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§0. Intreduction

In the papers of F.I. Mautner [9] [10] and I.E. Segal [13], a
generalization of Plancherel formula for separable unimodular locally
compact groups H, is established. This theory asserts the existence of

so-called Plancherel measure u# over the reduced quasi-dual £ of H,
which satisfies for any function f in L'(H)NL*(H),

M ful 7w 12dn={ e.(Us@)* U 0D dn(w)

Here dh is the Haar measure over H, and 7,((Ug(w))*Us(w)) are traces
over the positive parts (A(w))* of the von Neumann algebras UW(w)
generated by the operators U,(w)ESHf(h)Uh(a))dh, (f € L'(H)), which
correspond to the factor representations w={D(w), Uy(w)} in L.

However, it is easily shown that for a non-unimodular group G the
formula (1) is not true.

In 1961, A. Kohari [5] obtained an analogous formula for the mo-
tion group over the straight line. His theory gives a formula

@ 17 1rde={ e (T@U @) T@U @A),

instead of (1). Here d,g is a right Haar measure on this group G,
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and f shows any continuous function on G with a compact support.
T(D) is an unbounded self-adjoint operator on the space (D) of re-
presentation ®©. This operators are defined by means of the modular
function 4¢ on G. In this case, tgy are just given by the ordinary
traces of operators.

The purposes of this paper are to construct the reduced quasi-dual
of more general separable non-unimodular locally compact groups G ex-
cept measure zero subset (§5. Theorem 5.1.), and to determine the
operators T(®) by means of 4s;. The elements of the reduced quasi-
dual of G are given as representations induced from factor representa-
tions of some subgroup H of G, and are constructed on G-orbits in the
reduced quasi-dual of H (§4, §5). Thus the reduced quasi-dual of G is
considered as the G-orbits space X in the reduced quasi-dual of H
except measure zero subset.

After these arguments, the regular representation of G is decom-
posed on X as the central decomposition. According to this decomposi-
tion the extended Plancherel formula (2) is proved for G, under adequ-
ate definitions of linear functional g which are equal to the ordinary
traces of operator for some good case (§6. Theorem 6.1). All these
discussions are done on the base of the theories of F.I. Mautner and
I. E. Segal.

The above mentioned central decomposition of regular representa-
tion of G raises also a decomposition of the regular double representa-
tion ®={L%G), Ry, Ly, J} of G and a decomposition of the quasi-
Hilbert algebra constructed on the convolution ring Cy(G) of continuous
functions with compact supports on G. We treat these problems in §7.

In the previous paper [14], we proved an invariance of the Plan-
cherel measure under the Kronecker product operations, for unimodular
groups of type I. We shall extend this to the invariance of the given
“Plancherel measure” j for separable locally compact groups G.

Thus we know that the Plancherel measure has a property like to
the Haar measure on a locally compact group. Therefore, being sug-

gested from the theory of Haar measure, naturally, the question arises:
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whether the uniqueness up to constant is valid for such invariant mea-
sure or not. At last, we give an affirmative answer to this problem
(§8).

The author wishes to express his heartfelt thanks to Professors H.
Yoshizawa and T. Hirai for their kindness and to Professor M. Takesaki

who discussed with the author about these problems.

§1. Preliminary

In this section, for the sake of later uses, we shall explain the
Plancherel formula for unimodular groups, which was established by
F. I. Mautner [97], [10] and I. E. Segal [13].

Let H be a separable unimodular locally compact group, and L2(H)
be the space of all square summable functions on H with respect to a
Haar measure dh. On this space, a double representation Dgy={L*(H),
RE, LE, Jg} is constructed by the right translations R, the left trans-

lations L and an involution Jy on H, defined by
(1.1) e f)h)=fh™).

As is shown by R. Godement [37], the centre € of the von Neu-
mann algebra p generated by {R¥},ecm, is equal to the one of the
von Neumann algebra generated by {L,’,”} ner. S0 the central decomposi-
tion of the right regular representation Ry={L*(H), R} has not only
the same decomposition of L*(H) as the central decomposition of the
left regular representation y={L%(H), L¥}, but also as the irreducible
decomposition of Dy as a representation of H x H. Take this decom-

position over the dual £ of €, by a measure x, as

(1'2) SDH: {LZ(H)9 Rllxiy Lfa JH}
= 1), W), Vi), Ju()}hduco).

Here the Borel structure on £ is the one defined in a paper of G. W.

Mackey [7]. From the separability of H and commutativity of €, x
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is a standard measure on £ in the sense of G.W. Mackey (cf [7]].
Th. 8.7. Cor.).

Here we shall define an operator on L*(H) as

(1.3) (Suf)h)=f(h™).

It is easy to see that this operator Sy is decomposed by the decomposi-
tion (1.2).

(1.4) Sy~ SQSH(CO)O«'#((D)-

By virtue of (1.2), £ may be considered as a set of factor repre-
sentations w={s#(w), Wi(w)} of H, and is called the reduced quasi-
dual of H. According to (1.2), a vector f in L?(H) is represented as
a vector field {vs(w)} on £, taking its value in §(w) at w, and

(15) r1E={ 1 r@izan=§ o,)lPduw).

On the other hand, the bounded operator on L*(H),

(16) RE={ fURFdh,  (feL(H)

is decomposed as an operator field Sng(a))du(w) on 2.

Here
(1.7) wi={ e wiwadn

are bounded operators on J#(w)’s.
Thus for any function f in L'(H)NL*(H), we have decompositions

of two kinds. One of which is as a vector field ngf(a))d,a(a)) on £,

and the other is as an operator field SgW}(w)dﬂ(w) on £. Through
the functions f in L'(H)NL*(H), a correspondence between the opera-
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tor fields SgW}(a))dﬂ(w) and the vector fields ngf(a))d,a(a)) on £ is
obtained. And in the above cited papers [97], [10] and [13], the fol-
lowing facts are proved.

1) For u-almost all w, the correspondence of the component an
operator W;(w) and a vector vs(w) at w, is independent of the selec-
tion of f. This correspondence gives one-to-one linear map from a
dense space of the von Neumann algebra 2(w) generated by { Wi(w)}sen
to a dense space on #(w).

And 2(w) are factors.

2) For p-almost all », the map

(1.8) (W {(@))* W i(0) > ||v,(@)]|*

gives a faithful normal semi-finite trace on the positive part 2*(w) of
W(w). We shall denote this trace by 7,, that is,

(1.9) llos(@)II* =T ((W(0))* W ().

Combining (1.9) with (1.5), we obtain
(1.10) 171P=§ 2P i@ W) o).

This may be considered as a generalization of the Plancherel formula
for unimodular group.

In the decomposition (1.2), the Plancherel measure x# can be deter-
mined only up to absolute continuity. Hence the traces r, in (1.9)
depend on the selection of x#. But because of the uniqueness of trace
on factor, r, are determined up to constant. Under such considera-
tions, we give some normalization of # and t, as follows.

In general, it is possible that A(w;) and W(w,) are mutually spatial-
ly isomorphic, even if w; and w, are two different points in £. That
is, there exists an isometric operator U from $(w;) onto $(w:), and
the map A—>UAU™! gives an isomorphism from the von Neumann

algebra 2(w,) generated by {Wi(wi)}sex onto the von Neumann al-



184 Nobuhiko Tatsuuma

gebra A(w;) generated by {W(w2)}ren. In such a case, for any trace
Tw, 00 A (w2), t1(A)=7,,(UAU™") gives a trace on A*(w,) too.

From the definition of trace, it is easy to see that ¢, does not
depend on the selection of the isometric operator U. In such a way,
if a trace is determined on A*(w,) for some w;, then the unique trace
is given on any WU*(w), for which A(w) is spatially isomorphic to W(wy).
And in (1.9), if such a normalization of 7,’s is done, then correspond-
ing Plancherel measure x4 is uniquely determined on such spatially
isomorphic classes.

Moreover, when the factor 2(w) is of type I, a trace is given,
using a minimal central projection P in 2(w) and the ordinary trace T,

of operators, as follows,
(1.11) t,(A)=T,(PA).

obviously these traces satisfy the normalization stated above.
Hereafter, in the equation (1.10), we shall understand that for the

set of 7,’s and x4, the above normalization is done already. That is,
(1.12) T, (A) =1, (UAU™),

for any mutually spatially isomorphic pair (w;, w;) under an isometric

operator U, and any operator 4 in 2(w;).

Definition 1.1. We call a separable unimodular group H has the
reduced dual of type I, when p-almost all w in £ is type 1.

For instance, if H is a group of type I, obviously H has the re-
duced dual of type I.

When H has the reduced dual of type I, we shall use the normali-
zation given by (1.11). Thus the following equation is obtained in

such a case, instead of (1.10).

(1.13) 1=, T () 7 (0%) d o)
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={ 1wt dn).

Here W, f(a)°)ESH f(R)Wi(0°) dh, the operator of the irreducible repre-

sentation ®° as a minimal component of type I factor w.

§2. Hilbert-Schmidt norms of operators in induced representa-

tions.

In this §, let G be a general locally compact group and H be an
arbitrarily fixed closed subgroup of G. Since the unimodularities of the
groups G and H are not assumed, there may be two Haar measures up
to constant factors. Hereafter we use only the right Haar measures

d,g and d.h on G and H respectively.

Notations. We denote, by Cy(G) the space of all continuous func-
tions with compact support on G, and by L?(G)(1 <p< o) the space

of all measurable functions f such that
@.1) [ 1r@rd,g<+oo.

Put w={s#, W,} a given unitary representation of H. For this
representation w, we consider a trace 7, or the Hilbert-Schmidt norm

of operators
(2.2) W= gyk(h) Wd,h,
corresponding to any continuous function £ on H with compact support.

On the other hand, consider the representation ®={9, U,} =Ind »
H1G

of G, induced from w, and operators

23) v =(_rov.d

corresponding to any continuous function f on G with compact support.
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The aim of this § is to obtain the formula of a “trace” or the
Hilbert-Schmidt norm of U, written in terms of the traces or the Hil-
bert-Schmidt norms of the operators W, It is easy to see that these
results are extendable to an adequate class of functions f.

Before entering discussions, we shall state the well-known lemmas
about quasi-invariant measures on the factor space H\G. (For the proof,
see N. Bourbaki [1]).

Lemma 2.1. There exists a continuous function ¢(g) on G, such

that
(2.4) 1) ¢(g>0, for any g in G,
(2.5) 2) ¢(hg)=(4s(h)/ 4u(h))¢(g),

for any h in H and any g in G.

Here 45(g) and 4y(h) show the modular functions of right and
left Haar measures on G and H defined by

(2.6) 4¢(g)=d,(g18)/d- g, and dp(h)=d,(hih)/d,h,

respectively.

Lemma 2.2. Let ¢ be a function given in Lemma 2.1., then there

exists a quasi-invariant measure v on H\G, such that

@7) [ f@de=|, @ raeetgdh

(2.8) dv(g g1)/dv(g)=¢(g)/¢(g &), for any g, g1 in G.

~

Here f is any function in LY(G) and g shows the H-coset containing g
in G.

Lemma 2.3. All quasi-equivalent measures on the factor space

H\G are mutually absolutely equivalent.
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Definition 2.1. Hereafter, put

(2.9) w(g, g)=V(g)/d(g g1) =Vdv(g g1)/dv(g).

Next, we shall state simple sketches about the theory of induced
representations given by G. W. Mackey [6].

As is stated above, let D={9, U,} be the representation of G in-
duced from the representation w={s#, W,}. The space © of represen-
tation ® is defined as the totality of strongly measurable J#-valued

functions v(g) on G satisfying

(2.10) 1) v(hg)=Wi(v(g),

for any h in H and almost all g in G,

@1y 2 oli={, (@Il @<+,

Here ||v|ly and |lv(g)||l# show the norms in the spaces © and # re-
spectively. And on this space O, the operators of the representation

operate as

(2.12) (Ugv)(@)=w(g, g)v(g g1)-

We refer to readers the Mackey’s paper [ 6] for that {9, U,} gives
a unitary representation of G, and we denote it by Ind .
H1G

The following lemmas for which we do not mention the proofs,
are given by G. W.Mackey [6].

Lemma 2.4. The (right) regular representation R of G is equival-
ent to the representation induced by the (right) regular representation Ry
of H.

The correspondence of L%(G) to the space of Ind Ry, giving the
H1G

unitary equivalence in Lemma 2.4, is defined by

(2.13) LXG) 3 f()=>f(- gNo(- g
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Here f(- g)\/¢(° g) are considered as L?(H)-valued functions on H\G.

Lemma 2.5. If a representation w, of H is represented as a direct

integral over some measure space {2,, u} as
(2.14) o0={_ 0adu(a),
0

then the direct integral S Indw,dule) exists and is equivalent to Ind w,.
2H1G H1G

Now take any positive character § on G, trivial on H. That is, ¢

is a continuous function on G such that,

(2.15) 1) 0(g>0, for any g in G,
(2.16) 2) 0(g1)0(g2)=0(g182), for any g1, g2 in G,
2.17) 3) 0(h)=1, for any h in H.

We consider a map on § defined by

(2.18) (Tsv)(g)=0(gv(g).

Lemma 2.6. T; is a self-adjoint positive definite linear operator

on 9. This operator is bounded if and only if,

(2.19) o=1.

Proof. Indeed, 75 gives a linear operator on © with the domain

2200 AT={ved; |, G lu@Ido<+es.

The assertions are deduced from this directly. q.e.d.
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Lemma 2.7.

(2.21) TsU,=(0(g) 'U,Ts,  for any g in G.
(2.22) TsU;=U;s5-1Ts, for any f in L'(G) such that
(2.23)  (f07)(@=f(g)d (g

is in LYG).

Proof. At first, for any g in G,

189

(220) | _G@FITp(@IFd(e)=|, @@ lus srvgelPae

{0 v(gen I*dv(gen

=0 { G Io(@IFav()< +oo.
This shows
(2'25) D(Ty)=D(TU,).
Next,

(2.26) (TsU,0)(g)=0(g)(Ugw)(g)=0(gw(g, g)v(ggo)

=(0(g0)) 'w(g, g0)0(ggo)v(gge)=(0(g0)) 'w(g, go)(Tsv)(ggo)

=(0(g0) (U, T5v)(g).
(2.27) Ts va= T3<gcf(g)(Ugv)drg)= Scf(g)(TS Ugv)drg

={ (@O U Tiw)d, g=Uysn Trv.

Notations. We use the following notations for ¢>0,
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(2.28) Fs()={g: 17" <d(g) <t}
and
(2.29) Ds,1={v=(v(g)) € H: [support of v(g) ] Fs(t)}.

Obviously, 9s,; is a closed subspace of © and,

Lemma 2.8. T leaves invariant 9;,., and the restriction Ts, on
D5, of Ts satisfies

(2.30) | Ts,: /| =(T5,0) | =¢.

Proof. This is trivial from the definitions of 75 and Ds.1

q.e.d.
In general, U;Ts is unbounded. But for a suitable w, a suitable

0 and a suitable function f, U;T; becomes not only bounded but also
of Hilbert-Schmidt type.

Proposition 2.1. Let D={, U,} be the unitary representation of
a locally compact group G induced from a unitary representation o=
{#, Wi} of a closed subgroup H. And let Ts be the operator on
defined by (2.18) for a given real character 0 satisfying (2.15)~(2.17).
Then, for any f in L'(G),

(2.31) 0T U3 = SH\G SH\G 17,(g1, g% (do(gn)2

X (5(g1))2d1’(§1)d”(g2)-
Here,
(2:32) Wies &)= flaitheoVilg gt Widh.

And (2.31) means that if the integral of the right hand side con-
verges, then the operator TsU; is of Hilbert-Schmidt type and its Hilbert-
Schmidt norm is given by (2.31).
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Proof. At first, for a vector v in ,

@33)  (TU)(@=0()_f(g)uls gvigend g
=) f (g™ gnla, 7 g)v (g 4e(@)  d g
=5(g)4c(g‘1)SH\G {ﬂg@*h@W

xv(hg:)p(hg)dsh} d(g)

[ @t £ meni@ita man
xv(g)dv(g1)
:SH\Ga(g)Ac(g-l) Wi(g, g)v(g)dv(g).

Therefore, for fixed complete orthonormal systems {v,}qca in © and

{ug}gep in o, the followings are valid for almost all g.

(2.34) <(T3vaa)(g)9 ug>

=SH\G <0(g)ds(g )W i(g, g)va(g), ws>zdv(gD),
= SH\G <'Ua(g1), 6(g)AG(g—1)( W,f(g9 gl))*uﬁ>zrd1)(§1)

:SH\G<v“(g1)’f§(gl)>z'dv(§1)=<vmf§>@.
Here we put

(2.35) fo(g)=0(g)dc(g ) (Wi(g, g1))*ug.

% belongs to  for suitable functions f. And the last term in
(2.34) means the scalar product in . So,
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(236)  BI<va f2>slP =l FER =, I Fialzana)
={ O Uele) Wi, g usll%dv(@.

And

@37 ITUA= B I TUmall3= 3 (. ITsUma(a)ldv(gy

(e I, T, | <(TaUp(g), us> 2 Pav(@)

(o B I <vas fh>5 P

=gH\GﬁEB§ Wi(g1, &) usll%(da(g1))2(0(g1))?dv(g2)dv(&)
=SH g 175 g1, g2)*1%(46(g1))"%(3(£1))*dv(§1) dv(§2)

= S,,\G SH\G (g1, g5 (4c(£1))72(0(g1))*dv(§1)dv(&2)-
This completes the proof.

Corollary. When H is a normal subgroup of G, and when we
take a right Haar measure d,§ on H\G as the quasi-invariant measure

Y,

(2.38) Wi(a, gz)=SH f(grihgs) Wadsh.

Proof. In this case, the function ¢, which determines vy in
Lemma 2.2., can be taken as the constant function 1. (cf. Lemma 3.3.
and its remark). For such a ¢, the corresponding quasi-invariant mea-
sure v is equal to d,&. And the result follows from (2.32) directly.

q.e.d.
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Hereafter we shall consider only such a measure v (ie. d,8) for a
normal subgroup H of G, especially for the fully unimodular subgroup
defined in §3.

When the subgroup H is not of type I, the operators W;(g1, g2)
in (2.32) are not of Hilbert-Schmidt type in general, and the integral
on the right-hand side of (2.31) diverges.

However, if the von Neumann algebra %, generated by the opera-
tors {Wi}ren, is of semi-finite type, a trace t, on the positive part of
9(, may be used instead of the ordinary trace of operators. So we

consider the space W, of operators of the form

(2.39) A=T;Uy, for f in LY(G),

and define the sesqui-linear form on 2, by

@40) et )=| [ c((Filar, )" Wig £ (de(e)
X (0(g)*dv(8)dv(g2).

={ T e, )o@ O(@))*dv(2).

It is desirable that v gives a semi-finite trace on the positive part
of some von Neumann algebra. But here, only the followings are

proved.

Lemma 2.9. For any A in U,

(2.41) to(A* ) =15(44%).

Proof. Let A be the operator in (2.39), then
(2.42) A*:Uf* T3=fo T3= Tanxg.

Here,

(2.43) F(@=flg Hds(g™.
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(2.44) Wis(g1, g2)dc(gr)o(g1)
= 4e(g3(a)| g g degh™ g0 (gihes)
X \/‘/’(gl)ﬁb(hgz) W.d,h

= AG(g§1)6 (gz)SHm

(g dc(h™)¢p(g2)
4gh™h)

(W) Wy-1d, (A7)

=(W(g2, g1))*4c(g2")0(g2).
Because 7, is a trace, for any B in 2,
(2.45) r,(BB*)=¢ (B*B).

Therefore,

(2.46)  to(A4*)=1o((A*)* AF)=to((Ts Ups)* Ts Uy~ )
= oS TPy @) Wreslan, @) 4o g’
x (0(g1))*dv(g1)dv(g2)
ZSH\GSH\G t (Wi g2y g)**(W (g2, g)*)(da(gz")?
x (0(g2))?dv(g1)dv(§2)
=SH\G SH\G (W (g2 80)* Wi(g2, g)(de(g2))7*(0(g2))

X dV(gz)dV(§1)
=trg(4A*A).

This completes the proof.
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Lemma 2.10. For any k, f1, f2 in Co(G),
(2.47) to((Ts U )* TsUp.s,) = to((Ts Ukrsra-1iays,)* Ts Uy,).
Here we use an abbreviation of notation as

(2.48) (f- 4" (@ =f(@ ().

Proof. Denote the left hand side of (2.47) by I.
(2.49) I=t5((Ur )*(T5)*Up Uy) = (U )* Urs-(T5)?Uy,)
=to((Ts(Ups-2)*Us )* T5Uy).

On the other hand,

250) (U= K@) *(Up)dsg
={ He 0@ (etenU,d g

= (@00 (4c() P Upd, g=Uirsisin.
Therefore,

(2.51) T=co((Ts Unesta-tinges,)* Ts Uy a.e.d.
Lemma 2.11. For any fi, f2, f3 in Co(G)

(2.52) To((TsUit,s05,8)* TsUs) = to((TsUsus,)* T5Us,s).
Proof. At first,

@53) (D))= _filgar)d(gai)f(e)d(g)ds g

=((f1xf2)0)(g).
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(2.54) Wes(g1, gz)=g Gf(gl'lhgz)a (gr'hg: NP (g (hg2) Wid,h

=0(g1tg) Wi(g1, &2)-
Therefore,

(255)  to((TsUsse5,8)* TsUs,)
=S Fororinta @ Wilen g (o)
X (0(g1))*dv(g1)dv(§2)
T PR CCTALARE S ACH-O)
x (4c(g) 20 (g))*dv(g1)dv(g2)
o e P rerilgs £ WrsCas ) (o)™

X (0(g1))*dv(g)dv(§2)
=t9((T5Us5,)* T5Usys)- g.e.d.
We consider the case that H is a normal subgroup of G.
Lemma 2.12. In this case, for fixed k in Co(G),
(2.56) | to((TsUs)* T5UsUy,) |
< cr{ra((TsUs )* TsUp ) to((TsUs )* TsUp )} %,
for any fi1, f2€ Co(G).

Here cy is a positive constant depending only on the function k.

Proof. At first, from the non-negative definiteness of 7.,
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257) |t((Wr(g1s 82))* Wi(g1, 82)]

Since
(2.58)

(2.59)

Here,

(2.60)

(2.61)

Thus

(2.62)

<t (Wr (g1 &)W (g1, g2))ta((Wy (81, 8))* Wr,(81, &2))-

Uk'Uf,= Uk*f,,

I=|ro((Ts fo)* T:UpUs) | = | to((Ts fo)* TsUps)|
= | SH\G SH\G (W5 (g1, 82))* Wier, (81, 82))(4c(g1))~*

x(0(g1)? d,g1d, &2| -

W:(81, &) =SHf1(gflhg2) Wid,h,
Wk*fz(gls gz) = SH(k*f)(gIIth) thrh
= SHS e Of2(ggihe) Wad, gd;h

=Sck(g‘1) W', g2)d- g

O R PSR AP A )
x (AG(gl))_z(b‘(gl))z d,gd,g.1d, g I

<( 16 DI[, o 17 Pilon e Wrlgis™ )]

X (46(g)) (38 d-81d, 82} dr g

197
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<{ 16, S, Gl Prlan @) Witas )
Xeol((Wr(g1g™s &) * Wi g1g™"s 82))' " (dc(gn)~*
X (0(g)" d,@1d, g} dr g
<[ ke[, e ) Wita, g
X (o))" O(g) drfrdy B2}
A e et Wrlrg s e W™, ) (o)
x (0(g1))* dréldrs’z}mdrg
LRI RN CANS L A CRES)
X (46(g0) (g (Le(@) > ((@)'drd 2} v
X {ea((TsUp)* TsUp )}
={]. 1™ 1 (4s() 00 d, g}

% {ra((Ts Uf,)* T; rfl)fm(( Ts U)'Z)* Ts Uf,)} vz,

Puting in (2.62),
(2.63) er={_1k(g™)(4s(8) *0() ds g

We obtain the result. q.e.d.

When H is a unimodular group, the central decomposition (1.2) of
the regular representation Ry of H gives semi-finite factor representat-

ions w of H, except a subset of g-measure zero, For such a factor re-
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presentation , a canonical trace 7, is determined up to constant, as is
stated in §1. Therefore, in this case, we obtain a canonical sesqui-

linear form tg by (2.40), using t, for such a w.

Lemma 2.13. For u-almost all w,
A=0, if and only if,

(2.64) ro(A* A)=0.

Proof. From the theory of F.I. Mautner [9] [10] and L E.
Segal [13] (cf. §1), for g-almost all o, 7, is a faithful trace. Since v

is positive, (2.64) is equivalent to
(2.65) W(gi, g&2)=0, for almost all (g1, g2)-

But (2.33) shows that this is equivalent to

(266)  (4o)@=(T:Up)(@)={, _0(2)4c(g™)Wile: gw(g)dn(g)

=0, for any v and almost all g.
This completes the proof.

§3. Automorphisms over unimodular groups.

Let ¢ be an automorphism® on a unimodular locally compact group
H. For any unitary representation w={#, Wy(®)} of H, {W -1 (0)}

gives a unitary representation of H on 4 too. Put this representation
3.1) o(@)=A#, Wi(0(0))} ={#, Wern(0)}.

Obviously, ¢ preserves irreducibility and the property being a factor re-
presentation, so ¢ induces a conjugate transformation over the dual or

quasi-dual of H. Moreover 0 maps the regular representation Ry of H

*) In the definition of automorphisms, we assume continuity. It is easily
shown that only the measurability of an automorphism deduces its continuity and
the continuity of its inverse,
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to itself. So this conjugate transformation leaves invariant the reduced
dual or reduced quasi-dual of H.
While, since the transformed measure do(h) of the Haar measure
dh is also a Haar measure, the modulus 4,=dd(h)/dh is a constant on H.
In the same way, the restriction of ¢ on the reduced quasi-dual £
of H transforms the Plancherel measure # to ¢(x) defined by

(3.2) o(W)(E)= u(c 1(E)), for any measurable set E in £.

Now we shall show the followings.

Lemma 3.1. The modulus do(u)/du is constant, and

(3.3) do(p)/du=4,.
Before stating the proof of this lemma, we introduce a notation
(3.4) o(k)(h)=Fk(a~ (),

for any function & on H, and show the following auxiliary lemma.

Lemma 3.2. For any function k in L'(H),

(3°5) Wk(a(w)) =4, Wd"(k)(w)'

Here

(3.6) W)= SHk(h) W () dh.
Proof.

@D W)= kW Wi@w)dh = k0 W.onw)dh

={ O W@ ds® = o B W Wyw)4,dh

=d, W1 (0). q.e.d.
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Proof of Lemma 3.1. At first, it must be remarked that for
two representations w and ¢(w), the spaces of representations are com-
mon, moreover the von Neumann algebras generated by their operators
are the same. Therefore, from the assumption of normalizations of
traces 7,’s in §1, we can consider the traces 7, and 7,y are just the
same.

Now, by the Plancherel formula given in §1, for any k in L*(H)N
L¥(H),

(3.8) MECONR N OO

To((Wo-10)(0))* W o-10)(0)) d ()

9

[ 2o PN Wie)) () du(w)

(W (0))* Wi(0))(45)*d (07 ()

= ()7 e ((Wa@)* Wa(@)do(0)(@).

On the other hand, the left hand side is equal to

39) [ le@izast =1k (a0 dh

=) e (Pa@)* W) du(w).

The arbitrariness of the function k leads us to
(3.10) (4,)7*do(1)(0) = (4,) " du(w).

This completes the proof.

Now we shall restrict ourselves to the case that H is a normal
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subgroup® of a locally compact group G. In this case, an inner auto-

morphism on G induce an automorphism on H as

(3.11) gh)y=ghg'.

Use the notation 4, for 4, as above.

But in this case, the factor space H\G becomes a group G. Denote
the H-coset containing g by & By the reason of Lemma 2.3, the
right Haar measure d,§ over G can be taken as a quasi-invariant mea-
sure over H\G and we can choose ¢ in the Lemma 2.2, such that, for

any f in L'(G),

(3.12) [ r@de={ 0.a rapmgin
Put
(3.13) 1) =d (& 9)/d,&.

Lemma 3.3. For ¢ chosen as above,

(3.14) ¢(g) =constant.

Proof. From (3.12),
315) [ few genda=|_fleas@dg

S itll e

T T g

~{ Fov @,

¥ Here H does not need to be unimodular, so we consider the right Haar
measure d,h on H.
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This means that for continuous function ¢.

(3.16) ¢ gg)=9¢"(g), for any g1 in G.
g.e.d.

By suitable normalization of the measure d,§, we can consider this

constant is equal to one, that is

(3.17) p(g)=1,
Lemma 3.4.
(3.18) d,=(45(g)/45(&))-

Proof. For any f in L'(G),

@19) | agl] reoan={ fode=| roUcend g

H\G

= (4o et 0d,a=acen |, _a.2{[ rahpdn]

G

L8| e @)dh)

H\G

aao|], fhed(ghe)}

H\

|
e
= (o™, _
|

=Uelen ™, 4:@0a, @[ repd (e}

H\G

—a@)/46e), @], rtgadn .
This shows
(3.20) (46(82)/45(80) " g =1.

This completes the proof.
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Next, consider the more restricted case, That is, G is a non-uni-
modular locally compact group and H is the normal subgroup of G,

which is equal to just the kernel of the modular function 4¢(g).

(3.21) H={g€G; 4:(g)=1}.
Lemma 3.5. H is a unimodular group.

Proof. In (3.18), put g=h in H, then
(3.22) 4,=1, for any h in H.

But since 4,=4y(h), the assertion follows.

Definition 3.1. We shall call this subgroup H, the fully unimodu-
lar subgroup of G.

For the fully unimodular subgroup H, the factor group G=H\G is
(algebraically®)) isomorphic to a subgroup D of the multiplicative group
R* of all positive numbers by the mapping.

(3.23) g—>4s(g).

Evidently D is abelian, then the Haar measure d,§ on G is two-sided

invariant and especially,

(3.24) 4x(5) =1, for any & in G.

Therefore, by Lemma 3.4,

Lemma 3.6. If H is the fully unimodular subgroup of G,
(3.25) 4= 46(g).

Combining to Lemma 3.1, we obtain

¥ In general this isomorphism is continuous but not topological.
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Proposition 3.1. For the fully unimodular subgroup H of a non-

unimodular locally compact group G,

(3.26) dg(u)/dp=4s(g).

§4. Orbits space on the quasi-dual of the fully unimodular sub-
group.

Hereafter, we restrict ourselves only to the case that G is a sepa-
rable non-unimodular locally compact group, and H is the fully unimo-
dular subgroup of G.

From the arguments in §3, the restrictions of the inner automor-
phisms of G to H induce transformations over the quasi-reduced dual £

of H. Thus G is considered as a group of transformations over £.

Definition 4.1. For any o in 2, the subset

(4.1) x,={g(w): g€ G},

of £ is called G-orbit passing through w. And the set of all G-orbits
is denoted by X. Moreover, define the map ¢ from £ onto X by

(4.2) p(0)=x,.

We introduce a Borel structure in X which is generated by the
subsets E of X such that ¢ !(E) are measurable in 2.

Lemma 4.1. There exists a subset N of £ of p-measure zero,
such that, any two different elements wi, wy in £ —N, the double re-
presentations D, = {#(01), Wilw1), Vi(w1)} and D,,={#(02), Wi(wz),

Vilwz)} are not equivalent.

Proof. As is shown in §1, Dy={L*(H), R¥, LI} is a multiplici-
ty free representation of Hx H in the sense of G. W. Mackey[ 7], and
(1.2) gives the central decomposition of Dy. So we can apply the re-
sults of A. Guichardet [3] and M. A. Naimark [11], and obtain the
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assertion.

Corollary 1. For any w in 2—N, the isotropy subgroup

(4.3) G.={g; g (w)= 0}

contains H.

Proof. Obviously, for any h, in H the operator W (0)V s (w)
gives a unitary equivalence of double representations D, and D).

Therefore, the result is deduced from Lemma 4.1, directly.

Corollary 2. For any w in 2—N and any g in G,

(4.4) Gm = Gg(m)'
Proof. By the reason of the Corollary 1,

(4.5) G.,DH.

But H\G is abelian. So for any g, in G, and any g in G, there ex-

ists an element A in H, such that

(4.6) 808= &&oh.
That is,
4.7) 8o(g(w))= gog(w)= ggoh(w)= ggo(h(w)) = ggo(w) = g(w).

This means go€ Gy, SO
4.8) 6. Gyor
Changing the roles of w and g(w), we get the result.

Lemma 4.2, The map
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(4.9) (g 0)—>g (o)

is a Borel measurable map of G 2 onto L.

Proof. The proof is analogous to that of the Theorem 7.3, in
G. W. Mackey’s paper [ 8].
To continue the discussions, we must put the following assumption

with respect to a regularity of the G-orbits space X.

Assumption. The G-orbits space X is countably separated in the
sense of G. W. Mackey. (¢f. [7]).

That is, there are countable G-invariant measurable subsets of £ —

N, and each G-orbit is the intersection of such sets containing it.

Lemma 4.3. (V. A. Rohlin [127]). Under the above assumption,
there are a measure fi on X and measuves [, on 2 whose supports is

in the corrvesponding G-orbit x, and

(4.10) [, f@ anw={ aao{] r@dnw},
for any p-summable function f on 2.

Because of the assumption, each G-orbit is measurable in £. There-
fore u, is considered as a measure on the space x.

According to the decomposition (1.2) of Dy, L?(H) is shown as a
direct integral S #(0)du(w). And any element f in L*(H) corres-
ponds to a vectof‘-valued function vs(w) on £. Moreover by the decom-

position (4.10) of the measure x4, we obtain a weaker decomposition of
L*(H).

(4.11) L*(H) ~SX$)"d/2(x).
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Here,
(4.12) o~ #@adnw).

That is, 9% is considered as the space of vector-valued functions vy(w)

on x, such that
(4.13) los12={ Il @)I*du() < +oo.

While we must remark the followings. As is assumed in §1, for
any w in £ and g in G, the spaces s#(w) and #(g(w)) must be
identified in some canonical way. So that we fix a Hilbert space s#*
for each G-orbit x and w;(w) is considered as #"-vector valued func-
tion, for which x is the G-orbit passing through w.

As a canonical method to do this, we take a representative w(x)
for each G-orbit x, and a Borel section E(x) of G,yleft-coset space
in G. And put

(4.14) H*=#(0(x)).

Then for any o in £2, there exist unique representative w(x) of G-orbit

x passing through o, and unique g in E(x) such that,

(4.15) o= gi(o(x)).
Thus, we realize {#(0), Wi(w), Vi(w)} by {#* Wi(gi'(w(x))),
Vi(grt(o(x))}.

While as is shown in §3, we can define a unitary operator

(4.16) (UafYh)y=flo~ (b)) 47",

on L*(H), for any automorphism ¢ on H. Evidently, the map 6—U,
is an algebraic homomorphism of the group A(H) of automorphisms
on H into the group of unitary operators on L?(H). And if the topo-

logy of uniform convergence on any compact set is introduced into
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A(H), then {L?*(H), U,} gives a unitary representation of A(H).
Especially, in the case that H is a normal subgroup of locally compact
group G, the restriction to H of the inner automorphism induced by an
element g of G deduces an unitary representation D={L*(H), U,} of
G in this way. Thus

(4.17) (Uef)h)=f(g ' (h) 45 "= f(g ' hg)(de(g) 2.

Lemma 4.4. For any g in G, the operator U, is decomposable
with respect to the decomposition (4.11).

Proof. The decomposition (4.11) is done by the abelian von Neu-
mann algebra of all G-invariant operators in the centre of the von
Neumann algebra generated by {R¥},ecn. But, since “G-invariant” is
equivalent to “commuting with any U,”, the assertion is trivial.

q.e.d.

Basing upon Lemma 4.4, Let ® be decomposed as follows.
(4.18) D={LHH), Up={ 9% U} di).
Next we shall determine the forms of operators U,(x) on each .

Lemma 4.5.

(4.19) . UngzRglhgﬂUx:RiI(h)Ug,
(4.20) U!LIIIJ=L$Ihg_lUg=Lg(h) Ug.
Proof.

(UREF)h)=(REF) g h18)(ds(g) M =f(g ' h1gh)(dc(g)) '
=f(g h(ghg ) @(4e(@) P =(Us f)h1ghg™ ) =(RE, ;- Uy f)(h1).

(U LEfY(h)= f(h7 g h1g)(4(8) 2 =(LE, ;- Uy f)(h1). q.e.d.
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We denote the decomposition of Dy according to (4.11) as
(4.21) (L), RE, LY =47 Wi, Vi,
Then the components of this decomposition are shown by

@22) e W V(| @), W), Vi) duso).

Lemma 4.6. For ji-almost all x, Uy(x) is given by
(4.23) (Ugx)v)(0)=U(o, gv(g  (w)de()".

Here U(w, g) are unitary operators on H#7".

Proof. (4.19) and (4.20) lead us to
(4.24) Ug(x)Wi=WzmUs (),
(4.25) U()Vi=V 5 Ug(x),

for jfi-almost all x.

But these relations assert that {Uy(x)} and the family of all de-
composable projections on -‘@”~S #(w)du(w) give a transitive system
of imprimitivity on the base x iJ;l the sense of G. W. Mackey (cf. [8],
Th. 5. 6). Therefore, there exists a family of unitary operators {U(o,
&)} on s#* for which (4.23) is valid. g.e.d.

Proposition 4.1. For w-almost all o.

(4.26) G,=H.

Proof. It is sufficient to see that for any w, in £ —N, for which
(4.23) is valid, G,, is contained in H.
If it is not, then there is an element g, in G, which does not con-

tained in H, and
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(4.27) g7 (00) = 0,

Because of Corollary 2 of Lemma 4.1, for any o in the orbit x

passing through w,,
(4.28) g l(w) = o.
Hence, using (4.23), for any vector v in $7,

(4.29) (Ug,(x)v)(0)=U(w, go)v(w)(4e(go)''?

Since go does not contained in H, (Ac(go))”2 is not equal to one.

This contradicts to that U, (x) is unitary. g.e.d.

Corollary. 1. For p-almost all o, the map §— g(w) gives a Borel
isomorphism of H\G onto x which passes through o.

Proof. Since G is separable, the separable locally compact space
H\G is a standerd Borel space. While, since H is separable, 2 —N’
(u(N")=0) is a standerd Borel space (cf. §1), especially countable gene-
rated. Theorem 3.2 of G. W. Mackey’s paper [ 7] results that the one-

to-one map & — g(w) is Borel isomorphic. g.e.d.

Using Corollary 1 of Proposition 4.1, for u-almost all w we can
introduce a measure #J on H\G, which is transfered from the measure

sy on x by the map §— g(w). Thus
Corollary 2. For j-almost all x,

(4.30) dpd(@)=cdo(9)dg.

Here dg shows a Haar measure on G=H\G, and ¢ is a positive con-
stant.

Proof. (3.26) in Proposition 3.1 asserts that x satisfies

(4.31) dg(u)/du=4s(g), for any g.
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Decompose 4 to the integral (4.10) of measures x,, we get that
for almost all x, x4, satisfy analogous equations. This means that ¢

is a relatively invariant measure over G, satisfying,

(4.32) du(g18)/dny(®)=4c(g)™"',  for any gi.

That is, 46(g)dul(§) is a Haar measure on G. The uniqueness of
Haar measure on G deduces the result. g.e.d.

For the sake of later uses, we shall determine the form of opera-
tors Ulw, g) in (4.23).

By the reason of Proposition 4.1, we can assume that G,=H. So
we take a Borel section E of H-cosets G in independently on x, and
give the above mentioned canonical form of {s#(w), Wi(w), Vi(w)} by

this Borel section. Moreover we can take E in such a way that

(4.33) ENH={e}.

Lemma 4.7. By adequate normalization of #(w), multiplying a
number of absolute value 1, for all g and p-almost all v,

(4.34) Ulw, g= W (o(x)) Vi o(x)).
Here

(4.35) o=g'(x))  (g€k),
and

(4.36) hilgog€E.

Proof. At first, since
(4.37) (Un, f)h)= f(hi*hhy)=(RELE ) (h), for A, in H,
(4.38) U(w, h1)= W (0) V3 (0).

The commutation relations (4.24), (4.25) lead us to



Plancherel formula for non-unimodular locally compact groups 213
(4.39) U(w, g Wi(g ()= Wemn(w)U(w, g),
(4-40) U(w, g) Vh(g_l(w))z Vg(h)(w)U(w, g)'

And by the definition of the canonical forms of W,(w) and V (),

(4.41) W oy (0) = W oy (g5 1 (0(2))) = W gpeim(@(%)),
(4.42) Wh(g'l(w))= Wn(g“lgo‘l(w(x)))= W g ay((x))
= Wiy eonymy(@0(x))

= Why (eoatrnne(@(x))
= Wi (0(2)) W gy (0(2)) Who(0(2)).
Here
(4.43) g =hs'gog, is an element in E.
And analogously
(4.44) Ve (@) =V gginy(0(x)),
(4.45) Vi(g (0))= Vi (0(®)) V goaun(@(2)) Vi (0(2)).
Combining (4.41)~(4.45) with (4.39), (4.40),
(4.46) (U(w, & Wi (0(®)Vi;*(@(x))) Weem ()
= Weoain(@(2))(U(w, &) Wi (0(x)) Vi (w(x))),
(4.47) (U(w, &) Wi (0(x) Vi (0(2)))V gpem(@(£))
=V gm0 () (Ulw, &) Wiz (0(x))V ;' (@(x))).

The irreducibility of the representation {57, Wy gm(@(x)), Veem(@(x))}
of the group HX H results that the operator U(w, g) Wi (w(x)) Vi (w(=))
must be a scalar operator c(w, g). That is
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(4.48) Ulo, g)=c(o, g Wi (0(x))V;,(0(x)).
(4.49) lc(w, &) =1, for all g and almost all w.
Put g=h,€ H, then hy= goh;g;'= go(h,) and
(4.50) Wi (@)= Wi (g5 (@(x))= W) (0(%)) = Wi,0()).
Similarly
(4.51) Viy(@)=V;(0(x)).
Therefore, comparing (4.38) with (4.48), we obtain
(4.52) c(w, h)=1, for any h in H.

On the other hand, because {U(w, g)} gives a representation {9,
Uyt of G, it must satisfy the following relation for all gi, gz and al-

most all w.
(4.53) Ulw, g)U(gi' (), g)=U(w, g1g:).

If we denote by hi, hy and hs the corresponding elements of H in
(4.43) to (w, g1), (g1'(w), g2) and (w, g182) respectively, then it is

easy to see,
(454) h1h2:h3.

Since U is given by the form (4.48) and since by (4.54) the corre-
sponding parts of (4.53) of W,(w(x)), Vi(w(x)) satisfy the analogous

equation as (4.53), we obtain

(4.55) c(w, g)c(grt(w), g2)=c(w, g1g2)-

This shows that if we determine the value of c(w(x), g) for any g,

then c(w, g) is calculated by
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(4.56) (g1 (), g)=(c(, &) 'c(v, g1g2).

With (4.52), if we take vectors c(w(x), @v(g(w(x))) (g€ E) in #*=
#(g(w(x))) instead of vectors v(g(w(x))), then we obtain

(4.57) c(w, g)=1.
This completes the proof.

§5. Reduced quasi-dual of non-unimodular group.

As in §4, G is a separable non-unimodular locally compact group,
and H is the fully unimodular subgroup of G. We put the same as-
sumption on the G-orbits space X, as in §4, too.

Consider the right regular representation R={L*(G), R,} of G,
here R, is the operator on L%(G) defined by

(6.1) (Re, /(&)= f(g80)-

By Lemma 2.4, R is unitary equivalent to the representation of G
induced from the regular representation Ry of H. That is,
(5.2) R= Ind Ry
H1G

On the other hand, by the central decomposition (1.2),

(5.3) Ry ggwd/t(a}).

So, using Lemma 2.5.,

(5.4) R Ind {Sga)d,a () };Sg(m 0) dp(w).

And since u is described as an integral of measures x, on x with

respect to the measure fZ on the orbit space, we obtain,

*)  Of course, since (4.56) is valid only except measure zero, we must discuss
more carefully. But here we talk about only outline for brevity. The corrections
of these arguments are routine,
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(5.5) n=( aaif ¢ Ind 0)dz,(0)}.

Lemma 5.1. For any element gy in G,

(5.6) Ind go(w) = Ind .
G1H GtH

Proof. In this case, the quasi-invariant measure v on the abelian

factor group H\G, can be taken as the two-sided Haar measure on
H\G. So the map

(5.7 v(g)—>v(gg)
gives the unitary equivalence of (5.6). g.e.d.

Thus, the first integral on x in (5.5) is a direct integral of mutual-
ly equivalent representations. Therefore, it is equivalent to a discrete
direct sum of the representation Ind w with the multiplicity of the
dimension of L*(x, #,). And this dI;rIl(e;znsion is countably infinite except

/A-measure zero. Hence,

Lemma 5.2.

(5.8) n=( {(Zo Ind 0.} di(x)
(5.9) ={ Ind{ 5 0.} di().

Here w, are elements of £, passed through by =x.

Notation. By the reason of Lemma 5.1., the component Ind{>;D
H1G

w;} of R in the decomposition (5.9) is determined up to unitary equi-

valence, depending only on the orbit x passing through w. We denote

this representation by ®,= {D(x), We(%)}. Thus,
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(5.10) R D).

Consider a vector v = (v(g)) in the space $° of the induced re-
presentation Ind w. As is remarked in §2, in our case we can put that
the quasi-inertiint measure dv on H\G is equal to a Haar measure dg
on H\G. Then ¢=1 in (2.7), and by (2.9) w(g, gi1)=1 in the oper-

ator (2.12) of the induced representation. Thus

(5.11) (Uzv)(g)=v(gg).

Evidently for any A in H, by arguments in §4,

(5.12) (Uiv) (@) =v(gh) =W e1-(0)(0(g)) = Weay(@)(v(g)
= Wi(g1 (@) (v(g).

Here,

(5.13) g €E and g1g '€ H.

From the equation
14 zzg 2dg
(5.14) llvl| H\Gllv(g)ll dg,

the restriction Ind w|gz to the subgroup H of the above mentioned in-
H1G

duced representation is decomposed to a direct integral of the represen-
tations gy }(w)={#*, Wi(gi'(w))}(cf. §4), on H\G with respect to the

measure dg. And the map

(5.15) v—>{v(g)} ek

gives the decomposition
5.16 Ind w | g={%", U; ;S = g.
(5.16) Indo|z={2", Up}y=| _g'(0)dg

On the other hand, Corollary 2 of Proposition 4.1 asserts that the
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integral on H\G with respect to dg can be transfered to the integral
on the G-orbit x in £ passing through w with respect to x,. Thus,

Lemma 5.3. For u-almost all o,
(5.17) Ind le;S 0 dp(0).
H1G x
Here x is the G-orbit in £ passing through o.

Proof. It is evident from the above arguments and from the fact
that each representation ¢ of H in x is given as the form gy'(w) by

some gy in E. g.e.d.

Now, in the central decomposition (1.2),
(5.18) (Prv)(0)=xr(w)v(w), (v e Sg%(a)) d ,a(co))

define central projections in the von Neumann algebra 2(z generated by

(5.19) RiYsen~{| _Widi) on ©*.

X heH
Here F are measurable subsets of £, and xr is the characteristic func-
tion of F. Following the weaker decomposition (4.11), Pr is decomposed

as
(5.20) PF~SXPF(x)d,zZ(x).

By the theory of von Neumann algebras (cf. J. Dixmier [ 2] Chap. IL),
for fi-almost all x, {Pr(x)}r is contained in the centre of the von
Neumann algebra generated by {W7}},cy, and induces the decomposi-

tion

520 425 W V=] 1p ), Wi, Vi@ duo).
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Lemma 5.4. For ji-almost all x, a bounded operator B on *

commuting with {Wi}tien, is decomposable, i.e.

(5.22) B~ SxB(w)dﬂ”(w)'

Proof. Since B commutes with {S W (w) d,ax(co)}h o B commutes

with {Pr(x)}r too. This means that B is decomposable. (cf. J. Dixmier
[2], p. 169.) q.e.d.

Lemma 5.5. For p-almost all w, the representations Ind w are
factor vepresentations. e

Moreover, when H has the reduced dual of type I, Ind 0° are ir-
reducible for p-almost all w. Here w° show the minimalHEtGherefore ir-

reducible) components of w.

Proof. Let Ind w={9" U%} and Ind 0’°={D*, UY}. For the
first half, it is suﬁli{gignt to show that, fof taG-almost all w, any bounded
operator A in the centre of the von Neumann algebra generated by
{U%}¢ec is a scalar operator. And for the last half, it is enough to
show that, for u-almost all w, any bounded operator A° commuting
with any operator U ‘;"( g€ G) is a scalar operator.

Consider a bounded operator B on ©° of the representation Ind o,

H1G
which commutes with any Ug%(g€G). Especially, B commutes with

any Uj(h€ H). By Lemma 5.3, {9, U} is equivalent to SX{%”(O‘),
Wi(0)}ydu.(0), hence is equivalent to {9%, Wi}, for u-almost all o.

So from Lemma 5.4, B is decomposable. That is, there are bounded
operators B(¢) on s#(¢) and

(5.23) B««Sx B(6)d (o) ~§H\G B(g ' (w))dg.

But B commutes with any operator U} of the form (5.11), so
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(5.24) B(gi' g (0)v(gg) =Us,(Bv)(g)=(BU%w)(g)
=B(g ' ()v(gg).

By the reason of the arbitrariness of v, we obtain,

(56.25) B(gilg '(w))=B(g (w)), for any g; and almost all g.

This means that there exists a bounded operator B, on s#(w) such that

(5.26) (Bv)(g)=Bo(v(g), for almost all g.

Moreover the commutation relation of B with any Uj(h€ H) leads
us to that B, must commute with any W,(w) (he H).

Conversely, for any bounded operator B, on s (w) commuting with
any W,(w) (h€ H), (5.26) defines an operator B on O° which com-
mutes with any Uj.

Next, consider an operator A in the centre of the von Neumann
algebra generated by {U%},cc. Since A commutes with any U$%
(g€G), from the above arguments, there exists an operator 4, on
#(»), which commutes with any W,(w) (h€ H), and 4 is the form of

(5.27) (4v)(g) = 4,(v(g)).
And A4 commutes with any B of the form (5.26), we obtain,
(5.28) AoBo:Bvo.

But By is any operator commuting with any W,(w) (h€ H). Hence
Ay is in the centre of von Neumann algebra generated by {W,(®)}sen.
And this algebra is a factor, so A4, and 4 must be a scalar operator.
This shows the first half of the proposition.

When H has the reduced dual of type I, by the arguments as
above, there exists an operator A4 on s#(w°), and A4° is the form of

(5.29) (4°v)(g) = A3(v(g)).
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A} commutes with any operator of _a)o. Therefore the irreducibility of
®° leads us to that A is a scalar operator, then A4° is a scalar opera-
tor too.

This completes the proof.

Proposition 5.1. ji-almost all components of the decomposition
(5.10) of R, are factor representations of G.

Proof. This is direct result of Lemma 5.5. qg.e.d.

Proposition 5.2. The decomposition (5.10) gives the central de-

composition of R.

Proof. Basing upon Proposition 5.1., it is sufficient to show, that
any diagonal operator in this decomposition is in the centre of the von
Neumann algebra 2 generated by {R,},cc. But this is enough to
prove that projections Pr defined by

(5.29) (Prw)(x) =2p(x)w(x),

are in the centre of 2. Here F is any measurable set in X and xr is
the characteristic function of F. And Pr is a projection on the space
of SXSD,,d/Z(x).

But because of the form of the operator Pp, evidently Pr commutes

with any operator RE~SXW'E(x)dﬂ(x) (g€G). According to the cen-

tral decomposition of R|p= ) Ry= i SQ{X(a)), Wi(w)} du(w), obvious-

ly, Pr is decomposed as,

(5.30) (Prv)(0) =%,-1r(0)v(),

with the map ¢ defined in §4. Since ¢ '(F) is measurable in £, this
projection is in the centre of the von Neumann algebra generated by
{R;}scH, hence of course, in the centre of 2.

This completes the proof.
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Summarizing the above arguments we obtain the following main

theorem.

Theorem 3.1. Let G be a separable non-unimodular locally com-
pact group. Let G satisfy the “Assumption” in §4 on the space X of
G-orbits in the reduced quasi-dual of the fully unimodular subgroup H
of G.

Then the reduced quasi-dual of G is constructed on X except mea-
sure zero, as the space of factor representations
D,=Ind {TPw}(w €x). Here Ind XD w depends only on x up to
m'n'ta;j)T i’quz’ valence. e

Movreover, if H has the reduced dual of type 1, then the reduced
dual of G is constructed on X, as the space of irreducible representations
@25152% w°, except measure zero. Here w° is the minimal component

of w. Especially, G has the reduced dual of type 1, too.

§6. Plancherel formula for non-unimodular groups.

Now we are on the step to prove an extension of Plancherel
formula.

By the arguments in §4 and §5, the reduced quasi-dual of a separ-
able non-unimodular locally compact group G satisfying the regularity
assumption in §4, is constructed on the space X of G-orbits in the
reduced quasi-dual £ of its fully unimodular subgroup H, except mea-
sure zero set. So we identify the reduced quasi-dual of G with X, and
factor representations D={H(D), W,(D)} with corresponding orbits x
in X respectively.

As is shown in §5, u-almost all elements ® in X are induced
representations from some representation w of H in £, and moreover,
when H has the reduced dual of type I, minimal (therefore, irreducible)
components D°={H(D°), W (D)} of u-almost all elements D in X are
induced from minimal components w’ of w. Thus for such ® or D°,
we can define the operators T5(D) or T5(D°) defined in §2 for a posi-

tive character 0 which is trivial on H. Especially, the modular func-
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tion 4g and its real powers are positive character which are trivial on

H. Hence, put
(6.1) T (D)= T(D).

Moreover, we can define, for induced representations ® in X, ses-
qui-linear forms tg on the vector spaces 2, of operators {T(D) W (D):
f€Cy(G)} by (2.40). And if H has the reduced dual of type I, these
sesqui-linear forms g are considered as the ordinary traces of operators
of the minimal components ®° of D.

Thus we obtain the following main theorem.

Theorem 6.1. For any f in Co(G),

©2) { _1/(@)12dg={_co((TD WD) T@®) (@) da®)

(6.3) = o Ty Wy:(D) TN (D)
(6.4) ={ (T Py (@) A@D).

Here

(6.5) [ (@=f(g Dde(a) 7,

and

6.6) (f471)(g) = f()(de() ",

(6.7) (fD(=f(dc(®).

Especially, if H has the reduced dual of type 1,

68 [ 1re)*dg={ 1T@) Wi@Maa)
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(69) ={ Wrrn@n) 1@ aAD)
(6.10) ={  TAT@ Py @) (D).

Here |-l shows the Hilbert-Schmidt norm of operators, and T,(+) shows

the ordinary trace of operators.

Proof. Let f be a function in L*(G)NL?*(G), then,

61 A= @ 1rde=(, |, It dn.

Since H is unimodular, the Plancherel formula (1.10) is available,
©12) )= | fhgPah={ (W @) Wy () du(o).

Here
(6.13) feh)=f(hg)

are considered as functions in L'(H)NL?*(H) for almost all g. As in
§4, £ is divided as the union of G-orbits, and the measure u# over £
is decomposed to the integration of measures #, on x with respect to

the measure & on X. Hence,

(6.14) ()= a1 w(W @) W), 0)dno).

But by Corollary 2 of Proposition 4.1, the measures z, is transfered

to a quasi-invariant measure on the homogeneous group G=H\G, as
(6.15) du(g(o(x)=c.d:'(g)dg.

Here w(x) is a representative in x given in §4, and ¢, is a constant.
It is easy to see that by adequate selection of the measure [ on X, c,

can be taken one. Thus, substituting the notations ® for x,
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616  I={ aa@® W (5i@)* W (g

X Ac_;l(gl)dgl.

On the other hand, for any g in the Borel section E of H\G given in
§4,

617 W)= fh) Wigi(a())dh
={ B W sas (o)) dh
—{, e gi* @ Wiw(=)d(gi(h)

={ fahar @ Wi de(gdh

=Wilg', gitg)de(g).

Here W7(g1, g2) is the operator W;(g1, g2) given in Corollary of Pro-
position 2.1 for w(x). Thus,

618) NfIP=(, 1(endg:=|, d{( da®
x{, T, g Wig™s g g de@)dd |
X (do(g) " dg1ddsf

X (de(g) drd g}
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Evidently the integrand dose not change by the substitution of g1 with
hgi(h€ H). Thus we can take off the assumption that g is in E.
If we put in Proposition 2.1,

(6.19) 0=4Y?,
then

6200 I71P=f az@®{f (  c7itan e 7ia g
X (46(g0) " 0(g) dgrdds} -

This formula (6.20) assures the convergence of the following in-

tegrals for fi-almost all D.

621)  eo(T@W@OF TP @)=( (Wi, e*

H\G

x Wig:, g))(4e(g)) ' dg1dg>.

And (6.2) is obtained by substituting (6.21) into (6.20).
The equality (6.4) is deduced by direct calculations. (cf. Lemma
2.7.)

(6.22)  (T(D) W(D))* T(D) W (D)= (W(DN*(T(D))* W(D)
= W (D) T(D))? WD) = (T(D)) W 4(D) W (D)
=(T(D)* W(s*yss-

When H has the reduced dual of type I, we can take the ordinary
trace of operators of minimal components w® of o instead of r, in
(6.12) and for ji-almost all ®, the minimal components ®° of D are
obtained as the induced representation from w°® Thus, the last half of

the proposition is proved just in the same way.
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This completes the proof.

Corollary 1.  For functions f which are linear combinations of

the functions fixfs (f1, f2€ Co(G)),
(6.2 fer={_ea(T@)* @A
Especially, if H has the reduced dual of type 1,

(6.2) F@={ (@) P @)

Proof. For the linearity of the both side, it is sufficient to prove
for the function of the form (f*4)xf. By (6.4),

625  (faxfe)={ FTDUe) ™M@ f(g)dr g
(6.25) =Sclf(g) I°d, g

(6.26) = e (T@) Wy (@) (@),
When H has the reduced dual of type I, this is equal to
(6.27) [, (T @ P @),
This completes the proof.

Corollary 2. Let f be a function as in Corollary 1. Then,
©28)  f(@)={ eo(T@N WD W (@) dis(D).

And if H has the reduced dual of type 1,
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629)  fl@={ T(T@) PP (@) da).

Proof. Since,

(6.30) S(g)= f*0,1(e),
and
(6.31) Wies, (D)= WD) Wy-(D),
the result follows from Corollary 1, soon. q.e.d.

Obviously, for unimodular group, if we take the operator T(D) as
the identity operator on the space of representation 9 in its reduced
quasi-dual X, the formulae in Theorem 6.1 and its corollaries are valid
in the same form. Therefore, we may consider that Theorem 6.1 and
its corollaries give an extension of Plancherel formula for any separable

locally compact group satisfying the assumption in §4.

§7. Decompositions of the regular double representation and

the regular quasi-Hilbert algebra of G.

Here we shall discuss an analogue to the decomposition theory of
F. 1. Mautner [97] [10], L. E. Segal [13] and J. Dixmier [27], which is
proved in the case of unimodular groups. We use the notations given
in §§4~6.

Consider the regular double representation{L*(G), Rg, Ly, J} of G,
defined by

(7.1) (R, = f(gg),
(7.2) (Le, f/)(8)=(4c(g2)) " *f(g2 &),
(7.3) UF)(®=(4s() (g™ D).

J is an involution operator on L2(G), such that

(7.4) JRJ=L,, for any g in G.
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We define the following operators on L%(G), too.
(7.5) (S f)(g)=(4s(gN"? flg™D,
(7.6) @f)(g)=0(g) f(g).
Here 0(g) is a positive character on G, satisfying
(7.7 o(h)=1, for any A in H.

Obviously S is a unitary operator on L*(G), and & is a 1-to-1 self-
adjoint positive definite operator with dense domain and dense range in
L*(G). And the followings are trivial.

(7.8) S2=1, (identity operator on L*(G)).
(7.9) SR,S=1L,,

(7.10) OR;,=(0(g0) 'Ry,

(7.11) 3L, =0(go)Led.

By the way, the space Co(G) of continuous functions with compact
carrier on G, becomes a quasi-Hilbert algebra in the sense of J. Dixmier
[2], by the ordinary structure of a vector space on C, and the scalar
product in L?(G), the product of convolution. The involution is defined

by the same form as J in (7.3), that is,

(7.12) FX@=UN(g)=fg Hds(g)""*

The linear map f—f" is given by

(7.13) (=¥ f)(@=4ds(g)"*f(g)

We call this quasi-Hilbert algebra the regular quasi-Hilbert algebra
on G.

Now, we put the central decomposition of the right regular repre-
sentation R={R,}.cc, given by (5.10), as
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(7.14) {L©), RY~[ 1B(@®), P (@)} da().

Because the operators = {L,;},cc commute with any R, (g€G), the

operators L, is decomposed by this decomposition, too.
(7.15) LKNSX V,(D)dia(D).

We shall determine the form of the operators I;'g(@), and show
that the operators, S, J, 8 are decomposed also by (5.10). Lastly, we
can obtain the decomposition of the regular quasi-Hilbert algebra C,(G)
on G, according to this central decomposition.

At first, we must decide the concrete form of the equivalence map
of the decomposition (5.10).

The unitary map in (5.2) is defined as a map of L%(G) onto the

space of L%(H)-valued functions on G, which satisfy,

(7.16) fuhg)=Ri(fu(g)), (g€GC,heH),
(7.17) Ifale={, fa(@lFdg<+eo.

And this map is given by

(7.18) = fa(@=(f(hg),

Here f(hg) is an element of L*(H) as a function of A, and

(719) | fH(g)||2=§H| f(hg)|?dh,  for almost all g in G.

Next, eachvector of L?(H) is decomposed by (5.3), to a vector-
valued function on £, which take its value in s#(w) at . We obtain

by this step.
(7.20) fu(@)—flo, 8 (0€L, geG)

From (7.16), (7.17), this function must satisfy
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(7.21) flo, hg)=Wi(w)(flo, £), (g€CG, heH, 0 L)

and, since
(7.22) IFa@IP={ lIf @, @l*dno),

2_ 2 Y
(7.23) 1falP=S, (], 15 @lFdu@)dg<+oe.
Thus the equivalence between 3R and S}]r}ctl; wdu(w) is given by
(7.24) f—f(o, &, (we 2, g€6),

as the map from L%(G) to SH G(Sg.%’(w, g)d,u(a)))dg.
AS
Here # (0, g)~#(v).
By the reason of Lemma 5.1., the representations Ind v are mutual-

H1G
ly equivalent when ’s are passed through by the same orbit x(=D)*

in X. And the decomposition (5.10) is obtained by summing up these

equivalent representations. That is, the space H(D) of @(;S Ind o
DH1G

X dﬂgg(a))) is considered as the space of vector valued functions f(w, g)
on DXG satisfying (7.21) and
@2 lfe={, ([, 15 olPdumw )dg<+oo.

HG\)D

Hence,

@26)  UfIP=IfulP= IflpdaD)

=| aa@{[{_ I e)lfduaw)dg}.

Comparing with (6.2) and (6.8), and by the arbitrariness of f,

*)  We identify a factor representation ® to the corresponding G-orbit x in 2,
as in §6.
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(7.27) | £11%=r2((T(D) W1 (D))* T(D) W (D)),
or if H has the reduced dual of type I,

(7.28) 1 fllo=NT(D%) (DI,

for almost all D.

Here we must remark that under the normalization of the isomor-
phisms between #® and #(w)’s (w€ D) given in §4, f(o, g) are con-
sidered as vectors in the same space #® when w are in the same
orbit D. So H(D) can be considered as a space of s#P-valued func-

tions on ®xG. Hereafter we shall use this normalization.

Lemma 7.1.
(7.29) JuUg=U,Ju, for any g in G,
(7.30) SpU,=U,Sy, Sfor any g in G.

Here Jy, Su, U, are operators on L*(H) defined by

(7.31) Uuf)W)= fT),
(7.32) (Suf)(h)=f),
(7.33) (U fH(h)= f(g " hg)(da(g) 1",
(cf. §1, §4).
Proof. It is clear from the forms of operators. q.e.d.

The operators Jg and Sy are decomposed by the central decomposi-
tion (1.2) of Ry, as

(7.34) JH~SQJH(a>) du(w),

(7.35) s,,~§gs,,(w)dﬂ(w).



Plancherel formula for non-unimodular locally compact groups 233

Lemma 7.2. The operators Ju(w) and Sy(w) are depend only on
the orbit D passing through o as operators on #®, respectively.

Proof. From Lemmata 4.6 and 4.7,
(7.36)  (UD)w)(@)= Wi (@) Vi (0(@)v(g™ (@) 46()""".
Here
(7.37) o=gi'(@(®) (g€E) and hi'gog€E.
So (7.29) shows
(7.38)  Ju(0) Wi (@(®)Vi(@(®)= Wi, (D) Vi, (0(D)Julg ™ (@),
for any ho in H. 1In (7.38), if we substitute hg to g, (hg) ' (0)=
g () and hy is exchanged for gohgytho=hiho. So
(7.39) T (@) Wi (D) Vi (@(D)) = W a1, (0(D)) X

Vi (0(D)Ju (g~ Y(w)).

Because of arbitrariness of h, we can put hijhg=e and we obtain

(7.40) Ju(w)=Ju(g " (0)), for any g in G.
Analogously,
(7.41) Sy(w)= Su(g ' (w)), for any g in G. g.e.d.

Definition 7.1. We denote by J3, S%, the operators Ju(w), Su(w)
on D respectively, which depend only on the orbit D passing through
o.

Lemma 7.3. According to the decomposition (7.24) of the space
L*(G), the operators on L*(G) are represented as follows.



234 Nobuhiko Tatsuuma

(7.42) i) Ry f—fo, ggo).

(7.43) i) Ly f— 46(g0)"* Wi (0(D) Vi, (0(D)) f (857 (), 85" &)
0=g'®) (§r1€k), h'gigoc k.

(7.44) i) Jf—> de(@ Wi (0(DN Vi (0(DNT TS (g7 (@), g7,
o= g7 (0(D)) (g1€E), hy'g1g € E.

(7.45) iv)  Sf—> 4c(V Wi (0D Vi (0(DNSHf (g7 (), g7,
0=gi'(0(®) (§r€E), hi'gigE L.

(7.46)  v) 8f—0(g)f (o, &)

Proof. These correspondences are confirmed by tracing the steps

given in the begining of this §. That is,

(747) 1) (R, /) @=f(ggn)—>(f(hg)=fu(ggo) —f(w, ggo)-
(7.48) i) (Lgf)(8)=4,(g0) " f(g'g) = (dc(go) M f(g51hg))
=(dc(go) " f(gathgo 851 8) =Ug fu)(gs'8)

—4(80) " W, (0(D)) Vi (0(D)) g5 1 (0), &5 8)-
Here

0o=gi (w(D)(g1€E), hog180 € E.
(7.49) i) (J(Q)=e(g) (g™ ) - (do(hg) M2 f(g D)
=de(g) VP f(g7h g g N =WIufu)g™)

—46(8)"* Wi (0(D) Vi (0(@®NT 7 f(g7 (@), g71)

Here
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o= g7 (0(D)) (g1€E), hog1g€ E.
vi) is proved analogously to iii).
(7.50) V) Bf)g)=0(g)f(g)—> (0(hg) f(hg)=0(g)fu(8)

—0(g)f(w, g)-

This completes the proof.

Lemma 7.4. According to the central decomposition (5.10), the

operators J and S are decomposed as follows.

(7.51) J~§stad/2(@),

(7.52) S~§X5md/2(©).

Here Jp, Sp are operators on H(D) defined by
(7.53)  (Uaf)(©@, &=4c()* Wi (@) Vi (0@NI 2 f (g7 (@), 87,
(7.54)  (Saf)(w, &)= 4c(g)"* Wi (0(®)V,(0(®)) ST g™ (©), &7,

0=g (@) (g1€E), hy'g1g€E.

Proof. Because of (7.44) and (7.45), it is sufficient to see that
Jo and Sy define isometric operators of H(D) onto itself.

(7.55)  (Jnf)(0, hg)=4chg)""* Wi, (o(D) Vi (@(D)J %
x fl(g7h (), g7h7H)
= 46()"* Wi, (0D V4, (@(DNJ B W48 ()

x flg7 (), g7.

Here h; is given by
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(7.56) hitgihg=hi'(gihgi") g1g=hy'g1g € E,
ie.,
(7.57) hy=(g1h gt ho.
Since,
(7.58) g (@)=(g7 ' gr) (D)= (h;'g18) (D)),
and
(7.59) JE W) 7= Vi(w),
(7.60)  JRWe1-1g(g  (@NI B W 101((h 818) " (0(D))
=J 2 Wit sgs- -y (@@) = U Wit o@D ) 7
=V eyntar (@D = Vi n(0(D)J 7
Therefore,
(7.61)  (Jof) (@, hg)=4c(&)"* W4,y (0(D)) W (0(D))
X Vi(o(DNT 2 flo, &)
= W, un(@(®N{(Usf)(w, &} = Wi(gi (DN {(Usf)(w, &}
= Wi(@)Uaf) (o, .
@62 IRfIP=({_ IUaf)0, 9l dua)dg

={{ l4e(e) " Wi o@DV 10 @DIF g™ ), g
x dus(w)dg

= ngg\cll‘]g(f(w’ g MNI24e(g)dus(g(w)dg



Plancherel formula for non-unimodular locally compact groups 237
= o, g HPdus(w)d§
{f.  If, g)iPdust)dg

:SSDX,,\G”ﬂw’ ol dun(@)dg=|fl3< +oo.

Analogous relations are valid for Sg’s.

This completes the proof.

Lemma 7.5. {§° ng(’b), 17'32(59), Jo} is a double representation
of G. Here,

(7.63) (W, (D) )0, =f(, g81);
(7.64) (Vo (D)) (0, 8)=4c(g2)""* Wi (0 (D) Vi, (0(D)) flg7' (@), g2" &),

o= g (o(D)) (g1€E), hy'g182€ E.

Proof. It is easy to see that {S(SD), ng(fb)}, {5(@), 1732(59)}

give unitary representations of G, and
(7.65) W (D) Vo (D)= Vo (D)W, (D),  for any g1, g2 in G.
So that, it is sufficient to show that
(7.66) ToWe(D)Jo= V(D).
(7.67)  (JaWe,(DIaf)(w, = 4c()* Wi, (@(D) V), (0(D))
X JR(W (D)o f) (g (w), g1
= 45(g)""* W, (0(D)) Vi (0(®) T F (T f)(g (@), g7 g0)
=dc(&)"* Wi,(0(D) Vi, (0(D)J B {4c(g7  80)!/* Wi, (0(D))

X Vi (o(D)NJ 2 (g5 ) (g (@), g5 &)}
= 4s()'"* Wi, (0(D)) Wi (0(D)) Vi, (@(D)) V', (0(D))

xfgo'(w), g5 8)-
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Here w=gi'(0(D)) (g1 DE), hi'gig€E, and g '(w)=g: (o(D))
(g2€E), hy'g:87'go€ E. Thus, g7 g7 (0(D))= g7 (0(D)), and

(7.68) &2=hi'g1g, h3'hi'gigo€E.

The relation (7.68) shows, ho=Ahyhs, and
(7.69) s We (D)Isf)(w, g)=dc(g)"* Wi,(w(D))
X Vi (0()) g7 (@), g5 8)
= (Ve (Df) (0, &)
This completes the proof.

Lemma 7.6. {§(D), W, (D)} is equivalent to {H(D), V(D)}.

Proof. Indeed, similar arguments as in the proof of Lemma 7.5

shows
(7.70) Sp Wo(D) Sp=V (D).

This gives the unitary equivalence between above two representations.

Proposition 7.1. The double representation {L*(G), R,,, Lg, J} is
decomposed by (5.10) as follows.

(TT) ALYG), Rey Loy JY | {B®), (D), Vo (D)} AE).

Proof. This is a summarized result of Lemmata 7.3-7.5.

Lemma 7.7. By the central decomposition (5.10), 8 is decomposed

as,

(7.72) a~§x T5(D)du(D).
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Here
(7.73) (Ts(D)f )0, g)=0(g)flw, &)

T5(D) is an operator on the space H(D) of induced representation
Ind S (,l)d/lg((l))), as is given in §2.
H16\J®D

Proof. This is evident from (7.46) and the definition of 7';(D).
g.e.d.
We use the notations F;(¢) and $; (D) given by (2.28), (2.29) for

the induced representation ®. Analogously denote,

(7.74) L%(G, t, 0)={f< L*G): [Support of f]CFs(t)},
(7.75) Co(G, t, 0)={f€ Co(G): [Support of f]C Fs(¢)},
(7.76) (D, t, 0)={components on D of fin C,(G, t, 0},

By the reason of Lemma 7.7, the following Lemma is deduced soon.

Lemma 7.8. For any t(>0) and for f-almost all D,

(7.77) Ds.4(D) = {components on D of fin L%, t, O)}.

Lemma 7.9. For any t(>0) and for j-almost all D, .Q(@, t, 0)
are dense in Ds (D).

Proof. Because of Lemma 7.8., #(D, t, 8) are contained in £; (D)
for fi-almost all ®. And the density of (D, t, d) in 55,,(@) follows
from the density of C,(G, t, 8) in L*(G, t, ). q.e.d.

Now we consider the structure of a quasi-Hilbert algebra defined
on C¢(G), as in the begining of this §. We can transfer this structure

onto the ring of operators {R;} by the map

(7.78) > RfESG f(&)Rd, g.
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And

(7.79) i) Ry Rs,=Ry.s, (product),

(7.80) ii) <Ry, R;,>=<fi, f2> (scalar product),
(7.81) iii) (Rp)*=Ry~ (involution),

(7.82) iv) (Rp)"=Rjsa (bijective linear map).

It must be remarked that (R;)* is different from the ordinary
adjoint operator of Rj.
By the decomposition (7.71), the operatorR; corresponds to

(7.83) {Pi@=_1(e) 7@ d,g}2ex.

Lemma 7.10. By the decomposition (7.71), the operations on Cy(G)
are transfered on the operations on the ring {W (D)} for [-almost all
D as follows.

(7.84) i) fixfa>RsRp—> W, (D)W (D),

(7.85) i) <fi, f2>=<Rs, Ry,>—>ta((T(D) W7 (D)* T(D) W;,(D))
=< Wy (D), Wi (D)>,

(7.86) i) f*>(Ry)*—> W(D=(W (D))",

(7.87) iv) f (R = WA (D)=(T(®) ™ W (D) T(D)=(W;(D)".

Proof. i) is trivial.

ii) follows from the Plancherel formula (6.2) immediately.
iii), iv) are considered as the definitions of (W ;(®))* and (W;(D))".
g.e.d.

Lemma 7.11. By the above operations, {W;(D); f& Co} becomes
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a quasi-Hilbert algebra, for fi-almost all D.

Proof. We must check the definition of a quasi-Hilbert algebra in
the Dixmier’s book [2].

(7.88) () < W (D), W7, (D)>=ro(T(D) W7, (DN*T(D) W;,(D))
=t5(T(D) W (DNT(D) Wy, (D))*), (cf. Lemma 2.9.)
= 5((W;1(D) TD))* W13 (D) T(D))
= ro((T(D) Wy 5 D) *(T(D) Wy 1:(D)))
= (ca((T(D) W1(D))* T(D) W 13(D))
= < (W}, (D)%, (W, (D)*>.
(ii) By Lemma 2.10.,
(7.89) < Wi(D) W7, (D), W1,(D)>=12((T(D) W1, (D)* T(D) Wi.y, (D))
= 2o((T(D) W e 1411 1,(D)* T(D) W, (D))
= 2o((T(D) Wie (D) W7, (D)* T(D) W;,(D))
= < W1,(D), (Wu(D)* W1 (D)>.

(iii) From Lemma 2.12, for fixed k in Co(G), the followings are
valid.

(1.90) | < WD) W1,(D), W1 (D)>| = |ra((T(D) W, (DP*
X T(D) Wi(D) W;,(D)) |
Zce{ra((T(D) W1, (D))* T(D) W1,(D))-
x eo((T(D) W7 (D)* T(D) W1, (D)}

=Ck{< W‘fl(Q)’ Wf1(®)> < sz(Q), ng(@)>}llz'
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This shows that for fixed k£ in Cy(G), the map
(7.91) W (D) Wu(D) (D)

is continuous with respect to the above pre-Hilbertian topology on
Co(6G).
(iv) Let (D) be the Hilbert space, the completion of

(7.92) o (D)={W(D); fe C:(6)}

with respect to the above scalar product.
By (7.27), for any f in Co(G), the norm of components f(D) of
f with respect to the decomposition (5.10) are given by

(7.93) Il FD)IE = e ((T(D) W(D))* T(D) W 1(D))
for fi-almost all ®. Therefore, from the separability of G, the map,
(7.94) U(D); WD)~ f(D)

gives an isometric linear map from a dense subspace of 9(D) onto a
dense subspace of H(D), for j-almost all D. As the unique bounded
extension of U%®), we obtain an isometric operator U(D) from D(D)
onto H(D).

On the other hand, from general theory of L%(G), the space

(7.95) oL o=1kxf; k, f € Co(G)}

is dense in L%*(G), hence, for /i-almost all D, the set (D) of com-
ponents of functions in 7, with respect to the decomposition (5.10) is
dense in H(D). And as the inverse image of dense set Zo(D) by
U(D), the set

(7.96) (D)= AW (D)W 1(D)= W4.,(D); k, f € Co(G)}

is dense in (D), especially, dense in (D), for f-almost all D.
(v) At first we define a linear map T on L%*G) by
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(7.97) (TH(@=f"(g)  (=4s(g)'"*f(g).

Obviously, T is a bijective self-adjoint positive definite operator and by

Lemma 7.7, T is decomposed under the central decomposition (5.10) as
(7.98) T~SX T(®)d (D).

Here T(®D)=T,yx(D) are bijective self-adjoint positive definite operators
on H(D). Therefore, clearly, the operator

(7.99) Ty(D)=U®) ' T(DU(D)

is also a bijective self-adjoint positive definite operator on (D) for j-
almost all D.
But, by (7.98) it is easy to see that for /-almost all D,

(7.100) To( DY W (D))= W~ (D)= (W (D))".

Let @ and b be two elements in §(D) such that for any f; and
f 2 in Co(G),

(7.101) <ay, Wi (D)W (D)>=<b, (W; (D) (W, (D))" >
=<b, (W (D)W, (D)>=<b, To(DYW;,(D)W;,(D))>

Then (7.101) means that & is in the domain D(T(D)) of (To(D))*=
To(@), and

(7.102) a=Ty(D)b.

From the definition of T((D), H(D) is contained in D(T(H(D)).

We have to say the existence of a sequence {W/n(i&))} in Z(D)
which converges to & and {( Wfﬂ(@))A= To(D)( W 7.(D))} converges to
a. Transfering the problem onto H(D) by U (D), it is sufficient to say
the existence of a sequence {f,(®)} of the components on D of func-
tions {f,} in Co(G), which converges to b,=U(D)b and {T(D)f(D)}
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converges to a;=U(D)a=UD)To(D)b=T(D)b;,. Here we remember
the form of H(D) and T(D). That is, H(D) is the space of I P#>-
valued functions v(g) on G, which satisfy,

(7.103) v(hg)=Wi(w)v(g),

(7.104) SH\G||v(g)||2dg< + oo,
Moreover

(7.105) T(®)v(g)=(dc(g) ' v(g).

Hence, b:(g) belongs to D(T(D)), if and only if

(7.106) [ o Ib2(@Idg <+ o,
and
(7.107) [, de@lbr(@IPdg< +eo.

Now we take a sequence {t(n)} of positive numbers, such a way
that

1
. b pl—
(7.108) SWII (@IFdE<5-
1
.109 ~~——_4d b dE<—.
@ ) S(F,<,.)(A“’))" G(g)” l(g)H g<2n

Here m shows the complement in H\G of the image of the
set Fyny(4¥?) (cf. (2.28)) by the canonical map from G onto H\G.

As is shown in Lemma 2.8, T(®) leaves invariant (D) (=
Day2:(D)) and its restriction TH(D) on (D) satisfies,

(7.110) I THD)||=t.
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Therefore, by Lemma 7.9., we can take an element v,(=v,(g)) in
(D, t(n), 4¥?), such that

1
—— 2 o ——
(7.111) Sm(,., iy 101(8) — oI dZ <5y
7.112 S 4 bi(g)—v,(2)||2dg=
( ) (Fy(my (411%) G(g)” l(g) v(g)ll g
_ Tt 2gy e 1
S(Fz(n) (4“2))”(T(SD)b1)(g) d (SD)’vn(g)H dg < 2n )
That is,
2 1
(7.113) 61 —val| <_n—’
(7.114) | T(D)b1 — T(‘.D)vn||2<%.

We obtained a sequence {v,} in F(D)Y(DOUL(D, t, 44/*)) which
converges to b; and {T(®D)v,} converges to T(D)b,=a;.

This completes the proof.

Summarizing the above mentioned lemmas, we obtain the decom-

position of the regular quasi-Hilbert algebra on G.
Proposition 7.2. The map,
(7.115) f—»Sx W, (D)da(D)

gives a decomposition of the regular quasi-Hilbert algebra Co(G) on G.
And the correspondences of the operations on this algebras are given in
(7.84)~(7.87).

§8. Invariance of the Plancherel measure under the operations

of Kronecker product

In the previous paper [14], we proved an invariance of the Plan-
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cherel measure under the Kronecker product operations for unimodular
locally compact groups of type I. Here we shall extend this property
to the case of more general locally compact groups, and show the uni-
queness of measure satisfying such an invariance.

Let ©y={Dy, U} be a given fixed unitary representation of G.
We fix a complete orthonormal basis {v;} in 9y, and take a vector v
in ©,. For a general unitary representation D={9, U,}, we consider
the Kronecker product ®,®D. By the map

(8-1) (0(@, U), u-—>v®u, (ue‘i))’

& is mapped into DyXO. The image of ¢(D, v) is the closed subspace
v@9 of DD.
On the other hand, for any function f in L'(G), we can consider

a bounded operator on ;XY as

(8.2) U,@@®) ={_f()U@eRDd, .

And define a bounded map from  to RO by

(8.3) Up(Do, B, 0)=U(DyQD)op(D, v).

Lemma 8.1. For any f, k in L'(G) and any v, w in Do,
(8.4) (Us(Do, D, 0))*Ur(Do, D, w) = ;(de-(f.v)(@))*Uktp(i,u/)(@)-
Here
8.5) (), v)(Q)=<U(Do)v, v;>, ¢(}, w)(g)= < U(Do)w, v;>,

which are equal to zero for fixed v and w except for countably many
v’s, even if Qo is non-countably infinite dimensional. And the summa-

tion is taken under uniform topology of operator& on .

Proof, At first, since the series 2| <Uy(Do)v, v;> |2 converges
J
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uniformly on any compact subset of G, for any f in LY(G), there exists

a number N such that, for any u in Do,

(8.6) Z NUsgii,0y(D)u||?>= Z Uy, 0D, Usyi,0)(Dyu>

<{{__1renlifen

X | §N< Ugl(go)l% Uj> < ng(go)va vf> I“u'“zdrgldrgz
J

<ellul’.
But,

®.7) ||jiwwv)(@»*Uw,-,wwn

sup | Z Uy, D)y Ugyj,o)(D)u'> |

A
-
&.

M 712\1/2
‘jzzNHUw(f.u)(@)u [1%)*H=.

By the reason of (8.6), there exists a number N such that the right
hand side of (8.7) is bounded by ¢, independently on M. This shows
that the uniform convergence of the operator 2;(Uyy(j,»)(D))*Usy(s,u)(D)
in the right hand side of (8.4). ’

Thus, it is sufficient to show that for any u,, u; in 9,
(8.8) <UD, D, ))*Ur(Do, D, wuy, uz>
=§: < W05, N * Ukgj, (D1, uz>.
And this is shown by direct calculations as follows.
(8.9  <(Ui(Do, D, 0))*Ur(Do, D, wu1, uz>
= <UDy, D, w)u1,Us(Dy, D, v)uy>

= < U(Dy@D)o (D, wyui, Up(DyRD)oep(D, v)uz>
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— <U(D@D @), U/ Do®D)(v@uz)>
=1, He) FlaD) < U, @o@D)w@u1), Ve Do®D)
X (vQuz2)>d,g1d, g2
=({__ k(0 @D <Ue @0y, Up@oyv>

X <Ug(D)uy, Ug,(D)uz>d, g1d, g2

=1, H D@D T < Up @, 0> T (B0)v, 0>
X < Ugl(®)u1, Uh(@)uz> d,gld,gz

=] kenet we) Kol o)(e

J

x < Ugl(@)ula ng(@)uZ > drgldrgz*)

- Z:: <Ukyt5,0) (D)1, Usgis,0)(D)ua >

= ; <(WUsgiivy DN *  Ung s, ) D)y uz>.

q.e.d.

Now, we obtain the followings.

Proposition 8.1. For any f, k in Co(G) and any v, w in o,
(8.10) Sxfs»( T(DY(W (Do, D, v))* Wi(Ds, D, w) T(D))d i(D)
= SX%( T(D)(W {(D))* W4(D) T(D)) d (D) <w, v>.
Here

(8.11) W (Do, D, v)= W{(DyRD)oe(D, v),

Wk(@o, D, w)= Wk(@o®@)°¢’(@, w).

* For the convergence of this integral, cf. [14].
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And we extend the linear form T, to the operators of the form
(8.12) T(D)AF A T(D)= T@)}Z( Wf,(@))*; W, (D) T(D),
by
(8.13) to(T(D) AT 4. T(D))= ,Z,": o T®)( W7, (DN* W3 (D) T(D)).

And if H has the reduced dual of type I,
(8.14) SX T(T(@) (W (Do, D, 0))* Wi(Do, D, 1) T(D) dA(D)
- SX T, (T(D°) 1 (DO)* W4(D°) T(D)) d (D) <w, v>.
Proof. By the extended Plancherel formula (6.3),
(815) [ coTEPH@)* WD) T@)AAD) = <hdf?, f447>.
Thus, using the result of Lemma 8.1.,

(816) [ caT@)(/(Do, D, o)) WilDr, B, w) T(@)AAD)

Il

2 e TP 13010 W s ) TN D)

I

> <k¢(j, w)d?, f9(), v)4E*>

Il

J

[ #0) < U@ou, v,>(e(e) (&) <ULD)v, 7>
X (46(£))"d,g

={ MO T @5 U@, 1> <vj, Ue@o)v> de(@)drg

=( K@) F@ <Us@ow, Uy®o)v> do(g)drg

= <kdY?, fAY2> <w, v>
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= Ssta( T(D)(W (D)) W (D) T(D)) dA(D) <w, v>.

The proof of (8.14) is given just analogously. g.e.d.

Now we consider a n-dimensional subspace 9,(n=1, 2, ...) of 9.
And take a complete orthonormal basis {u;: 1<C i< n} in 9,. Denote

by ¢ (D, 9,), the imbedding map of 9,RD into R D.
On the other hand we can extend canonically the linear form rg

on the space 22 of operators on © onto M, QA2 by defining

(8.17) T3(ARB)=T,(4) X to(B)=(2 < Auj, u;>)re(B).
J

And for the identity operators I, on O, and I on 9, put

(8.18) T(D)=1,R T(D), and T(D)=IR T(D).

Proposition 8.2. For any f in Cy(G) and any n-dimensional sub-
space Oy of Do.

819) ()7 2a( PRI, D, D) W0, D, D) TuDN (D)
= e T@PH@DN* /D) T@)di(®).
Here,

(8.20) W (Do, D, D)= W(De@D)oep(D, Hu).

And if H has the reduced dual of type 1,

(8.21) (n)-lgxm 7 (Do, D, D) Tu( D)2 d (D)

- SX'” W (D) T dA(D).

Proof. Put P; the projection on ©,, whose range is the space

{Cu;} spaned by the vector uj, and put
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(8.22) P=P,QI
From the definition (8.17) of g,
(8.23) t(4A®B) = 23 t2(P(ARB)P)),
and for an operator C on R P,
(8.24) To((9(D, Du))*Co(D, Vn)) = §fm((¢(f®, u))* Co(D, u))).
Therefore
(8.25)  En(TUDYW Dy, D, D)* W (Do, D, Dn) Tu(D))
=Za(Tu(D)(@(D, D)* (W {(De@D))*
X W (De@D)p(D, D) Tn(D))
=Z2((¢(D, D)* T(D)(W (Do@D))*
X WD) T(D)p(D, D))
= ]Z ta((9(D, u))* T(D)(W (D @D))*
X W (De@D) T(D)¢ (D, u,))
= 2 ea(T(®)( W 1(Do, D, u)* W (Do, D, u;) T(D)).

Thus (8.19) follows from Proposition 8.1 directly.
The equality (8.21) is obtained by analogous way from (8.14).
q.e.d.

Considering the Kronecker product operation as the product on the
reduced quasi-dual X of G, the Plancherel measure has a property of
the invariance under this product. This invariance is very analogous
to the invariance of the Haar measure on groups under the group pro-
duct operation. Indeed, in abelian case, the Plancherel measure is just

the Haar measure on the dual group. Thus, following along the line



252 Nobuhiko Tatsuuma

of the theory of Haar measures on groups, we shall discuss the uniqu-

eness of invariant measure on X up to constant.

Definition 8.1. Let X, be the set of all equivalence classes of
unitary representations of G, dimensions of which are at most countably
infinite. Here, a subset & of X, is called an ideal, when

1) for any countable subset {D;} of I, TDD; belongs to S,

2) if Disin I, any subrepresentation of D is in JF,

3) for any D in I and any representation D, in Xy, Dy RD is

Lemma 8.2. The set Jn of all equivalence classes of subrepresen-

tations of countable multiple 3, DR is the smallest non-empty ideal.
Here, R shows the regular representation of G.

Proof. From the definition of g, 1) and 2) of Definition 8.1 are
trivial. Moreover, as is well-known, for any representation ®, in Xj,
Dy@N is equivalent to the multiple ) PR of R, with the multiplicity
of dimension of Dy, hence 3) is valid for Jn. Thus [y is a non-emp-
ty ideal.

Next, for any element ®, in a given ideal, R D, must belong
to . But from the commutativity of the Kronecker products R D,
is equivalent to Dy @R~ PNR. This means that >, PR belongs to
X, hence M is in F.  Therefore, Jn is contained in §. That is, Jn

is the smallest. q.e.d.

Now we denote the Borel structure on X given in §4, by 8.

Definition 8.2. A standard positive measure fi, on (X, B) is cal-
led admissible, when

1) the direct integral

(8.26) H= Sx@d/zl(@)
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is central,

2) for fii-almost all D, the following unitary representation D,=
{O(D), UD)} is equivalent to D by the equivalence relation U°(D)
defined by (7.94). Here (D) is the Hilbert space obtained by the com-
pletion of L (D) in (7.92), with respect to the scalar product (7.85),

and U (D) is the operator of continuous extension of the map
(8.27) W (D) W (D) Wy_1(D)

on (D).
Moreover an admissible measure ji; is called invariant, when for
any f in Co(G) and for any Dy in Xo, for any v in the space Do of

representation Dy, the followings are valid.

(8.28) erg( T(DY W H(Do, D, 0))* W,(Do, D, v) T(D))d (D)
={ T T@ D WD) T@N D)ol

Here we must remark that (8.28) is equivalent to the following
equation, for any f and k in Co(G) and for any ®,, for any v, w in

Do.

(8.29) SX%( T@)(W (Do, D, v))* Wi(Ds, D, w) T(D))df11(D)

= e TP @) D) T@) (D) <w, 0>

Indeed, for brevity, put the left hand side of (8.29) A(k, w; f, v)

and put the right hand side of (8.29) Z,(k, f)<w, v>, then it is easy
to see that the both sides are bilinear with respect to k£, w and bi-skew
linear with respect to f, v. And (8.28) shows,

(8'30) l(fa 'U;fs v)=10(f9f)<va v>.

Now we fix a non-zero v in 9o, and substitute f with f=+k, f=+ik.
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Subtractions of both sides leads us to
(8.31) A(fyvs kb, v)=2(f, k)<wv, v>.

Next, substitute v with v+w and v-+iw, then in a similar way, we

obtain

(8.32) A(fy v by w)=2(f, k) <w, v>.

This is just (8.29).

Lemma 8.3. If /i, is an invariant admissible measure on {X, B},
Do ®§) is equivalent to some subrepresentation of the multiple ZEB‘E)
of D with the multiplicity of the dimension of Dy, for any Dy in X,.
Here D is the representation defined by (8.26).

Proof. From 2) of Definition 8.2, the space éi)(@) of representa-
tion ® is considered as the space obtained by completion of the space

of operator fields
(8.33) vy={W (D)}
on X, with respect to the norm defined by
838 NodP={_ra((PADNHT@) A (D).
On the other hand, by Lemma 8.1,
(8.35) e T(DY(W (Do, D, 0))* Wi(Do, D, w) T(D))
= ? (T W 15,0y (D) * Wy j,10)(D) T(D)).
Therefore, (8.28), hence (8.29) are equivalent to

(8.36) Z < Vrgiw) Vfepin) > = <p, 05> <w, v>.
F]



Plancherel formula for non-unimodular locally compact groups 255

The left hand side of (8.36) is considered as the scalar product of the
vectors {Ury,uyt; and {vsu,.f; in the space Z‘,@@(@) And the
right hand side of (8.36) is the scalar product o]f the vectors w@ vy
and v@wv; in the space 9o ®Sg(§>). Thus it is easy to see the map
U defined by the followings gives an isometric map from HoRDD)

into 3 D H®D).
(8.37) U(;’”z@’vf,)g{;”fw(/’,vt)}j-

Because of (8.27) Ug(f’@)vf, corresponds to the operator field
{W( D)W y-i(D)=Wy.s5, (D)}. Therefore,

(8.38) U(U(D)o@U (D)) = {0(s25,-100i,0 ywpnr} i
Since,
(839) ¢(j3 Ug(@o)v)(go) =< Ugo(go) Ug(go)v, v;> =¢’(]a v)(gog),

(8.40)  U(U(D)vQU(®D)vs) = {v(syts,m05, 0= {Ue @05y} -

This shows,

(8.41) U(Uy(De) QUD) S z DUL®D).

This completes the proof.

Corollary 1. The set of all equivalent classes of subrepresentations
of countable multiple Z@@ of D is an ideal.

Proof. This is a direct result of Lemma 8.3 and the definition of

an ideal. q.e.d.

Corollary 2. The regular representation N is equivalent to a sub-
representation of ZEB%D
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Proof. Trivial from Lemma 8.2 and Corollary 1 to Lemma 8.3.

q.e.d.

From 1) of Definition 8.2 and from the uniqueness of the central

decomposition,
(8.42) -,2 EBQES;SX@ D D)d (D)

gives the central decomposition of 3 DD. Therefore, the central de-

composition of any subrepresentation ®; of ), EB@ is given by

(8.43) Di=( P@(Z ODm®).

Here P(D®) is the projection on Y, B H(D), which is defined by the de-

composition of the projection P on S)(@) to the space of subrepresenta-

tion ¥, as
(8.44) P~SXP(€D)d[Z1(SJ)

for /i;-almost all D.

Lemma 8.4. The Plancherel measure [ is absolutely continuwous

with respect to any invariant admissible measure fi; on (X, B).

Proof. By the reason of Corollary 2 to Lemma 8.3, we can apply
(8.43) to the case that R=D,;. Thus the central decomposition of R

must be given by
(8.45) R=| PEZHD)ILD).

On the other hand, the arguments in §5 claim that the central de-

composition of R is given by

(8.46) SR_:_SX@dﬂ(SD).



Plancherel formula for non-unimodular locally compact groups 257

Again from the uniqueness of the central decomposition, # must

be absolutely continuous with respect to /. q.e.d.

We can prove the converse assertion,

Lemma 8.5. Any invariant admissible measure fI, on (X, B) is

absolutely continuous with respect to the Plancherel measure [.

Proof. If not, we can write as
(8.47) J1=71+Ds.

Here v; and #Z are mutually singular and ¥, is absolutely continuous
with respect to /fi.

By Lemma 8.3, ER(X)@ is equivalent to a subrepresentation of
S PD. So we can apply (8.43) to the case @1'\«3{@@, and we ob-

tain the central decomposition of the form
(8.48) R@D=| P(DNZ ODIm®).

On the other hand, §R®® has the central decomposition
(8.49) ned=ron=| novii®).

Comparing (8.48) and (8.49) and from the uniqueness of the cen-

tral decomposition, we obtain that
(8.50) P(D)=0, for P1-almost all D.

And from (8.33) and (8.37), this is equivalent to that for any j
and any v in $,(=L*(G)) and any f in Co(G),

(8.51) W 45,0/ D)=0, for pi-almost all D.

By the reason of the arbitrariness of the selection of the complete or-
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thonormal basis {v;} in ©,, we obtain that for any v, u in L*(G) and

any f in Co(G),

(8.52) W'M,(@):O, for v;-almost all D.
Here
(8.53) P(g)=<Ugv, u>.

Since for any function % in Co(G), it is easy to find functions f, u, v
in Cy(G) such a way that

(8.54) f(@<Ug, u>=k(g),
The relation (8.52) means that for any f in Co(G)
(8.55) W/(D)=0, for v;-almost all D.

That is, &(®), consequently, H(D) are trivial for §;-almost all D. This
contradicts to 2) of Definition 8.2. q.e.d.

Proposition 8.3. Awny invariant admissible measure fi, on (X, B)
is the form of

(8.56) di, (D)= cdi(D) (c>0).

Proof. Because of Lemmata 8.4 and 8.5, there exists a positive

measurable function w(®) on X, such that

(8.57) d i1 (D) =w(D)d (D).
Consider the scalar operator w(®)Ip on each space (D), and define

a positive definite self-adjoint operator 4 on L%(G) by

(8.58) A= wa(@)fmda(@).

Since the direct integral (8.46) is the central decomposition of R, it is

easy to see that
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(8.59) AR,=R A4, AL,=L,A4, for any g in G.

Moreover,

8.60)  <Af, k> = ra((T(D) Wu(D)* T(D) Wy (D)u(®) dA(D)

={ ea((T@) PA@)* T@) P (@) (D).

Now consider the decomposition

(8.61) DRQR~ DR

which is obtained by the map U in (8.37) in the case [ =g. And,

we get
(8.62) U® f)={f¢(js v} vE Do, fE€ L*G),
(8°63) ¢(], ’U)(g) = < Ugva vj> .

And the invariance of f asserts
(8.64)  <v,w><f, k> )= ; <f9(j, v), kO(j, w)> 1x6)-
Substituting Af for f,
(8.65) <wv, w> < Af, k> 136)= Z]I (A9, v), kY(j, w)> 116y
On the other hand, from the invariance of /i,
(8.66) <v, w> < Af, k> 1x6)= :E <Afo(, v), kY(f, w)> 1)

But the vectors {k¢(j, w)}; span the space 3P LEG), therefore the
7

followings are valid.

(8.67) {4, O}=1A4(fo(js o}

Thus A must commute with the operators of multiplication of the
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functions ¢(j, v) and short arguments lead us to that there exists a

positive measurable function a(g) on G and

(8.68)

Af)g)=al(g) f(g), for almost all g.

Lastly, by (8.59) we obtain that a(g) is constant for almost all g.

That is, for some positive constant c,

(8.69) A=c-I.
Consequently,

(8.70) w(®)=c, for ji-almost all .
And

(8.71) Ag1(D)=cdi(D).

This completes the proof.

(Added in proof, December 14, 1971) Note. The author owes

motivation to study the theory of Plancherel formula for non-unimodular

groups to the late Professor A. Kohari who died on November 20, 1971.

The author wishes to express acknowlegement for his suggestions given

in 1961.
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