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§ O. Introduction

In  th e  papers o f  F. I. M au tn er [9 ] [1 0 1  an d  I. E. Segal [1 3 1 , a
generalization of P lanchere l fo rm ula fo r separable unimodular locally

compact groups H , is established. This theory asserts the existence of
so-called Plancherel measure /1  o ve r  th e  reduced quasi-dual 2  o f  H,
which satisfies for any function f  in  L1 (H)nL 2 (H),

(1) 5H1 f  (01 2 dh= 1.9 r.(( Uf(a)))* Uf(w ))d(()).

Here dh is the Haar measure over H , and r o,((Uf(w))* Uf(o))) are traces
over the positive parts (21(o))) +  o f th e  vo n  N eu m an n  algebras ?1(w)

generated by th e  operators Uf(a))= f (h )Uh(o))dh, (f  E L l (H )), which
H

correspond to the factor representations w= WO, Uh (o))1 in  Sd.
However, it is easily shown that for a non-unimodular group G the

form ula (1) is not true.
In 1961, A . K ohari [51 obtained an  analogous formula for the mo-

tion group over the  straight line. His theory gives a formula

(2) 1 ,1  f (g ) 2 dr g= a r.z((r(z )u f (z))* T(z)u f(z))c "KZ),

instead o f  ( 1 ) .  Here dr g  is  a  right Haar measure o n  this group G,
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and f  shows any continuous function on G  with a compact support.

T( )  is an unbounded self-adjoint operator on  th e space k )(Z ) o f  re-

presentation Z. This operators are defined by means o f th e  modular

function .J G o n  G. In  this case, r 5) a r e  just g iven  by th e ordinary

traces of operators.

The purposes o f  this paper are to construct the reduced quasi-dual
of more general separable non-unimodular locally compact groups G  ex-

cept measure zero subset (§ 5. Theorem 5 .1 .) , and to determine the

operators T (Z ) by means o f ZIG. The elements of the reduced quasi-

dual o f G are given as representations induced from factor representa-

tions o f some subgroup H  o f G , and are constructed on G-orbits in the

reduced quasi-dual o f H  ( § 4 ,  § 5 ) .  Thus the reduced quasi-dual of G  is
considered as  th e  G-orbits space X  in  th e  reduced quasi-dual o f  H
except measure zero subset.

After these arguments, the regular representation o f  G  is decom-

posed on X  as the central decomposition. According to this decomposi-

tion the extended Plancherel formula ( 2 )  is proved for G , under adequ-

ate definitions o f  linear functional r z  w h ich  are equal to the ordinary

traces of operator fo r  some good case (§ 6. Theorem 6.1). All these

discussions are done on the base of the theories o f  F. I. M autner and

I. E. Segal.

The above mentioned central decomposition o f  regular representa-

tion o f G  raises also a  decomposition o f th e  regular double representa-

tion Z  Rgi, L g 2 , J I  of G  and  a  decomposition o f th e  quasi-

Hilbert algebra constructed on the convolution ring Co (G ) o f continuous

functions with compact supports on G. We treat these problems in  §7.

In the previous paper [1 4 1 , we proved an invariance of the Plan-

cherel measure under the Kronecker product operations, for unimodular

groups of type I. W e shall extend this to the invariance of the given

"Plancherel measure" f t  for separable locally compact groups G.
Thus we know that the Plancherel measure has a  property like to

the Haar measure o n  a  locally compact group. Therefore, being sug-

gested from the theory o f Haar measure, naturally, the question arises :
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whether the uniqueness up to constant is valid for such invariant mea-

sure or not. A t  l a s t ,  w e g ive  an affirmative answer to this problem

(§ 8).

The author wishes to express his heartfelt thanks to Professors H.

Yoshizawa and T. Hirai for their kindness and to Professor M. Takesaki
who discussed with the author about these problems.

§ 1. Preliminary

In  this section, for the sake o f  later uses, we shall explain the

Plancherel form ula for unimodular groups, which was established by

F. I. M autn er [9 ], DO] and I. E. Segal [13 ].
Let H  be a  separable unimodular locally compact group, and V(H )

be the space o f  a ll square summable functions on H  with respect to a

Haar measure d h .  On this space, a double representation ZH-='{L 2 (H ),
L f ,  H}  is constructed by the right translations R ihl ,  the left trans-

la tion s  L  and an involution JH  on H , defined by

(.1  f  )(h ) f (11-
 1 ).

As is shown by R. G odem ent [3], the centre E  of the von Neu-

mann algebra KR generated by i s  e q u a l  t o  the one of the

von Neumann algebra generated by an hEH . So the central decomposi-

tion of the right regular representation 911/7=={L2 (H ), R f }  has not only

the same decomposition o f  L2 (H )  as the central decomposition of the

left regular representation 2H= {L 2 (H ), L f}, but also as the irreducible

decomposition o f ZH  a s  a  representation of H>< H .  Take this decom-

position over the dual D  o f E , by a  measure ,u , as

(1.2) ZH= 11. 2 (11), R , JHI

{AP (W), h(0)), V  k( 0 ) ), LAW)} d o).

Here the Borel structure on D  is  the one defined in  a  paper o f G. W.
Mackey [7 ] . From the separability o f  H  and commutativity o f E,
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is  a standard measure on 2  in  th e  sense o f  G. W. Mackey (c f [71.

Th. 8.7. Cor.).

Here we shall define an operator on L 2 (H )  as

(1.3) ( S i f f  )(h ) -=  f

It is easy to see that this operator S H  is decomposed by the decomposi-

tion (1.2).

(1.4) SH SH (W )C11(w).2

By virtue o f (1.2), 12 may be considered as a set of factor repre-

sentations o) F r 7 h ( c o ) }  o f  I f ,  and is called th e  reduced quasi-

dual o f H. According to (1.2), a  vector f  in L 2 (H )  is represented as

a  vector field {v f (w )} on 2 , taking its value in , (co) at co, and

(1.5) H f —=1 H i f (01 2 dh -=1 f( 0 .)112

On the other hand, the bounded operator on L 2 (H),

(1.6)R H f (h)R 1h1 dh, ( f  E L i(H))

is decomposed as an operator field Wf (w )d,u(o) on 2.

Here

(1.7) Wrf(a))=- H f  (h)W h (w)dh

are bounded operators on

Thus for any function f  in L i (H )n L 2 (H ), we have decompositions

o f two kinds. One of which is as a vector field v f (u))d,u(o) on 2 ,

and the other is as an operator field
s2

W f (co)d,u(a)) on 2 . Through

the functions f  in L l (H )n L 2 (H ), a  correspondence between the opera-
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to r fields FVf  (co)d,a(co) and the vector fields v f (co)d,a(co) on 2  is

obtained. And in the above cited papers EC, [101 and [131, the fol-

lowing facts are proved.

1) For ,a-almost a l l  co , th e correspondence o f th e  component an

operator Prif  (w) and a vector vf  (w ) a t  co , is independent of the selec-

tio n  of f .  T his correspondence gives one-to-one linear map from a

dense space of the von Neumann algebra K (w) generated by { W h (W )}  h e H

to  a dense space on Ytqco).

And K(co) are factors.
2) For ti-a lm ost a ll co, the map

(1.8) FVf(w))* Wf(to) — *11vf (0 )112

gives a  faithful normal semi-finite trace on the positive part a + (co) of
K(co). W e shall denote this trace b y  r ro, that is,

(1.9) 11vf(0)112= r.(( W1(t0 ) ) *  Tr1(t0 ) ) .

Combining (1.9) w ith  (1.5), we obtain

(1.10) Hf H2 = .r.,(( fv1(c0))* PV-1(0)))d/t(0)).

This m ay be considered a s  a  generalization of the Plancherel formula
for unimodular group.

In the decomposition (1.2), the Plancherel measure ,a can be deter-
m ined  on ly up  to  abso lu te  con tinu ity . H ence the traces ro,  in  (1.9)
depend on the selection of ,a. But because o f th e  uniqueness of trace
on factor, ro,  a re  determ ined up to constant. Under such considera-

tions, we give some normalization of det and ro, as follows.
In general, it is possible that Woh) and a(oh) are mutually spatial-

ly isomorphic, even if  co l and (02 are two different points in  2. That

is , th ere  ex ists  a n  isometric operator U  from  , (co1 )  onto k)(co2 ), and
th e  m ap  A—>UA U- 1  g iv e s  a n  isomorphism from the von Neumann
algebra 21(co1 )  gen era ted  b y  { Wh(0)1)}hEa onto the von Neumann al-
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gebra 24(6 2)  generated by { rv (0) )}- heH • In such a case, for any trace

on %+ (w2), AU - 1) gives a trace on W(0 i )  too.
From the definition of trace, i t  i s  e a s y  to  s e e  th a t  r  does not

depend on the selection o f th e  isometric operator U. In  such a way,

if a trace is determined on 21.+ (wo )  fo r  some wo ,  then the unique trace

is given on any W((.0), for which 2,1(w) is spatially isomorphic to !I(a) 0 ).
And in (1.9), i f  such a  normalization o f  r„,'s is done, then correspond-
in g  Plancherel m easure ,a is un iquely determ ined o n  such spatially
isomorphic classes.

Moreover, when the factor W (w) i s  o f typ e  I, a  trace  is given,
using a minimal central projection P  in 211(w) and the ordinary trace T r

o f operators, as follows,

(1.11) t (A )= T  r (P A).

obviously these traces satisfy the normalization stated above.
Hereafter, in the equation (1.10), we shall understand that for the

set of r„,'s and ,a, the above norm alization is done already. That is,

(1.12) r„i(A)=r,02(UALT-1),

fo r any m utually spatially isom orphic pair (w i , w2) under an isometric
operator U , and any operator A  in K(w 1).

Definition 1.1. W e call a  separable unim odular group H  has the

reduced dual of type I, w hen f i-alm ost all co in 2  i s  type I.

For instance, if H  i s  a  group o f typ e  I, obviously H  h as  the re-
duced dual of type I .

When H  has the reduced dual of type I, w e shall use the normali-
zation  g iven  by (1.11). T h u s the fo llow ing equation is obtained in
such a case, instead o f (1.10).

(1.13) 11f112 5,9 Tr((ivf (0)°))* w t(o ° ))d it(o )
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= Pr f (0) ° )111 2 d  ( 6°) •

H ere Wf(o)°)-7=--- 
H

 f (h)W h ( te )d h , th e  operator of the irreducible repre-

sentation w° as a m in im al component of type I  factor co.

§ 2 .  Hilbert-Schmidt norm s o f  operators in  induced representa-

tions.

In th is  §, le t G  b e  a  general locally compact group and H  be an
arbitrarily fixed closed subgroup of G .  Since the unimodularities of the
groups G  and H  are  not assumed, there may be two Haar measures up

to  constant factors. H ereafter w e u se  on ly  th e right Haar measures

d g  and  d r h  on G and H  respectively.

Notations. W e denote, by Co (G) the space of all continuous func-

tions w ith compact support on G , and b y  LP(G)(1 00 ) the space

of all measurable functions f  such that

(2.1) 1 I f  (e In c lrg <+..
G

Put w = Wh} a given unitary representation o f H .  For this
representation w, w e consider a  tra c e  z- c, or the Hilbert-Schmidt norm
of operators

(2.2) k(h)fl7 h d r h,
H

corresponding to any continuous function k on H  w ith compact support.
On the other hand, consider the representation Z = -U g }  =Ind

H t G
of G , induced from co , and operators

(2.3) U f= .G f ( g ) U g d r  g,

corresponding to any continuous function f  on G w ith  compact support.
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T h e  aim  o f  this §  is to obtain  the formula of a "trace" or the

Hilbert-Schmidt norm o f  Uf  w ritten  in terms of the traces or the Hil-

bert-Schmidt norms of the operators fri-k . It is easy to see that these

results are extendable to an adequate class o f functions f .
Before entering discussions, we shall state the well-known lemmas

about quasi-invariant measures on the factor space H\G. (For the proof,

see N. Bourbaki [11).

Lemma 2.1. T here ex ists a  continuous function 0 (g ) on G, such
that

(2.4) 1 )  0(g)>O , fo r  any  g in G ,

(2.5) 2 )  0 (h g )= ( 4 ,(h )/ 4hich m e ,

fo r  any  h in  H  and an y  g  in  G.

H ere  AG(g) and 411(0 show the m odular functions o f  rig h t and

lef t Haar m easures on G and H defined by

(2.6) d c(g i)— = d r(g ig )/ d rg , and dn(hi)=-7 dr(hih)/ d r h,

respectively.

Lemma 2 .2 . Let 0  be a function given in  L em m a 2.1., then there
ex ists a quasi-invariant m easure y on H\G, such that

(2.7) 1G f (g )d r  g= 1 , \ G dv(g)1 H f (hg)0(hg)d r h,

(2.8) dv(g g i)/ d v (g ) -= 0 (g )/ 0 (g  g).), f o r an y  g, g i  in  G.

Here f  is any  function in  L l (G ) and g shows the H-coset containing

in  G.

Lemma 2 .3 . A ll quasi-equiv alent m easures on  the  fa ctor space

H\G are mutually absolutely equivalent.
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Definition 2 .1 . Hereafter, put

(2.9) w(g, gi) -=',10(g)/0(g g i )  =1dv (g gi)/dv (g).

Next, we shall state simple sketches about the theory o f induced

representations given by G. W . Mackey [6 ].
As is stated above, let Z . -= -P , Ug }  be the representation o f G in-

duced from the representation o0={.Y e, Wh }. The space o f represen-

tation is defined a s  th e  totality o f  strongly measurable .Y6'-valued

functions v (g )  on G satisfying

(2.10) 1) v (hg )=- TV h(v(g)),

for any h in  H  and almost all g  in G,

(2.11) 2) 111,11H  G IIV(g)HTC1V(g)< <

Here and show the norms in  the spaces and A °  re-

spectively. And on  this space the operators o f th e  representation

operate as

(2.12) (Ugiv)(g)=.w (g, g i ) v ( g

We refer to readers the Mackey's paper [61  for that Ugl gives

a  unitary representation o f G, and we denote it by Ind w.
H T G

The following lemmas fo r  which we d o  not mention the proofs,

are given by G. W.Mackey [61.

Lemma 2.4. The (right) regular representation 01 of G  is equival-

en t to  the representation induced by the (right) regular representation RH

of  H.

The correspondence o f  L2 (G) to the space o f  Ind R H , giving the
H  G

unitary equivalence in Lemma 2.4, is defined by

(2.13) L 2(G ) f (•  ) - > f ( .  g ) .\10( • g).
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Here g).\10(• g )  are considered as L 2 (H)-valued functions on H\G.

Lemma 2 . 5 .  I f  a  representation co o o f  H  is represented as a direct
integral over som e m easure space {S20 , ,a }  as

(2.14) coo ( 0 .d i t (a ) ,
90

then the direct integral 1 Ind &a e x is ts  and is equivalent to Ind NO.
Do llt G FITG

Now take any positive character (3 on G , trivial on H .  That is, 6
is  a continuous function on G  such that,

(2.15) 1) 8(g)> 0, for an y g  in G,

(2.16) 2) 6 (gi.)6(g2)=6(gig2), for any g o, g o in  G,

(2.17) 3) (7(h)=1, for any h  in H.

We consider a map on defined by

(2.18) ( T8v)(g)-=0(g)v(g).

Lemma 2.6. T s  i s  a self -adjoint positiv e def inite linear operator

on T his operator is bounded if  and  only  if ,

(2.19) —= 1.

P roo f. Indeed, T s  gives a linear operator on • w i t h  the domain

(2.20) 2)( T O = Ek) ; (6 ( 0 2 11v(g)il z d v (g )<  0 0 }.
H\ G

The assertions are deduced from this directly. q. e. d.
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Lemma 2.7.

(2.21) T 0Ug=(6(g))-1U,T 8, f o r any  g  in  G.

(2.22) TaU f  = U f o r any f  in  L 1 (G) such that

(2.23) (f .6-1)(g)._ f (g)ô'1(g)

is  in  L l (G).

P r o o f .  A t first, for any g o in  G,

(2.24) (6(0211Ugov(g)H2dv(e= (6(e)211w(g, go)v(ggo)11 2 dv(g)H\G H\c

= G
(à ( g )) 2 11v(gg0)11 2 dv(ggo)

= (6(go)) - 2 ( a ( g ) ) 2 11v(g)11 2 d v ( g ) <+. .
H G

This shows

(2'25) Z ( =Z ( TsUg ).

Next,

(2.26) ( To Ug o v ) (8 )=6 (g ) (U g o v ) (g )=6 (g )w (g , go)v(ggo)

= (6(g0)) — liv(g, go)6(ggo)v(ggo)—(6(go)) - 1 w(g, go)(Tav)(ggo)

=(à'( 0)-1(ugoT oy )(e.

(2.27) T 8U1V = T a0 G f  (g)(Ug v )d r = 1 G f (g)(T 8 Ug v)cl r g

=5 G f  (g)(6( g)) - 1 (U, Tay ) d r  g=111 .0 -1 Toy. q. e. d.

N o ta t io n s .  W e use the following notations for t >0,
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(2.28) Fs(t)=- {g: <6 (g ) .< 4 ,

and

(2.29) ' 8,t7=-7" {1, =  (v (g ))  E  :  [support o f v(g )] C  Fs WI •

Obviously, is a  closed subspace of and,

Lemma 2.8. T a  leaves invariant S ) 8 , t ,  and the restriction T8 ,1 on

k )3 ,t o f  T s satisfies

(2.30) II Ts,ill = H( T8,0— '11= t.

P ro o f. T h is  is tr iv ia l from th e  definitions o f  T a  and

q. e.d.

I n  general, Uf T 8  is unbounded. B u t  f o r  a  suitable co, a  suitable

a n d  a  suitable function f ,  U f T a  becomes not only bounded b u t also

of Hilbert-Schmidt type.

Proposition 2 .1 . Let Z = { ,1 1 ,}  be the unitary  representation of

a  locally  compact group G  induced f rom  a  unitary  representation co=
PG}  o f a  c losed  subgroup  H . A n d  le t T s b e  the operator on k)

defined by (2.18) fo r  a  given real character s a t i s f y in g  (2.15) (2 .1 7 ).

Then, for any  f  in  L l (G),

(2.31)T 8 U Ill IF f ( g i ,  g 2 ) ie ,r( 4 G ( g 1 ) ) - 2

H\G )H\G

x (6( 0 ) 2 dv(g i)dv(g2)•

Here,

(2.32) Trf(gb g2) = 5/ ( 8 -Ti hg2)\/0(gi.)0(hg2) W h d r h.

And (2.31) m ean s th at if  the integral of the right hand side con-
verges, then the operator T s lif  i s  of Hilbert-Schmidt type and its Hilbert-
S chm idt norm  is giv en by  (2.31).
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P r o o f .  A t first, fo r  a  vector y  in

(2.33) (T s U f v ) (g ) -6 (g )1 ,f  (g i)tv (g , g i)v (gg i)d rg i

= 6 (8 )1 1 (g - 1 8-1)w(g, r i g i )v (g i ) (4 G (0 - 1 drgi

= (g)4  G (g -
1 ) f (e lig i)V sb (g )/0 (hg i)

H \ G  H

X v(h g i ) (h g i )c1,11} dv(go

H\G 16(g)4G(g - 1 ) H f  (g - 1 1 gi)\10(g)sgh gi)

x v (g i)d v (g i)

= (g )4 G (e )W f(g , g i)v (g i)d v (g i) .H\ G

Therefore, fo r  fixed complete orthonormal systems {va} cfA in and

{ u } n  in  A ', the  followings a re  valid for a lm ost a ll g.

(2.34) < (T U f v a ) (g ) ,  us> 2,

H\G <6(g)4G(g - 1 ) W f(g, Ova(gi),113>m , dv(gi),

G  
<1 , „ (g i),6 (g ) ,61G(e )(W f(g , g i))*u a > ,y d v (g i)

= <v a(gi),.6(8-0> ,T dv(g 1 )-= <v., f :.>H\ G

H ere we put

(2.35) f l ; ( 0 -6 (g )4 G (g -1 )(W f(g , g i))*u s .

f f .  belongs to k) for suitable functions f .  A nd  the la s t  te rm  in
(2 .34) means the scalar product in k). S o ,
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(2.36) E I <va,f1.>*1 2 = 11f;li= 1
11\G

ilf:(gi)111-dv(gi)a

5H (6 ( 0 2 ( 4 G ( 0 - 2 1 I F  V f )gi ‘  *u
\G

And

(2.37) III T s Uf 1112 =  E  T8 ufv.11 = II 7'8 ufva(011 22-dv(gi)
aeA aEA 1-1\G

E  E  I
I-1 \ G

< ( T , u f v , ) ( g i ) ,  us >2-1 2 dv(gi)
aeA 13EB

=5H\GE  E  I <v.,f:,>*1 2 dv(gi)
REB aeA

E H w f ( g i ,  g2)*ugH2r(z1G(0 ) - 2 (6(gi))zdv(g2)dv(gi)
H\GREB

1-1\G1 I-1\G 
III W f ( g i ,  8.2)* 11122, ( 4 G(gi)) 2 (6( 0 ) 2 dv(gi)dv(g2)

H\G51-1\G
III W f ( g i ,  g2)1111-(4G(0 ) 2 (6(g1)) 2 dv(g1)dv(g2).

This completes the proof.

Corollary. W hen H  i s  a n o rm al subgroup o f  G , an d  when we
tak e a  right H aar m easure d r g  on  H\G as the quasi-inv ariant measure
y,

(2.38) 117f (gi, gz) g2) Wh dr h.

P ro o f. In  th is case, the function 0 ,  which determines y  in

Lemma 2.2., can be taken as the constant function 1. (c f. Lemma 3.3.
and its remark). For such a  0 ,  the corresponding quasi-invariant mea-
sure y is equal to d r g .  And the result follows from (2.32) directly.

q. e. d.
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H ereafter w e shall consider on ly such  a  measure y  ( i .e . di g ) for a
normal subgroup H  o f G, especially for the fu lly  unimodular subgroup
defined in §3.

When the subgroup H  is  n o t of type I, the operators W f (gi, g2)
in (2.32) are not of Hilbert-Schmidt type in general, and the integral
on the right-hand side of (2.31) diverges.

However, if the von Neumann algebra generated by the opera-
to rs { rvh } h E R ,  is  o f semi-finite type, a trace r 0 on the positive part of
a. m ay b e  u sed  in stead  of the ordinary trace of operators. S o  w e
consider the space Ko of operators of the form

(2.39) U f, for f  in L l (G),

and define the sesqui-linear form on Ko b y

(2.40) rz (A * A )= H\G r .((TV f(gi, g2))* W r(gi, g2))(4G(g1)) - 2

H\ G

X (6(0 ) 2 dv(gi)dv(g2).

=  H\ G

r (  TV(fxs2)..t. (g , g))(4G (g)) - 1 (6(g)) 2 dy (g).

It is desirable that r z  g iv e s  a semi-finite trace on the positive part
o f  som e von Neumann algebra. But h ere , o n ly  the followings are
proved.

Lemma 2.9. For any  A  in  ao,

(2.41) rz(A*A)--= z (AA*).

P ro o f. Let A  be the operator in (2.39), then

(2.42) A* =U f * T8 = Ufx T8 = T8 U .

Here,

(2.43) f  x (g ) -.=,f ( g ') 4 G ( g - 1 ) .
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(2.44) W f's(gi, g2) 4 G(gi. 1) 6 (g1)

= A G (6 1 )6 (8 -1) l l f ( g i l h ' 0 4 G ( g i l h - 1  0 6 ( 6 1 h g2)

X J 0 ( 0 0 (h g 2 )W h d r i t

= 4 G (6 1)6 (g2) ; ( g i l h gi)

x  ç b ( g 1 ) 4 G ( h  1 ) ° ( g 2 )  4G(h)Fh-id r (h - 1 )
4 1 1 ( h  1 )

= f(g2, gi.)) *  zio(gi l )6 42).

Because r ,  is a trace, for any B  in

(2.45) ro,(BB*)=z-.(B*B).

Therefore,

(2.46) r z (A.A*)-= rz ((A *)*A *)=rz (( T8Uf x 8)*  T 8U

H\GH\G r .(( W fx 8 (g i, g2 ))*  W f.8 (g i, g2 ))(4 G (6 V )) 2

X (6( 0 ) 2 dv(gi)dv(g2)

H\G 5H\G 
r . ( (  FV f(g2 , g i) ) * * ( W  f(g2 , g i.))* )(4 G (gil))2

x (6(g2)) 2 c/v(gi)dv(g2)

H\ G5H\G 
r .((  W f(8 .2 , g i)) *  W f(g2 , gi))(4G(g2)) - 2 (d(g2)) 2

clp(g 2)dv (g

= rz (A* A ) .

This completes the proof.
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Lemma 2.10. Fo r any  k , f i ,  f 2  in Co(G),

(2.47) rz(( T8Uf 2) * T8Ur8 11) = rz(( T 8U(k .824-112) * f 2)
* T8 U11).

Here w e u se  an  abbreviation o f  notation as

(2.48) ( f .  4 - 1 1 2 ) ( e  f ( g ) ( 4 G ( 0 - 1 1 2 .

P ro o f. Denote the left hand side of (2.47) by I.

(2.49) / =  z (( U12)*( Tar Uk
.
 U 1 1)

— rz ((Uf  2)*  U88-2( T 8 ) 2 U1 1 )

=rz((T8(Uka-2) * Uf 2) * T8U11).

On the other hand,

(2.50) (Uk8-2) * =  G k (g ) 6 (g) - 2 ( Ug-i)drg

=  k(8 - 1 )(6( 0 2 (z1G(0 - 1 U g d rg

G 
k * (g ) (6 (0 2 (z1G (g)) - 1 1 2  Ug clr g= U k *3 2 4 _112.

Therefore,

( 2 .5 1 ) 1 = r 5 ) ( (  Ts U(k l
,
 324-112) * f 2)

* T8 U11). q. e. d.

Lemma 2.11. Fo r any  f i , f 2 , f 3  i n  C o (G)

(2.52) rz(( T 8 U ( f  i s* f  28))
* T

8
U

13) —  rZ (( T 8 U f  f  2)*  T8 U1 3 8).

P ro o f. At first,

(2.53) (fia)*(f26)(g)=- 1G f i(gg i- 1 )6(gg
1

).f2(g1)6(gi)drgi

--((f ilf2)6)(g).
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(2.54) Wfa(gi, 8 .2)=- 1 G f(g i - lhg2)6(gi- l hg2)■10(g1)0(hg2)TV kd t h

= 6(6 - 1  g2) Wf(gi, g2).

Therefore,

(2.55) rz (( T sU f i a, f o )* T aUf 3 )

If \G H\G 
r 0 ,(( FV(f1.f2)8(g1, g2))* F f 3 (gi, g2))(4G(gi)) - 2

X (6 (g i)) 2 dv(g i)dv(g. 2)

H\G- - - 1H\G
r.,(((gl 1 g2)Wrf1*.f2(g'i, g2))*Tr7 f 3 (g1, g2))

x (4G(gi)) - 2 (6(0 ) 2 dv(gi)dv(g2)

H\ G H,G r (( Ws, f ,(gi 5 gz)) *  fr7  f ,s(g i, g2))(4G(gi)) - 2

''' -* - 

x (ô ( 0 ) 2 dv(godv(g 2)

= rz(( T aU f l . f 2 ) *  TSUf3a)• q. e. d.

We consider the case that H  is a normal subgroup of G.

Lemma 2.12. I n  th is  case, for f ixed k  in  C o(G),

(2.56) I r z ((T  U11)* TsUk*U12)1

____ C k irlA T S U f ,) * T aU f ,) • rz ( (  Ts Uf z )* TB U f 2)} 1Iz ,

f o r any  f 1, f2 E Co (G).

Here c k  i s  a positive constant depending only on the function k.

Proo f. At first, from the non-negative definiteness of r„„
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(2 .5 7 ) I r .( ( g2))* fv fz (gi, g2))I

.( ( w f i ( g i ,  g2))*Fv 11(gi, g2))r.((rv f ,(gi, g2))*T v f2(gi, g2)).

Since

(2.58) Uh• Uf Uk*f2)

(2.59) I=-"IrZ((T8Ufi)* TSUk • Uf2)1 = IVI(( T S Uf i r TSUk.f)I

H \ G H \ G  
r o,(( FV f,(gi, g2)) *  Prk ,f2(gi, g2))(4G(g2)) - 2

X  (S(g1)) 2  dr -g g21 •

Here,

(2.60) g2)=H f 1(gT 1hg2)W hdrh ,

(2.61) W  ( 0, 1 (1r* ) ( h v  drh0 2 /  =
f / s o l i -  02/ -

1 )f 2(ggV hg2)W hdrgdrh
- HJG

:= 1G k(8 . - 1 )Fv1 2 (g ig - ' , g 2 )cl r  g.

Thus

(2.62)
= I LG511\G1G k ( g - 1 ) % ( ( r V f  1 (  g i '  g 2 ) ) *  f  2 (  gl  g- 1  g 2 ) )

X  (4 (0 ) - 2 (6 41W drgdrgldr g21

r .(( rv f ,(g i, g2))*T v f ,(g ig - i, g2))I

x  (4G (gi)) - 2 (6(gi)) 2 c14 ,d rg 2 }  d r  g
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k ( g ) 1  {1 (rj(fV f ,(8-1, g2)) * TVf,(gi, g2))G H\G

X  r.(( 2 (gi g2))*Tvf2(gig-1, g2))) 1 '2 (4G (g0) - 2

X  (6(g i )) 2 d r g i cir g,} d r  g

G I k(8-1)
H\G1

r.((W f ,( g2)) * W-f 1(gi, g2))H\ G

11/2
X ( 4

G(g0) - 2 (6(g1)) 2 drgidrg2

x  H \G  1
-
/\G 

r.((fvf,(gig-1, g2)) * Frf 2(g ig — i , g2))(4G(g1))
- 2

1/2
x  (6(gi)) 2 drgid,g4 g

SG
I k(g - 1 )1 i g2))*Wf2(gi, g2))

1/2
X ( 4 G ( g 1 ) ) - 2 ( 6 ( g 1 ) ) 2 ( 4 G ( 0 - 2 ( 6 ( a d r g i d r g 2 }  d r  g

X irzOE Ta U f i )
* Ts Ufi)}

1/ 2

= {1G I k(g - 1 )1(4G(g)) - 2 (6(g)) 2 c1,81

)<{z-z ((T s U f ,)*T a U f i )z-
z ((T a U f 2 )* T 1 U1 2 )} 1/ 2 .

Puting in (2.62),

(2.63) c k  1G k ( e ) 1 ( 4 G (g)) - 2 (6(g)) 2 dr  g.

We obtain the result. q. e. d.

When H  is a unimodular group, the central decomposition (1 .2 ) of

the regular representation N H  of H  gives semi-finite factor representat-

ions co of H, except a subset of ,i -measure zero. For such a factor re-
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presentation co, a  canonical trace r n,  is determined up to constant, as is

stated in  §1. Therefore, in  this case, we obtain a  canonical sesqui-

linear form rz by (2.40), using r.„ for such a  0.

Lemma 2 .1 3 . For it-almost all co,

A =0 , i f  and  only  if ,

(2.64) z(A* A) -= 0 .

P ro o f .  From  th e  theory o f  F . I. Mautner [91 [101 and  I. E.

Segal [131 (c f. §1), for ,a-almost all co, r0 , is  a  faithful trace. Since y

is positive, (2.64) is equivalent to

(2.65) f V f (gi, g2) — 0, for almost all (8 .1, g2)•

B u t  (2.33) shows that this is equivalent to

(2.66) (A v )(g ) = ( Ts U fv)(g )-=  11 1 \ G
 6 (g) 4 G(8 - 1 ) 1F1(g, g i) v ( g i) d v ( g i)

=0, for any y and  almost all g.

This completes the proof.

§ 3. Au tom orph ism s over unimodular groups.

Let 6  be an automorphism*) o n  a  unimodular locally compact group

H .  For any unitary representation a) = Wh(a))} of H , { W o.-1( ) (a))}

gives a  unitary representation of H  on A° too. Put this representation

(3.1) 0(0))=--- Wh(6(0)))} = {.e° , Tro-- '(h )(w)}.

Obviously, 6  preserves irreducibility and the property being a factor re-
presentation, so 6  induces a  conjugate transformation over th e  dual or
quasi-dual of H .  Moreover 6  maps the regular representation NH of H

* )  In  th e  definition of automorphisms, w e  assume continuity. I t  i s  e a s i l y
shown that only the m easurability of an automorphism deduces its continuity and
the continuity o f its  inverse.
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to itself. So this conjugate transformation leaves invariant the reduced
dual or reduced quasi-dual of H.

While, since the transformed measure d 6 ( h )  of the Haar measure
dh is also a Haar measure, the modulus d ,=  (16(h)/ dh is a constant on H.

In the same way, the restriction of 6  on the reduced quasi-dual 12
of H transforms the Plancherel measure z i  to 6(,u) defined by

(3. 2 ) C(P)(E)= / (C- 1 (E )), for any measurable set E  in Q.

Now we shall show the followings.

Lemma 3.1. The modulus d i ( )/ d j i  i s  constant, and

(3.3) d a ( g ) / d i t=  d , .

Before stating the proof of this lemma, we introduce a notation

(3.4) 0- (k)(h)=k(6 - 1(h)),

for any function k on H, and show the following auxiliary lemma.

Lemma 3 .2 . For any  function k in  L l (H),

(3.5) Wh(0-(0 )))=- 4. TG - i (° ).

Here

(3.6) k(0)) = H k(h)Wh(w)dh.

Proof.

(3.7) FV k(6 (0))) = H k(h)Wh(6 (0)))dh = 1H k(h)lVo-i(h)(to)dh

=S H k(0- (hDPVh(co)d6(h)=S H o'(k )(h )TV h (co)40.dh

d g rv ,- i(k )(a )• q. e. d.
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Proof o f Lemma 3 . 1 .  A t  firs t, it  must be remarked that for

two representations co and 6(o)), the spaces o f representations are com-

mon, moreover the von Neumann algebras generated by their operators

are the sam e. Therefore, from the assumption o f  normalizations of

traces r m 's in §1 , we can consider the traces r , ,  and r, ( ) are just the

same.
Now, by the Plancherel formula given in §1, for any k in L 1 (H ) r'

L 2 (H),

(3.8) ll.lic(6(h)) 2dh = H 16- 1 (10(h) 1 2 dh

.r.(( W.-J(0(0)D* TV.--1(k)(0)))dii(0)

= 1,2 rorc.)(( Wk(6 ((0))) *  Wk(0- (a))))( 4 0-)- 2 dP(a))

=  r.(( Wh(w))* Pr7 k (c0))(4,) dit(g - 1 (a) ))

= 0 0 - 2  r .,(( Wk(a) ) ) *  Wk(W))d6 (P)(Ca)•

On the other hand, the left hand side is equal to

(3.9) k(h)lz do" (h) H 1401 2 ( 4 ) - 1  dh
H

= ( 4 ) 1  r .((rF k( 0 )) *  PV k(a)))da

The arbitrariness of the function k leads us to

(3.10) (4) - 2  d6 (A)(a) ) = (4) - 1 0 ( 0 ).

This completes the proof.

Now we shall restrict ourselves to the case that H  is  a normal
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subgroup* )  o f  a  locally compact group G. In  th is case, an inner auto-
morphism on G induce an automorphism on H  as

(3.11) g(h)--= gh

Use the notation 4 ,  for 4 , as above.
But in this case, the factor space H\G becomes a group 6 . Denote

the H-coset containing g  by B y  the reason o f  L em m a 2 .3 , the

right H aar m easure d g  over 6  can be taken as a quasi-invariant mea-
sure over H\G and we can choose 0  in the Lemma 2.2, such that, for

any f  in L i (G),

(3.12) 1,f (g)drg=.6dr-gf if (hg)0(hg)clrh .

Put

(3.13) 4 -(-g-1) =c ir(g ig )/d rg .

Lemma 3 .3 . For çb chosen as  above,

(3.14) (g) -= constant.

P ro o f .  From (3.12),

(3.15) G f (g)0-1(ggi)drg=1G f (ggi1)0-i(g)drg

— 1 H ,G  drg{Fif(hg8T1)drh}

= i i \ G d r { r(g Rf(h g)drh} H \ G d rg i1 f0  ed r h}

=
G f ( g ) 0 - 1 ( g ) d rg•

*) H ere H  does not need to be unim odular, so we consider th e  right Haar
measure d ,h  on H.
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This means that for continuous function çb.

(3.16) 0 l(ggi)=-0 - 1 (g), for an y  g i  i n  G.
q. e. d.

By suitable normalization of the measure dg, we can consider this
constant is equal to one, that is

(3.17) 0(g)-.=1-,

Lemma 3.4.

(3.18) 4,—(41G(g)/4a(g)).

P r o o f .  For any f  in L ' (G ),

(3.19) 1 H \ G dr gi1H f(hed r ill =  f (g )d g = 1G f (g)(4G(gi)) - 1  d r(g ie

=(4G(gi)) - 1 1G f ( g i 1 g)dr g= (4G(gi)) - 11 
H\G dr

a l f (6 1 -h g )d r h }

-(4G(8).)) - 1
H \ G drgi H f(g17 1 hgig0 g)drh}

= (4 G (0 ) - 1 LG dr(gig)i5 H f (h g)dr(gih 6')}
--(4G (0 )1  z icg o d r (g)i H f(hedr(gi(h))}

H\ G

-= a( g 1) / G( gl)) dr(g) {1H  f (h g) i c1 r h,} .

This shows

(3.20) (4G( gi.)/ 4 a(gi)) - 1 4 ,,, = 1.

This completes the  proof.
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Next, consider the more restricted case, T h at is, G  is  a non-uni-
m odular locally compact group and H  i s  the normal subgroup o f  G,
w hich is equal to  just the kernel of the modular function zIG (g).

(3.21) H =IgE G ; 4c(g )= -11 .

Lemma 3.5. H  is  a  unimodular group.

Proof. In (3.18), put g = h  in H , then

(3.22) zlh =1, for an y h  in H.

But since zlh  = zIH (h), the assertion follows.

Definition 3.1. W e shall call this subgroup H , the fu lly  unimodu-
la r subgroup of  G.

For the fu lly  unimodular subgroup H , the factor g r o u p  = H\G is
(a lg e bra ic a lly *)) isomorphic to a subgroup D  of the multiplicative group
RT of a ll  positive numbers by the mapping.

(3.23) g->ziG(g).

Evidently D  is  abelian, then the H aar m easure dr g  on is two-sided
invariant and especially,

(3.24) 4 5 4 ) = 1 , for an y  g in 0 .

Therefore, by Lemma 3.4,

Lemma 3.6. I f  H  is  the f u lly  unimodular subgroup of G,

(3.25) 4g=4G (g).

Combining to Lemma 3.1, we obtain

*) In general this isomorphism is continuous but not topological.
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Proposition 3 .1 . For the f u lly  unim odular subgroup H  o f  a non-

unim odular locally  com pact group G,

(3.26) dg(11)/dii= 4G(g).

§ 4. Orbits space on the quasi-dual of the fully unimodular sub-

group.

Hereafter, we restrict ourselves only to the case that G is a  sepa-

rable non-unimodular locally compact group, and H  is  the fully unimo-

dular subgroup o f G.
From the arguments in § 3, the restrictions of the inner automor-

phisms o f G to H  induce transformations over the quasi-reduced dual ,fl
o f H. Thus G  is considered as a group of transformations over 2.

Definition 4 .1 . For any  eo in  2 ,  the  subset

(4.1) x .,----- Ig (to): gE GI,

of 2  is  called  G-orbit passing through co. A n d  th e  se t o f  all G-orbits
is denoted by  X . M oreov er, def ine the m ap ço f rom  12 onto X  by

(4.2) ço(o))=.,c,o.

We introduce a Borel structure in X  which is generated by the

subsets E  o f X  such that ç 1 (E ) are measurable in  2.

Lemma 4.1. T here ex ists a  subset N  o f  f l  o f  p-m easure  zero,
such that, any  tw o dif ferent elem ents co l ,  o h  i n  2 —  N , the  double  re-
presentations Zw i -=1.e(o)i), W h(a)1), V  k((01)}  and  Z . 2 .= { '(O2), TV h(to2),
V k (co2 ) }  are  not equivalent.

P ro o f. As is shown in  §1, Z l l =  1L2 (H), N I , Lil l  is a  multiplici-

ty  free representation o f HX H  in  the sense o f  G. W . Mackey[7], and

(1.2) gives the central decomposition o f Z H .  So we can apply the re-

sults o f A . Guichardet [3] and M. A. Naimark E l l ] ,  and obtain the
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assertion.

Corollary 1 .  For any in S2 —N, the isotropy subgroup

(4.3) G„_=• ; g - 1 (0)7*--=' col

contains H.

P ro o f. Obviously, fo r  any h o i n  H  the operator Who(w)Vh o(w)
g iv e s  a  unitary equivalence of double representations Z n,  and Z ho m.
Therefore, the result is deduced from Lemma 4.1, directly.

Corollary 2 .  For any  to in .S2 —N and any  g  in  G,

(4.4) G,,,=Gg(0.

P ro o f. B y  the reason of the Corollary 1,

(4.5) G„DH.

But H\G is abelian. So for an y  g o in  G . and a n y  g  in  G , there ex-
ists  an element h  in  H , such that

(4.6) go g g goh.

That is,

(4.7) go(g(w))= go g(0)-- g goh(0)= g go(11(0 ))= g g o ( w )  g ( o ) .

This means go E Gero),

(4.8) GcogGe,,,).

Changing the roles o f co and g(to), w e get the result.

Lemma 4.2. The map



Plancherel form ula for non-unim odular locally  compact groups 207

(4.9) (g, g - 1 (w)

is  a B orel m easurable m ap of  Gx  S2 onto Q.

P r o o f .  The p ro o f is  an a lo go u s to  th a t o f th e  Theorem 7 .3 , in

G. W . M ackey's paper [ 8 ] .

To continue the discussions, w e must put the following assumption
w ith  respect to  a  regularity of the G-orbits space X.

Assum ption . T he  G-orbits space X  is countably  separated in the

sense o f  G . W . M ackey . (cf . DO.

That is, there are countable G-invariant measurable subsets o f /2—

N , and each G-orbit is the intersection of such sets containing it.

Lemma 4.3. (V . A . R ohlin  [ 1 2 1 ) .  U nder th e  above assumption,
there are  a m easure ji on  X  and  measures ,u x  o n  D  w hose supports is

in  th e  corresponding G-orbit x , and

(4.10) f ( to )  d ,u (o )= x d,12(x){  x f  (co)dp x ((o)} ,

f o r any  p-sum m able function f  on Q .

Because of the assumption, each G-orbit is measurable in  D . There-

fore p x  is considered as a measure on the space x.
According to the decomposition (1 .2 )  o f ZH, L 2 (11) is show n as a

direct integral .X"(w)dit(c0). And any elem ent f  i n  L2 (H )  cones-

ponds to  a  vector-valued function v f ((0) on D . M oreover by the decom-
position (4 .1 0 ) of the measure i t ,  w e  obtain a  weaker decomposition of

L 2 (H).

(4.11) L2(H),---çk)x
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Here,

(4.12) .V^-S  dr(w)ditx(w).

That is, is considered as th e  space o f  vector-valued functions v1(w)
on x , such that

(4.13) Ilvf(w)1120 x (to )< + co.
i x

W hile w e must rem ark th e  followings. A s  is assumed in  §1, for
any co i n  2  a n d  g  in  G , th e  spaces dr(w ) an d  ,e (g ( (o ) )  m ust be
identified in  some canonical w a y .  S o  th a t w e  f ix  a  H ilbert space .ex
fo r each G-orbit x  and v1 (w ) is considered as *-vecto r valued  func-
tion, for which x  is  th e  G-orbit passing through co.

A s a  canonical method to do  th is , w e  tak e  a  representative co(x)
fo r each G-orbit x ,  and a B orel section  E (x )  o f G, ( x ) -left-coset space
in  G .  And put

(4.14) .ex=.re(co(x)).

Then for any to in  2 , there exist unique representative co(x) of G-orbit
x  passing through (0, and unique g i  in  E (x ) such that,

(4.15) to = gi- 1 ( 0 ) (x )).

T h u s ,  w e  r e a l iz e  Ve(w), W ( û ) ) ,  Vk(0))1 b y  1.Yex ,  Wh(gT 1 ( 0 ) (x ))),

Vk(gi l (to (x)))}.
W hile a s  is shown in  §3, we can define a  unitary operator

(4.16) (U,f )(h)— =f(6-1(h))4;112,

on L 2 (H ) ,  fo r an y  automorphism 6  on H .  Evidently, th e  map 6 — > U.
i s  a n  algebraic homomorphism o f  th e  group A (H ) o f  automorphisms
o n  H  into the group of unitary operators on L 2 ( H ) .  A nd if the topo-
lo gy  o f  uniform convergence on a n y  com pact set is introduced into
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A (H ), th en  1.1,2  (H ), [1 ,1  g iv e s  a  un itary rep resen tation  o f  A (H).
Especially, in the case th at H  is  a normal subgroup o f locally  compact

group G, the restriction to  H  of the inner automorphism induced by an

element g  of G deduces an unitary representation IL 2 (H ), U gl of

G  in th is way. Thus

(4.17) (U , f )(h )= f  (g - 1 (h)),P,- 1 1 2  = f  (g - i h g)(4 G ( g)) - 1 /2

Lemma 4 .4 . F o r an y  g  i n  G , the operator U, is decom posable
w ith respect to  the decomposition (4.11).

P ro o f. The decomposition (4.11) is done by the abelian von Neu-
m ann algebra o f a l l  G-invariant operators in the centre of the von

Neumann algebra generated  by W I} h if. But, since "G-invariant" is
equivalent to "commuting with any Ug " ,  the assertion is  trivial.

q. e. d.

Basing upon Lemma 4.4, Let 5 ) be decomposed as follows.

(4.18) {L2(H), U,(x)}  d ri(x).

Next we shall determine the forms of operators Ug ( x )  on each  V .

Lemma 4.5.

(4.19) UgRf =

(4.20) Ug L f  =L Ho c i U g =L lig ( h ) Ug .

Proof.

(U g n f )(h i )— (R ff )(g - l h18)(4G(0 - 1 1 2
_ f (g - i high)(4G(0 - 1 1 2

= f ( e h l (ghg -
l )g)(4G(g)) -

1 1 2 =(U g f ) (h 1 ghg -
1 )=(R y h e ,U ,f )(h i ).

(U,L f f )(hi)-= f  ( IC 1 g 1 h 1 g)(4,( 0 - 1 1 2  = (L 1,I h g -i Ug f)(hi). q.e.d.
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We denote the decomposition o f Z l l  according to (4.11) as

(4.21) {L2(H), R41 , Lr}t r q „  V

Then the components o f this decomposition are shown by

(4.22) Or(0)), W h()), vk (w )Id it.(w ).

Lemma 4 . 6 .  Fo r fi-almost a l l  x, U ,(x ) is given by

(4.23) ( U9(x)v)(c0)-= U(0), e v (g - 1 (0))) 4 G(0 12-

H ere U(o), g )  are  unitary  operators on Yex.

P ro o f. (4 .19) and (4 .20) lead us to

(4.24) Ug(x) W—  Trg(h)Ug (x ),

(4.25) Ug(x)V1=- Vxg ( k) U ,(x ),

for ft-almost a l l  x.
But these relations assert th a t { U , (x ) }  and the fam ily of all de-

composable projections on V -•-'1 <Yeq(0)dpx(w) g iv e  a transitive system

o f imprimitivity on the base x  in the sense of G. W. M ackey (c f. EC,

Th. 5. 6). T h erefo re , th ere  ex ists  a  fam ily o f unitary operators {U(o),

g )}  on ,re" for w hich  (4 .23) is valid. q. e. d.

Proposition 4 . 1 .  For ,a-almost all Co.

(4.26) G,0= H.

P ro o f. It is sufficient to see that for any Coo in  S2—N, for which
(4 .23 ) is  valid, G 0 0 is contained in  H.

I f  i t  i s  not, then there is an element g o in  G , which does not con-
tained in  H , and
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(4.27) 61(0)o)

Because of Corollary 2 of Lem m a 4.1 , fo r  a n y  w  in  th e  orbit x

passing through too,

(4.28) go-1(a))-_-=-' to.

Hence, using (4.23), for any vector y  i n  x ,

(4.29) (11,0(x )v )(0))= u(0), go) v (to)(z G( go)) 1 ' 2

Since g o does not contained in  H, ( 4 G(go)) 112 is  n o t eq u a l to  one.

This contradicts to that Ug o ( x )  is unitary. q. e. d.

Corollary. 1 .  For ,a-almost all co, the m ap g—>g (w) gives a B orel

isomorphism o f  H\G onto x  w hich passes through w .

P ro o f. Since G  is separab le, th e  separable locally compact space

H\G i s  a standerd Borel space. W h ile , s in c e  H  is separab le, Sa — N'
(f l(N ')= 0 )  is  a standerd Borel space (cf. §1), especially countable gene-
rated . T heorem  3.2 of G. W . M ackey's paper [7] results that the one-

to-one map , , g (w) is  Borel isomorphic. q .  e .  d .

Using Corollary 1 of Proposition 4.1, for it-alm ost all co  w e can

introduce a  measure ,cd  on H\G, which is transfered from the measure

on x  b y  the m ap g—>g ((o). Thus

Corollary 2 .  For f t-alm ost all x ,

(4.30) dA(g)-=c4G(g)1crg.

H ere dg show s a H aar m easure o n  C-=H\G, a n d  c  is  a positiv e con-
stant.

P ro o f. (3 .26) in Proposition 3.1 asserts that a satisfies

(4.31) d d  =  G ( g), for a n y  g.
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Decompose ,a to  the integral (4.10) o f  measures f i x ,  w e get that
for alm ost all x, /ix  satisfy analogous equations. This means that f i x°

is  a relatively invariant measure over 0, satisfying,

( 4.32) d A ( g i g ) / d / .4 ( g ) = 4 G ( 8 - 0 - 1 , for an y  g i .

That is, 4  G (g )d A (g ) i s  a  Haar measure on 0. The uniqueness of
Haar measure on 0 deduces the result. q. e. d.

For the sake of later uses, we shall determine the form o f opera-
tors R e), g )  in (4.23).

By the reason of Proposition 4.1, w e can  assume that G ,= H .  So
we take a Borel section E  o f H-cosets G  in  independently on x ,  and
give the above mentioned canonical form of { . ' ( c o ) ,  W h ( ( 0 ) ,  V (w )1  by
this Borel section. Moreover we can take E  in such a way that

(4.33) EnH={e}.

Lemma 4.7. B y  adequate norm aliz ation o f  .re(w ), m ultiply ing a
num ber of  absolute v alue 1, f o r a l l  g  an d  ,a-almost all  w,

(4.34) K o , g )=- Pf7h0 (w(x))V h o (a)(x)).

Here

(4.35) w = 8.0- 1 (w (x ) ) (go  E E),

and

(4.36) ho-lgogEE.

P ro o f. At first, since

(4.37) (Uh, f )(h)= f (hi l h h i) =( 1 4 L f ) ( h ) , f o r  h i  i n  H,

(4.38) U(a), h1) = Wh,(0)) Vh,(w).

The commutation relations (4.24), (4.25) lead us to
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(4.39) U(o), g)Wh(8- 1 (0)))= W g (h) (0))U((), g),

(4.40) U(.), g)V h (g - 1 (co))= Vg ( h ) (to)U(o), g).

And b y  the definition of the canonical forms o f  TVg (co) and V g ( ),

(4.41) lrg (h )(w )=  W g(h )(6 1 ( 0) (x ) ) )=  W s og(h)(0) (x ) ) ,

(4.42) V h (g -1 (w ))=  Wh(g- 1 6 1 (0)(x)))= TVg
, (h)(a)(x))

—  W (h o
i go g)(h)(W (X ))

= W  11,;-1 (go g(h))h o ( W ( X ) )

= F r7 ' (CO(X )) W g o (h )(0 )(X ))W  110 ( 0 ) ( X ) ) *

Here

(4.43) g' -=- h (T,' go g, is  an element in E.

And analogously

(4.44) Vg(h)(())— Vg a g (h)(0)(x)),

(4.45) Vh(g*-1(co)) = VIC0
- '(a)(x)) Vgag(h)(0)(x))Vh o ( t ) (x ) ) .

Combining (4.41)-, -(4.45) w ith (4.39), (4.40),

(4.46) (U(0, g)FGV(0)(x))Vh,V(to(x)))PV -gog(h)(0) (x ))

— TVg0g(h)(w(x))(U((), g)WW( 0 )(x))vh,V( 0 )(x ))),

(4.47) (U (o ), g) T V (o )(x ))V h ,T i(t ) (x )) )V g o g o k o (x ) )

= Vg a g (h)(()(x))(U(0), g) W W (co(x))vW ( 0)(x ))).

The irreducibility of the representation I.Y6', W-
g o g ( h ) (w (x )),  V g o g ( h ) ((o (x ))1

of the group Hx H  results that the operator U(co, g)W h,V(0)(x))V . kTi (to(x))
must be a  scalar operator c ( ) ,  g ) . That is
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(4.48) g)— c(0), g ) w h o (w (x ))v h o (0)(x)).

(4.49)I  c(o), g)1=1, for all g  and almost all co.

P u t g  h i E  H , then ho = g o hl 6 1 = g o (h i )  and

(4.50) Whi(w)= Wh,(6 1 ( 0 )(x)))= PVg 0 (h,)((O(x))= Wh 0 ( 0 )(x )).

Similarly

(4.51) Vhi(o)= V h D (o)(x)).

Therefore, comparing (4 .3 8 ) with (4 .48 ), we obtain

(4.52) c(u), h).= 1, for any h  in  H.

On the other hand, because {U (o ), g )} gives a  representation {S- x,

Ug }  of G , i t  m ust satisfy th e  following relation for all g i ,  g 2 a n d  al-

most all co.

(4.53) U(co, gi)U(gN (0), g2)=U(0), gig2).

If we denote by h i , h2 a n d  h3 th e  corresponding elements of H  in
(4 .4 3 )  to (co, ( g i l (w ) ,  g 2 )  a n d  (w, g i g2 )  respectively, then it is

easy to see,

(4.54) h1h2=h3.

Since U  is  g iven  by th e  form  (4 .4 8 )  and  since by (4 .5 4 )  th e  corre-

sponding p arts o f (4 .5 3 )  o f  Wh (0)(x)), Vh(co(x)) satisfy th e  analogous

equation a s  (4 .53 ), we obtain

(4.55) c(a), gi)c(gi 1 ( 0 ) ) , g2)— c(0), gig2).

This shows that i f  we determine th e  v a lu e  o f c(a)(x), g )  for any g,
then c(o), g) is calculated by
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(4.56)* ) c ( 6 1 ( w ) ,  g2)— (c(a), g)) - 1 c(0), gig2).

W ith (4.52), i f  w e take vectors c (w (x ) , e v (g (c o (x ) ) ) (g E E )  in dex =
Y e(g(w (x ))) instead o f vectors v (g(w (x ))), then we obtain

(4.57) c(co,

This completes the proof.

§ 5. Reduced quasi-dual of non-unimodular group.

As in  § 4 , G  i s  a  separable non-unimodular locally compact group,

and H  is  the fu lly  unimodular subgroup of G. W e  put the same as-
sumption on the G-orbits space X , as in §4, too.

Consider th e  right regular representation gt=  1L 2 (G), RO-  o f  G,
here R, is  the operator on L 2 (G) defined by

(5.1) (Rgof)(g)---= f(ggo).

By Lemma 2.4, 91 is un itary equivalent to  the representation o f G
induced from the regular representation R H  o f H .  T hat is,

(5.2) Fc Ind atH
FITG

On the other hand, b y  the central decomposition (1.2),

(5.3) 91H17---=' S od p(w).

So, using Lemma 2.5.,

(5.4) 91 Ind (DO  (to) } (Ind co)d p(co).
IliG  S 2 2 H t G

And since i t  is described as an integral of measures p x  o n  x  with
respect to  the measure f t  on the orbit space, we obtain,

*) Of course, since (4.56) is valid only except measure zero, w e  must discuss
more carefully. But here we talk about only outline for brevity. The corrections
o f these arguments are routine.
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(5.5) 91__Z d  j i (x ){  (Ind (o)dp x (w)}.
x I-11G

Lemma 5.1. For any  elem ent g o i n  G,

(5.6) Ind go (o ) Ind W.
G IN G IN

Proo f. In this case, the quasi-invariant measure v  on the abelian
factor group H\G, can be taken as the two-sided Haar measure on

H \ G .  So the map

(5.7) v(g)—÷v(gog)

gives the unitary equivalence of (5.6). q. e. d.

Thus, the first integral on x  in (5.5) is a direct integral of mutual-

ly equivalent representations. Therefore, it is equivalent to a  discrete

direct sum o f th e  representation Ind w  w ith  the multiplicity of the
H tG

dimension of L 2 (x, ,a,c ). And this dimension is countably infinite except

fi-measure zero. Hence,

Lemma 5.2.

(5.8) x-(E,O) jintdG cox}dfi(x)

—
(5.9) IndiEecoxIdfi(x).

X l i t G

Here cox a re  elements o f  D, passed through by  x.

041

Notation. By the reason of Lemma 5.1., the component Ind{E ED
H tG

cox }  of R  in the decomposition (5 .9 ) is determined up to unitary equi-

valence, depending only on the orbit x  passing through co. W e den ote

this representation by Z x = {6 (x ), fPg ( x ) } .  Thus,
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(5.10) Zxdfi(x).

Consider a  vector y  ( v ( g ) )  in  the space of the induced re-
presentation Ind co. A s is remarked in  § 2 , in our case we can put that

tc
the quasi-invariant measure dv on H \G  is equal to a Haar measure dg
on H \ G . Then ç l  in  (2 .7 ), and by (2 .9 )  w (g , 0 = 1  in the oper-

ator (2 .1 2 ) of the induced representation. Thus

(5.11) (U 'g iv )(g )= v  (gg i).

Evidently for any h  in H , by arguments in §4,

(5.12) ( P h 'v )(g )= v (g h )=  TV,h , -1(w )(v (e)= Wg ( h ) ((o )(v (g ))

=W h (g i l (t0 ))(v (g )).

Here,

(5.13) E E  and g ig - 1  E H.

From the equation

(5.14) 111 4 2 = IIV ( 0 1 2 d

the restriction Ind to H  to  the subgroup H  o f th e  above mentioned in-
t G

duced representation is decomposed to a direct integral of the represen-
tations gi=1 (w) -= frex, W h (gTi(co))}(cf. § 4 ) , on H\G with respect to the

measure dg, . And the map

(5.15) — ›{1, (g1)} g i e E

gives the decomposition

(5.16) Ind to I H-=- U ; ; }  :A 61(0)dg.IITG H\G

On the other hand, Corollary 2  of Proposition 4 .1  asserts that the
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integral on H\G with respect to  dg can be transfered to  the integral

on the G-orbit x  in  12 passing through co with respect to fix. Thu s,

Lemma 5.3. For it-alm ost all o),

(5.17) Ind
G

 col"' C it x ( 6 )•
- 

H ere  x  i s  the G-orbit in  SZ passing through co.

P ro o f .  I t  is evident from the above arguments and from the fact

that each representation 6  o f H  in  x  is given as the form 6 1 (co) by

some g i  in  E. q. e. d.

Now, in the central decomposition (1.2),

(5.18) (PFv)(0))=- xF(w)v( 0 ) )) E  Yeqw )d,u(o)))

define central projections in the von Neumann algebra K R  generated by

(5.19) {RF,} h e H '  
X  

VCihc l i ( X ) } on V .
heH

Here F  are measurable subsets o f -(2, and xF is  the characteristic func-

tion of F .  Following the weaker decomposition (4 .11), P F  is decomposed

as

(5.20) P F - - - i lF (x )d f i (x ) .

By the theory of von Neumann algebras (c f. J .  D ixm ier [2 ] Chap. H.),

fo r  fi-almost a ll x ,  IP F (x ) IF  is contained in  the centre of the von

Neumann algebra generated by { h E H  and induces the decomposi-
tion

(5.21) W ,  PVT:, Vxkl Ve(0)), Wh( 0 )), V),(0))1 di/x(0)).
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Lem ma 5 .4 . F o r  ft-almost a l l  x ,  a  bounded operator B  on

com m uting w ith {PV- } h H, is decomposable, i.e.

(5.22) B B (co) d px (w).

P r o o f .  Since B  commutes with fr7h(w)dgx(w)} , B  commutes
hEH

w ith  {PF (x )}F  too. This means that B  is decomposable. (cf. J. Dixmier
[2 ], p. 169.) q. e. d.

Lem ma 5 .5 . F o r  g-almost a l l  w, th e  representations Ind w  are
H IC

factor representations.
M oreover, when H  h as  the reduced dual of type I, Ind co°

 a re  ir-
H  G

reducible for ,a-alm ost all co.  H e re  c o °
 show the minimal (therefore ir-

reducible) components o f w.

P r o o f .  L e t  Ind co—= { ,V°, 1111- and Ind w° { '°, U °}. F o r  t h e
H IC H IC

first half, it is sufficient to show that, for ,a -a lm o st a ll co, any bounded
operator A  in the centre of the von N eum ann algebra generated by
{U 'g } g G  i s  a  scalar operator. A nd for the la s t  half, it is enough to
show  th a t , fo r it-a lm ost a ll co, any bounded operator A

°
 commuting

with any operator IP :(gE  G ) is  a  scalar operator.

Consider a  bounded operator B  on of the representation Ind co,
H IC

w hich commutes w ith  a n y  IP;(gE G). Especially, B  commutes with

a n y  U (h  E  H ) .  B y L em m a 5.3, { ,V `', U } is equivalent to  1
x

{A°(6),

Wh (6)} d p ,(6 ), h en ce  is  eq u iv a len t to  -t x, 1V 1, for f l-a lm o st a ll co.
So from Lemma 5.4, B  is decom posable. That i s ,  th e re  a r e  bounded
operators B (6 ) on .re(6) and

(5.23) B(o ) d x(6)
11,G 

B (g - 1 (o))d g.

But B  commutes with any operator U'8. of the form (5.11), so
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(5.24) B(61- g - i (o)))v (ggi)=I11,(B v )(g)=(B W ; i v)(g)

B (g - 1 (w))v(ggi).

B y  the reason of the arbitrariness o f y , we obtain,

(5.25) B (gi- 1  g- 1 (0)))= B (g  1 (0))), for an y  g i and alm ost all g.

This means that there exists a  bounded operator B o o n  AP(w) such that

(5.26) (B v)(g)= B o(v(g)), for alm ost all g.

Moreover the commutation relation of B  w ith  an y  U(h E H ) leads
us to  that B o must commute w ith  an y  TV h ((o) (h E H).

Conversely, for any bounded operator B o o n  .re(co) commuting with
a n y  Wh (w) (h E H ), (5.26) defines a n  operator B  on which com-
m utes w ith  any U .

Next, consider a n  operator A  in the centre of the von Neumann
a lgeb ra  g en era ted  b y  W A - „G . S in c e  A  commutes w ith  a n y  (J. ;
(g E G ), from  th e  above arguments, th e re  ex is ts  a n  operator A o  on
em, which commutes w ith  an y  Wh (co) (h E H ), and A  is  the form of

(5.27) (Ay)(g)= Ao(v(g)).

And A  commutes w ith  any B  of the form (5.26), we obtain,

(5.28) AoBo= BoAo•

But B o is  an y  o p era to r co m m u tin g  w ith  an y  Wh (w) (h E H ) .  Hence
A o i s  in the centre of von Neumann algebra generated by { W  h( 0--  )}  heH •

And th is  a lgeb ra  is  a facto r, so  A o a n d  A  must be a  scalar operator.
This shows the first half of the proposition.

W hen H  h a s  th e  reduced dual o f typ e  I , b y  the arguments as
above, there exists an  operator AS on .re(w

°
) ,  and A

°
 i s  th e  form  of

(5.29) (A° v)(g)= A S(v(g)).
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A8 commutes with any operator o f w
°
. Therefore the irreducibility of

co
°
 le ad s  us to  th at A8 is  a  scalar operator, then A

°
 i s  a  scalar opera-

tor too.
This completes the proof.

Proposition 5.1. ,ii-almost all com ponents o f  t h e  decomposition

(5.10) of  R , are f actor representations o f  G.

P ro o f. This is  direct result o f Lemma 5.5. q. e. d.

Proposition 5 .2 . T h e  decomposition (5.10) giv es the  cen tral de-

composition o f  R.

P ro o f. Basing upon Proposition 5.1., it is sufficient to  show, that

any diagonal operator in  this decomposition is in the centre of the von

Neumann algebra a generated by  B ut th is  is  en o ugh  to

prove that projections P F  defined by

(5.29) (P F w )(x ) = xF (x )w (x ),

are in the centre of % .  Here F  is any m easurable set in X  and xF is
the characteristic function of F. And P F  i s  a projection on the space

of Z x  cif/ (x).

But because of the form of the operator P F ,  evidently PF commutes

with any operator R g g ( x ) c l  f i ( x )  ( g  E G ) .  According to the cen-

tral decomposition o f R I H E (0 )), Fr h(W )}  OW , obvious-

ly , P F  is decomposed as,

(5.30) (PFv)(0)) = x,-1(F ) ( (o )v (w ) ,

w ith the map ço  defined in  §4. S in c e  - 1 (F )  is measurable in  S2, this

projection i s  in the centre of the von Neumann algebra generated by

{ Rh} h e 1 /3  hence of course, in the centre of a.
This completes the proof.
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Summarizing th e  above arguments w e o b ta in  th e  following main
theorem.

Theorem 5.1. Let G  be a  separable non-unimodular locally com-
pact group. Let G  satisfy  the "A ssum ption" in  § 4  on the space X  of
G-orbits in the reduced quasi-dual of the f u lly  unimodular subgroup H
of G.

T hen the reduced quasi-dual o f G  is constructed on X  except mea-
sure zero, as the space of factor representations
Z,—= Ind {2' ED (0} (0 ) E x). H ere Ind 2  co d e p e n d s  o n ly  o n  x  up  to

H tG H tG
unitary equivalence.

M oreover, if  H  h as  the reduced dual o f ty pe  I, th e n  the reduced
dual of G  is constructed on X, as the space of irreducible representations

=- Ind co
°
,  except m easure zero. Here co

°
 i s  the minimal component

H t G
of to. E spec ially , G  has the reduced dual of type I, too.

§ 6. P lancherel formula for non - unimodular groups.

N o w  w e a r e  o n  th e  s tep  to  p ro v e  an  ex ten s io n  o f Plancherel
formula.

B y  the argum ents in §4 and §5, the reduced quasi-dual o f a  separ-
ab le  non-unimodular locally  compact group G  satisfying th e  regularity
assumption in  § 4 ,  is constructed o n  th e  space X  of G-orbits in  the
reduced quasi-dual 12 o f  i t s  f u l ly  unimodular subgroup H , except mea-
sure z e ro  s e t . So we identify the reduced quasi-dual of G w ith  X , and
factor representations Z = 1 ( Z ) ,  I t g ( Z ) }  with corresponding orbits x
in  X  respectively.

A s  is  sh o w n  in  § 5, ,a-almost all elements in  X  a r e  induced
representations from some representation co of H  in  12, an d  moreover,
when H  has the reduced dual of type I, m inimal (therefore, irreducible)
components Z

°
=
-
1 6 ( V ) ,  g (V ) }  of ti-almost all elements in  X  are

induced from m inim al components co
°
 o f  co. T h u s  for such or Z

°
,

we can define the operators Ta (Z )  o r  T8 (Z
°
)  defined in  §2  fo r a  posi-

tive character w h ich  is  triv ia l on  H .  Especially, the modular func-
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tion 4G and its real pow ers are positive character which are trivial on

H .  Hence, put

(6.1) T  2( Z )  T(Z).

Moreover, we can define, for induced representations Z  in  X , ses-
qui-linear forms rz  on  the vector spaces A o o f  operators { T ( Z )  f (Z ):
f  E Co(G )} b y  (2.40). And if H  has the reduced dual of type I, these
sesqui-linear forms rz  a re  considered as the ordinary traces of operators
of the minimal components Z ° o f  Z.

Thus we obtain the following main theorem.

Theorem 6 . 1 .  For any  f  in  Co (G),

(6.2) f ig )  I dr g=çrz ((T (Z )T  P f (Z )) * T(Z) (rf(Z)) d TI( )

(6.3) =  x rz ( T( )( C 4 - 1 / 2 ( Z ) ) *
 C j - - 1 I 2 ( Z )  T(5))) d  (Z )

(6.4) =  
x

rz(( T (Z )) 2 C eey ,f(Z ))d  f i(Z ).

Here

(6.5) f x (8 . ) _ f ( g - i)(4G ( 0 - 15

and

(6.6) (P-112)(g)= f (g)(4G(g)) - 1 1 2 ,

(6.7) ( f 4 ) ( e =f (g )4 G (e .

Especially, i f  H  has the reduced dual of  type I,

(6.8) f  ( g ) 2 d g=1  i l  T(Z°) 1(V)III 2 d fi(Z )
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(6.9) =1 
x

IIIC 4 -112(V)T(V)111 2 dfi(Z)

(6.10) =1 , y  7 ,.((T(Z ° )) 2 Fr7 (fxd)., f (Z ° ))d

H ere 111•111 shows the Hilbert-Schm idt norm  o f  operators, an d  Tx ( . )  shows
the ordinary  trace of  operators.

P ro o f. Let f  be a  function in L1(G)nL 2(G), then,

(6.11) 11f112--= ,1f(g)12drg=1H\G f (h g )  2dh.

Since H  is unimodular, the Plancherel formula (1.10) is available,

(6.12) I( g) f (h g )  2dh= FVf(w))* f f ,(co)) d o).

Here

(6.13) f f (hg)

are considered as functions in  L 1 (H)(1L 2 (H )  for almost all g. As in
§4, S2 is divided as the union of G-orbits, and the measure g  over S2
is decomposed to the integration o f  measures ,ux o n  x  with respect to
the measure / I  on X .  Hence,

(6.14) -1-(g )=- Ç d f i(x )  x r .((TV ,(a))) *  f  ( 0)))d x( 0)).

But by Corollary 2 of Proposition 4.1, the measures i t ,  is transfered
to a quasi-invariant measure on the homogeneous group G. = H\G, as

(6.15) ditx (g(a)(x )))= cx z w (edg.

Here w (x ) is a  representative in x  given in  §4, and cx  i s  a constant.

It is easy to see that by adequate selection of the measure fi on  X , cx

can be taken o n e . Thus, substituting the notations f o r  x,
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(6.16) 1 (g )= x d ft (Z )H \ G  r.(( W f,(gi(()(x)))* W f g (gi(w (x )))

X 46 i(g i)dg i.

O n  th e  other hand , fo r an y g i  in  th e  B o re l se c tio n  E  o f H\G given in

§4,

(6.17) fVf,(gi(0(x)))=-1Hf(hg)W h(gi(e0(x)))dh

1.1f (h g )  Wg lj z g l (co(x))dh

= 1 ; ( 0 6 1 g)W h(a)(x))d(gi(h))

= .11 . f (g ih g i - 1  g) h ( w ( x ) )  G ( g i ) d h

= T  v  (g .0 , g)4G (g i).

Here FV.

xf(g i, g2 ) is  th e  operator fVf(g i , g 2 )  given in  Corollary o f Pro-

position 2.1 fo r  a)(x). Thus,

(6.18) 11f112 ----/ ( g 2 ) d g 2 = 1 d f i(Z )
H\ G H\G

r . ( ( w;(g i l ,  g i- i g 2)) *T v ;(g - 1 ,  g T1 g 2)) 4 G(g i ) d g i l
H\G

=1 dii(Z ) ((rws. g2))* f r ;(gi., g2))H\ G H\ G

X (4G(8).)) - idgidg2}

-=
H\G g2))* W xf (g i, g 2 ))H\ G

X (4G ( dg'4
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Evidently the integrand dose not change b y the substitution of g i  w ith
h gi ( h E  M . Thus w e can take off the assumption that g i  i s  in E.

I f  w e put in Proposition 2.1,

(6.19)

then

(6.20) I! f 112 -=ç d r ((f  V ;(gi, g2))*Tv;(g1, g2 ))

x  ( 4 ,4 0 ) - 2 ( 40)2 dgid-g-2}  .

This formula (6.20) assures the convergence of the following in-
tegrals for 17-almost a ll Z .

(6.21) r  z ((T (5 ) )  C(Z)) *f f 7 '  f ( Z ) ) = r.(( W xf ( g i ,  8-2))*H\ G ./H\ G

rv-f cg i ,  g 2))(4G( g 1))-idgid-g2.

And (6.2) is obtained by substituting (6.21) into (6.20).
The equality (6.4) is  d ed u ced  b y  direct calculations. (cf. Lemma

2.7.)

(6.22) (  T(Z) ef (z))* T( ) C m = ( f (z ))*(T ( ))2 f (z )

=  f  x (z )( T(Z)) 2 I f f (Z )=  T ( ) ) 2 TP.rj(Z ) frf(Z )

T(Z)) 2  C f ' d ) . f .

When H has the reduced dual of type I, w e can  take the ordinary
tra ce  o f operators of m inimal components to

°
 o f  t o  instead  o f  r .  in

(6.12) and for ft-almost a ll  2), the minimal components Z ° o f  2) are

obtained as the induced representation from co
°
 . Thus, the last half of

the proposition is proved just in the same way.
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This completes the proof.

Corollary 1. For f unc tions f  w h ich  are linear com binations of

the functions f i*f2 f2 E Co(G)),

(6.23) f  ( e ) =  x rz(( T(Z)) 2 TP-f (Z ))  1 1:1(Z )

Especially, 1* f  H  h as  the reduced dual of type I,

(6.24) f  ( e )=-  x T  r((T (V )) 2 f ( Z °)) d

Proof. For the linearity
for the function of the form

of the both side, it is sufficient
( f  4)*f. B y  (6.4),

to prove

(6.25) ( f  X  4)* f (e).= G (f(g )(4G (g)) - 1 )4G (g)f(g )d r g

(6.25) = f (g )I 2 dr g

(6.26) = r (( T( ))2 Tr(f x 4). f (Z )) d (Z ).

When H  has the reduced dual of type I, th is is equal to

(6.27) T  raT (V ) ) 2 ( fx  4 ) ,  f ( V ) ) d  f t ( Z ) .

This completes the proof.

Corollary 2 .  Let f  be a function as in  Corollary  1. Then,

(6.28) f (g )-.= x rz(( T ( ))2 c(z) c-i ( ) ) d

And i f  H  has the reduced dual o f type I,
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(6.29) f (g )=  fx T r((T (V )) 2 C ( °)ri-7,- c/--1(V ))/1(Z ).

P ro o f. Since,

(6.30) f (g )= f *O g -i(e),

and

(6.31)1 i _ ( ) —  C(Z) e g -i(Z),

the result follows from Corollary 1 , soon. q. e. d.

Obviously, for unimodular group, if we take the operator T (Z )  as
th e  identity operator on the space of representation Z  in  its reduced

quasi-dual X , the formulae in  Theorem 6.1  and its corollaries are  valid

in the same form. Therefore, we may consider that Theorem 6.1 and
its corollaries give an extension of Plancherel formula for any separable

locally compact group satisfying the assumption in  §4.

§ 7. Decompositions o f  th e  regular double representation and

the regular quasi-Hilbert algebra o f G.

Here we shall discuss an analogue to the decomposition theory of
F. I. Mautner [91 [101, I. E. Segal [1 3 1  and J. D ixm ier [21  which is

proved in the case of unimodular groups. W e  use the notations given

in  §§4 , - -6.
Consider the regular double representation {L 2 (G), R g i , L g o  J }  of G,

defined by

(7.1) (R g ,f )(g )= f(gg i),

(7.2) (1,92f)(g)=(4G(g2))-112f(gil g),

(7.3) (Jf )(g )= (4G( g)) - 1 1 7 (g - 1 ).

J  is an involution operator on L 2 (G), such that

(7.4) JR ,J= L g , for any g  in  G.
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We define the following operators on / 2 (G ), too.

(7.5) (S  f)(g )— (z1G(g)) - " 2 f ( g ) ,

(7.6) (af)(g) —  6(g) f  (g).

Here S (g ) is a positive character on G , satisfying

(7.7) S(h)=1, for any h  in H.

Obviously S  is  a  unitary operator on L 2 (G ), and a is a  1—to-1 self-

adjoint positive definite operator with dense domain and dense range in

L 2 (G ) . And the followings are trivial.

(7.8) S2-= /, (identity operator on L 2 (G)).

(7.9) SR,S= L g ,

(7.10) aRgo= (6(g o ) ) ' R g 0 0,

(7.11) aLg0=6(g0)408.

By the way, the space Co (G) o f continuous functions with compact

carrier on G , becomes a quasi-Hilbert algebra in the sense o f J . Dixmier

121, by the ordinary structure of a vector space on C, and the scalar

product in L 2 (G), the product of convolution. The involution is defined

by the same form as J  in (7.3), that is,

(7.12) f *(g)..■■• (j f)(g). fig - 1)4 G ( g )112

The linear map f —  f '  is given by

(7.13) f -(g)— (42f)(g)------ iI G(g) 1 / 2  f (g)

We call this quasi-Hilbert algebra th e  regular quasi-Hilbert algebra

on G.
Now, we put the central decomposition o f th e  right regular repre-

sentation at= {R g } g E G ,  given by (5.10), as
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(7.14) 1?„} x 0 ( Z ) ,  g ( )} d ).

Because the operators 2= {4 } , E G  commute w ith any R g (g E G ), the

operators L ,  is decomposed by this decomposition, too.

(7.15) Lg 5xi7,,(Z)dfi(Z).

We shall determine the form  o f th e  operators Pg (Z ), and show

that the operators, S, J, 8 are decomposed also by (5.10). Lastly, we

can obtain the decomposition o f th e  regular quasi-Hilbert algebra Co (G)
on G, according to this central decomposition.

A t first, we must decide the concrete form of the equivalence map

of the decomposition (5.10).
The unitary map in (5.2) is defined a s  a  map o f  LAG) onto the

space o f L 2 (H)-valued functions on G, which satisfy,

(7.16) fH(hg)-= R 1
1,1 (f H (g )), (g E G, hE H),

(7.17) ilfH112 =- -- H \ G VH(g)11 2 dg< +0.0.

And this map is given by

(7.18) f  — > (g)==-- ( f (hg)),

Here f (h g )  is an element o f L 2 (H ) as a function o f h , and

(7.19) fii(g)11 2 - 1 H 1f (11g) 2 dh, for almost all g  in G.

Next, eachvector o f  L 2 (H ) is decomposed by (5.3), to  a  vector-

valued function on -(2, which take its value in Ye(o.)) at co. We obtain

by this step.

(7.20) f ll(g )-÷ f (o ), g) (o)E 12, gE G)

From (7.16), (7.17), this function must satisfy
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(7.21) f(o), h g )= TV h (w)(f(co, g)), (g E G, hE H, wE S2)

and, since

(7.22) H.TH(012=11211f(w, O rd / (w),

(7.23) 112 = (0), g)11 2 d,u(a)))dg< + no.

Thus the equivalence between t and 1Ind codit(co) is given by
H  G

(7.24) f  f  (co, g), (to E S2, g  E G),

as the map from L 2 (G) to 1 (1 .Y e (co, g)d,u(co))dg.
H\G

Here .re(co,

By the reason of Lemma 5.1., the representations Ind o) are mutual-
H f G

ly equivalent when ofs are passed through by the same orbit x (=Z )* )

in X .  And the decomposition (5.10) is obtained by summing up these

equivalent representations. T h a t  is, the space ,5(Z) of q ) ( : 1  Ind o)
WI T G

X C 1/1z(0 ))) is considered as the space o f vector valued functions f (to, g)

on 2) x G satisfying (7.21) and

(7.25) 11f111=1H\G(1zIlf(0), g)Ila cipz (w ))c < + co .

Hence,

(7.26) 11f112= 1 fH112 =1x 11 f

;11(Z) x  \ G I If(0), g)112 clitz(w)dgi.

Comparing with (6.2) and (6.8), and by the arbitrariness of f ,

*) We identify a factor representation I) to the corresponding G-orbit x  in  fl,
as in §6.



232 Nobuhiko Tatsuuma

(7.27) f z  rz(( T (Z ) f f (Z )) * R Z )  f (Z ))

or if H  has the reduced dual of type I,

(7.28) IfHn Ill T (
p)

 1
t

f (
0)111,

for almost all Z.

Here we must remark that under the normalization of the isomor-
phisms between .Yen  and i t q w ) ' s  (to E Z) given in §4, f ( c o ,  g )  are con-
sidered as vectors in  th e  same space .;r5D when co are in  the same
orb it Z . So  k)(Z) can be considered a s  a  space o f .r / -valued func-
tions on D XG. Hereafter we shall use this normalization.

Lemma 7.1.

(7.29) JHUg= Ug h 1, f o r any  g in G ,

(7.30) SH U g= U gSH , f o r any  g  in  G.

Here .1-H, SH , Ug  are  operators on L 2 (H )  defined by

(7.31) ( h i f  ) ( h )=

(7.32) (SHf )(h)—  PC 1 ),

(7.33) (U g f)(h )=  f(g -
l hg)( 4 G(g)) -

112 ,

(cf . §1, §4).

Proof. It is clear from the forms of operators. q. e. d.

The operators JH  and SH  are decomposed by the central decomposi-

tion (1.2) of NH, as

(7.34) H .1 H(0 ) ) Clii( 0 ) ) ,

S H S S H (w )d p (o ) ) .
2

(7.35)
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Lemma 7.2. T he operators jp i(w ) an d  S H (o ) are  depend only  on

the orbit passing through w  as  operators on  .rt‘' ,  respectively.

P ro o f. From Lemmata 4.6 a n d  4.7,

(7.36) (ug (z)v)(w)= rvizo (w(z)) vh0 (0)(z ))v (g - 1 (0)))4G(g) 1 1 2 .

Here

(7.37) =  go 1 (w(Z)) ( g o E E )  a n d  hV - g o gE E .

So (7.29) shows

(7.38) .TH((0) Who(w(2 ) )) Vn o(w(Z))= Wh 0(w(Z))Vh,( 0 (Z))JH(g - 1 (w)),

f o r  any ho i n  H. I n  (7 .38), if we substitute h g  to  g , (hg) - 1 (0 )-=

g ( w )  an d  h o  is exchanged fo r  g o hgV h 0 =-h i ho . So

(7.39) TH (w) Whi ho(w(Z)) Vn t ho(w (Z ))=  Wh i ho ( w ( Z ) )

Vh 1 h0 (w (Z )).TH  (g - 1 (w))-

Because o f  arbitrariness o f  h , we can p u t h i ho -=e a n d  we obtain

(7.40) f l l ( w ) =  (g -1 (0 ))) fo r  any g  in  G.

Analogously,

(7.41) SH(a))= S H (g - 1 (o))), fo r  any g  in  G. q. e. d.

Definition 7.1. W e denote by .11, S ,  the operators M a)) , SH(a))
on A°1  respectiv ely , w hich depend only  o n  th e  orbit p as s in g  th ro u g h
to.

Lemma 7 .3 . A ccording to th e  decomposition (7 .24) o f  th e  space
1,2 (G), the  operators o n  L A G) are  represented as follows.
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(7.42) i) R g o f ggo).

(7.43) ii) L g o f —> 4 G(go) 1 1 2  TV no (0)(Z))V h o ( ( ) (Z )) f  (6 1 (a)),g 1 g),

(1) =. gi l (0 )(Z )) (gi E E), E E.

(7.44) iii) J f  4 G ( g ) 1 1 2 Wh0(0)(Z))Vh 0(w (Z )).PHI(g - 1 (0)), g - 1 ),

to = gi7 1 (0)(Z)) (g i E E), h (71 gi g E E.

(7.45) iv) S f  4 G ( g ) 1 1 2 Wh0(0(Z ))V h 0(0 )(Z ))S 7 j(g - 1 (60), g - 1 ),

to= g i71 (o)(Z)) (giE  E), h 1 g i g E E .

(7.46) v) 6 (g)f(0), g).

P r o o f .  These correspondences are confirmed by tracing the steps

given in the begining o f this §. That is,

(7.47) i) ( R g 0 f )(g)=f (ggo)— >(f (hg))=P1(ggo) - 1(0), ggo).

(7.48) ii) ( L g o f ) ( g )= 4 g (go) - 1 1 2 f (gOl- g)—>(4G(go) .--1 1 7 ( 6 , 1 hg))

(Z G ( g oy 1 I 2 f(61 h g o . 61 g)) go f l ly g1

—>4G(g0) 1 1 2  Who((0(Z ))v h 0(0)(Z))fig(7 1 (0), g;37 1 g).

Here

1 ( (0 (z )) (g i E E), h o  gi g ° E E.

(7.49) iii) ( J f ) ( g ) --- (4G(g)) - 1 / 2 f ( g - 1 ) - - (z1G(hg) - 1 1 7 ( g - 1 1 b- 1 ))

g . g -1 ) ) . =  ( ugh., f o ( g - i )

—*4 G(g) 1 1 2 W1 0(co(Z))vh 0(0)(Z ))Jt f (g-1(0)),

Here
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1 (co (Z )) (g i E E), hogig E E.

v i )  is proved analogously to iii).

(7.50) 1r) (8f )(g)=6(g)f (g)— >(6(hg)f (hg))-=d(g)f H (g)

— 6 (g )fico , g ).

This completes the proof.

L em m a  7 .4 . A ccord ing  to  th e  cen tral decomposition (5 .10), the
operators J an d  S are  decomposed as follows.

(7.51)

(7.52)
x

Sz d fi(Z).

Here Jz , Sz  a r e  operators on :6(5 1)  defined by

(7.53) (Jzf)(0) , g) = 4G( g ) 112 Wh e (0)(5)))Vh o (0 )(5 )))J V ( g - 1 (w ), g - 1 ),

(7.54) (Szf) (0), g) = G(8) 112 1 1 0 (a ) (5 ) )) V ho(0 (Z ) ) f i r i  ( 6 0 ,  g - 1 ),

g i-(o )(Z )) (giE E), h g i gE E .

P ro o f. Because o f  (7 .44) and (7 .45), it is sufficient to  see that

J  a n d  S z  define isometric operators o f 6 ( Z )  onto itself.

(7.55) (.14)(co, h g )=  G (hg) 112 Wh1 (o (Z ))V h1 (o)(5)))J1

x  f((g - l h- 1 )(w ), r l h- 1 )

=4 G (g) 1 1 2  h 1 (0)())) V h i (a ) ( ) ) ) . TV,1h-1 g (g - 1 (0)))

x f(g - - 1 (0), g -1 ).

Here h 1 is  g iven  b y
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(7.56) hj-1gihg=hi-1( 0 6 1 )g ig = 4 'g ig E  E ,

i.e.,

(7.57) = (gifigi-1 )ho•

Since,

(7.58) g-1(0))_ ig i -1)(0) (z)) _ ( h v g i g
)  

l( COM ) ,

and

(7.59) JD W(w)J= Vh(w),

(7.60)J  TVg -1h -1g (g - 1 (co))J1 fr7 ,-1(h-1)((ho
1 gig) - 1 (0)(Z))

= J 21211V(hcT1 g 1 g g - 1 )(h - 1 ) ( 0 ) ( Z ) ) =  (.1- 1W h iTi  gi(11- 1 )( 0 ) (Z )V TIV TI

— Vho l g i h - lgi l ho(a ) (Z )V 7i =  V  hT 1 ho(W PA T T I.

Therefore,

(7.61) (Jz f)(a), h g )=  4 G (g) 1 1 2  1Vg i ( h ) (0)(Z))W h 0 (a)(Z))

X  Vh0(0)(Z))TXP.0 ,

tvg,(h)(a)(Z)) -1(A 1)(0), g)}  = W h(gi-. 1 (w ( ))){ (M )(60, g)}

V h (co)(A f)(a ), g ).

(7.62) Ilhf II 2 -= (h f  )(co, g)112 61,etz (o)d g-
zx H\G

= x G  I I zIG ( g) 1 ' rvh ( (z)) v h  (  (Z))JD fig- 1 (w), g -  11 2

x d (w)dg

11.11(f(0), g - 1 ))112 4G(g)dpz (g(0)))dg
5) , ( 1.1\G
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5'31)x H  G
g-1)112dItz(0))dg

g)112 duz(w)dg= Ilf Ill< + 0..zxH\G

Analogous relations are valid for S 's .

This completes the proof.

Lemma 7 .5 . {6z, P.,,(z), ./z} i s  a double representation

of  G .  Here,

(7.63) ( rrg i (Z)f)(co, g)-= ggi),

( 7 .6 4 )  (  g ,(Z )f)(c), g )-=  IG (g2) 1 ' 2 1 V h 0 (a )(Z ))/ T h 0 (W ())f ig il(0 ) , g '  g ),

(0 --= 6 1 (0 )(Z )) (gi E E), hVg i g2 E E.

Proo f. It is  easy  to  see  that {.5(Z), C i (Z)}, 0(Z), t g ( )}
give unitary representations of G , and

(7.65) Ci(z) P g ,(z) = Vg ,( ) 1f7',,(z), for any g i , g 2 in  G.

So that, it is sufficient to show that

(7.66) Tr7 g (z)h= Pg (z).

(7.67) (h i rg o ( Z )h f ) ( t ) ,  g ) =  AG(g) 1 1 2  Wh I ( 0 ) (Z)) V111( 0 ) ( 5 ) ) )

X J71( fr/ g0 P A P ( g - 1 (W ), g - 1 )

4G (g) 1 1 2 wh 1 (o)(5)))Vh 1 (a)(5))),IT(Jzf)(g - 1 (w), g - 1 go)

=  G (g ) 1 1 2  Wh,(0)(5))) Vh i (a )(Z )) n  {A G(g -  1  go) 1 ' 2 fvh,(w(Z))

X V h,(0)(Z))Pii f((g6 . 1  g )(g - 1 (0))), giV g)}

=  4 G (g) 1 / 2  rvh,(a)(z)) rvh2(0)(z))vh 1(0)(z))Vh 2 (co(Z))

x f ( 6 1 ((0), g-0-1g).
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Here to -= g371 (0)(Z )) ( g i  E ) ,  h T 1 g ig  E E ,  a n d  8. - 1 (0))= KZ 1 (0 )(Z ))
(g2 E E ) , h i l  g2g -

1 go E E . T h u s ,  g - 1  gi.1 (0)(a) ))= g i 1 (0 ) (Z )) , and

(7.68) g2=hif i hi1li171 gigo E

The relation (7.68) shows, h o = hilt2, and

(7.69) (4 fVg a ( Z ) h f ) ( w , g )= 4 G ( g o ) 1 1 2  W ( ) ( ) )

x Vh0(0 ) (Z ) ) .f (6 1 (0 )), gO.1

(T7
 go (Z )f )(c), g).

This completes the  proof.

Lemma 7.6. { ( Z ) ,  r r g (Z )}  is equiv alent to { (Z ),
 g ( )} .

P ro o f. Indeed, similar argum en ts as in  th e  proof o f Lemma 7.5
shows

(7.70) fr.,(z)sz= T7,(z).

This gives the  unitary equivalence between above two representations.

Proposition 7 . 1 .  The double representation IL 2 (G), R g j , L g o  J I  i s
decomposed by (5.10) as follows.

(7.71){ L  2 (G), R g i , L g 2 , J} x { :6(Z),If/ T7g2(Z)Idfi(Z).

P ro o f. T his is a  summarized result of Lemmata 7.3-7.5.

Lemma 7 .7 .  B y  the central decomposition (5.10), (3 is decomposed
as,

(7.72)
x  

(Z) d ,a(Z).
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Here

(7.73) ( (Z ) f  ) ( t»  g )=- 6 44@ ° ,

Ta( Z )  i s  a n  operator o n  t h e  space .5 (Z) o f  induced representation

Ind cod,a z (co)), as  is g iv en in  §2.
FIT G

Proof. This is evident from  (7.46) and the definition o f  Ta(Z).
q. e. d.

W e use the notations Fs ( t)  and .58 ,t (z) given  by (2.28), (2.29) for

the induced representation Z. Analogously denote,

(7.74) L2(G, t , 6) {  f E  L 2 (G) : [Support of .n ( 1 ' 8 (0 ,

(7.75) Co (G, t, 6)1=7 I f  E Co (G): [Support of f  1 ( Fs (t)},

(7.76) ..;77i(Z , t, {components on Z  of f  in  Co (G, t, 6)},

B y the reason o f Lemma 7.7, the following Lemma is deduced soon.

Lemma 7.8. For any  t (> 0 ) and  f or ft-almost all  Z,

(7 .7 7) :58,t(Z )-= {components on of  f  in  L 2 (G, t, à')} .

Lemma 7.9. For any  t ( > 0 ) an d  f o r ft-almost all  Z, (Z ,  t ,  6 )
are dense in  6 8 ,t (Z ).

P ro o f .  Because of Lemma 7.8., :3:/(Z, t, 6) are contained in b- 8 ,t (Z )
for f l -alm ost all Z . And the density of .577f(Z, t, 6) in 6 8 ,t (Z )  follows
from the density o f Co(G, t, 6) in L 2 (G, t, 6). q. e. d.

Now we consider the structure of a quasi-Hilbert algebra defined
on Co(G), as in the begining o f th is  §. W e can transfer th is structure
onto the ring of operators {RA by the map

(7.78) f—>Rf--)'Gf(6,-)12,clrg.
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And

(7.79) i) R 11 .  R 12 =  R1 1 12( p r o d u c t ) ,

(7.80) ii) < R 1 1 , R1 2>  < f i ,  f2> (scalar product),

(7.81) iii) (R f )x R  f (involution),

(7.82) iv) ( R f ) " = - Rfn (bijective linear map).

I t  must be rem arked  that (R f ) '<  is  d iffe ren t fro m  th e ordinary
adjoint operator o f Rf.

B y the decomposition (7.71), the operatorRf corresponds to

(7.83) Pr7f (Z ) f(g)T1-7,(Z)clrglzEx.

Lemma 7 . 1 0 .  B y  the decomposition (7.71), the operations on Co (G)
are transfered on  the operations on the ring {C (TS)} fo r  f i-almost all

as follows.

(7.84) i) f1412--R1 1 •R1 2 --* C,(Z) ltf,(Z ),

(7.85) i i ) f2>  < R1 1 , R12 > T ( )  W T f ( ) ) *  T ( ) 2 (Z ))

<  -eficz), TP.12(z)>,

( 7 .8 6 )  i i i )  f *—>(Rf)x—> (Z ) (Z )) X

( 7 .8 7 )  i v )  f  " - + (RA^--* Wf ( )  =  T(Z )) -
1 Tf7' f(Z ) T (Z ) (r r f ( ) )  A  .

P ro o f. i) i s  trivial.

ii) follows from the Plancherel formula (6 .2 ) immediately.

i i i ) ,  iv ) are considered as the definitions of ( J ( ) )  and ( I " 1 ( ) .

q. e. d.

Lemma 7 . 1 1 .  B y  the above operations, { C (Z ); f  E Col  becomes
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a quasi-Hilbert algebra, for f t-alm ost all Z .

P ro o f. W e must check the definition of a quasi-Hilbert algebra in

the Dixmier's book [2 ].

(7.88) (i) <  T r / f ,( Z ) ,  C,(Z)> = rz(( T(Z) P 2(5)))* T(Z) ff7  f ,(5)))

-= r z ( T(Z) fvf l (z)( T ( ) wf a ))* ), (cf. Lemma 2.9.)

=  rz (( l)P ti(Z )  TM ) * Wf (Z ) T M )

= z (( T( ) rpf,4112( ))*(T( ) cl41 , 2(z)))

T(Z) Ct(Z))* T(Z) PP 11(Z))

(fvf,(z))x>.

(ii) By Lemma 2.10.,

(7. 8 9 ) <  C(Z) PP12(Z)> = rz(( T(Z) PP f 2(Z )) * P P k . f  , ( Z ) )

=r z OET(Z)T1.7, ( Z ) ) * T ( ) C i (Z))

= r5)(( c .- ( ) c2 a »)*T (Z ) ,(Z ))

< P (  k(Z )) *  T f/ f 2a ) >  •

(iii) From Lemma 2 .1 2 , for fixed k  in Co(G), the followings are

valid.

(7.90) I < Ce(z) JP-12m >  I r ( (  T ( )

x T( ) TP.k( ) c ,m )

. c,,-(z-z(cT(J) c())* T () rrf,p))•

rz ((T( ) rr7-12( ))* T(Z) 2(1)))1 1

= c k l< C , ( ) ,  C i (Z )> <  prff 2 (z), rf7sf,( ) >P2.
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This shows that for fixed k  in  Co (G), the map

(7.91) Wk() TP-f( )

is continuous with respect t o  th e  above pre-Hilbertian topology on

Co (G)
(iv) Let k)(Z) be the Hilbert space, the completion of

(7.92) s i(Z ) e.t. ( )  f  E Co(G)}

with respect to the above scalar product.

By (7.27), fo r  any f  in  Co (G ), the norm o f components f ( )  of

f  with respect to  the decomposition (5.10) are given by

(7.93) Ilf(5))11i = rz(( TP-f (Z )) *e f  ( ))

for fi - alm ost all Z. Therefore, from  the separability of G, the map,

(7.94) ° (Z ) ; f r-

7  f (Z ) — > f ( )

gives an  isometric linear map from a dense subspace o f  
, (Z )  onto a

dense subspace o f  ,RZ), fo r  ft-almost all Z. As the unique bounded

extension of U°(Z ) ,  we obtain an  isometric operator U (Z ) from 
, (Z )

onto

On the other hand, from general theory o f L 2 (G), the space

(7.95) { k*f; k , f  E Co (G)}

is  dense in L 2 (G ), hence, for fl-almost all Z ,  the set ,Eio(Z ) of com-

ponents o f functions in  d o w ith  respect to the decomposition (5.10) is
dense in :6(Z). And as the inverse image of dense set .--do( )  by

U(Z), the set

(7.96)d ° ( ) e k (5)) Iff (Z)-= Tf7k* f(Z )  ;  k , f  E Co(G)}

is dense in 
,t1(Z), especially, dense in d (Z ),  for fi - alm ost all Z .

(v) A t  first we define a  linear map T  on L 2 (G) by
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(7.97) ( T f )(g )=-j c  ^ (g) ( = (4G(g))" 2f (g )).

Obviously, T  is a bijective self-adjoint positive definite operator and by

Lemma 7.7 , T is decomposed under the central decomposition (5.10) as

(7.98) T 5
 x

T (Z )cl (Z ).

Here T4W2 (Z ) are bijective self-adjoint positive definite operators

on 6 (Z ) .  Therefore, clearly, the operator

(7.99) T o(Z )= W (Z ))-1T (Z )U (Z )

is also a bijective self-adjoint positive definite operator on S-- (Z )  for fi-
almost all Z.

But, by (7.98) it is easy to see that for fi-a lm ost all Z,

(7.100) To(Z)( C(Z))= C-(Z)= ( rf7 f(Z )) - -

Let a and b  be two elements in g (Z ) such that fo r  any f i  and

f 2 in  Co (G),

(7.101) < a ,  C -
1(5 )) C 2(Z )>  = < b, ( Trif i (z)y( fv f 2 (5)))->

= <b, PPlf 2M)'' > = < b , T 0 ( )(  i (Z )C  ,(Z ))>

Then (7.101) means that b  is in the domain Z( To (Z )) o f ( To(Z))* =
T0 ( ), and

(7.102) a=  To (Z )b.

From the definition o f  To (Z), af(Z) is contained in  Z( To (Z )).
W e have to say the existence of a sequence { rrf . (Z ) }  in  d (Z )

which converges to  b  and {( C .(z )) - = T0 ( )( I31 ,( ) ) }  converges to

a. Transfering the problem onto „5(Z) b y  U (Z ), it is sufficient to say

the existence of a sequence { f, i (Z ) }  of the components on Z  of func-

tions U nI  i n  Co(G), which converges to  b1= U (Z)b and { T (Z )f(Z )}
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converges to a l = U(Z)a= To(z)b-= T(Z)b i . Here we remember
the form of .5(5)) and T( ). T hat is, :Oa )  i s  the space o f Earez_
valued functions v (g ) on G, which satisfy,

(7.103) v(hg)=Wh((o)v(g),

(7.104) ( g)112 6 1 g <

Moreover

(7.105) D(z) v ( g ) _ ( 4 G (0112v ( 8 ) .

Hence, bi(g) belongs to Z (T (z ) ) ,  if and only if

(7.106) H  Ilbi(g)irdg< + 00,
\ G

and

(7.107) 4c(eibi(g)ii2dg< + 00•

Now we take a  sequence { t (n )}  of positive numbers, such a  way
that

(7.108) 1
(Ftoo(dlaw 2n

k --(Ftc.)(4 1 '2))'
(7.109) zic(ellbi(g)II2dg<  1  

2n

Here (Ft (n ) (4 1/2 ))c shows the complement in  H\G of the image of the

set F a n ) ( 4 1 d 2 )  (c f .  (2.28)) by the canonical map from G  onto H\G.
A s  is  sh o w n  in  Lemma 2.8, T( )  leaves invariant . t (Z )

,N I',t(Z )) and its  restriction T i(Z ) on k)j (Z ) satisfies,

(7.110) 7"(Z)11=t.
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Therefore, by Lemma 7.9., w e  can  tak e  a n  element v , , (— = v n (g ) ) i n
(Z , t (n ), 4y2), such that

(7.111) , Ilbi(g)—v.(01 2 d 1  g<1( Ft ,, ( 4. ) ) 2 n

(7.112)f 4 G ( g ) l i b i ( g ) — v ,z ( g ) 1 1 2 d g =
(F1

11(TP)bi)(g)-- 7A5D)/".(g)112 dir <-
2

1  
5 ( F 1 0 0 0 1 / 2 ) )  

That is,

(7.113) Il b1—vnii2< 1

(7.114) Ta)v22112 < 1  .

We obtained a  sequence { v , }  in  sif(Z)( l./.5;?(Z, t , 4 2) )  which
converges to  b1 and { T ( ) v }  converges to  T(Z)bi -=ai.

This completes the proof.
Summarizing th e  above mentioned lemmas, we obtain the decom-

position of the regular quasi-Hilbert algebra on G.

Proposition 7.2. T he map,

(7.115) f--*1x 1i.71 (5)) dft(Z)

gives a  decomposition o f th e  regular quasi-Hilbert algebra Co (G ) on G.
And the correspondences of the operations o n  this algebras are giv en in
(7.84)— (7.87).

§ 8 . Invariance of the Plancherel measure under the operations
of Kronecker product

In  th e  previous paper [141, we proved an invariance of the Plan-
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cherel measure under the Kronecker product operations for unimodular
locally compact groups of type I. Here we shall extend this property

to  the case of m ore general locally compact groups, and show the uni-

queness of measure satisfying such an invariance.
L e t  Z o = U }  be a  given fixed unitary representation o f  G.

W e fix  a  complete orthonormal basis {y ., }  in o ,  a n d  take a  vector y
in  S N . For a  general unitary representation Z.=  U g l, we consider

the Kronecker product Z oO Z .  By the map

(8.1) ço(Z, y); u—>vOu, (u E

is mapped into S N O .  The im age of ço(Z, y) is the closed subspace

y(E) of ,N O .
On the other hand, for any function f  in  L l (G ),  we can consider

a  bounded operator on S N O  as

(8.2) U1(Z0O Z )  5,f(g)ug(Z 00 Z ) d

And define a  bounded map from to ..o(M) by

(8.3)U 1 ( 0 ,AZO, Z, V ) t f(ZOOZ)W (Z3 1) )*

Lemma 8 .1 . For any  f ,  k  in  1.1 (G ) and any  v, w in

(8.4) (I 1 (Zo, Z , v )) * U k(Zo,Z, w )= E (U f / ci,v)(̀ —. -s,`))*Uk,/,(;,.)(Z)•

Here

(8.5) 0 (j, v )(g )— = < U ,(Z o )v, v1 > , 0 (j, w )(g )7 ---- < U , (Z o )w, ni>,

w hich are  equal to z e ro  f o r f ix ed v  an d  w  except f o r countably many
v ls , even if  i s  non-countably infinite dimensional. A nd  the  summa-
tion is tak en under uniform  topology  of  operators on

P r o o f .  A t first, since th e  series E I < Ug (Zo)v, vi> 1 2 converges
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uniformly on an y compact subset of G, for any f  in  L l (G ), there exists

a  number N  such that, for an y  u  in

(8.6) E Ilupp(i,v)(z)u11 2 — < U f,p (j,v )( ) U ,  U l f , p ( j , v ) ( Z ) U >
j 1V

I f (g1)1 I f (g2)I
GxG

X I . i i v <tig i ( Z 0 ) 1 1 ,  V j>  < U g 2 (Z 0 )1 1 ,  V j>

< 6 1112 112 .

But,

(8.7) II E (U  JO( j , v ) ( Z ) ) * U  k< p(j,w )(Z )11
j= N

2cIr g i  g 2

=  sup E  <uko u ,„,,( )u, uf(.i,v) M u i > I
j - N

11V1151

sup (  E Iluko(J..)(z)u112. E  H u f c i , v ) ( z ) u , 112) 1/2.
11.11 1. j= N
11;4'1151

B y the reason o f (8.6), there ex ists a  number N  su ch  th a t the right
hand side o f (8 .7 )  is bounded by e, independently on M .  This shows

that the uniform convergence of the operator E(uf,u,v)(z))*uk o u, w)(Z)
in the right hand side o f (8.4).

Thus, it is sufficient to show that for a n y  ul, u2

(8.8) <(U 1(Z 0, Z , v)) * Uk(Zo, Z , w )ui, u2>

—E<(uf,p(i,v)(z)ruk(i.w)(z)ui, u2>.

And th is is show n by direct calculations as follows.

(8.9) < (U f (o , v)) * Uk(Zo, w )ui, u2>

= <U k(Zo, Z , w )ui,U f(Zo, Z , v)u2>

=  U k (Z o O Z )°9 (Z , w )u i, U f(Z o O Z )°4 9 (Z , v)u 2 >
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<Uk(ZoOZ)(w Oui),UAZoOZ)(vOu2)>

k (g i)f(g2 )<U , t (ZoOZ)(w Out), U g ,(Z o O Z )
GxG

(vou)> drgidrg2

— G .G k ( g i) f ( 118- 2 ) < , , ( Z o ) w ,  Ug 2 (Zo)Y>

X <11,,(Z)u i , 11,2(Z)u2> drgid rg2

= Ix a k (g l ) f ( " E < U ,,(Z o )w , n i >  < u g ,(Z o )n, a i >

X  < Ilg ,(Z )u i , Ug 2 (Z )u 2 > d r g i cir g2

= i L , G k(8).)0(j, w)( 0 f(g2 )0 (j, v )(g z )

X <U, i (Z )u i , 142( )u 2 > d r g i dr g2 * )

—E < u h o( J ,w ) ( z ) u i ,  u h p ( j . v ) ( z ) u 2 >

= E < ( u h p ( j,v ) (2 )))*uk ,p ( i, w) ( ) u i ,  u2>.

Now, w e ob ta in  the followings.

Proposition 8.1. For any  f, k  in  Co (G ) and any  y , w in

(8.10) T ( ) (  c ( o, z, v))* z, w)T(Z))d fi(Z)

=
x

rz (T (Z )( C(2)))* C (Z )T (Z ))d fi(Z )< w , Y > .

Here

(8.11) ef(Zo, v) -= C(Zo02))040(1), y),

Jfk (Z o, w)=." c(zooz).(0(z, w).
*) For the convergence of this integral, cf. [14].

q.e.d.
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A nd w e ex tend the linear f orm  r z ,  to  the operators of the form

(8.12) T(Z) A t A 2 T( )-= T(z)E( W7f.,(z))*E C,(z) TM,

by

(8.13) rz( T(Z)ArA2 T())  E rz( Tax c,())* c,(z) Ta».

And i f  H  h a s  the reduced dual of type I,

(8.14) xT r(T (Z °)(IP  A Z o , Z o v ) ) *  C ( °, Z ° w )T ( °)) c fe(Z)

=  T7 ( T( 0)( rp-f (v))* T-pkao) T( 0))dfi(Z)<w, y> .

P r o o f .  B y the extended Plancherel formula (6.3),

(8.15) xrz ( T ()( rr7f (Z )) *  k ( )  T ( Z ) ) d  f i ( )  < k  4 12 f 4 ' 2 > •

Thus, using the result o f Lemma 8.1.,

(8.16) L c r z ( T ( ) (  (r f (o ,  Z ,  v ) ) f7 o, Z, w) T ( Z ) ) d r i ( )

rz( T (Z )( 1:G p(i,v)(Z )) * (W7 4 ( j , . ) (Z ) )T (Z ) )d ft (Z )x

=  <ko(j, w)41G/2, fo(j, 0 4 12>

G

k(g)<U  ,(5 ) 0 )w , v ; › G (g ) ) 112f (g ) < U -
 ga o )c , v ;> .

;  

x(zIa( a l z c i r g

=1 k ( g ) f ( g ) E < U g (Z o )w, Yi> U g(Z o)v>  z ia (g)d rg
G

k ( g ) f ( g ) < U g (Z o )w , U g ( o )v>  d a (g ) c l ,

= f .(Pd2 > < w, >
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( Tax caw c a ) T( Z ) ) dft( Z ) <w, v> .

The proof o f (8 .1 4 ) is given just analogously. q. e.d.

Now we consider a  n-dimensional subspace W n  = 1, 2 , •  • )  of o•
And take a  complete orthonormal basis { c i f :  1 < j < n }  in Denote

by ( 2 ) ,  k ) ,  the imbedding map of OS'. into

On the other hand we can extend canonically the linear form r z

on the space o f operators on onto M by defining

(8.17) t=z(AOB)— = r(A)>< <A u„ u ,> )r z (B).

And for the identity operators I n on and /  on put

(8.18) Tn(Z)—=1„0 T(Z), and T(Z)-= I 0  T( ) .

Proposition 8 . 2 .  For any  f  in  Co (G) and any  n-dimensional sub-
space ,t ,„ o f  )().

(8.19) (n) l x ( P ( ) (  C ( o ,  Z ,  n)) * C ( o ,  Z ,  ,S- n )  ?J ( ) )  d fi (Z )

= 1  rz (T ( )( c ( ))* C (Z)T (Z ))clii(Z ).

Here,

(8.20) C a o ,  Z , rtf( OO Z )°V (Z , tz ) .

And i f  H  has the reduced dual of type I,

(8.21) (015 x III C (Z o , Z, rn() III 2 d fi (Z )

-=  
x

IIIC T(Z)III 2 d (Z).

P r o o f .  Put P. ; the pro jection  on  n whose range i s  the space
{Cu}  sp a n e d  by the vector u i ,  and put
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(8.22)

From the definition (8.17) o f t z ,

(8.23) 'ez(A0B) = E i"Z(Pi(A0B)15i),

and for an operator C  on 5

(8.24) f-z((ço( , ) )* C s o (Z , k).))= E rz((v(Z, 10)* Cva,

Therefore

(8.25)
 

t z ( T . ( Z ) ( C a o ,Z ,W ) * C ( o ,Z ,W P n ( Z ) )

= i"-z( Tna )(V (Z , .))* ( P r f (Z oO Z )) *

x fP f(ZoOZ)V (Z, n(Z))

= i-"nŒv ( , k),i)) * T()(

c (zooz) (Z)(0 ( , '7z))

= E rz((go ( , u;))* r ( )( TVAZ0OZ))*

x c ( .oz)T(Z)v(, u.1))

=  E  Tax cao, z, um*c(o, z, u 1) T( )).

Thus (8.19) follows from Proposition 8.1 directly.

The equality (8.21) is obtained by analogous way from (8.14).

q. e. d.

Considering the Kronecker product operation as the product on the

reduced quasi-dual X  o f  G , the Plancherel measure has a  property of

the invariance under this product. Th is  in variance is very analogous

to the invariance of the Haar measure on groups under the group pro-

duct operation. In d e e d , in  abelian case, the Plancherel measure is just

the Haar measure on the dual group . Thus, following along the line
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of the theory o f  Haar measures on groups, we shall discuss the uniqu-

eness of invariant measure on X  up to constant.

Definition 8 .1 . L e t X 0 b e  th e  s e t  o f  all equiv alence classes of
unitary  representations o f  G , dimensions o f  w hich are  at m ost countably
infinite. H ere, a subset a o f  X 0 is  called  an  ideal, when

1) f o r any  countable subset 1Z ; 1  of  a, I  ED 2);  belongs to a,
2) if is  in  S ,  any  subrepresentation of is  in  Zs',
3 ) for any in  a  an d  any representation 0 i n  X o , Z 0 0 2 )  is

in s .

Lemma 8 .2 . The set of  all equivalence classes of  subrepresen-
tations o f  countable multiple GA i s  th e  sm allest non-em pty  ideal.
Here, 91 show s the regular representation of  G.

P ro o f. From the definition o f  a9 i , 1) and 2 ) o f  Definition 8.1 are

trivial. Moreover, as  is well-known, for any representation Zo in Xo,
Z 0091 is equivalent to the multiple E EDR o f 91, with the multiplicity

of dimension of Z o , hence 3) is valid for Thus ap,, is a  non-emp-

ty ideal.

Next, for any element Z o i n  a  given ideal, 0 2 ) 0 m u st belong

to a, .  But from the commutativity of the Kronecker products 910 Z 0

is equivalent to 2)0 091-■--E e at. This means that E ED b e lon gs  to

a, hence 91 is  in Zs'. Therefore,

is the smallest.
aat is contained in a .  That is, a„

q.e.d.

Now we denote the Borel structure on X  given in  §4, by 0.

Definition 8 .2 . A  standard positiv e m easure f lu on (X , 58) is cal-
led admissible, when

1 )  the direct integral

(8.26)
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is central,
2 )  f o r /11-alm ost all Z ,  the follow ing unitary  representation Z i =

{, (Z ),U  g (Z )}  is equiv alent to  b y  th e  equivalence re lation  u i p ( )

defined by (7.94). H e re  2,(Z) is  the Hilbert space obtained by  the com-

pletion o f  d ( )  in  (7.92), w ith  respect t o  t h e  scalar product (7.85),
an d  Ug (Z )  is  the  operator o f  continuous ex tension of  the map

(8.27) C ( )-> CP) C -1 (Z )

on  al (Z ).
M oreover an  adm issib le  m easure f l u  i s  c a l le d  invariant, w hen for

any  f  in  Co (G) an d  f o r any  Z o  in  Xo, f o r any  v  in  th e  space kh, of

representation Z o ,  the follow ings are valid.

(8.28) xrz( T M ( fPfao, z, or cao, z, TaD dfii(Z )

-- =
x

z- z (T (Z )( ref(Z)) *  C ( )  T ( 5 )))diii(Z)110 2 .

H ere w e m ust remark that (8.28) is equivalent to  th e  following
equation, fo r any f  and k  in  Co (G ) and for any Z o,  fo r  an y  y, w in

k)o.

(8.29) .gr3)( T( )( Tr/If(Zo, v)) *  rf/k(Zo, w )T ( ) )d i i i (Z )

= 1  rz ( T a )( rPf(Z)) * PN(Z) T (Z ))d iii(Z )<w , y> .

Indeed, for brevity, p u t th e  left hand side o f  (8.29) (k, w; f ,
and put the right hand side of (8.29) 20(k , f )<w , y >, then it is easy
to see that the both sides are  bilinear with respect to  k , w  and bi-skew
linear with respect to f ,  v. And (8.28) shows,

(8.30) 2(f, v; f ,  v ) -- 20(f, f)<Y, y>.

Now we fix a non-zero y in ,zp, and substitute f  with f  k , f
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Subtractions o f both sides leads us to

(8.31) 2 ( f ,  y ;  k , 0 = 2 0 ( f ,  k )< v , v > .

Next, substitute y  with y -k w and y  iw , then in  a  similar way, we
obtain

(8.32) 2(f , v; k, w)-= 2 0 (f, k )< w , y>  •

This is just (8.29).

Lemma 8 .3 . I f  i 2  i s  an invariant admissible measure on {X, 951,
—

Z o O Z  is equiv alent to som e su b rep resen ta tion  of the multiple E  -t
of w ith the m ultiplicity  of the dimension of Z o ,  f o r  any  Z o  i n  Xo•
Here is  the representation defined by (8.26).

P r o o f .  From 2 )  o f  Definition 8 .2 , the space , ( " t )  o f representa-

tion is  c o n s id e re d  as the space obtained by completion of the space

o f operator fields

(8.33) v f  { i f f ( Z ) }

on X , with respect to the norm defined by

(8.34) H vf 112c a » * (  T a » 2

On the other hand, by Lemma 8.1,

(8.35) rz( T(Z )(P f7' f a  0, rPk(Z o, w) T M )

E z-5)( Tax 1r7f1,(j,v)a » *  f f -7,,1(j..)(5)) T( )) .

Therefore, (8 .28 ), hence (8 .2 9 ) are equivalent to

(8.36) E < V k c p ( j , w ) ,  V  f f p ( j , v ) >  — V f >  < T V ,  V > .
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The left hand side o f (8 .36) is considered as the scalar product of the

vectors {mk,p(J, i„) };  a n d  {v f ,p u , 0 } ,  in  th e  space E ef9k)()). And the

righ t h and  side  o f (8 .36) i s  the scalar product o f th e  v e c to rs  w  v k

and y v f  in the space S:), 0 ( ( - -t ) .  T h u s  i t  i s  e a s y  t o  s e e  the map

U  defined by the fo llow ings gives an  isometric map from

into  E

(8.37) U (  v i v f i ) = 1E V f op( j ,
1 1

B ecause o f  (8 .2 7 ) U , ( -t ) v f ,  corresponds t o  th e  operator field

(Z )  FP- g - 1 (Z ) = ,,(Z)} . Therefore,

(8.38) U( Ug (Z o )v(2)Ug (Z )v f )=  Iv(f,s Lug(zool.i•

Since,

(8.39) 0 (j, U g (Zo )v )(go )=  < Ug ,(Zo) Ug (Z o )v , v i >  =  (j, v)(gog),

(8.40) U(U g (Z o )vOU g (1)v f ) =- {v ( f ,p ( i ,v ) , a g _0 1; -=  {U , ( )v v)} j .

This shows,

(8.41) U9(Z0) g ug (t))._ E e
This completes the proof.

Corollary 1. T he set of  all equivalent classes of  subrepresentations

of  countable m ultiple Ee' - -) o f  -t  is  an  ideal.

Proof. This is  a direct resu lt o f  Lemma 8.3 and the definition of

an ideal. q. e. d.

Corollary 2. T he regular representation 91 is equiv alent to a  sub-

representation o f  Ee-t.
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P ro o f. Trivial from Lemma 8.2 and Corollary 1 to Lemma 8.3.

q. e.d.

From 1) o f Definition 8.2 and from the uniqueness of the central

decomposition,

(8.42) E (EEDz)diii(z)x

gives the central decomposition o f E E3 . There fore , the central de-

composition o f any subrepresentation Zi o f E e 't  is given by

(8.43) P ( ) ( E  ED Z)diii(Z).

Here Pm is the projection on E El) , (Z ) ,  which is defined by the de-

composition of the projection P  on , ( -t )  to the space of subrepresenta-

tion Z i as

(8.44) P P  (Z )d  l( )

for ft r almost all Z.

Lemma 8.4. T he Plancherel m easure f t is absolutely  continuous
w ith respect to  any  invariant adm issible m easure [L i on (X , 0 ).

P ro o f. By the reason o f Corollary 2 to Lemma 8.3, we can apply

(8.43) to the case that T h u s  the central decomposition of gi

must be given by

(8.45) P (Z )(E e z )d iii(z ) .

On the other hand, the arguments in §5 claim that the central de-

composition o f at is given by

(8.46)
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Again from the uniqueness of the central decomposition, fi must

be absolutely continuous with respect to f i.q .  e .  d .

We can prove the converse assertion,

Lemma 8.5. A ny  invariant admissible measure  f i  o n  ( X , 3 )  is
absolutely  continuous w ith respect to  the Plancherel m easure f

P ro o f. If not, we can write as

(8.47) +

Here Di and  fi are mutually singular and D2 is absolutely continuous

with respect to fi.

By Lemma 8.3, 91 is equivalent to a  subrepresentation of

z e t- .  So we can apply (8.43) to the case f ) ,  and we ob-

tain the central decomposition of the form

(8.48) 91 -55
x

P i(Z )(E  ED z)diii(z).

On the other hand, gt 01. has the central decomposition

(8.49) E

Comparing (8.48) and (8.49) and from the uniqueness o f th e cen-

tral decomposition, we obtain that

(8.50) P1(Z) = 0, for D1-a1most all Z .

And from (8.33) and (8.37), this is equivalent to that fo r any

and any y  in  k)0( = -0(G)) and any f  in  Co (G),

(8.51) TPlf<p(.i. v)(Z) = 0, for 1-almost all Z.

By the reason of the arbitrariness o f the selection o f the complete or-
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thonormal basis in  k),, w e obtain that for an y  y, u in  L 2 (G) and

any f  in  Co (G),

(8.52) fPf,p(Z) = 0, for D'1-almost a ll Z .

Here

(8.53) 0(g)—=< Ug v, u>.

Since for any function k  in  Co (G ), it is easy to  find  functions f ,  u ,
in  Co (G ) such a  way that

(8.54) f  (g )<  Ug y , u >  =k (g),

The relation (8.52) means that for any f  in  Co(G)

(8.55) , f ( z ) .=  0, for pr almost a ll Z .

That is, a (Z ) ,  consequently, (Z)) are trivial for pr almost a l l  Z .  This

contradicts to 2) o f Definition 8.2. q. e. d.

Proposition 8.3. A ny  invariant adm issible m easure ft i  o n  (X , 0 )
is  the f o rm  of

(8.56) c  i (Z )= c c (Z ) (c > 0) .

P r o o f .  Because o f Lemmata 8.4 and 8.5, there ex ists a positive

measurable function w (Z ) on X , such that

(8.57) d  l ( ) = w d fi (5)).
Consider the scalar operator w(Z)/ z  on  each  sp ace  (Z ),  and define

a positive definite self-adjoint operator A on L2 (G ) by

(8.58) A =5 
x

w (Z)hd,t1(Z).

Since the direct integral (8.46) i s  the central decomposition of 01, it is
easy to see that
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(8.59) A R gR gA , AL,=1,,A, for any g  in  G.

Moreover,

(8.60) < Af, k> =5 x r5)(( T( ) ( k ( ))* T( )r -v- f(z)*(z)dri(z)

x
.r.c(T(

)r-rk(z))*T ( ) c())
Now consider the decomposition

(8.61) EDR

which is obtained by th e  map U  in  (8.37) in  the case And,

we get

(8.62) U(yOf ) = { f0( j, v ) }  y E o ,  f E L 2 (G),

(8.63) 0(j, v )(g)= < Ug Y, Yi>.

And the invariance of fi asserts

(8.64) < W > k> L 2 (G) -  <Pig k g ] ,  > L 2 (G)•

Substituting A f  for f ,

(8.65) <y, w> <Af, k> L2(G)= < (A f)0 (j, y ), 14(j, w)> L2(G).

On the other hand, from the invariance o f f i ,

(8.66) <y, w> <A f, k>L2(G)=E < A (fs b (j, 0), ksb(j, w)>L2 ( G) .

B u t th e  vectors {1c0(j, w )}, span th e  space E  L2(G), therefore the

followings are valid.

(8.67) { (A DO(j, Y )Ii=1A (f0(j, v))1.i.

Thus A  m ust com m ute w ith  t h e  operators of m ultip lication of the



260N o  bu hi ko Tat suuma

functions 0(j, y )  and short argum ents lead u s  to that there exists a
positive measurable function a (g ) on G  and

(8.68) (A f ) (g )=  a( g) f (g), for almost all g.

Lastly, by (8 .59) we obtain that a (g ) is constant for almost all g.
That is , fo r some positive constant c,

(8.69) A = c • I.

Consequently,

(8.70) w ( ) =  c, for f l -almost all Z.

And

(8.71) d fi i (Z) = c clfi ( )

This completes the  proof.

(Added i n  proof, December 1 4 , 1 9 7 1 )  N o te . T h e  author owes

motivation to study the theory of Plancherel formula for non-unimodular
groups to the late Professor A. Kohari who died on November 20, 1971.
The author wishes to express acknowlegement for his suggestions given

in 1961.
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