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1. Let £ and A be commutative rings with 1 and assume that
A is a k-algebra. we shall say that the k-algebra A has a plenty
of high order derivations over % if the ring of endomorphisms of A
over k is filled up with the derivation algebra of A over k, or
equivalently any k-linear endomorphism f of A such that f(1)=0
is a high order derivation.” Such a ring A will be referred to as
a P.H.D. ring in the sequel. In the case where both of A and %
are fields it was proved in [2] and [4] that A is a P.H.D. ring
over k if and only if A is a purely inseparable finite extension of
k. The purpose of the present paper is to generalize this result by
deleting the assumption that A is a field. The final result is the

following

Theorem. Let k be a field and let A be a commutative k-
algebra. Then A is a P. H.D. ving if and only if A satisfies the
following three conditions:

(1) A is a quasi-local ring.

2) The maximal ideal M of A is nilpotent.

(8) The residue field A/M is either k or a purely inseparable

finite extension of k.

1) Cf [3] for the definition and main properties of high order derivations.
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2. The proof of the “if” part of the Theorem

First we shall take up the case where the natural injection
k—A/M is surjective. For the proof of the theorem it suffices to
show that the ideal I,=Ker(AQA—A) is nilpotent (cf. [2]). Let
o;((€1) be a basis of k-module M. Then I, is generated by r(w;)
=1Qw;—0:Q1(FE 1) as a left A-module. Hence the nilpotency of
I, follows immediately from the nilpotency of M and the following

Lemma 1. Let us set t(x) =1Q0x—xQ1 for x€A. Then we
have

@D, cx)rlx)clx)= SE:O(_ 1):<2<;1‘7u”’xuf (CTIR 7R FRRE B N

Proof. The proof will be carried out by induction on gq. The
case ¢=1 is immediate since we have z(xo)z(x:) =7 (Xoxs) — Xor (1)
—x:7(%,). Assuming (1), we have

T(xo) T(xl) "'T(xq) T(xﬂl)

q A
=21(—1)" 3 xipxir (X Loyt Eiy ) T (Xg4n)
s=0 1< <issa

q A
=50(—1)" > Axiooxr(e Loy £ XeXer)
s=0 n<..<is<g

q
X X Xt (xo‘ 'Jei;' 'Je;,' 'xq) - (Iloxi)r(xwl)}
q A A
:2(—1)‘ > xil...xisz-(xo..x‘,l..xi’..x”l)
5=0 (< <is<g+1
g 1 A £ a1 g+ 1
+2(—1)™ %, - X ~xq+1z'(x,-)+20(—1) s Jr * Xyt (Xq41)
i=0 =
q+1 A A
=2(-1) > (e Xy Xy “Xorr)
$=0 01< <is<g+l

since we have
é(_l)sﬂ(CI‘ls‘l) _ (_l)q-i-l.
5=0

Next we shall take up the case where A/M is a purely insepa-
rable extension of degree m over k. Then the characteristic p of &
is a positive prime number and m is of the form p’. Let y,(j=1,
....m) be elements of A whose residue classes form a basis of A/M
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over k£ and let us set E1=éAr(y,)A. Let o;(i=I) be a basis of
=
M over k, and let us set E2=ZlAr(w,-)A. Then we have IL,=FE,+

E, and the Lemma 1 implies that there exists an integer # such
that E;=(0). On the other hand we see easily that E}°CE, because
r(y)"eE,. From these considerations we easily arrive at the
conclusion that I, is nilpotent.

3. The proof of “only if” part of the Theorem

Lemma 2. Let A be a k-algebra and let B be a sub-k-algebra.
Assume that B is a direct summand of A as a k-module. Then
if Aisa P.H.D. rving, B is also a P. H.D. ring.

Proof. Let j be the projection of A onto B and let ¢ be the
injection of B into A. Let f be an element of Hom,(B, B) such
that (1) =0. Then ifj =Hom,(A4, A) and (ifj) (1) =0. The assump-
tion implies that 15'(ifj) =0 for some ¢ where I,=Ker(ARQA—>A)
(cf[1]). In palticular I5'(éfj) =0. Since j is identity on B we
have I%''%if=iI%"'f=0. Since ¢ is injective we see that I%"f=0,
i.e., f is also a g-th order derivation.

This is a generalization of proposition 6 of Kikuchi [2].

Lemma 3. Let k be a field and let A and B be k-algebras.
Assume that there exists a k-algebva homomorphism = of A onto
Band Aisa P H.D. ring over k. Then B is also a P.H D.
ring over k.

Proof. Let f be an endomorphism of B over % such that f(1)
=(0. We shall show that f is a high order derivation. Since % is
a field there is a k-linear map F of A over k such that fr=n=F.
Since 0=f(15) =fr(14) we can choose F so as F(1,) =0. Then by
assumption F is a high order derivation of order, say, ¢g. We shall
show that f is also a g¢-th order derivation of B. In fact let &, &,
-+, b, be arbitrary (g¢+1)-elements of B and let a,, @, ', a, be ele-
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ments of A such that n(a;) =58, 0<<i<<b. Then we have

J (bobs+++b,) =fr(awa--a,)
=nF(aya,--a,)

=ﬂ{é(—1)s SV an @, F(ae6ise-a,)}
s=0 <. <is
=33(=1)" 3 by, £ (Borobobiyeeoby).
s=0 H< - Lis

Lemma 4. Let k be a field and let A and B be two k-algebras
and let C=AXB be the direct product of A and B. Then C is not
a P.HD. ring

Proof. We shall denote the element of C by (@, b) (e A, beB).
Then the sums and products are defined by componentwise operations
and the structure homomorphism /% of k into C is given by

h(x)=(f(x), g(x)) (x€k),
where f and g are structure homomorphisms of A and B respectively.
Let us set e;=(1,0), e.=(0,1). Let ¢ be an element of Hom,(C, C)
such that ¢(e) =e, and ¢(e.) = —e,. Then ¢(1) =¢(e;+e,)=0. We
shall show that ¢ is not a high order derivation. In fact if ¢ is a
high order derivation of order, say, ¢, then we have

q
ex=¢(e) =¢(ef") = %‘1( =1 ("Det" g (el)
= i" (— 1) (qtl)elez =0.
sm]
This is contradiction.

Lemma 5. Assume that a k-algebva A is a P. H.D. ving and
let a be an element of A. Then there exist integers m and n and
an element a of k such that («"—a)"=0.

Proof. Let a be an arbitrary elment of A and let I(a) be the
ideal of k[x] consisting of elements f(x) such that f(a«)=0. Let
fa(x) be a generator of I(a).

(1) The case where [I(a) is a prime ideal. If I(a)=0 £k[a]
is isomorphic to a polynomial ring and is contained in A. By
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Lemma 2 k[a] must be a P.H. D, ring. This is impossible as we
can see immediately (cf. also [2]). Similarly f.(x) cannot be a
separable polynomial of degree 1. Hence fu(x) is linear or an
inseparable polynomial. Let e be the reduced degree of fo(x). Then
a suitable power of «, say o’ =p, is a separable element of degree
e over k. Hence by the same reasoning as above we must have
e=1, i.e., fa(x) has the from x* —a, ack, ask’.

(2) The case where I(a) is a primary ideal. In this case
fa(x) =ga(x)" for a suitable irreducible polynomial g«(x) over k.
Since k[a] =k[x]/I(«) is a subring of A, and k is a field, k[a] is
a P.H.D. ring. Then the Lemma 3 implies %k[x]/g.(x) is also a
P.H.D. ring. So the above consideration implies that g.(x) should
be an irreducible polynomial of reduced degree 1.

(3) The case I(«) is not primary. Let

fol®) = gi(x)™

be a decomposition of f.(x) into relatively prime factors. Since
kla] is a P.H.D. ring the residue class ring of k[a] is also a
P.H.D. ring (Lemma 3). Hence every factor g;(x) is of reduced
degree 1, i.e., g;(x) is of the from x"—a. we shall show that the
number s of the factors cannot be >1. In fact if s>2 then
g:1(x)g:.(x) has one of the forms, x(x"—a), (x"—a) (x™—b) where a
and b are non-zero elements of £ and x"—a and x"—0& are relatively
prime. Then k[x]/g.(x)g.(x) is isomorphic to the direct product
of two k-algebras and is not a P.H.D. ring by Lemma 4. On the
other hand this is a residue class ring of k[a] and hence should be
a P.H.D. ring by Lemma 3. This is a contradiction. Thus we
have seen that the case (3) can not occur, and the proof of Lemma

5 is complete.

From Lemma 5 we can see that every non-unit of A is nilpotent.
In fact if « is non-unit of A, then the element a such that (¢"—a)™

=0 cannot be a non-zero element. Hence the corresponding @ is
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zero and a is seen to be nilpotent. Since A is assumed to be com-
mutative the ncn-units of A form an ideal. Thus A is a quasi-local
ring. The assertion (2) on residue field is the consequence of
Lemma 3 and Theorem 2 of [2].

we shall show next that M is nilpotent. Let us set B=k+ M.
Then B is a sub k-algebra of A and hence a P.H.D. ring by
Lemma 2. Now assume that M is not nilpotent and let f be a k-
linear endomorphism of B such that f(1) =0 and f(x) =x for x M.
We shall show that f is not a high order derivation. In fact if f
were a high order derivation there is an even integer g such that
f is a q-th order derivation. By assumption M*"'#(0) and hence
there exist elements x,, x4, --+ %, in M such that x, xy:-x,7%0. On
the other hand the difining equation for high order derivations
implies that

Q

2=f(Ix) =3~ 5 e f (oo Fir oo 2,)
0 i=0 s=1 (1< <is

= (S D7) x= 1+ (-1 [Lx=o.

This is a contradiction !
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