in  th e  following

m an n er. For every u  in  Y r define a transformation K u ]  on 99,  by

(11) (K u ]  $ )(x )= (q  Lexp —2
1— u l  0 (x )

= exp  1   u (x ) ( f „ ( x ) ) ,
2

where

(12) f„ (x )= fe x , 12 u  (x ) = 1:exp u(y) dy, — 0 0 < x < + 0 0 .

Then, since we have

1 10 < inf exp
2
 u (x ) < sup exp 

 2
 u (x )  <

x 

by Theorem B , exp u belongs to 6//y , an d  consequently, q [ u ]  belongs
to  (9(Y r )  for every u  in  Y' r . Put

6= 1g [ u ] :  u E Y r }

and  let 0 be a  map from 6  onto Y r defined by

(13) k gEttl )= u.

W e shall show that 0  i s  one to  one and introduce a  topology in  6  in
w hich 6  an d  Y'r a r e  homeomorphic. T h en  w e  show  th a t  6  i s  an
Y r -Lie group with the coordinate function 0 (Theorem 4).

L et {qt}  b e  a  one-parameter subgroup o f  6 .  T hen a s  shown in
[2 ], the generator of qt is  g iven  by

1d  (14) X( f  ) — f  I+ F f2 dx
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where

d  
(15) f dt qs(gt) I t.0

which belongs to Sf r acco rd in g  to  (P .2 )  and the completeness of Y r,
and

(16) Ff (x )= 1z
o f ( y) d y, —co<x<+00.

Put

a=  {X (f): fE  Y 74.

Then a  is  a  vector space isomorphic to Y' r . Therefore introducing the
topology of .9' r in  a , w e  p ro v e  th a t a  is  a  L ie  algebra w ith  the corn-
mutator

(17) [X (f ) ,  X (g ) ]=- X (f)X (g ) — X (g )X (f )

(Theorem 5).

F in a lly , f o r  e v e r y  X (f  ) i n  a, w e  e s t a b l i s h  t h e  exponential
Exp tX ( f )  w h ic h  is  a  one-parameter subgroup of with generator

X  ( f )  (Theorem 6). In particular, put t - = 1 .  T hen  w e p rove that
E x p  X (f)= E x p  1 •X ( f )  i s  a  continuous map from a  into (T h e o r e m
7).

Part I. O n e - parameter subgroups of the group e (Y r).

§ 1 .  Velocity Function

In  th is  section w e define th e velocity  function and prove several
properties of i t  for la ter use.

Let f  be a  real bounded continuous function on the rea l lin e  and
put

Ao = E ( — cx), c 4 3 ) ;  Ff(x)= 01,

where
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(16) Ff(x)-=xof (y)d y, — 0 0 < x < + 0 0 .

L e t A i ,  A  a n d  A  be th e  s e t  o f  isolated points, accum ulation points and

th e  complement, o f  Ao , respectively. Since Ao i s  a  closed subset of the

real lin e , A  is  o p en  an d  is  a n  at most countable union of disjoint open

intervals, say,

4=\.1  (an, 1
3 n )

21 N

where N  f is  a  subset o f  all natural num bers. 0 always belongs to Ao .
A t first we define a  function o n  each interval (an , 3„) by

(1.2)

where

n (  X )  = 1:F fd(Yy )
an< x <8n,

(1.3) rn

an+1, i f  8,i = +

8n-1, i f  a„ ,

2
1  

 (a„+ 8„), otherwise.

T h e  s ign  of F 1 (x )  is unchanged i n  each  in terval (a„, 8„). L e t u s

assum e that F 1 (x ) is  positive in  th e  interval (an, 80.

+ 0 0 ,
x  .8 , ,

lim v„( x ) =xia„

F o r , if  3„ is finite, we have

rX

7 2 n ( X ) —  „  dF f ( ); )

1 x d y  >  
11f1100 )7 . 19n y

Then we have

a s  x  converges to  dt, from below, a n d  if  87, is infinite, we have

v n (x )>  If111.05:„ d;  + 0°
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as x  diverges to infinite, because of the facts that

Ff(x) I — I F f ( X ) — F f ( g n ) 1

<  If (y)1 d y

<11f II 0.0 „ — x),

and that

iFf (x)1 <I1f1100 x

respective ly , w here  i f =sup f ( x ) 1  .  The second equality  is a lso

proved in  th e sam e m anner. S ince v „ (x )  i s  monotone increasing, 72),
maps the interval ( a „ ,  f l )  onto ( — 00, + c 0 ) homeomorphically and the

inverse function 77,-,•1 is  w e ll-d e f in ed , w h ich  m ap s ( —  00, + 00) onto

(an , 8n)•

Define a  function h(t, x : f )  on ( — 00, + 00) x A  by

(1.4) h (t , x : f)=  G l ( v „ ( x ) +  t), —  <t <  C*9

an <x

It is evident that

(1.5) a„<h ( t , x : f )<3 ,, — 00<t<H-00

an<x

On (— Co, ° O )  X AO define h ( t , x : f )  by

(1.6) h(t, x : f )= x , — co<t<+00

x E A 0 .

W e have thus defined a  function h ( t ,  x : f )  on  ( — 00, + 00) x ( — 00,

+  co).

Rem ark. h(t , x :  f )  is determined independently of the choice of

I r n l .  In fact, assume th a t  x  i s  in  A , say, in  an  in terva l (a n , g„).
Let 1-„'  be an arbitrary number in the interval and put
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Then w e have

Vin (x )= ( z  d Y

) 7 ; ,  F f(y )  '
a „ < x < g e .

dy
Vn(x)=77;,(x)d- y)

F o r every x  in  ( a n ,  f l )  an d  every t, put

z  =h(t, x  :  f ) =  1 (77n(x)+ t).

Then we have

77n(z )=V n(x )d - t,

7  d y
7727(z) 1 n — ( x )+ t - 3

7 i t  F f(y ) 7 '.  F f(y )

an d  therefore

v ( z)=72 x)+ t.

Thus we have

z = h (t ,  x :  f ) -= 1 (7 (x )+ t ) .

T h e  above rem ark show s th a t h (t, x :  f )  is determined uniquely
o n c e  a  function f  is  ass ign ed . W e ca ll h ( t ,  x :  f )  th e  velocity function
corresponding to f .

Proposition 1. I f  f  is a bounded continuous function on the real
line, then the  velocity function h (t ,  x :  f )  is continuous in  ( t ,  x )  and  we
have

(1.7) h (t ,h (s ,  x :  f ) :  f )= h (t+ s ,  x :  f ) , —00 <t, s, x <  +0D.

P ro o f. B y defin ition , it is obvious that h (t, x: f )  is  continuous
a t  (t o , x 0 )  i f  x o i s  in  th e  interior o f  Ao.

Assum e th at x o i s  i n  Ao. I f  there exists a  sequence l x , }  i n  Ao

which converges to x o from above, then, observing (1.5), w e have
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im k t ,  x : D = l im k t ,  x  „: f )
t-to 0-00xixo

=lim  x,= x 0

-=h(t o , xo : f).

I f  there is n o  such sequence in 1 10 ,  then there is a n  interval (a„, g n )

such that x 0 - = a .  I n  this case, it is not difficult to show  that

lim It( t, : f )  = lim  ; 1 (7  „(x )  t )
t-to t-toxtxo x.ro

= a n = x0 = h (to , xo : f).

Therefore we h a v e  fo r  every (to, so)

lim h(t o ,  xo: f )=h ( to , x o : f ) .
tx7 °1,3

Similarly we can prove that

lim  h(t , x  : f )=-h(t 0, x  o: f ) .
t—to. ‹.0

Thus we have  proved that

lim k t ,  x : f ) =h ( to ,  x o : f ) .
t-lo

T he fo rm ula  (1 .7 ) is easily proved by th e  definition (1 .4 ) a n d  (1.6).

Proposition 2 .  I f  f  i s  a  bounded continuous a n d  continuously
dif ferentiable function, then h ( t ,  x :  f )  is continuously  dif ferentiable in  x

an d  satisfies

, f )
(1.8)

Oh(t =exp1of (h(r, f ) )  dr.
ax

Before proving the proposition, we prove two lemmas.

Lemma 1 .  I f  f  i s  a  bounded continuous a n d  continuously dif-
ferentiable function, then f ( x )  vanishes identically  in A '.
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P ro o f. For every x  in A ,  th ere  ex ists  a  sequence 1.0  in A o

which converges to  x  monotonously. Without loss o f  generality, we
assume it converges t o  x  from  below . S ince F f (X 1 )=  F f (X  2 ) -=  •

= F f(x„ )=  •••  = 0 and f (x )-=  
 dx F f ( x )  is  con tinuous, th ere  ex ists a

number x ,'  in each interval (x„ x 1) such that f ( x ) =  0, v=1, 2, 3,

The sequence {x }  converges to x  together with I x j  and w e have

f  (x )  = lim f  (x )= O.

Lemma 2 .  Assume that x  is  in  A , say, xE (a n , 43, ) . Then we
have

(1.9) F -
1(71 (x)+ t]exp o f  (h (r ,  x :  f ) )d r —   f  -

77,2 n 

F 1 (x )

P ro o f. B y  a certain transformation of variables in the integra-
tion, we have the following evaluations.

1:f (h(r , x : f ) )  dr

( 72; 107n (x )+ r)) d r

=--1'1”(x)+tf (71; 1 (u ) )  du
7.(x)

r,„1(7„(x) f ( d

x F1( y)

F fiG 1 ( 71n(x)+ 
F f(x )

Proof of Proposition 2. Put

(1.10) x :  f ) .=  exp of(h (r, x : f )) d r.

Then, since f  and h (r ,  x :  f )  are continuous by Proposition 1, hi (t, x :  f )

is continuous in (t, x ) .  Therefore, in order to prove the proposition, it
is sufficient to show
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(1.11) h (t, x : f)=
o
h'(t, y: f )d y

= x
o e x 6 o f (h (r, y: f))d r dy.

Assume x  is  positive and in A , say, x E (a„, 3„). Observing that
by Lemma 1, h t (t ,  x :  f )= 1  fo r every x  in A  and that A t  is a  null
set and 0 is in Ao, we have

hi(t, y: f )d y

= {
}h '(t, y: f )d y

CO,x1nno Co ,x1nA

=  1 d y E 13 'h'(t, y : f )d y
[o.x]ne (an„,  )cLo,x ] .1 "'

h '(t, y : f)dy .
a n

By Lem m a 2  and b y  a certain transformation of variables in the

integration we have

ht (t, y : f )d y

=1x
a  

e x 6  f (h (r , y: f))d r d y
„ 0

F f [7 7 ;1 0 7 n ( y ) + 0 ]   d y
F (y )

= 11; 1 (7n(x)d -  t) - 7 7; 1 (n„(an+ 0)4- t)

-=h(t, x: f)— a„.

Similarly we have

r h '(t, y: f)dy-=8,„—a„„
cx„,

i f  a„, and gm  are finite and consequently we have
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5x  h'(1, y: f )d y

= d y +  E ( m — a,„)+h (t, x: f)— a,
Lo.xinA. ( )CL0.x7

13

d y +  E dy+h(t,
[0,x1nno (a n t , C [h i

a

o  
d y+ h( t, x: f)—a„

=h (t, x : f).

We can prove (1.11) by the same way when x  is positive and in

Ao, and when x  is non-positive. Thus we have proved the proposition.

From the proof o f th e  above proposition, w e  have the following

lemma.

Lemma 3 .  I f  f  is  a  bounded continuous function, then we have

(1.12) h(0, x: f)=x,

(1.13) Ih(t, x: f)—h(s, x: f)I

< I t  — sl I x I IlfllooexpImaxa t
 I Dllf Hool,

+ 0 0  < t  s, x<+ 00

where

Ilf lloo—sup I f (x )  I

and

(1.14) K (t, f ) - 1 Ix I< Ih (t ,  x :  f ) I< K (t ,  f ) Ix I ,

e° < t X < + 0 0

where

K(t, p=exp(1 t I 11f1100).

P ro o f. (1.12) and (1.14) are easily proved by (1.11).
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(1 .13 )  is show n by the mean value theorem with respect to the
argument t  and b y (1.11).

§ 2 .  One - Parameter Subgroups of the Group olity ,

In this section, we discuss how to construct one-paramer subgroups
of or:v •

Let {Sot} --<t<+- be a  one-parameter subgroup o f  or:v . Then we
have

(2.1)

or equivalently

s O ç a t =  + t,

V'o =1

—  <s, t <  cx5,

(2.2)

c.(

q),(x)(0, u o s o s ( y ) 2 d y )= .9 ,1 (x ) , — 00<s, t <

0 (x )  1 .

W e assume that 42 j ( x )  is continuous in  ( t , x )  and continuously
differentiable in  t. Since yot i s  in  or:v , v i ( x )  never vanishes, and

observing that goo(x ) 1  and that the continuity o f got ( x )  in  t, we
know that çoi (x )  is always positive.

Put

(2.3) u (t , .1- ) =-  log v i (x) 2 , < t, x<  -1- 00.

Then (2.2) is equivalent to

u( s , x )-k  u (t,Y  e x p  u (s , y) d y) -=  u (s +  t ,  x ),

(2.4) — 00< s, t X  <  0 0 ,

, u(0, x)= 0

Differentiate both sides of (2.4) in s. Then we have

 

au (s, y)
e x p  u(s, y) d y

x I:expu(s, y )dy i 0 OS
au(s ,  x ) u (t, X) 

as X
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u (s x )
•

Evaluating at s = 0  in the above equality. Then, considering u(0, x )

we have

(2.5)

where

(2.6)
s=

F  f (x )= -1 0 f  (y) d y.

Conversely, assume that f ( x )  i s  a  bounded continuous and con-
tinuously differentiable function on the real line. T h en , by the theory
of partial differential equation (see for example I.G. Petrovskii [61, the

equation (2.5) has a unique solution under the initial condition

(2.7) u(0, x)=0.

In fact, using the velocity function, we construct the solution explicity

as follows.

Proposition 3 .  Fo r an y  b o u n d ed  co n tin u o u s a n d  continuously
differentiable function f ,

(2.8) u ( t ,  x ) = 5
o
f  (h (s , f ) )  ds

is  the unique solution o f  th e  equation (2.5) under the initial condition
(2 .7 ). It is de f ined  f o r  a l l  ( t ,  x )  i n  ( - 0 0 ,  +  0 0 )x  (—  0 0 ,  +  0 0 )  and
satisf ies (2.6).

Proof. The differentiablity of u ( t ,  x )  is obvious from that of f
and h (t, x :  f ) .  In fact we have

au.
a t  —  (h (t, x  : f) )

f (x )+ F f (x )a u (t ,  x )   _  8 u (t, x )
x at

f  ( x )  ( s ,  x )  
as
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auf t c o (  s
5 J 

1.
)

) 011(s, x: f)
 d sa x  j o i \  OX

of  1(h(s, x : f ))ex p o f  (h(r, x : f )) dr ds.

A ssum e x  is in  A , sa y , x  E (a,,, n). Then by Lemma 2 , we have

Ou Ff(x)
Ox

o f  ( 7 ; 1-(7  t t (x ) +s)) F f [ V -1.-1 1 ( 7 i n ( x ) +  s )1ds

=  fr v ; 1 (N(x)+ s)]I I= 0

= fEv;i(vn(x)+ 01— f ( x )

f  (h(t, x : f ))—  f  (x )

Ou= — f(x).
Ot

Therefore (2 .5 ) is true.

Assum e x  is i n  Ao. Then we have  Ff(x)=  0  a n d  h (t, x : f )= x .
Therefore (2 .5 ) is true.

By th e  definition (2 .8), (2 .7) is obvious a n d  by (1 .12), (2 .6) is also

true.

Thus we have  proved the Proposition.

Lemma 4 .  L e t  f  b e  a  bounded an d  slow ly  increasing function.
T hen the f unction  u(t, x ) de f ined  by  (2 .8 ) is also bounded an d  slowly

increasing in  x  uniformly f o r t  in  every f inite in te rv al. In  other words,
u(t, x ) is arbitrary  tim es continuously  dif ferentiable, and f o r every posi-
tive num ber T  and f or every  non-negative integer k , there ex ists a  non-

negative integer p such that

a (t ,  x )1  (2.9) sup sup <
- T ‹t  ‹T 1 +  I X  I

where
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;,Ve
u ( k ) (t, u(t, x).

Proof. W e prove t h e  lemma

spect to  k.
In  c a se  o f  k = 0 , it is obvious

by m athem atical induction w ith  re-

that

(2.8) u (t ,  x )=  50 f (h(r, x: f)) dr

is continuous i n  x  since h(t, x :  f )  a n d  f  a r e  continuous.
fo r  every positive number T  we have

sup sup I u (t, x ) I
— T < t‹T

Moreover

< T sup I f  ( x )  G  co.

Assum e that th e  lem m a is true in  case  o f k=0, 1, 2, •••, n.
D ifferentiating both sides o f  (2 .8 ) a n d  usin g  Proposition 2 ,  we

have

(2.10) u ( 1 ) ( t ,  x ) —  u (t , x )8x

of  (h(r, x: f)) a
 a
x  h ( r , :  f)  d r

=-S
o

f"(h(r, x: f))expu(r, x) dr.

D ifferentiate again both sides o f  (2 .1 0 ) . T h en  it is  n o t d iff icu lt to
show

n  P i

(2.11) u (" )(t , x )-= 0Q „[u] f ( ' )(h(r, x : f ) )  dr

where W i t t ] ,  = /, 2,3,

u ( 2 ) (r, x), • • •, 
u ( n - 1 )

 (r3 x ).

differentiable, so that we

(2.12) u ("+ "(t , x)

• • n ,  is  a polynom ial in  exp u(r, x), u ( 1 ) (r, x),

Therefore u (") (r, x )  is again continuously
have

= ng 5 .:(2,t+1, ia it ( h ( r ,  x :  f ) )  d r .

Since Q„, i ,,D11, v=1 , 2, 3, • •, n + 1 is  a  polynom ial in  exp u(r, x),
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u ( 1 ) (r, x), u ( 2 ) (r, x), .• •, u ( n) (r , x ) a n d  since they are  d ivergen t at most
in  a  p o ly n o m ia l order uniformly f o r  r  in  [— T , T ], w e h a v e  only to
sh o w  that f ( ' ) (h (r ,  x :  f ) ) ,  v = 1 , 2, 3, i s  d ivergen t a t m o st in  a
polynomial order uniformly f o r  r  i n  [—T, T I .  S in c e  f  is slowly in-
creasing, f o r  every non-negative integer y , there exists a  non-negative
integer q  such that

11f11,—sup  I t'Ax> 1
  <+

1+1xlq c c .

Observing Lemma 3 , we have

(kr, x : f))1 sup sup
-1 . <?-4T -.e<x<+=o 1 + 1 .X lq

I f " ( k r ,  x : f ) )1  1+ h (r , f ) l q

=  s u p  sup
- T < r ‹ T  x 14-11/(r,x: Dlq 1 +  lx l q

<11f11,-,expErsuPlf(x)11<-Foo.

Thus we have  proved th e  lemma.

Summing up Proposition 3  a n d  Lemma 4 ,  w e have t h e  following
theorem.

Theorem 1 .  L et f  be a  real-valued bounded and slowly increasing
function and put

1
(9 ) yot(x)-=exp  2   10 f(h(r, x :  f ) )  (Zr,

T hen {gor} i s  a  one-parameter subgroup of  4,71:v  an d  consequently
is a one-param eter subgroup of

Proof. A t first we show  that (or(x )  belongs to 6/P:1  f o r  every fixed
t. Since f  is bounded a n d  slowly increasing, by Lemma 4,

u (t, x )= 1 0f (h (r ,  x :  f ) )  d r

is also bounded an d  slowly increasing in  x .  Consequently, it is easy to
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1show  th at ço,(x) = exp u ( t ,  x )  is slow ly increasing in  x .  Moreover,
2

since we have

o<expE— It I 11f11001<sot(x)2

1< exp t I IlfIloo< +2

by Theorem B ,  t (x ) belongs to o li ls  fo r  every fixed t.

Secondly we show  (2.2). Observing

x
(2.13)

r
ogo s(y) 2

 dy

= x
0exp s

o f (h (r ,  y: f)) dr dy

-=h(s, x: f)

and Proposition 1 ,  w e have

rx
ç (x) got( o g Ps(y) 2 d y))

= 0 s (x ) yot (h (s , x : f))

=  s (x)exp- 1
2 r of (h(r, h(s, x : f ) :  f ) )  d r

1 ('= exp f  (h(r, x : f)) dr exp  1
-

F t f (h(r, x : f)) d r2 2  s

1 t 4 "s

2= exp  i:, f(h (r, x : f)) d r

=Sos-i-t(x),

Thus we have  proved th e  theorem.

§ 3 .  One-Parameter Subgroups of the Group 6/19,

I n  th is  section , w e  g iv e  a  method o f  constructing one-parameter

subgroups o f  Vi!v•

L e t  -tçoj- __< t ‹ ,„.. b e  a  one-parameter subgroup o f  gi,hy . Then we
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have

rs0Sot —Vs —00 <S, t <  0 0 ,
(3.1)

Soo = 1 -

According to Lemma 7 and the following remark of H. Sato [1], (3.1)

is equivalent to

00 <s, t < +

jv c1=1

and

(3.2)

(3.3)
{

soes(x) ç o ;( ./ (x ) ) —soes+,(x),

go g(x) =1.,

—00 < s, t, X  <  0 0 ,

where

4(x )-= I (x) ,  
s o t ( x )  
I soi(x) I

Define two subgroups of 6/6  by

= Iv(x) E (1 02/1!_q  ; ça(x)> 0)-

6/1!"4 I v (x )  E lgo(x)1 .11.

Then 0/IV  is also a subgroup o f e ,:y . Therefore, in order to construct

a one-parameter subgroup o f oelp, we may first construct that o f 61/V

and then sovle the equation (3.3) in 6//l.

We make use of the method given in Section 2.

Lemma 5 .  L e t  f  b e  a  bounded a n d  slow ly  increasing function.
T hen { } < ,< ,.. defined by

(3.4) çoi'(x)=exp  2
1  1:f (h(r, x : f )) dr, -  0 0  < t, <  0 0

is  a  one-parameter subgroup o f  6111,V,- i f  an d  o n ly  i f  f  is  an  even func-
tion, that is,

(3.5) f  (x )=f  (— x), — c o  < x <  co  .



One-parameter and a Lie Subgroup 275

P roo f. A ssu m e  that { }  < - .  defined  by ( 3 .4 )  i s  a  one-

parameter subgroup o f  oejj. T hen , since çoP belongs to 0//1V- f o r  every

t, we have

(3.6) V i(x )= V P (— x )

o r  equivalently

(3.7) 11f (h(r, x : f)) dr -= - Ço f  (h(r, — x: f)) dr.

Differentiating both sides o f  (3 .7 ) in  t  an d  evaluating at t =  0, we have

(3 .5 ) by Lemma 3.

Conversely, a ssu m e  ( 3 .5 )  i s  true. T h e n ,  since by Theorem  1,

PI < ,< „, given  by (3 .4 )  is  a  one-parameter subgroup o f  6//v , we

have  only to prove (3 .7 ) fo r  every t.

In  order to prove (3 .7 ) , it is sufficient to show

(3.8) h(t, x: f)= —h(t, — x: f), — 00 <t, x<+ co.

From (3 .5 ) we have

cx
F1(x) -1 0 f(y)dy= —Ff(— — < x  <  co.

Hence th e  collection Ao o f  all null points of F 1 (x ) a n d  its complement

A =  J  (a n , 8 )
neNT f

a r e  symmetric sets. Therefore, f o r  x  i n  Ao, — x is  a ls o  i n  Ao a n d

(3 .8 ) is tr iv ia l since by th e  definition (1 .6 ) we have

h (t, x : f )= x = —( —x )=  —h(t, — x : f).

L e t  x  be i n  A , s a y , x E (a„, 8 ) . T h e n , since A  is symmetric,

there exists a  number n '  i n  N I ' such that a = ien—= — an.
Furthermore by (1 .3 )  we have —rn and have

(3.9) Vn(x)=Vn,(—x), x < 3„

since we have
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v n ( x ) , ( 1  dd y
) 7 „ F ( y )  i - F f(y )

= r x  d  y
)7 , F f (y ) - 1 f r ( — x ) '

an<x <8,.

Put

z =h ( t ,  x: f)=.71; 1 (77„(x) - F t).

Then we have

n (z ) n ( x )  t

and observing (3.9), w e have

v„, (— z)-=77, — x)-E t

Consequently it holds that

— z= — h (t, x : f)

=727,- ,1 (77„, (x )d -t )= h (t ,  — x : f ) .

Thus we have proved the lemma.

Let f  be a  real-valued, bounded, even and slowly increasing func-

tion  and  le t { 4 } < / < + _  b e  a  one-parameter subgroup o f 6/./V  defined

b y  (3.4). Then we solve the equation (3.3) as follows.

Put

(3.10) v (t, x ) —   i
l   log go et (x ), < < C)°,

and assume th a t v(t, x )  is continuous in  ( t , x )  and continuously dif-

ferentiable in  t. Then, since ço; belongs to 0/.//,"j for ev e ry  t ,  kol(x)1
= 1  and v (t, x )  is real-valued. Furthermore, observing (2.13), w e have
from (3.3)

v(s, x) - Fv (t, h (s , x : f)) -=v (s+  t, x ),

(3.11) — 00<t, s, x < - Foo,

v (0 , x )=0 .

Differentiating both sides of (3.11) in  s  and evaluating at s=0, we
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(3.12)

where

(3.13)

and

partial differential equation

g(x )+F f(x)°v(t, x)  ____Ov(t, x) 
a x at{ '

v ( 0 ,  x )  0 ,

g _   av (s, x) 
as

—  00 <t, x <  co,
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011(s, x: f)F f(x)-=
as s=o of (y) d y.

  

Conversely, assume th a t g  is  a real continuously differentiable function.
Then (3.12) has a  unique solution and it is given by :

Proposition 4 .  L et f  be a  real-valued, bounded and  continuously
differentiable function a n d  le t  g  be  a  real-valued, continuously differen-
tiable function. T h e n

(3.14) v(t, x)=-1 0 g(h(r, x : f ))dr,

is  the unique solution o f  (3.12) def ined for all (t, x).

Lemma 6 .  L et f  be a  real-valued, bounded an d  slowly increasing
function an d  le t  g  be a  real slow ly  increasing function. T hen the func-
tion v(t, x ) defined by (3 .14) is slow ly  increasing f o r every f ixed t.

Lemma 7 .  L et f  be a  real-valued, bounded, even an d  slowly in-
creasing function an d  le t g  be a  real-valued, slowly increasing function.
T hen  W If _ < ,< ,  given by

(3.15) ço;(x)=exp g(h(r, x : f ) )  dr, — co < t, x  <
is  a  solution o f  (3 .3 ) if  an d  only  if  g  is  an  odd function, that is,

(3.16) — g(x).
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Proposition 4, Lem m a 6  and Lemma 7 a r e  proved in  t h e  same
manner as Proposition 3, Lemma 4 and Lemma 5, respectively.

Summing up the above, we have the following theorem.

Theorem  2 .  L et f  be a  real bounded even and slow ly  increasing
f unction  an d  le t  g  b e  a  real odd slow ly  increasing f unction. T hen

{(01} —< t <+ -  defined by

t
(10) Qt(x)=exp1

0  2

f  ( h ( r ,  x :  f ) ) +  i g ( h ( r ,  x :  f ) )  dr,

— 00 <t, x 00,

f orm s a  one-param eter subgroup o f  olli!y . Consequently {fE40:11 --<t<+-

is  a  one-parameter subgroup o f  e (Y ' r ).

P a r t  I I .  A n  in fin ite d im ensional L i e  subgroup o f  t h e  group

(9 (Y r).

§ 4 .  Subgroup and Group

In th is  section, we define a  product operation C) in  Y r  and show
th a t <99

r fo rm s a  group w ith  respect to  th e  operation ® .  We denote

this group by T h en  w e show th a t 6  is algebraically isomorphic

to and consequently 0  i s  a  subgroup of (9 (Y r ). A t first we define

a  product operation ®  on Y r b y

(4.0) (u 0 v ) (x )= u (x )+  u ( in (x ) ) , u, y  E Yr,

where f a ( x )  is defined by

(12) f u (x )=  x
oexp u(y) dy, —  00 < x  < d -  00.

S in ce  exp u ( x )  n ever v an ish es I„  m ap s  th e  r e a l  a x is  onto itself
homeomorphically, a n d  m o re o v e r , it  is  e a sy  to  p ro v e  th e  following
inequalities;

(4.1) K (u )-11xi<J1 (x )1<K (u )ix l, —  <  x <  co ,
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where

(4.2) K (u ) =exPlluiloo=expIsuP1 u(x)11.

Before proving that 5 9 ,  i s  a  group w ith  respect to  the operation

C), we prepare the following lemmas.

Lemma 8 .  Let u  be a  k —1 times continuously differentiable func-
tion and v  be a  k  tim es continuously  dif ferentiable function w here k  is

an arbitrary  positiv e integer. T hen w e can f ind poly nom ials  P k [ u ]  in

exp u, u ', u " ,  u 1 1 ;; v =0, 1, 2, • • k , the expressions o f  w h ich  are

independently of the choice of  functions u  and v  in  such a  way that

d k k(4.3)   v ( f „ (x ) )=  E PI.Culv ( ' ) ( M x )),
dx k =  0

where

d"v( ' ) (  „ (x ) ) —  v (X ) I  x  „(x),dX '

Specifically, we have

(4.4) P kk lu l= expku(x).

1, 2, 3, . • •, k.

P ro o f. W e  p ro v e  th e  lem m a b y  m ath em atica l induction with
respect to  k.

In case k = 1 , it is evident that

d  v( f„(x)) = exp u (x )i/ (/ „ (x )).

Assume that the lem m a is true in case k = rt. Then w e have

dxn
d n  n ( f  (x ))- - v(")(tu(x)).

Differentiate both sides of the above equality. Then w e have

cin+1-
d x " 1  v ( f  k ( x ) )
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=A id d x  P n '
E u lv ( ' ) ( I i i (x ) )+  P r u l e x p  u(x ) v ( "+ 1 ) ( fu (x ))

= Pn -F i,[u ]v ( ") ( f . ( x ) ) ,■, =o ,

where

Pn+1,.[It1= d
d

x
- P nv iu1+  exp  u(x)P n ,v-iru i,

v = 0 ,  1, 2 , .•., n  + 1 .

Considering that P „,ru l ,  v =O, 1, 2, n ,  are  polynomials in  exp u, u',

u", • ..,  w e can easily prove that Pn + 1 E n ] ,  - =  0 , 1, 2, ..•, n + 1,

a r e  again polynom ials in  exp u, u', u", ..•, u ( " ) . T h e  other assertions
are  also easily proved.

Lemma 9 .  For every  u  and  v  in  .99
 r ,

v o f „ (x )= v ( f- „ (x ))

belongs to .1 r an d  th e  transform ation f rom  v  t o  v o f„  is continuous in
the topology o f  9

r unif orm ly  in  u  on any  bounded subset V  of  Y r .

Proof. T o prove th e  lem m a, w e show th a t 11v42,11kp is  f in ite  for

every non-negative integers k  and  p. In  fac t, considering Lemma 8,

w e have for any non-negative integer k

dk

v o
dxk

f„ (x )-=  E o P k ,[u ]v ( ") ( u (x )).

Since P k , [ u ] :  = 0, 1, 2, ..., k, i s  a polynom ial in exp u, u',

and they are  uniformly bounded o n  V , w e have for every non-negative
integer p

liv°fullkp=supXP 
 c l x k  

v (f„ (x ) )

< E M k , suplxPv ( ' ) (f .(x ))1
= o r
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< E Alk, sup  f u(x )P v "(f u(x ))=ox # ø  f u ( x )  P

<  Mk. /COO P sup y P v "(y )1
Y

< M P E M P.IIV ILP<+
.= 0

where

M k= sup - =  0 ,  1 ,  •  k,ueV

and

M =  sup K (u).
uŒv

The above inequality together linearity proves the uniform continuity

of the transformation.

Lemma 1 0 .  For every u  in  6' T , v (x )=  a o  f ; 1 ( x )  belongs to Y r •

Proof. It is sufficient to show that IlvIlka is fin ite for every non-

negative integers k  and p .  W e prove it by mathematical induction

with respect to k.

In case k =  0 , considering that u (x )-= o f u ( x )  belongs to Y r,  we

have for every non-negative integer p,

X P  V (X )1

-= sup I / u (x)bu (x)

sup 
x*o x= -  

< K (u ) b liulloa< + 00•

Assume that the IlvII kp, k=0, 1, 2, • • •, n-1, p=0, 1, 2,3, • ••, are
all finite.

Then by Lemma 8  we have

f u (X ) P
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n
u ( x )  E  P [ a ] v " (  „ ( x ) ) +  e x p  u (x )  ( ") ( f i i (x))

P=o

and therefore

n-1
(4.5) y(")(fu (x ))=  exp ( —  nu){u ( " ) ( x ) —  P [ u ] v ( ") ( f  u (x ))1

p=o

Since exp u (x ), u '(x ), u"(x), • • •, u - 1 ) ( x )  are uniformly bounded on the

rea l line, w e have

< K (u rs u p l x P y ( ") (x)

<  K (u )" sup xP un(x)I

n-1
+ K (U ) " E M .  sup x i ' V( (fu(X))1

X

< K ( u ) n li udinp+K (u)"E  M,,„ sup
.=o x#0 f:(x)p f u ( X ) P  V ( ' ) (  f u ( X ) )

11 -1
< K ( U ) U i ln P + K ( U ) P E sup l YP V( (,Y) I

v=0 y

n-1
<K(u)llull np +K(u)""E mn,11v114< +

.= 0

where

Mnp = suP , v = 0, 1, 2, n — 1.

This completes the proof of the lemma.

Proposition 5 .  Y r f o rm s  a  group w ith  respect to  the operation

O.

P ro o f. Let u ,  y and w  be arbitrary elements o f Y r . B y  L em m a
9 ,  it  is  o b v io u s th a t uC)y = u o f i,  belongs to Y r .  The associative

law  (aC )v)® w = u (D (v(D w ) is true since  j o f = j ®  h o ld s . The unit
-1e lem en t is  the null function and, finally , the inverse elem ent u is

defined by
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(4.6) a  1 (x )=  —  u (I,V (x )).

In fact w e have

(u ® /L
1 ) (x) u(x)—  uo f ;  0  f u (x )

=  u (x )—  u (x )=  0,

and by Lemma 10, u - 1  belongs to Yr.

Thus w e have proved the proposition.

W e denote th e  group Y r w i t h  th e  operation ®  b y . T he fol-
lowing proposition clarifies the relation between 05 and

Proposition 6. The map 0 defined in  (13) is  a  group isomor-

phism from 6  onto .

P ro o f. B y  the definition o f 13  and by a  slight modification of H.
Sato [11, Lemma 6, i t  is  e a s y  to  show that 0  maps 03 onto in  a
one-to-one manner.

Therefore, we have on ly  to  p rove that 0- 1  i s  a  group homomor-
phism. For every u  and v in , w e have

(0 - 1 (u) 0- 1 (v)E) (x)

= (CulEv1 $) (x )

= (fl u] (exp  2
1  v )$ 0 f ,) (x )

1= exp u(exp  2
1  v o f t,){$0 .1.,0"„(x)}

2

1exp 2   u®v {$°.f./o)v(x)}

=  (K u O v]$ ) (x )

-=( 1 ( u  ®V) $) (x )

for every $ (x )  in  Y r . This result proves

(4.7) 0-1(u) 0 - 1 (v)-= 0-1(u(Dv)
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o r  equivalently

(4.8) K ulK y1= A ruC )v]

fo r  every u  and u  in

According to th e  above propositions, we have :

Theorem 3 .  13  is  a subgroup of ( 9 ' r )  and algebraically isomor-

phic to the group through the map O.

§ 5 .  Topological Group 03

I n  th is  se c tio n  w e introduce a  topology in s o  th a t  03 i s  a

topological group a n d  consequently an 9 ' r -Lie group.

To begin with, observing that  i  a n d  Y r  a r e  isomorphic algebrai-

ca lly  and coincides w ith Y' r  a s  a  s e t ,  we introduce such a  topology

in  03 that 03 an d  9 9
T a r e  homeomorphic through th e  map 0.

T o  show  that 03 is  a  topological group with respect to this topolo-

g y , w e  m ust show  that

90 - 1 ( 0  0 - 1 (0 ) :  Y r x Y  ,99 r

and

0(0-1(0-1)

a re  continuous maps. We know that

0(0  ( )0 - 1 (v))= u®v

and

0(0-1( u ) - 1) u  -1 .

Therefore, in  order to  p rove that 03 i s  a  topological g ro u p , it is suf-

ficient to show  that is  a  topological group in  th e  topology of 5 9
r .

W e start w ith proving th e  following lemma.

Lemma 1 1 .  For every  f ixed v  in  Y r ,  the transformation f ro m  u

to  v w hich m aps Y r  to 9',-, is continuous in the topology of 9',-.
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P ro o f. S in ce  " r  i s  a  metrizable sp ace , it  is  su ff ic ien t to  show

that vo/ „ converges to  y of„ i f  u„ converges to u 0 in r •

Let {u„} b e  a  sequence in  Y r  w h ic h  converges t o  u 0 and let k
and p  be arbitrary non-negative integers. Then by Lem m a 8, w e have

vol.„— voluallkp

-= sup 1 xP {Pk,fu,,1 v( ' ) ( f„„(x)) — Pk, [Ito] v ( A lu o (x))}  1=0

< s u p  X P E {Pk,D1„1 —  Pk,1 143  V ( ' ) ( f u„(- . ))1
x =0

+ sup 1 xi' E P k b t o l i v " ( f- „,,(x))—
X 0=0

"(f.,(x»11

< E K(un)PlIv11,psuP1 Pk,runi — Pi.fuol I=0

sup P  k ,flio lls ilp  I X P {V( ' ) ( f u (X ) —  V( ' ) (  u o (X))111.
=0 x

The first term  of the right side converges to  zero as n—> + co since all
the sequences u„(x ), u ' n  (x ), • • •, u„( k  - 1 ) ( x )  converge t o  u 0 uniform ly

on the rea l line.

Before proving that the second te rm  a lso  converges to  zero, we

rem ark that there exists a positive constant K  such that

(5.1) K-'1x1<lfu„(x)1<Kix1, --00<x<+co

uniformly in  n .  In  fact K  is given by

K=exp sup sup I u(x)1
n

which is finite since {u „ } is  a  bounded set in

For every non-negative integer 1) and for a n y  positive number

there exists a positive constant R  such that

sup 1 X P  V ( ' ) ( X)1 < PY13
I xl>R

since y  belongs to

B y (5.1), 1 x 1 >K R  implies 1 f„„(x) 1 > R fo r  every n , therefore we
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have

sup xPly ( ' ) (f„,,( v)) — v"(f,,,(x))}
lx1>K R

<10'sup I f z, (x)P v ( ' ) ( f u „(x))i
lx1>KR

+KPsup f„ n (x)P v ( ' ) (fu,(x))Ixi>KR

 

On the other hand, it is easy to show that

v( ' ) (x )—  v (y ) 1 <110,+1.0 x yl

and that

— c o  <  x, y<  D o,

11.„(x) — fn o(x )  I <KI x lu  —a 0110 0
I f  a is sufficiently la rge  that

— uoiloo <E3KP+ 2

then we have

sup xPv ( ' ) ( f u  (x))—xP v ( ' ) ( f . 0 (x))1
Ix l<K R

<  (KR)P sup v( ' ) (f, (x ))— v ((.1 . 0 (x))1
Ixl<K R

< (K R ) P livil,+1,0 K 2 M u  — u oHoo <

Summing up the above estimations, we have

sup I xPly ( ' ) (1 (x ))—  v ( ' ) (1 (x ))/

<sup I xPlv ( ' ) ( .11,,(x))— v( ' ) ( f i,u(x ))}
lx1>KR

+ sup xPlu ( ' ) ( f t,„(x))— v ( ' ) (1„0 (x ))}
lxi<IC R

for sufficiently large n .  Thus the lemma is proved.
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Proposition 7 . 2 ‘"  i s  a  topo log ical g roup  w ith  respec t to  the

product (!).

P ro o f. Continuity  of  the product operation.

Let lu ulf and {v „ }  be sequences in which converges to u 0 and

y o ,  respective ly . T hen  fo r  every non-negative integers k  and p  we
have

Ilu11® v n — Lio 0 v 0 ll kp

=11(u n+ v n°,4„) .—  (uo+ v 00 .0 1  k p

<11 1in — aollkP+111)n°A," —  vo4u„Ilki,

+Ilvo°1u„ - -  vo°fu u llkp•

By assumption, the first te rm  o f th e  r igh t s id e  in  th e last inequality

converges to  0  as n  --> 0 0 ,  and by L em m a 11 the third term  con-
verges to  O . S in ce  {u„}  i s  a  bounded set, by L em m a 9  the second

term  converges to O . Therefore the product operation is continuous.
Continuity  of the inverse operation.

L et {u „ } b e  a  sequence in w hich converges to  u o . To prove
the continuity of the inverse operation, it is sufficient to prove that

(5.2) lim u7i
1 C)11 0 = O.

In fact, b y the continuity of the product operation, u  = u ; 1 C■)u 0(■Du 0- 1

i = u 6 -1 i f  u ,--, 1,7,‘converges to  OC)a o
- j u  converges to O.

S in ce  it is  easy  to  show that

(5.3) f ; i ( x ) = fu _ , ( x )

for every a  in , w e have

w„(x ) == ( u ; 1 ® u o ) (x)

= — u n ( f (x ))+  L to (f (x )).

In  order to prove (5.2), w e show that I lw,,Hkp converges to  0 for every
non-negative integers k  and p  by mathematical induction w ith  respect
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t o  k.

In case k = 0, w e have for every non-negative integer p

Ilwnllop= sup I xPwn(x) I

= sup I x P la o (f -u-.1 (x ) ) —  un(f (x))1

=sup I f u (x )P lu o (x)— u„(x))-

(x )P
<  su p  f u ' xPluo(x)—  u„(x)}

x9L-o xP

= K P Iluo — unliop— o) as n Do,

where

(5.4) K=supK(un).

Assume that I Itv„ I k p  converges to  0 fo r  k=0, 1, 2, • • •, in, p=0 , 1 ,

2, ....

Then by the equality

W n ( f u „ (X ) ) =  U n ( X ) +  L t o ( X )

and by Lemma 8 w e have

— u nw (x ) + u,P ) (x)
m-1
E P n .fu h lu ,L u )(fu „ (x ))+  exp m a n ivn

( m ) (fu „ (x ))

and therefore

tv;in(x)=exp(—  nta„0/;l(x)){—  4 " ) (1- ;.1( x ) )+  u r ( f- ;,,(x ))}

m-1
— exp (— niu„of- ; . (x )E  P „ ,„ [u „  ;1 1 v ( f-  „„(x)).

Considering that P„„fu n of- ;.1 (x )1 , v= 0, 1, 2, • • — 1  are polynomials

in  exp unof;„1, u'n°f;„1 , • •, uôn i - 1 ) 0 f ; .1 a n d  th a t  th e y  a re  uniformly

bounded in  x  and n, w e have for every non-negative integer p

IlivnlImp-=sup I x Pwn(m)(x )
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< Km sup xPlu,,( m) ( f u r (f -  ; , (x ) )}  I
m-1

K m E M„,, sup x i (x ) I

m-1
< Km" 11 ti n —  u 0 I Imp + KmE m . liwnLp

0

0  as —>+ co,

where K  is given by (5.4) and

M„,,= sup suP I Pm.Iuni I v=0, 1, 2, ..., in - 1 .
n x

Thus we have  proved the proposition.

Theorem 4. i  i s  a  complete, separable, metrizable and arcwise
connected topological group, and consequently , it is a n  .99 ,.-Lie group
w ith the coordinate function 0.

Proof. Q6 is a  complete, separable, metrizable and  arcwise connected
topological space since which is homeomorphic to 03, has these
properties, a n d  it  is  an group since is  a  topological group in

th e  topology o f Y r .

§ 6. L ie  algebra a.

I n  th is  sec tio n , we determine t h e  generator o f  a  one-parameter
subgroup of a n d  s h o w  that t h e  space o f  all generators forms a  L ie

algebra with respect to th e  commutator.

L e t  {g,I__< ,< ,  be a  one-parameter subgroup o f  OS an d  p u t u ( t, x)
=  (b(g,)(x). Then fo r  e v e r y  ( x )  in  Y r w e  have

(6.1) (g, e ) (x )= lexp u(t, x)} e(1 x
0exp u( dy ) .

Differentiating t h e  right side o f  (6 .1 ) in  t  a t  t 0 , a n d  marking that
u(0, x )  0, w e h a v e  th e  generator o f  {g,} in  th e  form
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d  (6.2) (gt E(x)) t= odt

1—
2
— f  (x )$(x )H- dFf (x )  ( x )dx

= (X ( f ) e) (x),

where

(15) f  (x)—   u ( t  x ) d  
t-o d t 

q s (q t ) (x )1

(16) F f ( x ) =  o f  (y) d y,

an d  where

(14) x ( f  ) 12   f i + F f   ddx  

an d  b y the condition (P.2) o f th e  definition o f  a  one-parameter subgroup

of in  S ec tion  1, f  belongs to

L e t  a  be th e  co llec tio n  o f all such operators defined in  (14) for f
in  Y r , th at is,

= {X( f ) :  f  E }.

Then obviously a  i s  a  linear space isomorphic to 9' ,. We introduce a

topology in  a  such that a and r a r e  homeomorphic through th e  isomor-

phism X ( f )  Since a and  £" r  a r e  isomorphic not only algebraically

but also topologically, a  is  a  topological vector space.

Proposition 8 .  a  is closed w ith respect to  the commutator

EX (f ), X (g)1= X( f ) X (g)—  X (g)X (f )

w hich is continuous in  a.

P ro o f. F o r every f  a n d  g  in  Y' r ,  w e have

1 1 1X (f )X (g )=  4   f  g i+  2   Ff g q +  2   F f g ddx
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f F g   d   + F i g   d  1  + F f Fg

d 2

 2 ,2 dx dx dx

21X (gX f  (f )=  41   g f r + Fg" Fg f  d
d

x

1    d2d d  gF f +  f  +  F  F f
2 dx • dx dx2

an d  therefore

[X ( f ), X (g)1

1  — (Ff  g' — Fg f ')  I +( F f g —  f )   d  

2 dx

= X(F f g' — Fg f ') .

Since a an d  Y' r a r e  isomorphic, i n  order to prove the proposition, it is
sufficient to prove that

(6.3) 1f ,  g1 = F f g ' —  Fg f '

belongs to Y r  a n d  continuous in  Y r  X Y r . To prove i t ,  w e have  only
to show  that th e  map ( f ,  g) — > F f g ' i s  a  c o n tin u o s  map from Y r X  .99 7

to Y r

L et f  a u d  g  b e  i n  Y r . Then f o r  every non-negative integers k
and p , w e have

sup I Fr (x) I =sup f(y) dyld

< s u p ( 1  x 2 )1 f  (x )  s txl,P +dY
y 2

< r Illf1100+11f11021.
Since F f g '  is b ilinear, w e show  the  continuity at (0, 0). I n  fact

we have

<  ( k ) S U p
r= 0  r x

p  d k - r g 1 ( x )F A X )
d X k -r

 

< k Z ( k ) S U p  x p f ( k - r - 1 ) ( x ) g (r +1)( x ) I
r= 0  r x
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+ supl X P F A X ) 
g ( k  + 1 ) ( x ) 1

<Ç  ) f H k r I o H g H r 1 . o

+n(lIfIloo+11fIlo2)11glIk+i,p.

Thus we have proved the proposition.

Theorem 5 . a  is  a L ie  algebra w ith respect to  the commutator.

Remark. .9 9 ,  is also a  L ie  algebra with the bracket defined in

(6.3), which is isomorphic to a as a Lie algebra.

§ 7 .  Exponential map.

In  this section we establish the exponential map from the Lie

algebra a  into the 9 ' 7 -L ie group 03 and prove its continuity. First we

prove the following lemma.

Lemma 1 2 .  L e t  f  b e  a  f unction in r. T h e n  th e  function
u (t ,  x ) defined by

(7.1) u (t ,  x )= 1 :f  (h (r ,  x : f ) )  dr, — c o < t ,  x<+00

is also a real-valued, rapidly  decreasing function in  x uniform ly  in  every
f inite t-interval. I n  other w ords, u (t ,  x ) is  a  C"-function in  x  and for
every positive num ber T  and for every  non-negative integers k  and p  we
have

sup sup X" 11 ( t ,  X ) I  <  ( 3 °
- T < t ‹ T  x

ak w here u(k)
k

(t, x ) —  u (t, x ). M oreover, the " r -v alued f unction u tx
= • )  is continuous in  t.

P roo f. Let f  be a  function in Y r  an d  u ( t , x )  be a  function de-

fined by (7.1). Then the first part o f th e lemma is proved in the
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sam e m anner a s  Lem m a 4. Therefore, w e h av e  o n ly  to  p ro ve  the
second part of the lemma.

W e show for every non-negative integers k  and p

(7.2) lim  u (t, • )— u(s, • )11kp= 0,
t—s

—  c o  < s <  o o

by mathematical induction w ith respect to  k.

In  c a se  k = 0, by Lem m a 3 w e  have for every non-negative inte-
ger p

1111(t, • ) — u(s,

=s u p  xP1 t f (h (r, f ) )  d r
x s

X Or, z : f ) P f (h(r, f ) )  d r

< exprp-max( tI, 1.3 1)11floollifliop t — s

T h e r ig h t s id e  in  th e  last in equality  converges to  0  a s  t converges
to s.

Assume that u(t, • )— u(s, • )11 k  p converges to  0 for k = 0, 1,2, •..,

n , p = 0 , 1 , 2 , . . . .  Then by (7.1) and (1.11) w e have

h(t, f ) = 0 expu(t, dy

and Lemma 8 is applicable. H e n c e  w e  have

{ u ( t ,  x ) — u ( s ,  x ) ) -
0x"

Ox"

on  5t
f  (h (r , x : f )) d r

n t
=  E  P  ,iu  ( r x)1 f (") (h(r, f ) d r .

s

0
Ox

Observing P„,fu (r, x )1 , y=0,1 ,2 , .•., n  are polynomials in exp u(r, X),
-1an

u(r, o x „ _ ,  u ( r ,  x )  a n d , by  assum ption , they a r e  bounded

= sup
x#o s h (r, x : f)P

uniformly in  r ,  w e have by Lemma 3 for every non-negative integer p
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Il it (t, • ) — u(s, • )1Inp
15 an J.

a x n  k u(t, x)—u(s, x))-=sup

v=o
ex p [p •m ax ( t I, lsD  If h011lf LP 11 — s

where

M i n  =  s u p  PntZu(r, x)11, v =0, 1, 2, • • •, n.
s< r ‹ t

The right side converges to  0  a s  t  converges to s.

Thus we have proved the lemma.

Now we define th e  exponential m a p . F o r  every X ( f )  in  a we

define

CXD CXD(7.3) E x p t•X ( f )=1 1 u ( t , •)1 = a[exp   2
1  u (t, •)1 , < t

where u (t, x )  is given in  (7 .1 ) and call it the  exponential o f  X ( f ) .

Theorem  6 .  For every X ( f  )  in  a , E x p t•X (f )  is  a  one-parameter
subgroup o f  th e  Y r -Lie group 03.

P roo f. L et X ( f )  be in  a  where f  is a  function in  Y  r .  Then by

Lemma 1 2 , u(t, x )  defined by (7 .1 ) is a  function in  Y r  fo r  every fixed

t  and  consequently E xp  t• X ( f )  is  in  0  fo r every fixed t. Further-

more, by Theorem 1  le x p  1  

2  u ( t ' • )1--•<:<-1-- 
forms a  one-parameter sub-

group of the group 0/i19
, a n d  therefore (P .1 ) is true.

The continuity of Exp t• X ( f )  in  t  is derived from Lemma 12.

W e p ro ve  t h e  continuously d ifferen tiab lity  o f  u ( t ,  x )= 0  (Exp

t• X ( f ) ) ( x )  in  the topology of ..99
r .

Observing that u (t, x )  is  th e  solution of the differential equation

(2 .5 ) by Proposition 3 , and that Ff (x ) , together with all its derivatives,
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is  a  bounded function, we can easily show that

0  u ( t  x ) = F f ( x )  u (t, x )-E  f (x )
at Ox

i s  an 9"-va lued  con tinuous function  i n  t, s in c e  u ( t ,  x ) ,  therefore
0  

-

8 x  
u (t , x ), is continuous in  t.

On the other hand, b y the mean value theorem we have for every
t  and s

10  { u (t , x)— u(s, x)} —
t — s Os

u ( s ,  x )

0
-=  u (t ,  x )

Ot
0 u (t  x )

t=, (It t= s

  

0where r is  a number between t  and s. B y the continuity of u (t, x ),
Ot

the right side converges to  0  in the topology of .9 as t  converges to
s.

W e have thus proved the theorem.

In particular, w e  w rite  s im p ly  Exp X (f )  instead o f  Exp •X ( f ) .
Then we have the following proposition and lemma.

Proposition 9 . For every X ( f )  in  a, w e have

Exp t •X ( f ) =Exp t X (f ), — 00 < t <

Proof. To prove the proposition, it is sufficient to show that

(7.4) (h (s ,  x :  f ) )d s =- 0 t f (h (s ,  x :  t f ) )d s , — 0 0 < t ,  x < + 0 0 ,

for every f  in Y' r •
In case t = 0, (7.4) is  triv ia lly  true.

W e assume t *0 .

S in ce  w e  have IF f ( X ) = F t f ( X ) ,  F 1  and  F l f  vanishes in the same
set Ao . For every x  in Ao , we have

h (s , x :  f )=  x  = h (s ,  x :  t f ) , 00 < t, s 0c
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and consequently we have

: f)) ds =1 t
o f (x) cis

=  tf  (x )=  o f  (x) d.s

-=10 tf(h(s, x: tf))ds.

For every x  in  /1=- Ag, it is not difficult to show that

h(s, x: f)-=h( s  x :  t f ) , —  <  s  +  .t

Consequently we have

1:f(h(s, x: f))ds

=1 0 f(11( s
t , x: tf))ds

=S o tf (h(s, x: t f)) ds.

W e have thus proved the proposition.
Hence we write simply Exp t X ( f )  instead of Exp t•X ( f ) .

Lem ma 1 3 . I f  X ( f )  converges t o  X (f 0 ) i n  a ,  then (Exp

tX (f ) ) (x )  conv erges to (Exp tX ( f 0 ) ) ( x )  uniformly in  t  of  [0 , 1], that
is,

lirn  sup sup I Sb (ExP t X ( f)) (x)—qs ( E x p  tX (fo ))(x )1  = O.
f f o O<t<1

P ro o f. Let u(t, x)= 0(Exp tX (f ) ) (x )  and u 0(t, x)= 0(Exp t X( f o ))(x).
Then they are the solution of equations

OU 
F f   f ,at a X

O u
° —F1 ° 

a u
° f o ,at ax
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under the initial condition u(0, x)= u 0 (0, x)= 0, respectively.

Put v  =  u  /t o . Then v  is the solution of the equation

— Ff a v  + (F f — Ff ) a
a

ll:  + . f —foat ax

under the initial condition v (0 , x ) O. Therefore, by Haar's inequality

(S. Mizohata [71), there is a constant c  such that

sup q5(Exp tX(f))(x) — (ExP tX (fo ) ) (x )
o<f‹..1

=sup I u (t, x) — u o( t , x)
o‘t<i.

=sup v(t, x)
o<t‹i.

  

<  c sup Ff(x ) — F10(x)1
o<t<1

 

°  (t
'

 x)ax 

  

+ sup I f (x)— fo(x)I

Utilising the estimation in the proof of Proposition 8, w e have

s u p  (Exp tX (f))(x )-0 (Exp tX ( f o ) ) (x ) I

< r c a '  f  f H f  f2llool +Hf f  olloo

where c ' is a constant.

This completed the proof.

Theorem 7 .  E xpX (f)  m a p s  a  neighborhood of  0  i n  a  in to  a
neighborhood of  I  in  6  continuously.

Proo f. W e have only to show that the mapping X(f)—> E xpX (f)
is continuous. L e t -(X ( f , ) }  be a  sequence in a which converges to
X ( f 0). Since a  can be identified with Y r ,  {f,}i,':71 i s  a  sequence in

Y r  which converges to fo  and { f j  -,f71. is  a  bounded set in

W e show that for every non-negative integers lo and p
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(7.5) lim I 10 (ExP X (f . , )) —  (ExP X ( f 0 ))  = 0

by m athem atical induction w ith  respect t o  k.

Put

u(x )=95(Ex p X (f , ) ) (x ) , v= 0, 1, 2, 3,

Then by defin ition , w e have

u ( x ) =5
o
f ,(h,(s, x )) ds, v = 0, 1, 2, 3,

where

k (s , x )=h (s , x : f ,) , v = 0, 1, 2,

In  ca se  o f k = O. L e t s  b e  a n y  positive n u m b er and  p  be  any

non-negative  in teger. S ince  f o i s  in th e re  is  a positive num ber R
such that

1 s u p  xPf 0 (x)1 < s.
3lx1>R 

O bserv ing  that 
{
f„} i s  a  bounded se t in  <9°,., put

K = exp sup suplf,(x)1.
x

T h e n  b y  (1.11) w e  have

K - 1 1x1< ih ,(s , x )i< K Ix i

for a n y  y and  s  in  [0, 11 . Therefore w e have

sup I xPf,(h,(s, x))1 ds<(3K P) - l s
lx 1 31 f R  0

for any P.

On the o ther hand, b y  (1.11), w e  have

sup I h.(s, x ) — ho(s, x)1
0<s-4.1

<  s u p  k exp u,(s, — exP u o (s, y d y
IxI KR I Jooc,<1
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<1( S U P  x L C  ,(S, 1 0(s, X)1
I xl <K R
0<s<1

<  K 2 R suP 111,(s, x) —  uo(s, x)1
o<s<1

where u ,(s, x)=95(ExpsX(f„))(x), 1)=0, I, 2 .

By Lemma 13 the right side converges to  0 as f ,  converges to fo.
Consequently we have

Hu, —  U 0 ll op

= sup x  P h , ( s ,  X ) )  fo (h o (S , x )) ds

1
<  sup

od X ) )  f 0 ( 11( 5, X)) ds

+sup x b  f  0 ( k ( s ,  x ) )  f  o ( h o ( s ,  x ) )  d s

<K P su p ç  h(s, X ) P f  ,( k ( s ,  x )—  f o (h ,(s, x ))1}  ds
x

1
K P sup I h(s, x) P I {Ifo (h .(s , x))I + Ifo(ho(s, 4)1} ds

Ixr>KR o

1
+ s u p  X I f 0( 11 ,, (S3 X ))  f 0(h 0 ( s  X ) )  I ds

I xl <lf R 0

< K P lI f v — f0110P+ 
2
3  a

▪ (KR) P snx P o f o (h ,(s , X )) —  fo(ho(s, x))I ds

<K PHf.— follop+ 2
3  6

+ K ' sup  I u,(s, x )— uo(s, x)I
0<s<1

Observing Lemma 13, the right side becomes less than e as ir diverges.

Since 6  is arbitrary, (7.5) is proved in case of k =0.

Assume th a t (7 .5 ) is  tru e  for k = 0 ,  1 ,  2 , m - 1 .  Then by

Lemma 8 we have
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ri n
u ;,m )(x )=  E  P „Z u l f  ( h , ( s ,  x ) )  (Is,=  0, 1, 2 .

0=0

Therefore, considering P„i x [u ], 2 = 0 , /,
u', u", . • •, u ( "1 - 1 ) , it is sufficient to show

t n  are polynomials in  exp u,

(7.6) lim o f ; » (k (s , • ) — f ,;x)(110(s, • )) ds
nip

=0,

/1=0, 1, 2, ..., m, p=-0, 1, 2, 3, ....

B u t  it is not d ifficu lt to sh o w  (7 .6 ) b y  a  slight modification o f th e
proof in  ca se  o f  k = 0.

W e have  thus proved th e  theorem.

Rem ark. W e  h a v e  established t h e  exponential map Exp X ( f )
which maps a  neighborhood o f  0  o f  a  in to a  neighborhood o f  I  o f  03 .
B u t  t h e  problem whether Exp X ( f )  maps a  neighborhood o f  0  o f  a
onto a  neighborhood o f  1  o f  06 is still open.
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