Homology submanifolds and homology classes of a homology manifold

By

Masahisa Adachi

(Received, July 21, 1972)

This note is concerned with the problem of the realisation of homology classes of a homology manifold by homology submanifolds. First the C^{∞} -case of this problem was studied by R. Thom [6]. Next the *PL*-case and *TOP*-case were studied in [1], [2], [3].

The present study is founded on the Williamson's transversality theorem [7]. We shall apply R. Thom's method [6] to homology manifolds.

The author is grateful to Professor N. Shimada and Mr. T. Matumoto for their kind criticisms.

1. Statement of the results

We shall obtain the following results:

Theorem 1. Let V^{*} be a homology manifold of dimension n $(n\geq 2)$. For $1\leq k\leq n/2$, all homology classes of $H_{*}(V^{*}, \mathbb{Z}_{2})$ can be realized by homology submanifolds which have normal PL-microbundles.

Theorem 2. Let V^n be a homology manifold of dimension n $(n\geq 2)$. All homology classes of $H_{n-1}(V^n, \mathbb{Z}_2)$ can be realized by homology submanifolds which have normal PL-microbundles.

These results are quite in parallel with those of PL-case in [2].

2. Preliminaries

A compact polyhedron M is a homology *n*-manifold, if there exists a triangulation K of M such that for all $x \in |K|$, and for all $r, H_r(Lk(x, K), Z)$ is isomorphic to $H_r(S^{n-1}, Z)$. Here Lk(x, K) is the boundary of the star St(x, K) of x in K.

It can be seen that this definition is independent of the triangulation chosen.

We know that homology *n*-manifolds are Poincaré complexes of formal dimension n (cf. Maunder [5]).

Let (M, K) be a homology *n*-manifold. Then for $n \ge 2$, any $x \in |K|$, Lk(x, K) is a homology (n-1)-manifold (cf. Alexander [4]).

Let M be an homology *m*-manifold, properly embedded in a homology *q*-manifold Q. Then we shall say M is a homology submanifold of Q.

Let V^n be a homology *n*-manifold and W^p be a homology submanifold of dimension p of V^n . The inclusion map $i: W^p \to V^n$ induces the homomorphism

 $i_*: H_p(W^p, \mathbb{Z}_2) \rightarrow H_p(V^n, \mathbb{Z}_2).$

Let $z \in H_p(V^n, \mathbb{Z}_2)$ be the image by i_* of the fundamental class w of the homology *p*-manifold W^p . Then we say that the homology class z is *realized* by the homology sub-manifold W^p .

Here the following question is considered : Let a homology class $z \mod 2$ of a homology manifold V^n be given. Is it realizable by a homology submaniford ?

3. Williamson's transversality theorem

In this section we shall recall Williamson's transversality theorem (cf. Williamson [7]).

Let ξ be a *PL*-microbundle:

$$\boldsymbol{\xi} : \boldsymbol{B}(\boldsymbol{\xi}) \stackrel{i}{\longrightarrow} \boldsymbol{E}(\boldsymbol{\xi}) \stackrel{j}{\longrightarrow} \boldsymbol{B}(\boldsymbol{\xi}),$$

X be a complex, and suppose $E(\xi)$ is contained in X so that $B(\xi)$ is a closed *PL*-subspace of X. Then we say X contains the *PL*-

microbundle ξ . If $E(\xi)$ is a neighborhood of $B(\xi)$, then we say ξ is a normal PL-microbundle for $B(\xi)$ in X.

Definition. Let S and T be locally finite simplicial complexes and ξ be a normal *PL*-microbundle for $B = B(\xi)$ in T. Let $f: S \rightarrow T$ be a *PL*-map. If $A = f^{-1}(B)$ has a normal *PL*-microbundle η in S such that η is isomorphic to $(f/A)^*\xi$, then we shall say f is transverse regular for (η, ξ) , or briefly, f is t-regular.

R. Williamson Jr. obtained the following theorem.

Theorem 3. Let S and T be locally finite simplicial complexes and let $f: S \rightarrow T$ be a PL-map. Suppose that T contain a PLmicrobundle ξ . Then there is a PL-homotopy H_t of f such that H_1 is t-regular for (η, ξ) .

4. A lemma on homology manifolds

Lemma. Suppose V is a homology (n+q)-manifold and M is a PL-subspace of V which has a normal PL-microbundle of dimension q in V $(n,q\geq 1)$. Then M is a homology n-manifold.

Proof. Given any $x \in M$ there is an open neighborhood U of x in M and a neighborhood W of x in V, also open, such that $U \times \mathbb{R}^{q}$ is *PL*-homeomorphic to W, by the definition of normal *PL*-microbundles. So it suffices to prove the lemma for the special case M=U, V=W, and W itself is $U \times \mathbb{R}^{q}$. If the lemma is true for q=1, it follows that $U \times \mathbb{R}^{q-1}$ is a homology (n+q-1)-manifold, then by induction that U is a homology n-manifold. So it suffices to consider q=1.

We triangulate $U \times R$ by the convex product cells of U and a simplicial subdivision of R, and we suppose x is a vertex of U and O is a vertex of R. The link of x relative to $U \times R$, that is the unique cell complex Lk(x, W) such that the closed star St(x, W)is the join Lk(x, W) * x is the same, up to x, *PL*-homeomorphism, for any two convex cell subdivision of $U \times \mathbf{R}$.

In the product cell triangulation of $U \times \mathbf{R}$.

 $St((x, O), W) = St(x, U) \times St(O, \mathbf{R})$

and

$$Lk((\mathbf{x}, \mathbf{0}), W) = Lk(\mathbf{x}, U) \times St(\mathbf{0}, \mathbf{R}) \cup St(\mathbf{x}, U) \times Lk(\mathbf{0}, \mathbf{R}).$$

Now $Lk(O, \mathbf{R})$ is just two points, say 1 and -1, while in Lk((x, O), W)

 $St((x, 1), Lk((x, 0), W)) = St(x, U) \times 1.$

It follows that

 $Lk((x, 1), Lk((x, 0), W)) = Lk(x, U) \times 1.$

However, Lk((x, O), W) is a homology *n*-manifold. Therefore, Lk(x, U) has the same homology group as the (n-1)-sphere. Thus we have obtained the lemma.

5. Fundamental thenrem.

Definition. We say that a cohomology class $u \in H^*(A, \mathbb{Z}_2)$ of a space A is PL_k -realizable, if there exists a mapping $f: A \rightarrow MPL_k$ such that u is the image, for the homomorphism f^* induced by f, of the fundamental class U_k of the Thom complex MPL_k of the universal PL-microbundle $\Upsilon(PL_k)$ of dimension k.

Then we have the following fundamental theorem.

Theorem 4. Let V^* be a homology manifold of dimension n $(n\geq 2)$. Then, in order that a homology class $z \in H_{n-k}(V^*, \mathbb{Z}_2)$, k>0, can be realized by a homology submanifold W^{n-k} of dimension n-k which has a normal PL-microbundle in V^* , it is necessary and sufficient that the cohomology class $u \in H^*(V^*, \mathbb{Z}_2)$, corresponding to z by the Poincaré duality, is PL_k -realizable.

Proof. i) *Necessity.* Homology manifolds are Poincaré complexes. Therefore, the proof of the necessity is the same as that of PL-case in [1].

120

ii) Sufficiency. Let

 $\Upsilon(PL_k): B(PL_k) \xrightarrow{i_k} E(PL_k) \xrightarrow{j_k} B(PL_k)$

be the universal *PL*-microbundle of dimension *k*. Suppose that there exists a mapping *f* of V^n into $M(PL_k)$ such that $f^*(U_k) = u$. Then the Thom complex $M(PL_k)$, deprived the point * at infinity, is considered as a locally finite simplicial complex, and *PL*-subspace $B(PL_k)$ has the normal *PL*-microbundle $\Upsilon(PL_k)$ in $M(PL_k) - *$. By the Williamson's transversality theorem, we have a mapping f_1 , homotopic to *f*, *t*-regular for $(\nu, \Upsilon(PL_k))$, where ν is a normal *PL*-microbundle of $f_1^{-1}(B(PF_k))$ in V^n . However, by the lemma in §3, $f_1^{-1}(B(PL_k))$ is a homology submanifold W^{n-k} of dimension (n-k). Moreover, by the definition of *t*-regularity, the induced *PL*-microbundle $f_1^*\Upsilon(PL_k)$ is isomorphic to ν . We know $f_1^*(U_k) = f^*(U_k) = u$. Then, as in the proof of Theorem in [1], we can see that the homology submaniford W^{n-k} realizes the homology class *z*, correspoding to *u* by the Poincaré duality. Thus we have obtained the theorem.

6. Proof of Theorem 1 and 2.

As in § 3 of [2], Theorem 1 follows easily the fundamental theorem and Proposition 4 in [2]. Theorem 2 follows also the fundamental theorem and § 2, d) in [2].

MATHEMATICAL INSTITUTE KYOTO UNIVERSITY

References

- M. Adachi, PL-submanifolds and homology classes of a PL-manifold, Nagoya Math. J., 29 (1967), 69-74.
- [2] M. Adachi, PL-submanifolds and homology classes of a PL-manifold II. J. Math. Kyoto Univ., 7 (1967), 245-250.
- [3] M. Adachi, Topological submanifolds and homology classes of a topological manifold, J. Math. Kyoto Univ., 12 (1972), 87-94.
- [4] P. Alexandroff, Combinatorial Topology, 1947.
- [5] C. Maunder, Algebraic Topology, 1970.
- [6] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 17-86.
- [7] R. Williamson Jr., Cobordism of combinatorial manifolds, Ann. of Math., 83 (1966), 1-33.