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Summary

Let &, be the real topological vector space of real-valued rapidly
decreasing functions and let @(%,) be the group of rotations of %,.
Then every one-parameter subgroup of 0(%,) induces a flow in &7, the
conjugate space of &, with the Gaussian White Noise as an invariant
measure.

The author constructed a group of functions which is isomorphic
to a subgroup of 0(%,) and some of its one-parameter subgroups.

But the problem whether it contains sufficiently many one-para-
meter subgroups has been a problem. In Part I of the present paper,
we answer this problem affirmatively by constructing two classes of
one-parameter subgroups in a concrete way.

In Part II, we construct an infinite dimensional Lie subgroup of
0(&,) and the corresponding Lie algebra. Namely, we construct a
topological subgroup @ of 0(&,) which is coordinated by the nuclear
space &, and the algebra a of generators of one-parameter subgroups
of & which is closed under the commutation. Furthermore, we establish

the exponential map from a into & and prove continuity.
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Introduction.

Let & bhe the complex topological vector space of all rapidly
decreasing C~-functions on the real line, the topology of which is de-

fined by countable number of norms:

1&]le,,= sup [x?E®(x)| <Aoo,  (k,p=0,1,2,3,..,),
—oo g 4o

and let &, be the real topological vector space consisting of all real-
valued functions in .
We say that a linear homeomorphism g from & onto itself is a

s

rotation of & if
400 . +o0 ”
M SR I ESIRE

for every &(x) in &. We also define a rotation of &, in the same
manner. Let U(Y) and 0(¥,) be the group of all rotations of & and
&,, respectively.

Let % be the Fourier transform defined by

@D =5 e rda

for &(x) in &. Then § belongs to U(¥).

Let ¢(x) be a complex-valued locally square-summable function on
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the real line and let f,(x) be the absolutely continuous function defined
by

(2) f'«»(~\f)=S:|¢(y)|3tly, — oo L x < + oo,

We further assume the following two conditions:

lim f,(x)=+o0
Eandariad

(A.1)
lim f,(x)=—o0

(A.2) e(x)=0, a.e.

Then we can define a transformation g[ ¢ ] of a function &(x) by

(3) (aLe &) (x)=0(x) E(fo(x)).

Obviously g ¢ satisfies (1).

Let %o be the collection of locally square-summable functions
¢(x) which satisfy (A.1) and (A.2) and for which g[¢_] belong to
U(&L).

The author determined the class of functions %. explicitly as

follows.

Theorem A. (I1. Sato [1], Theorem 1). A function ¢(x) belongs
to Uy if and only if it satisfies the following four conditions.

(8.1) o(x) is a C™-function.
S.2)  ex)#0, —oolx < + oo,

(8.3) For arbitrary non-negative integers k, p, there exists a positive

number =7k, p) such that

(k) b
lim I(p (x)xr |:0
lzlmtee | fol2)]

(5.4) For every non-negative integer p there exists a positive number
o=0(p) such that
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S
lwiote | 2 [P l@(x)]

We say that a function ¢(x) is slowly increasing if it is a
C~>-function and for every non-negative integer k, there exists a non-

negative integer p=p(k) such that

5 (
4 = o™ (x)] .
(4) lolle—p=_sup —pprpe <te

As a corollary of Theorem A, we can easily prove the following
theorem. (see H. Sato [1], Theorem 2).

Theorem B. Let ¢(x) be a function on the real line such that
inf|g(x)| >0.
x

Then ¢(x) belongs to Uy if and only if ¢(x) is a slowly increasing

Sunction.

On the other hand, < is a group with respect to the operation
& defined by

) (p&@¢) (%) =p(x) ¢( fo(x))

for every ¢, ¢ in %« and the map g: ¢ >g[¢] is a group isomor-
phism of % onto a subgroup of U(%). (H. Sato [1]). In particular,
define a subgroup #’, of % . by

(6) U,={p(x) € Uy: real-valued.}

Then g is a group isomorphism of #’, onto a subgroup of 0(&,).

Moreover define a subgroup %%, of %« by

) @ty ={p(x)EUy: p(x)=9(—x)}
and define for every ¢ in %%,

® §Le]=8"gle]%

Then § is a group isomorphism of %%, onto a subgroup of O(¥,).
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Therefore, every one-parameter subgroup of %7, or ", corresponds to
a one-parameter subgroup of 0(%,) through the map ¢ or §, respec-
tively.

In Part I we give two classes of one-parameter subgroups of 0(%,)

by constructing those of #’, and #’,.

In Section 1 we define the velocity function A(z, x: f) correspond-

ing to a bounded continuous function f and prove several properties of
h(t, x: f).

With these notations, we prove the following theorem in Section

Theorem 1. Let f be a real valued, bounded and slowly increas-

ing function and put
t
@ o=ept{ f0, w1 A, —eo<s, x< oo

Then {@:} —wctcrw forms a one-parameter subgroup of U%. Consequently,
{aL@: 1} —wctcrw IS @ one-parameter subgroup of 0(S,).

In Section 3, we prove

Theorem 2. Let f be a real bounded even and slowly increasing
Sfunction and let g be a real odd slowly increasing function. Then
{0} —wctcsw defined by

t
1 .
(10) o) =exp| 1 fhtr, x: f)+ig(hCr, 3 f)dr,

—°°<t, x<+°°,

forms a one-parameter subgroup of U, Consequently {§[ @11} —cwctcso

is a one-parameter subgroup of 0(%,).

These theorems show that 0(%,) contains sufficiently rich family

of one-parameter subgroups.
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Utilising the results in Part I, we construct, in Part II, an infinite
dimensional Lie subgroup & of ¢(&%,) which is coordinated by &,, and
construct a Lie algebra a consisting of generators of one-parameter
subgroups of &, which is a topological vector space isomorphic to <,,
and is closed under the commutation. Furthermore, we succeed in
establishing the exponential map from a into & and proving its con-
tinuity.

T. Hida, 1. Kubo, H. Nomoto and H. Yoshizawa [ 2] have construc-
ted a three dimensional Lie group which induces flows on the invariant
measure space of the White Noise, and the associated Lie algebra. In
this paper we construct an infinite dimensional Lie subgroup of @(%,).

To begin with, we define an infinite dimensional Lie group without
differentiable structure, its one-parameter subgroup and an infinite
dimensional Lie algebra.

Let X be a locally convex Hausdorff topological vector space.

Definition 1. An X-Lie group & is a topological group with a
homeomorphism ¢ from & onto an open subset of X¥. We say ¥ is

the coordinate space of & and ¢ is the coordinate function.

Let & be an X-Lie group with the coordinate function ¢.

Definition 2. A subset {g;}_.<t<i. Of the X-Lie group © is a

one-parameter subgroup of & if it satisfies the following two conditions:

FsQt =0s+15 —oo<t, s< F oo,
(P.1)

go=1
where I is the unity of &;

(P.2) ¢(g;) is continuous and contiously differentiable in ¢ with respect

to the topology of X.

Definition 3. We call a a Lie algebra if it is a locally convex

HausdorfT topological vector space and there is given a rule of bilinear
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composition (X, ¥)—[ X, Y] in a which is continuous and satisfies
I:X, X]:03

for every X, ¥ and Z in a.

We start with defining a subgroup & of 0(%,) in the following

manner. For every u in &, define a transformation §[u] on &, by

an @Le8) @ = (o] exo-F-u €)@

=exp_;_u<x>e<ﬁ,<x>>,

where

x

(12) f,,(x)zfcxp%u(x)z Soexp u(y) dy, —oco L x < + oo,
Then, since we have

. 1 1

0 <infexp—— u(x) <supexp——u(x) < + oo,
by Theorem B, exp u belongs to %, and consequently, §[ u] belongs
to 0(&#,) for every u in &,. Put
S={g[ul:ues,}

and let ¢ be a map from & onto &, defined by
(13) $gLul)=u.

We shall show that ¢ is one to one and introduce a topology in & in
which & and &, are homeomorphic. Then we show that & is an
&,-Lie group with the coordinate function ¢ (Theorem 4).

Let {g:;} be a one-parameter subgroup of ®. Then as shown in
[27], the generator of g; is given by
d

dx’

(14) X( f)=—;— fI+F;
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where
(15) F=-% 4] 1m0

o dt by =
which belongs to &, according to (P.2) and the completeness of &,,
and

x
(16) F)={ f(pdy, —oo<x< oo,
Put

a={X(f): fe <, }.

Then a is a vector space isomorphic to &,. Therefore introducing the
topology of &, in a, we prove that a is a Lie algebra with the com-

mutator

(17) LX) X(1=X(f)X(g)—X(X(f)
(Theorem 5).

Finally, for every X(f) in a, we establish the exponential
ExptX(f) which is a one-parameter subgroup of & with generator
X(f) (Theorem 6). In particular, put t=1. Then we prove that
Exp X(f)=Exp1-X(f) is a continuous map from a into & (Theorem
7).

Part I. One-parameter subgroups of the group 0(#,).

§1. Velocity Function

In this section we define the welocity function and prove several
properties of it for later use.
Let f be a real bounded continuous function on the real line and

put
Ao:{xe(-w, +°°); Ff(x)=0},

where
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(16) Fo={ f(Ddy,  —co<u <o,

Let A, A° and A be the set of isolated points, accumulation points and
the complement, of A,, respectively. Since A, is a closed subset of the
real line, 4 is open and is an at most countable union of disjoint open

intervals, say,

1.1 A=\ (@, B)

2€N ;

where Ny is a subset of all natural numbers. 0 always belongs to A,.

At first we define a function on each interval («,, 8.) by

(1.2) = Ff(y S w<w<bn

where

(1.3) Tn= Bn_l, if anz.—oo’

1
5 (au+B), otherwise.

The sign of Fy(x) is unchanged in each interval («,, 8,). Let us

assume that F(x) is positive in the interval («,, #,). Then we have
lim %,(x)=+ o0,
xTﬁu
lim ,(x)=—
xla,

For, if 3, is finite, we have

dy
7.(x)= Sv,. 7))

1 (* dy
> ”f”OO g')'n n- T +

as x converges to (3, from below, and if (3, is infinite, we have

T3> f,‘||oogy,‘
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as x diverges to infinite, because of the facts that
| Fe(x)| = | F(x)—Fs(B,)]
Rn
<["1roray

<”f||00(6n_x)>

and that
LE () | <l flloo| 2 |,

respectively, where || f|loo=sup| f(x)|. The second equality is also
x

proved in the same manner. Since 7,(x) is monotone increasing, 7,

maps the interval («,, £,) onto (—oo, + o0) homeomorphically and the

inverse function 7,! is well-defined, which maps (—oo, +o0) onto

(s B)-
Define a function A(¢, x: f) on (—oo, + o)X A by

(1.4) h(ty x: f)=u;"(p.(x)+10), —cot< + oo
a,<x <,
It is evident that
(1.5) a, <h(t, x: f)<PBu —co<t< + oo
a,<x<
On (—oo, +00)X A, define h(t, x: f) by
(1.6) h(t, x: f)=x, —00<t <L+ oo
x € Aq.
We have thus defined a function A(¢, x: f) on (—oo0, +00)X (—oo,

+ o).

Remark. A(¢, x: f) is determined independently of the choice of
{r.}. In fact, assume that x is in A, say, in an interval (&, B,).

Let 7, be an arbitrary number in the interval and put
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z dy
/ X )= 7N n < ne
nw={ iy w<<s

Then we have

., 77:L
"77:(3”)—77"(":)+S~/,, Ff(y) '

For every x in (&, 8.) and every ¢, put

z=h(t, x: ) =75, (ga(x)+1).
Then we have

ﬂn(z):"’]n<x)+ Z,

'Yn dy N . Tn dy
ﬂ"(Z)—_Srﬂ, Ff(y) _”n(x)+t S'Y;. Ff(y)

and therefore
() =7,(x)+1¢.

Thus we have
z=h(t, x: f)=n,""(n(x)+0).

The above remark shows that A(t, x: f) is determined uniquely
once a function f is assigned. We call A(t, x: f) the velocity function

corresponding to f.

Proposition 1. If f is a bounded continuous function on the real
line, then the velocity function h(t, x: f) is continuous in (t, x) and we

have

7 h(t, h(s, x: f): f)=h(t+s, x: ), —oo<t, 5, x <+ oo,

Proof. By definition, it is obvious that A(z, x: f) is continuous
at (to, x9) if xo is in the interior of A,.
Assume that x, is in A, If there exists a sequence {x,} in 4,

which converges to x, from above, then, observing (1.5), we have
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im h(¢, x: f)=lmA(t, x,: f)
t—tyg t—1y
x ) Yo +4oo

=lim x, =x,

Vs too

= h(to, xo: f).

If there is no such sequence in Ay, then there is an interval (a,, #,)

such that xo=ca,. In this case, it is not difficult to show that

lim ACt, x: f)=lim 7; (9.(x)+1)
1=t t—1to
xlxp EZET)

=ay,=x0=h(to, xo: f).
Therefore we have for every (tg, xo)

lim h([o, Xo. f)=h(t0, Xo- f).

t—1g
xlxg

Similarly we can prove that

lim A(t, x: f)=h(te, xo: f).

t—=to
2<xg
2%

Thus we have proved that

lim h(t, x: f)=h(to, xo: f).

t—1ty
x=x0

The formula (1.7) is easily proved by the definition (1.4) and (1.6).

Proposition 2. If f is a bounded continuous and continuously
differentiable function, then h(t, x: f) is continuously differentiable in x
and satisfies

Oh(t, x: f)

0x

(18) =expS; FhGr, % ) dr.

Before proving the proposition, we prove two lemmas.

Lemma 1. If f is a bounded continuous and continuously dif-

ferentiable function, then f(x) vanishes identically in A°.
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Proof. For every x in A% there exists a sequence {x,} in 4,
which converges to x monotonously. Without loss of generality, we
assume it converges to x from below. Since Fy(x,)=F;(x;)=""

=F¢(x,)=--=0 and f(x)=—d%c—Ff(x) is continuous, there exists a

number x; in each interval (x,, x,,,) such that f(x{)=0,v=1,2,3, ...

The sequence {x,} converges to x together with {x,} and we have

fx)=lim f(x1)=0.

Lemma 2. Assume that x is in A, say, x € (&, B,). Then we

have

! . _ Fen ')+ ]
(1.9) eXpSO SO0, 2 f) ar= L0

Proof. By a certain transformation of variables in the integra-

tion, we have the following evaluations.
t
So F(hGr, =2 F)) dr
t
={ rem )+ dr

nu(x)+t
=" et du
70(%)

- S'/ﬁ'('lu(x)ﬂ) f(}’)

x Fi(y)
1o Filna'(ra(x) +1)]
R 7€) R
Proof of Proposition 2. Put
(1.10) K, %: f)=expS; FChGry 52 £))dr.

Then, since f and A(r, x: f) are continuous by Proposition 1, A'(¢, x: f)
is continuous in (¢, x). Therefore, in order to prove the proposition, it

is sufficient to show
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(1.11) K, x:f):SOh’(t, yi f)dy

=(Cexe rhr, y: pyydray.

Assume x is positive and in A, say, x € (a,, £.). Observing that
by Lemma 1, A'(t, x: f)=1 for every x in A° and that A’ is a null
set and 0 is in A4,, we have

S:h’(t, yi f)dy

4L ] e

L0,x]N4e  (0,2IN4

- de+ ) Simh’(z, yi f)dy

[0,£1NA"  (@y,Bm)CL0,2] "
* !/
+Sa Wt y: f)dy.

By Lemma 2 and by a certain transformation of variables in the

" integration we have
® 4
[ wa ypay

- nexpg; fChGr, y: ) drdy

_ S" Fln '+ 0]
a, Fi(y)

=7, () + ) — 7, (gt +0) + 1)
=h(¢, x: f)—a,

Similarly we have
ﬂm ’
(w3 frdy=B—am,

if a,, and B, are finite and consequently we have
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S K, y: f)dy
0

= S dy+ Z (ﬁm_am)-'—h(ta x:f)—a”

L0,x]NA% (s B) CLOpx]

ﬁl"
= [ ay+ = (Tayrne v p-a,
L0,x1N 40 (@ B L0

=S:”dy+h(t, 2 f)—ay

=h(t, x: f).

We can prove (1.11) by the same way when x is positive and in
Ay, and when x is non-positive. Thus we have proved the proposition.
From the proof of the above proposition, we have the following

lemma.

Lemma 3. If f is a bounded continuous function, then we have
(1.12) h(0, x: f)=ux,
(1.13) |h(t, %2 f)—h(s, x: f)]
le—=sllx |l fllooexp[max(|¢] , [sDI flloo];
—oco<lt, s, x <+ o0

where
1/ loo=sup| £ ()]

and

(1.14) K@, /7 Hx<Ih(, x: <K@ =],
—oco <, x <+ o0

where

K (¢, f)=exp(|t|[l flloo)-

Proof. (1.12) and (1.14) are easily proved by (1.11).
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(1.13) is shown by the mean value theorem with respect to the

argument ¢ and by (1.11).

§2. One-Parameter Subgroups' of the Group #%’,.

In this section, we discuss how to construct one-paramer subgroups
of #7%,.

Let {¢:} _wctciw be a one-parameter subgroup of #%,. Then we
have

(ps®¢t:¢s+t> — o0 <53 1<+ oo,
2.1)

po=1

or equivalently

(2.2) ¢s(x)¢t(S:¢’s(y)2dy>=:pw(x), oo <s, 1< 4 oo,

po(x)=1.

We assume that ¢,(x) is continuous in (¢, x) and continuously
differentiable in ¢. Since ¢; is in %%, ¢(x) never vanishes, and
observing that @o(x)=1 and that the continuity of ¢;(x) in ¢, we
know that ¢,(x) is always positive.

Put
(2.3) u(t, x)=log¢,(x)? —oo <ty x< + 00,

Then (2.2) is equivalent to

u(s, x)+ u(t,g:exp u(s, y)dy)=u(s+t, x),

(2.4) Cco<s, 1, 1< + oo,
1 (0, x)=0
Differentiate both sides of (2.4) in s. Then we have

Ou(s, x) , ou(t, X) Sx ou(s, y)
0s + X Xuj:expu(s,y)dy o os expu(s, y)dy
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_ u(s+t, x)
——

Evaluating at s=0 in the above equality. Then, considering u(0, x)

=0, we have
ou(t, x) _ ou(t, x)
(25) FG)+FL ) 2h D) _ulx)
where
. _ ou(s, x)
(2.6) f(x)———as o

Fo={ rndy.

Conversely, assume that f(x) is a bounded continuous and con-
tinuously differentiable function on the real line. Then, by the theory
of partial differential equation (see for example L.G. Petrovskii [ 6]), the

equation (2.5) has a unique solution under the initial condition
2.7 u(0, x)=0.
In fact, using the velocity function, we construct the solution explicity

as follows.

Proposition 3. For any bounded continuous and continuously
differentiable function f,

(2.8) wty )=\ fOhGs, 3 ) ds

is the unique solution of the equation (2.5) under the initial condition
(2.7). It is defined for all (i, x) in (—oo, +00)X(—oc0, +0) and
satisfies (2.6).

Proof. The differentiablity of u(¢, x) is obvious from that of f
and h(¢, x: f). In fact we have

94— f, w3 )
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S:,f (s, v: f)) Oh(s a,:hf) B

Il

Ou
9

t s
:So FrlhGs, w5 yexs(| e s ) dr ds
Assume x is in A, say, x €(«,, ). Then by Lemma 2, we have

Fy(a) 9L

={ o )+ FyLr () + 5)1 ds

=fLr nu(2) +5)]1 t=g
= [ () + )]~ f (%)
=f(h(t, x: f))—f(x)

Therefore (2.5) is true.

Assume x is in A,. Then we have Fp(x)=0 and A(t, x: f)=x.
Therefore (2.5) is true.

By the definition (2.8), (2.7) is obvious and by (1.12), (2.6) is also
true.

Thus we have proved the Proposition.

Lemma 4. Let f be a bounded and slowly increasing function.
Then the function u(t, x) defined by (2.8) is also bounded and slowly
increasing in x uniformly for t in every finite interval. In other words,
u(t, x) is arbitrary times continuously differentiable, and for every posi-
tive number T and for every non-negative integer k, there exists a non-
negative integer p such that

(k)
(2.9 sup sup lue,

x)]
<+ oo
CT<IST —w<z<+e 14 |x]|?

where



One-paraieter and a Lie Subgroup 271

k
uw®(t, x =0 u(t, x).

0x*

Proof. We prove the lemma by mathematical induction with re-
spect to k.

In case of £=0, it is obvious that
t
(2.8) u(t, x)=So [, w2 f))dr

is continuous in x since A(t, v: f) and f are continuous. Moreover

for every positive number T we have

sup  sup |u(t, x)|
—TStST —o<a<l+o

< Tsup| f(x)| <+ oo,

Assume that the lemma is true in case of k=0, 1, 2, .-, n.
Differentiating both sides of (2.8) and using Proposition 2, we
have

(2.10) u®(e, x)=% u(t, x)
=( prene, w0 Lontr, w: prar

=S;f/(/t(r, x: f)expu(r, x)dr.

Differentiate again both sides of (2.10). Then it is not difficult to
show

(2.11) u™(t, x)=§§20m[u] Fh(ry x: ) dr

where Q,,[u],v=1,2,3, ..., n, is a polynomial in expu(r, x), u®(r, x),
u@(ry x), ooy 0" V(r, x). Therefore u(r, x) is again continuously
differentiable, so that we have

(2.12) w0, )= 3 Onen Lud O, 23 £)

Since Q1. [u ], v=1,2,3,-.., n+1 is a polynomial in expu(r, x),
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uB(r, 2), u®(r, x), .-, u™(r, x) and since they are divergent at most
in a polynomial order uniformly for r in [—T,T], we have only to
show that fO(h(r, x: f)), v=1,2,3, ..., is divergent at most in a
polynomial order uniformly for r in [—T, T]. Since f is slowly in-
creasing, for every non-negative integer y, there exists a non-negative

integer ¢ such that

)
||f||u.—q—5';lp'w< + o0,

Observing Lemma 3, we have

| £ (h(ry x: )]

5L S SN B P
B LfO Ry 22 )] 14 |k, 22 £)]°
rercr st 1+ |A(r, x5 )]0 1+ [x[*

<I|f|lu,—qe§p[Tsuplf(x)|]< + oo,

Thus we have proved the lemma.

Summing up Proposition 3 and Lemma 4, we have the following

theorem.

Theorem 1. Let f be a real-valued bounded and slowly increasing

Sunction and put
t
) (p,(x)zexp%gof(h(r, vi f)dr,  —oo<i, x< +oo.

Then {@:}—wciciw iS a one-parameter subgroup of U’y and consequently

{aL@1 ]} —wctcr= is a one-parameter subgroup of O(#,).

Proof. At first we show that ¢,(x) belongs to %%, for every fixed

t. Since f is bounded and slowly increasing, by Lemma 4,
t
u(t, x)=S0 FhGr, x: ) dr

is also bounded and slowly increasing in x. Consequently, it is easy to
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show that qo,(x)=exp—;— u(t, x) is slowly increasing in x. Moreover,

since we have

0<expL——- [l ] < pi(x)

Lexp—Ielllflloo < + oo,

by Theorem B, ¢;(x) belongs to %', for every fixed t.
Secondly we show (2.2). Observing

(2.13) o=\ 00 dy

=SZexpS: FhG, y: f))drdy
—hs, x: f)
and Proposition 1, we have
AOTANZORZY
=@(x) @:(h(s, x: f))
—o.@exp- L { fte, b5, w2 ) dr

s+
s

=exp —;—S:f(h(r, x:f)) drexp—;-g tf(h(r, x: f))dr

= exp %S: G, % ) dr

=¢s+l(x)> — oL, t, x < + oo,

Thus we have proved the theorem.

§3. One-Parameter Subgroups of the Group #%,.

In this section, we give a method of constructing one-parameter
subgroups of @%,.

Let {¢:} -wcici be a one-parameter subgroup of #%,. Then we
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have
¢sQer=¢s.1 —o0 s, t< + oo,

3.1)

go=1.

According to Lemma 7 and the following remark of H. Sato [17], (3.1)

is equivalent to

Y0 =515 —00<s, t< + oo
(3.2)
po=1
and
0e(x) @i (fo:(x) =024, (%), —oo s, t, x< + 00,
(3.3)
pi(x)=1,
where

OO q’“"):ﬁ—igr

Define two subgroups of %, by
25 ={p(x) EULNUL; ¢(x)>0}
2ls=4p(x) €2l |o(x)| =1}

Then %%} is also a subgroup of #%,. Therefore, in order to construct
a one-parameter subgroup of %f’y, we may first construct that of @}
and then sovle the equation (3.3) in @%.

We make use of the method given in Section 2.

Lemma 5. Let f be a bounded and slowly increasing function.

Then {@7} -—wcicre defined by
t
(3.0) (o;'(x)zexp—;—go FlhGr, 2 ) dr,  —oo<it, x< + oo

is a one-parameter subgroup of U5 if and only if f is an even func-

tion, that is,

(3.5) f)=f(—x), —oco<x< +oo.
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Proof. Assume that {¢/}_.ci<+. defined by (3.4) is a one-
parameter subgroup of #%;. Then, since ¢} belongs to #*; for every

t, we have

(3.6) ¢ () =p{(—x)

or equivalently
3.7 S;f(h(r, x: ) dr=S; [hGr, —x: f))dr.

Differentiating both sides of (3.7) in ¢ and evaluating at t=0, we have
(3.5) by Lemma 3.

Conversely, assume (3.5) is true. Then, since by Theorem 1,
{¢7} _wcici given by (3.4) is a one-parameter subgroup of #7%,, we
have only to prove (3.7) for every t.

In order to prove (3.7), it is sufficient to show

(3.8) h(t, x: f)=—h(t, —x: f), —oo<t, x < + oo,

From (3.5) we have
x
Fa)={ f()dy=—Ff—x), —w<x<+oo
Hence the collection A, of all null points of Fy(x) and its complement
(1.1) A=\ (am Bn)
neN s

are symmetric sets. Therefore, for x in A4y, —x is also in A4, and

(3.8) is trivial since by the definition (1.6) we have
h(t, x: fl=x=—(—x)=—h(, —x: f).

Let x be in 4, say, x €(®,, B.). Then, since A4 is symmetric,
there exists a number n’ in Ny such that a,,=—8, and B, = —a,.

Furthermore by (1.3) we have 7y, = —71, and have

(3.9 (%) =70 (— %), a,<x<f,

since we have
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_(F_ dy _(* dy
77n(x) - S"/"?j(y) N S_'y.,, Ff(y)

_(_dy __
—S'yn)Ff(y) —77n( x), a’n<x<ﬂn-

Put

z=h(t, x: f)=7; (7.(x) +0).
Then we have

12(2) =1a(%) +1
and observing (3.9), we have
7w (—2) =7 (—x)+1
Consequently it holds that
—z=—h(t, x: f)
=9 O (%) + ) =h(t, —x: f).

Thus we have proved the lemma.

Let f be a real-valued, bounded, even and slowly increasing func-
tion and let {¢;}_.<i<i. be a one-parameter subgroup of %%} defined
by (3.4). Then we solve the equation (3.3) as follows.

Put

(3.10) v(t, x)————}— loggé(x), —oo<t, x <+ oo,

and assume that »(¢, x) is continuous in (¢, x) and continuously dif-
ferentiable in ¢. Then, since ¢! belongs to #*$ for every ¢, |@é(x)|
=1 and v(¢, x) is real-valued. Furthermore, observing (2.13), we have
from (3.3)

v(s, x)+v(e, h(s, x: f))=v(s+1t, x),
(3.11) —oco<t, s, x< + o0,
v(0, x)=0.

Differentiating both sides of (3.11) in s and evaluating at s=0, we
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have a partial differential equation

dv(t, x) _ Ov(t, x)

(3~12) g(x)+Ff(x) (')’x 0t ’ —°°<t) x<+°°a
17(0, x)EO’
where
— Ov(s, %)
(3.13) g(x)= 2|
and

Fy(x) = Oh(s,a:c:f)

NI

Conversely, assume that g is a real continuously differentiable function.

Then (3.12) has a unique solution and it is given by:

Proposition 4. Let f be a real-valued, bounded and continuously
differentiable function and let g be a real-valued, continuously differen-
tiable function. Then

(3.14) v(t, x)= S:g(h(r, x: f))dr,

is the unique solution of (3.12) defined for all (1, x).

Lemma 6. Let [ be a real-valued, bounded and slowly increasing
Sunction and let g be a real slowly increasing function. Then the func-

tion v(t, x) defined by (3.14) is slowly increasing for every fixed t.

Lemma 7. Let f be a real-valued, bounded, even and slowly in-
creasing function and let g be a real-valued, slowly increasing function.

Then {@$} wcicie given by
t
(3.15) (pf(x)=expigog(h(r, wi f))dr,  —co<i, x< +oo

is a solution of (3.3) if and only if g is an odd function, that is,
(3.16) g(—x)=—g(x).
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Proposition 4, Lemma 6 and Lemma 7 are proved in the same
manner as Proposition 3, Lemma 4 and Lemma 5, respectively.

Summing up the above, we have the following theorem.

Theorem 2. Let [ be a real bounded even and slowly increasing
Sfunction and let g be a real odd slowly increasing function. Then
{01} —wcicso defined by

a0 g =exp L fG, x: N +ightr, v 1) dr,
—oo<t, x < + oo,

forms a one-parameter subgroup of U",. Consequently {[ @]} -cctosw
is a one-parameter subgroup of O(¥,).

Part II. An infinite dimensional Lie subgroup of the group
o(<L,).

§4. Subgroup & and Group &.

In this section, we define a product operation () in &, and show
that &, forms a group with respect to the operation (¢). We denote
this group by &. Then we show that (& is algebraically isomorphic
to & and consequently & is a subgroup of 0(%¥,). At first we define
a product operation (¢) on &, by

(4.0) (w@v) (x)=u(x)+ n(f,,(x)), w, vE Ly,
where f,,(x) is defined by
(12) f,,(x)———S:expu(y)dy, —oo < x < + oo,

Since exp u(x) never vanishes f,, maps the real axis onto itself
homeomorphically, and moreover, it is easy to prove the following

inequalities;

(4.1) K@) x|<|ful) | <K@W)|x|, —oo<x<+oo,
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where

4.2) K(u)=eXPI|UI|oo:exp[s§1p| u(x)|].

Before proving that %, is a group with respect to the operation

(®», we prepare the following lemmas.

Lemma 8. Let u be a k—1 times continuously differentiable func-
tion and v be a k times continuously differentiable function where k is
an arbitrary positive integer. Then we can find polynomials Py ,[u] in
expu, uwy u’y -y u* V3 v=0,1,2, ..., k, the expressions of which are

independently of the choice of functions u and v in such a way that
d* 7 : o F
@3y L u(fu@) =2 Pl e (fu),
where
~ dv
v =5 v xap . ¥=0,1,2,3, - k.
Specifically, we have

(4.4) Pyl u]=expku(x).

Proof. We prove the lemma by mathematical induction with

respect to k.

In case k=1, it is evident that
l 7 07
- o(f) =exp () v (fulw).
Assume that the lemma is true in case k=n. Then we have
dﬂ - _ n (v) -
Tn‘ 1)(fu(x))-—ZP,,y[u:|v (fu(x))°
X v=0
Differentiate both sides of the above equality. Then we have

—an:iT v(fu(x))
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= 5 - P Lo + PuLuTexpula) o D ful)

=% Prn [u30O(ful),

where

Pﬂ+ I,VEUJZ%’ Pn»[u]‘!'eXp u(x) Pn,v—l[u:la

y=0,1,2, .-, n+1.

Considering that P,,[u], v=0, 1, 2, ..., n, are polynomials in expu, u/,
u”, ..., u® VY we can easily prove that P,,; [u], v=0,1,2, ..., n+1,
are again polynomials in expu, u’, u”, ..., u™. The other assertions

are also easily proved.

Lemma 9. For every u and v in &,,

Uofu(X) = U(fxt(x))

belongs to &, and the transformation from v to vof, is continuous in

the topology of &, uniformly in u on any bounded subset V of &,.

Proof. To prove the lemma, we show that ||lvof,||s, is finite for
every non-negative integers £ and p. In fact, considering Lemma 8,

we have for any non-negative integer k

dk . k .
W vofu(x):vgzopkv[u] 'U(y)(fu(x>)‘

Since Py,[u]: v=0,1,2, ..., k, is a polynomial in expu, u’, ..., u®*™,
and they are uniformly bounded on V, we have for every non-negative
integer p

k
Ilvofu”kﬁ':suP w? d(-ixk v(f"(x))

< 2 My, sup] 20(fu)|
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If( )Ip | fulo)? o fu(2)) |

k
< ZOMka(lt)"supl yP v (y)]
v= y

k
<ML Malloll.p <+

where
My,= sup |Pp[ull, y=0,1, ..., k,
uevV
—oo g + o0
and
M= sup K(u).
uevV

The above inequality together linearity proves the uniform continuity

of the transformation.
Lemma 10. For every u in &,y v(x)=uof,; (x) belongs to &,.

Proof. It is sufficient to show that ||v||s, is finite for every non-
negative integers £ and p. We prove it by mathematical induction
with respect to k.

In case k=0, considering that u(x)=wvof,(x) belongs to &,, we

have for every non-negative integer p,
IIvIIop=s§lplx”v(x)l
=sup| fu()"u(2)]

fu(x)

=sup | —5— x’u(x)
20 X

K (u)?[|ullop< =+ oo.
Assume that the [[v|lsp £=0,1,2, ..., n—1, p=0,1,2,3, ..., are
all finite.

Then by Lemma 8 we have
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W) =2 PaLud o fu) +expnule) o fulo)
and therefore
(45) o) =exp (=m0 ()~ PrLuJo(fu(a)}-

Since expu(x), u'(x), u”(x), ---, u " V(x) are uniformly bounded on the

real line, we have
lo]lup < K ()" sup| x?0™(x) |
x

< K(u)"sup|x?u(x)]
n—1 R
+ K(u)” ZOMM sup I x? U(V)(fu(x)) |

<K@ el + K @)'E M sup| 55 Ful@) o Fuli)

xﬁ
+0 | fu(x)?
n—1
<K@l K M, s1p] 30|

n-1
<K(u)””u”np+K(u)n+va=:Oan”U”VP< + oo,

where

M,,=sup|P,[u]]l, v=0,1,2,...,n—1.
x
This completes the proof of the lemma.

Proposition 5. &, forms a group with respect to the operation

®.

Proof. Let u, v and w be arbitrary elements of &,. By Lemma
9, it is obvious that u@v=u+v0fu belongs to &,. The associative
law (u@v)Ow=u@®(@®w) is true since vafuzfu@,, holds. The unit
element is the null function and, finally, the inverse element u~! is

defined by
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(4.6) w l(x)=— ll,(f;l(x)).
In fact we have
(u@u™) (W) =u(x) —uofy o ful(x)
=u(x)—u(x)=0,
and by Lemma 10, «~! belongs to &#,.
Thus we have proved the proposition.

We denote the group &, with the operation (&) by &. The fol-

lowing proposition clarifies the relation between & and &.

Proposition 6. The map ¢ defined in (13) is a group isomor-
phism from & onto &,

Proof. By the definition of & and by a slight modification of H.
Sato [1], Lemma 6, it is easy to show that ¢ maps & onto & in a
one-to-one manner.

Therefore, we have only to prove that ¢! is a group homomor-

phism. For every u and v in &, we have
@' W) ()8) (x)
=(@Luldglv]$) (%)

—(aCud(exp—g- v)ofs ) ()
=exp % u<exp % U°fu> {&ofrofu(2)}

= exp - u@v{Eofron ()}

=@Lu®v]é) ()
="' (w®v)§) (%)

for every &(x) in &,. This result proves

(4.7) O R ORI IO
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or equivalently

(4.8) gLuJglo]=dLu®v]
for every u and » in &.

According to the ahove propositions, we have:

Theorem 3. & is a subgroup of 0(¥,) and algebraically isomor-
phic to the group & through the map ¢.

§5. Topological Group &

In this section we introduce a topology in & so that & is a
topological group and consequently an &,-Lie group.

To begin with, observing that & and &, are isomorphic algebrai-
cally and & coincides with &, as a set, we introduce such a topology
in @ that @ and &, are homeomorphic through the map ¢.

To show that & is a topological group with respect to this topolo-

gy, we must show that
@ (W () L XL S

and

$(" () ) S S
are continuous maps. We know that

#p '(w)d ' ()=u®v
and

p (W) H=u".

Therefore, in order to prove that & is a topological group, it is suf-
ficient to show that & is a topological group in the topology of <,.

We start with proving the following lemma.

Lemma 11. For every fixed v in &,, the transformation from u

to vo A,,, which maps &, to &,, is continuous in the topology of <,.
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Proof. Since &, is a metrizable space, it is sufficient to show
that UOf,," converges to UOfu if u, converges to u, in &,.
Let {u,} be a sequence in &, which converges to u, and let &

and p be arbitrary non-negative integers. Then by Lemma 8, we have

00 fus =0 Fulas
—sup| +* % {Pr.Lus 10 fu, (80) — Pau Lo 0 Fu()} |

Zsup|* % {PeLitn]— PeLo T o fu ()]
sup| 67 5 P Lo o fu, (00 =0 ()} |
< E K @)1l psup| PrLun]— Po.Luo]]

+§osgp|mv[u03|sgp|xb{v<v><ﬂn<x>—v<v><fuo<x>>}||.

The first term of the right side converges to zero as n— 4 oo since all

the sequences u,(x), u',(x), ---, u,*"V(x) converge to u, uniformly
on the real line.

Before proving that the second term also converges to zero, we

remark that there exists a positive constant K such that

(5.1) K'lx

<|fo,@)<K|x], —oo<x<+oo

uniformly in n. In fact K is given by
K=expsupsup|u,(x)|
n x

which is finite since {u,} is a bounded set in &,.

For every non-negative integer v and for any positive number e,
there exists a positive constant R such that

sup| x? v (%) | <e(BK")™,
1zI>R

since v belongs to &,.

By (5.1), | x| >KR implies If,,n(x)l >R for every n, therefore we
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have

sup| x? {0 fo, (¥)) — 0 fu, (¥} |
Ix1>KR
<K?sup | fu, (2)? 0 (fo, (%))
1zI>KR
RV N O Y o
Kby 100

2

<73

&
Ce

On the other hand, it is easy to show that
|U(V)(x)—U(U)(y)|<Hvl|u+l,0|x_y|> —oo<lx, )’<+°°,
and that
| fun(2) = fug(@) | <K | x| [l — wolloo
If n is sufficiently large that
”un_u0||00<|:3Kp+zRP+IHvIIV+1,0]_18
then we have

sup | 20O fu, (1)) = %P 0 fuy ()|

IzI<SK

K (KR)? sup [v(fu, (2)) — v (fur(2) |
I1zI<KR

o 1
< (KR)I)”UHHI,OK"R“un—uo|loo<§5-

Summing up the above estimations, we have

sup| 2P {0 fu, () — 0O (fu ()} |
<sup | 2P {0 fu (2)) — 0O (fuy(2))} |

1zI>K

+ sup |a?{e(fo, (1)) — 0 (fry (N} |
IxIKKR
2 1
<—3— e+? e=g¢,

for sufficiently large n. Thus the lemma is proved.
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Proposition 7. & is « topological group with respect to the
product (s).

Proof. Continuity of the product operation.
Let {u,} and {v,} be sequences in & which converges to u, and

vg, respectively. Then for every non-negative integers £ and p we

have
||un®vn'—u0®l)0”kb
:”(un+Unofu,,)_(u0+voofr¢0)llkp
<”un_”0”kp+ ”Uno Au,L—Uoc'fu,,“kp
+”UoofAun—vOofuquﬁ‘

By assumption, the first term of the right side in the last inequality
converges to 0 as n—>+4oco0, and by Lemma 11 the third term con-
verges to 0. Since {u,} is a bounded set, by Lemma 9 the second

term converges to 0. Therefore the product operation is continuous.

Continuity of the inverse operation.

Let {u,} be a sequence in & which converges to u, To prove

the continuity of the inverse operation, it is sufficient to prove that

(5.2) lim u;'®uy=0.

N> 400
In fact, by the continuity of the product operation, u,;'=u,'(®u,®uy’
converges to 0®ugl=ug! if u,;'®u, converges to 0.
Since it is easy to show that
(5.3) Fi @) =fur)
for every u in &, we have
wu(x) = (uyz'@®uo) (v)
= —uu(fol(x)) +uo(fr(x)).

In order to prove (5.2), we show that ||lw,|/s, converges to 0 for every

non-negative integers £ and p by mathematical induction with respect
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to k.

In case £=0, we have for every non-negative integer p

Ilwnllop:sgp | 22 10,(x) |
=s;1p | x"{uo(f;,}(x)) — u,,(f';nl(x))} |
=s;1p |fun(x)”{uo(x) —uu(x)}|

.
Zsup Tl b ) a0

=K’|lug—unllop—0 as n— -+ oo,
where

(5.4) K= sup K(un).

Assume that ||lw,||sp converges to 0 for k=0, 1,2, ..., m, p=0, I,

Then by the equality
wi( fu, ()= = wn(x) + uo(x)
and by Lemma 8 we have
— P (x)+ uf (@)
=T P J05 () + expmas, wp(fu, ()

and therefore

W () =exp (= muye [ 2N = w (f L2+ 4§ (fr, ()}
'—exp(_ ’n'unof;,}(xstg(tpnzu["’nf;,}]1Ur(xV)(fu,L(x))'

Considering that P,,,,[unOf;:(x)], v=0,1,2,...,m—1 are polynomials
in expusof,l, u'nof;t, .., ug® Pof,l and that they are uniformly

bounded in x and n, we have for every non-negative integer p

[[wallms=sup| 2% ;" ()
x
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<K sup 2 {ui(F 7 (x)) — u(Fr1 (o))} |
KPS M, sup| x0w0 () |
v=0 x

m—1
<Km+p||u71_uOllmP+KMZOM"WHM),’””,
v=

—0 as n—>+ oo,
where K is given by (5.4) and

M, =supsup| Pn.[u,]l, v=0,1,2,..., m—1.
n x

Thus we have proved the proposition.

Theorem 4. & is a complete, separable, metrizable and arcwise
connected topological group, and consequently, it is an &,-Lie group

with the coordinate function ¢.

Proof. & is a complete, separable, metrizable and arcwise connected
topological space since &,, which is homeomorphic to &, has these
properties, and it is an &,-Lie group since & is a topological group in

the topology of &,.

§6. Lie algebra a.

In this section, we determine the generator of a one-parameter
subgroup of & and show that the space of all generators forms a Lie
algebra with respect to the commutator.

Let {g:;} -wcici be a one-parameter subgroup of & and put u(¢, x)
=¢(g;)(x). Then for every &(x) in &, we have

6D @O@={xotu »fe((exvuln dy).

Differentiating the right side of (6.1) in ¢ at =0, and marking that

u(0, x)=0, we have the generator of {g;} in the form
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(6.2) (e
. dt 1 =0

_ 1 d
__2;f(x) f(x)-l-Ff(x)W £(x)

=X(N &),
where

_Ou(t,x)| _ d _
(15) =" =)
16) o= f()dy,
and where

_ 1 d

(14) X(f)=—fT+Fr—

and by the condition (P.2) of the definition of a one-parameter subgroup
of @ in Section 1, f belongs to &,.
Let a be the collection of all such operators defined in (14) for f
in &,, that is,
a={X(f): fe&,}.

Then obviously a is a linear space isomorphic to &,. We introduce a
topology in a such that a and &, are homeomorphic through the isomor-
phism X(f)—f. Since a and &, are isomorphic not only algebraically

but also topologically, a is a topological vector space.

Proposition 8. a is closed with respect to the commutator

LX), X(]=X(f) X (g —X(&) X(f)

which is continuous in a.

Proof. For every f and g in &,, we have

]. ’ 1
X)X (=4 el +—5 Frg' T+ Fra g,
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1 d d &
toy Mgy t e g g

X(gXf()=-1

1 / 1 d
Fof T+ Fof -1

1 d d d?
toggFr gt Fef gt s

and therefore

[X(/), X(g)]
= (Frg' = Fef ) I+ (Fra—Fef)

= X(Frg' —Fef").

Since a and &, are isomorphic, in order to prove the proposition, it is

sufficient to prove that

(6.3) [fs g1=Frg'—Fef’

belongs to &, and continuous in &,X%,. To prove it, we have only
to show that the map (f, g > Frg’ is a continuos map from &, X%,
to &,

Let f aud g be in &,. Then for every non-negative integers k
and p, we have

sup| Fy(x)| =sup
x x

(o

sup(l + )| f(x)] sup

foi

1+ y?
<7 f Moo+ 11 £ o2}

Since Fyg’ is bilinear, we show the continuity at (0, 0). In fact

we have

1Fr e < 25 (F)sup | oLl Fi) g0

Sk b p(k—r—1) (r+1)
<Z(F)supl e & (@) )|
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+sup| x?Fy(x) g*+1(x)]

k=17
<Z(B)flsrollgll o
r=0

+ (| f oo+ 11 f o)l g k1,50

Thus we have proved the proposition.
Theorem 5. a is a Lie algebra with respect to the commutator.

Remark. &, is also a Lie algebra with the bracket defined in

(6.3), which is isomorphic to a as a Lie algebra.

§7. Exponential map.

In this section we establish the exponential map from the Lie
algebra a into the &,-Lie group & and prove its continuity. First we

prove the following lemma.

Lemma 12. Let f be a function in &,. Then the function
u(t, x) defined by

7.1) u(l, x)=$2f(h(r, v f)dr, —oo<i, x< oo

is also a real-valued, rapidly decreasing function in x wuniformly in every
finite t-interval. In other words, u(t, x) is a C*-function in x and for
every positive number T and for every non-negative integers k and p we

have

sup sup|a?u®(s, x)| <+ oo
~T<t<T =z

where u® (t, x)=%£k— u(t, x). Moreover, the &,-valued function u,

=u(t, «) is continuous in t.

Proof. Let f be a function in &, and u(¢, x) be a function de-

fined by (7.1). Then the first part of the lemma is proved in the
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same manner as Lemma 4. Therefore, we have only to prove the

second part of the lemma.
We show for every non-negative integers £ and p

—oo s+ o0,

(7.2) ltim||u(£, )—uls, )|ep=0,
—-s

by mathematical induction with respect to k.
In case k=0, by Lemma 3 we have for every non-negative inte-

ger p
lleeCty +)—ulsy, llop

o' G, wi f) dr

=sup
x

=sup h(ry x: ) f(h(ry 2 f)) dr

s S h(r,, f)”
Lexp[ p-max(|¢], [sDIfloodll flloplt—s].

The right side in the last inequality converges to 0 as ¢ converges

to s.
Assume that |[u(t, +)—u(s, +)||zp converges to 0 for k=0, 1,2, ...,

n, p=0,1,2,.... Then by (7.1) and (1.11) we have

h(t, x:f)zg:expu(t, ydy

and Lemma 8 is applicable. Hence we have

Dult, )=, )}

—_00:',,Sif(h(r, wi f))dr

IVSOS:P,,,[u(r, x)]f(")(h(r, x: f)dr.

Observing P,,[u(r,x)],v=0,1,2,..., n are polynomials in exp u(r, x),

n-1

01 u(ry, x), -, 70 -1 u(ry x) and, by assumption, they are bounded

uniformly in r, we have by Lemma 3 for every non-negative integer p
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(e, ) —uls, llap
"

=sup|x? =, {ult, x)—u(s, x)}

x 0x

u ) t xﬁ B NS .
<L§0M e Ss}gg W xif)” h(r, x: ' fOU(r, 2 )| dr

< S MyeexpLprmax([el, DI flloodN fllsle—s1,

v=0

where

M,,=sup|P,[ul, x)]|, v=0,1,2,..., n.
s<r<t
x
The right side converges to 0 as ¢ converges to s.

Thus we have proved the lemma.

Now we define the exponential map. For every X(f) in a we
define

(7.3) Expt-X(f)={][:u(t,-)]:g[exp%u(t,-)}, oo <1< 400
where u(t, x) is given in (7.1) and call it the exponential of X(f).

Theorem 6. For every X(f) in a, Expt-X(f) is a one-parameter
subgroup of the &,-Lie group O.

Proof. Let X(f) be in a where f is a function in &,. Then by
Lemma 12, u(t, x) defined by (7.1) is a function in &, for every fixed
¢t and consequently Exp ¢-X(f) is in & for every fixed ¢. Further-
more, by Theorem 1 {expv;— u(t, ')}_w<t<+w forms a one-parameter sub-
group of the group %7, and therefore (P.1) is true.

The continuity of Exp¢-X(f) in ¢ is derived from Lemma 12.

We prove the continuously differentiablity of u (¢, x)=¢ (Exp
t+X(f))(x) in the topology of &,.

Observing that u(¢, x) is the solution of the differential equation

(2.5) by Proposition 3, and that F;(x), together with all its derivatives,
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is a bounded function, we can easily show that
D u(t, x)=Fy) L ut, )+ f(x)
ot ’ Ox ’

is an &,-valued continuous function in ¢, since u(¢, x), therefore
0 . . .
o u(t, x), is continuous in ¢.

x

On the other hand, by the mean value theorem we have for every

t and s
1 0
S {ul, ) —uls, DY = uls, %)
_0 BN
_'07”(“ *) =r Ot ult, %) t=s

where t is a number between ¢ and s. By the continuity of %u(t, x),

the right side converges to 0 in the topology of &, as t converges to
s.

We have thus proved the theorem.
In particular, we write simply ExpX(f) instead of Expl-X(f).

Then we have the following proposition and lemma.

Proposition 9. For every X(f) in a, we have

Expt-X(f)=Expt X(f), —oo <t < + oo,

Proof. To prove the proposition, it is sufficient to show that

(7.4) S:f(h(s,x:f))ds:S:tf(h(s,x:tf))ds, — o<, 1< + oo,

for every f in &,.
In case t=0, (7.4) is trivially true.
We assume t==0.

Since we have tFy(x)=F;/(x), F; and F;; vanishes in the same

set Ao. For every x in A4y, we have

h(s, x: f)=x=h(s, x: tf), —oo<t, s< + oo,
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and consequently we have

S;f (h(s, %2 f)) ds= S;_,v(x) s
=170 =4 7y ds

=S:z F(hGs, %0 Lf) ds.
For every x in A=A§, it is not difficult to show that
lz(s,x:f)zh(%,x:tf), —o0 s + oo,
Consequently we have

S; Fhs, x: f))ds

=S;f<h<%, x: tf>> ds
={ 47 hts, 1y s

We have thus proved the proposition.
Hence we write simply ExptX(f) instead of Expt-X(f).

Lemma 13. If X(f) converges to X(fo) in a, then ¢ (Exp
tX(f))(x) converges to ¢ (ExptX(fo))(x) uniformly in t of [0, 1], that

is,

lim sup sup|¢ (ExptX(f))(x)—¢(ExptX(f0))(x)] =0.

f=fo 0St<1 =«

Proof. Let u(t, x)=¢(Expt X(f))x) and uo(t, x)=d(Expt X (o)) (x).
Then they are the solution of equations

ou _ . Ou
ETaE Par
Ouo . 6u0

0t =Fj, 0x +/fo,



One-parameler and a Lie Subgroup 297

under the initial condition #(0, x)=u,(0, x)=0, respectively.
Put v=u—uy. Then v is the solution of the equation
ov v . .\ Ou .
OV _p OV gy 2o g
o = Fr g T —Fr) 5+ = fo

under the initial condition v(0, x)=0. Therefore, by Haar's inequality
(S. Mizohata [7]), there is a constant ¢ such that

sup | @ (Expt X(f))(x) — @ (Expt X (fo)) (x)]

x
0<t<1

=sup|u(t, ¥)—uy(t, x)|
vsr<l

=sup|o(t, )|
o<i<1

Kesup| Fy(x)—Fr(x)]
o<i<1

+sup| f(2) = fol®)].

Oug l
—ax (t, x)

Utilising the estimation in the proof of Proposition 8, we have

sup| ¢ (Expt X (f)) (%) — ¢ (ExptX(fo))(x)]

ac'{{lf = folloo+ Il f = Falloo} +11f— folloo

where ¢’ is a constant.

This completed the proof.

Theorem 7. ExpX(f) maps a neighborhood of 0 in a into a
neighborhood of 1 in & continuously.

Proof. We have only to show that the mapping X(f)—ExpX(f)
is continuous. Let {X(f,)}J>, be a sequence in a which converges to
X(fo). Since a can be identified with &,, {f,};= is a sequence in
&, which converges to f, and {f,};= is a bounded set in &,.

We show that for every non-negative integers £ and p
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(7.5) il (Bxp X(£.0)— (Bxp X(foD)lep=0

by mathematical induction with respect to k.

Put

u(x)=¢ExpX(f))(x), v=0,1,2,3, ...

Then by definition, we have

1
UV(x):S fv(hv(si v)) ds, v=0,1,2,3, ..,
0
where
ho(sy, x)=h(s, x: f,), y=0,1,2,....

In case of k=0. Let ¢ be any positive number and p be any
non-negative integer. Since f, is in &,, there is a positive number R
such that

1
» —¢.
If&pklx o) <=
Observing that {f,} is a bounded set in &,, put
K=expsupsup|f,(x)].
v x

Then by (1.11) we have
K x| < ks, #) <K,

for any v and s in [0, 1]. Therefore we have

sup S:Ix”fu(hy(s, %)) | ds<(3K?) e

|xI2KR

for any v.

On the other hand, by (1.11), we have

sup |h,(s, 2)—ho(s, x)|
IQKf

lx
0<s<

Soexpuv(s, y)—expuo(s, y)dy
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KKsup || u,(s, 2)—uols, %)
IxI<KR
0<s<1

<K Rsup (s, )~ as, )|
0<s<1
where u,(s, x)=¢(ExpsX(f.)(x), v=0,1,2, ...
By Lemma 13 the right side converges to 0 as f, converges to f.

Consequently we have

Huu—uouop

gl Fulh(s, x0)— folho(s, ) ds

=sup|+)
<sup|- S: Lol (s, ) — folh(s, x)) ds
oup| 2] fulhCs, )= folhaCs, ) ds

<K sup| G5, {1 (0G5 )= follha (s, 2} ds
+K? sup [\ 146, 207141 folhu s, wD] + | fuhols, D)} ds

+ sup 121 folh.Gs, )= fulhols, 2] ds

IxISKR

<K fo—follop+ ¢
+(KRY sup|. | folh(sy )~ fulhos, )] ds

KIS, follop+ 3¢

+ KPR follio sup [u.(s, 2)—uo(s, %)

0<s<1
Observing Lemma 13, the right side becomes less than e as v diverges.
Since ¢ is arbitrary, (7.5) is proved in case of £=0.
Assume that (7.5) is true for k=0,1,2,..., m—1. Then by

Lemma 8 we have



300 Hiroshi Sato

L m
usm)(x)zgo 3 Pulu]f P (h(s, ) ds, v=0,1,2,....
v¥=0

Therefore, considering P,[u«], 2=0, 1, ..., m are polynomials in expu,

w'yu”, ..., u™ D it is sufficient to show

(7.6) lim 3 FOCRs, )= fOho(s, +)) ds

=0,
mp

2=0,1,2,..., my, p=0,1,2,3, ...
But it is not difficult to show (7.6) by a slight modification of the

proof in case of k=0.

We have thus proved the theorem.

Remark. We have established the exponential map Exp X(f)
which maps a neighborhood of 0 of a info a neighborhood of I of &.
But the problem whether ExpX(f) maps a neighborhood of 0 of a
onto a neighborhood of I of ® is still open.
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