J. Math. Kyoto Univ. (JMKYAZ) 13-1 (1973) 53-58

A note on Malliavin's result

By

Satoshi Suzuki

(Received May 11, 1972)

In this note, we show that by a similar method to that used in the author's [4], we can give a direct proof and a slightly preciser statement for M. P. Malliavin's result on modules of differentials of localities of complete intersection in [2].

Let A be an affine ring over a field k. Let \mathfrak{p} be a prime ideal of A. We put $R = A_{\mathfrak{p}}$ and we denote by $\mathcal{Q}_{R/k}^1$ the module of differentials of R over k. Then, the equivalence of 1° and 3° in Proposition 6 in [2] amounts to saying the following.

Theorem. Assume that k is perfect, and R is a complete intersection and reduced. Let q be a non-negative integer. Then the following two statements are equivalent.

(1) If \mathfrak{Q} is a prime ideal of R such that Krull-dim $R_{\mathfrak{Q}} \leqslant q$, $R_{\mathfrak{Q}}$ is a regular local ring.

(2) Every R-sequence with q-elements or less is an $\Omega^{1}_{R/k}$ -sequence.

In case q=1, this is J. Lipman and the author's result in [1] and [4], "With the same assumption as above, $\Omega_{R/k}^{1}$ is torsion free if and only if R is integrally closed" and in case q=2, it is J. Lipman's result in [1], "Under the same assumption as above, $\Omega_{R/k}^{1}$ is reflexive if and only if R has no singularities of codimension 1 and 2".

Malliavin has given a proof of the above theorem, using an

argument on q-torsion but we will give here an elementary proof, in the course of our proof, we will find out the following preciser statement.

Corollary. With the same assumption as in the theorem, let Ω be a prime ideal of R such that Krull-dim $R_{\Omega} = s$. Assume that R_{Ω} is not a regular local ring. Then, every R-sequence t_1, \dots, t_r , in Ω with r < s can be imbedded in an R-sequence $t_1, \dots, t_r, t_{r+1}, \dots, t_s$ in Ω which is not an $\Omega_{R|k}$ -sequence.

As in [4], the above theorem and corollary are also valid, if k is not perfect but we take a differential constant field k^* of R in the sense of E. Kunz [3] instead of k and Ω_{k/k^*}^1 instead of $\Omega_{k/k}^1$, respectively. However, for the simplicity we will treat only the case where k is perfect. We can easily extend our proof to that for the general case, referring to the argument in [4].

Lemma. Let S be a noetherian local ring. Let \mathfrak{N} be a prime ideal of S such that height $\mathfrak{N}=depth \mathfrak{N}=1$. We denote by \mathfrak{N}^{-1} the set of elements x in the total ring of quotients of S such that $x\mathfrak{N}\subset S$. Then it holds that $\mathfrak{N}^{-1} \supseteq S$. Actually, we can find elements $a, b \in S$ such that a is a non-zero divisor in S, $b/a \in \mathfrak{N}^{-1}$, $b/a \notin S$ and $sb \notin (a)$ for every element $s \in S - \mathfrak{N}$.

Proof. By our assumption, there exists a non-zero-divisor a in \mathfrak{N} . Let $(a) = r_0 \cap r_1 \cap \cdots \cap r_k$ be an irredundant primary decomposition of (a) such that the associated prime ideal of r_0 is \mathfrak{N} . Then, there exists a positive integer t such that $(a) \supset \mathfrak{N}' \cap r_1 \cap \cdots \cap r_k$ and $(a) \supset \mathfrak{N}'^{-1} \cap \cdots \cap r_k$ and $b \in (a)$. Then, it holds that $b/a \notin S$ and $b/a \in \mathfrak{N}^{-1} \cap r_1 \cap \cdots \cap r_k$ and $b \notin (a)$. Let s be an element in $S - \mathfrak{N}$. Assume that $sb \in (a)$. Then we have $b \in aS_{\mathfrak{N}} \cap S = r_0$. Hence $b \in r_0 \cap r_1 \cap \cdots \cap r_k = (a)$, which is a contradiction. Hence we get our lemma.

Proof of the theorem. By our assumption, there exists a polynomial ring $B = k[X_1, \dots, X_n]$, a prime ideal \mathfrak{P} of B and a reduced ideal \mathfrak{S} of $B_{\mathfrak{P}}$ which is generated by r elements f_1, f_2, \dots, f_r in B with $r = \text{height } \mathfrak{S}$ such that $R \simeq B_{\mathfrak{P}}/\mathfrak{S}$. Let d be the canonical derivation of B into $\mathcal{Q}_{B/k}^1$. x_1, x_2, \dots, x_n denote the classes of X_1, X_2, \dots, X_n modulo \mathfrak{S} . Then we have

$$\mathcal{Q}_{R/k}^{1} \simeq R \bigotimes_{B} \mathcal{Q}_{B/k}^{1} / \sum_{i=1}^{\prime} R(1 \otimes df_{i})$$

and

$$1 \otimes df_i = \sum_{j=1}^n \frac{\partial f_i(x)}{\partial X_j} (1 \otimes dX_j) \qquad (i=1, 2, \cdots, r).$$

Let t be an arbitrary minimal prime ideal of R. Then R_t is a field and we have

$$\mathscr{Q}^{1}_{R_{\mathfrak{t}}/k}\simeq R_{\mathfrak{t}}\otimes_{R}\mathscr{Q}^{1}_{R/k}\simeq R_{\mathfrak{t}}\otimes_{B}\mathscr{Q}^{1}_{B/k}/\sum_{i=1}^{r}R_{\mathfrak{t}}(1\otimes df_{i}).$$

 $\mathfrak{Q}_{B/k}^{1}$ is a *B*-free module and $\mathfrak{Q}_{R_{t}/k}^{1}$ is an *R*_t-free module. Since $\operatorname{rank}_{B} \mathfrak{Q}_{B/k}^{1} - \operatorname{rank}_{R_{t}} \mathfrak{Q}_{R_{t}/k}^{1} = r$, $1 \otimes df_{1}, \cdots 1 \otimes df_{r}$ are linearly independent over *R*_t. Hence they are linearly independent modulo t. Since t is arbitrary, $1 \otimes df_{1}, \cdots, 1 \otimes df_{r}$ are linearly independent over *R*.

(1) \Rightarrow (2). We use an induction on the number of elements in an *R*-sequence. Let h_1, h_2, \dots, h_s be an *R*-sequence with $s \leq q$. By our induction assumption, h_1, \dots, h_{s-1} form an $\mathcal{Q}_{R/k}^1$ -sequence. We put $\overline{R} = R/(h_1, h_2, \dots, h_{s-1})$ and $M = \mathcal{Q}_{R/k}^1/(h_1, h_2, \dots, h_{s-1})\mathcal{Q}_{R/k}^1$. Then it holds that $M \simeq \overline{R} \otimes_B \mathcal{Q}_{B/k}^1 / \sum_{i=1}^r \overline{R}(1 \otimes df_i)$. Let \overline{h}_s be the class of h_s modulo (h_1, \dots, h_{s-1}) . We have only to prove that \overline{h}_s is not a zerodivisor for M. Let $\overline{x}_1, \dots, \overline{x}_n$ be the classes of x_1, \dots, x_n in \overline{R} . Assume that we have a relation

$$\overline{h}_s(\sum_{j=1}^n \overline{t}_j(1 \otimes dX_j)) = \sum_{i=1}^r \overline{l}_i(1 \otimes df_i)$$

in $\overline{R} \bigotimes_{B} \mathcal{Q}_{B/k}^{1}$, where $\overline{t}_{j}, \overline{l_{i}} \in \overline{R}$. It means that

$$\overline{h}_{s}\left(\sum_{j=1}^{n}\overline{t}_{j}(1\otimes dX_{j})\right)=\sum_{j=1}^{n}\left(\sum_{i=1}^{r}\overline{t}_{i}\frac{\partial f_{i}(\bar{x})}{\partial X_{j}}\right)(1\otimes dX_{j}).$$

Satoshi Suzuki

That is, we have simultaneous linear equations

(1)
$$\sum_{i=1}^{r} \frac{\partial f_i(\bar{x})}{\partial X_j} \bar{l}_i = \bar{h}_s \bar{t}_j \qquad (j=1, 2, \dots, n)$$

with respect to $\overline{l}_1, \dots, \overline{l}_r$. Let $\overline{\mathfrak{Q}}$ be an associated prime ideal of (\overline{h}_s) . Let \mathfrak{Q} be the pre-image of $\overline{\mathfrak{Q}}$ in R, which is an associated prime ideal of $(h_1, \dots, h_{s-1}, h_s)$. Then we have height $\mathfrak{Q} = s \leqslant q$. Therefore, by our assumption and the Jacobian criteria it holds that the rank of the matrix $\left(\frac{\partial f_i(\bar{x})}{\partial X_j}\right)_{\substack{i=1,2,\dots,r\\ j=1,2,\dots,r}} \mod \overline{\mathfrak{Q}}$ equals r. Therefore, it follows from (1) that $\overline{l}_i \in \overline{h}_s \overline{R}_{\overline{\mathfrak{Q}}} \cap \overline{R}$. Since $\overline{\mathfrak{Q}}$ is arbitrary, we have $\overline{l}_i \in \overline{h}_s \overline{R}$ $(i=1,2,\dots,r)$. Hence, we can put $\overline{l}_i = \overline{h}_s \overline{l}_i'$ $(i=1,2,\dots,r)$, where $\overline{l}_i' \in \overline{R}$. Then we have

$$\overline{h}_s(\sum_{j=1}^{r}\overline{t}_j(1\otimes dX_j) - \sum_{i=1}^{r}\overline{l}_i'(1\otimes df_i)) = 0$$

and therefore

$$\sum_{j=1}^{n} \overline{t}_{j}(1 \otimes dX_{j}) = \sum_{i=1}^{r} \overline{l}_{i}'(1 \otimes df_{i}),$$

because \overline{h}_s is not a zero-divisor for $\overline{R} \bigotimes_{B} \Omega^{1}_{B/k}$. Hence it follows that \overline{h}_s is not a zero-divisor for M.

(2) \Rightarrow (1). First we show the following assertion by induction on s. "Let h_1, \dots, h_s be an *R*-sequence with $s \leqslant q$. Then $1 \otimes df_1, \dots, 1 \otimes df_r$, are linearly independent modulo (h_1, \dots, h_s) in $R \otimes_{\mathcal{B}} \mathcal{Q}^1_{\mathcal{B}/k}$." We already proved it in case s=0. Assume that $s \ge 1$. Let β_1, \dots, β_r be elements in *R* such that

$$\beta_1(1 \otimes df_1) + \cdots + \beta_r(1 \otimes df_r) \equiv 0 \mod. (h_1 \cdots h_s) R \otimes_B \Omega^1_{B/k},$$

that is, there exist $m_1, \dots, m_s \in R \bigotimes_B \Omega^1_{B/k}$ such that

$$\beta_1(1 \otimes df_1) + \cdots + \beta_r(1 \otimes df_r) = h_1 m_1 + \cdots + h_s m_s.$$

Since h_1, \dots, h_s are an $\mathcal{Q}_{R/k}^{l}$ -sequence, there exist $l_1, \dots, l_{s-1} \in R \bigotimes_B \mathcal{Q}_{B/k}^{l}$ and $\gamma_1, \dots, \gamma_r \in R$ such that

$$m_{s} = h_{1}l_{1} + \cdots + h_{s-1}l_{s-1} + \gamma_{1}(1 \otimes df_{1}) + \cdots + \gamma_{r}(1 \otimes df_{r}).$$

Hence we have

$$(\beta_1 - h_s \gamma_1) (1 \otimes df_1) + \dots + (\beta_r - h_s \gamma_r) (1 \otimes df_r) \equiv 0$$

mod. $(h_1, \dots, h_{s-1}) R \otimes_B \mathcal{Q}^1_{B/k}$.

Therefore, by induction assumption we have

 $\beta_i - h_s \gamma_i \in (h_1, \dots, h_{s-1})$ $(i=1, 2, \dots, r).$

Hence it holds that

$$\beta_i \in (h_1, \cdots, h_{s-1}, h_s)$$
 $(i=1, 2, \cdots, r).$

Hence $1 \otimes df_1, \dots, 1 \otimes df_r$ are linearly independent modulo (h_1, \dots, h_s) .

Assume that (1) does not hold. Then, there exists a prime ideal \mathfrak{Q} of R such that height $\mathfrak{Q}=s \leqslant q$ and $R_{\mathfrak{Q}}$ is not a regular local ring. Then $1 \otimes df_1, \dots, 1 \otimes df_r$ are linearly dependent modulo \mathfrak{Q} by the Jacobian criteria. Hence there exist $\xi_1, \dots, \xi_r \in R$ such that

 $(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \cdots, \boldsymbol{\xi}_r) \not\equiv (0, 0, \cdots, 0) \mod \mathfrak{O}$

and $\xi_1(1 \otimes df_1) + \dots + \xi_r(1 \otimes df_r) \in \Omega R \otimes_B \mathcal{Q}_{B/k}^1$. We may assume that $\xi_1 \notin \Omega$. Since R is a Cohen-Macaulay ring, there exists an R-sequence t_1, \dots, t_{s-1} in Ω . We put $R' = R/(t_1, \dots, t_{s-1})$ and $\Omega' = \Omega/(t_1, \dots, t_{s-1})$. Then we have depth Ω' = height $\Omega' = 1$. Hence we can apply the lemma and find elements e, $h \in R$ whose residue classes modulo (t_1, \dots, t_{s-1}) are e', h' such that h' is not a zero-divisor in R', $e'/h' \in R'$, $(e'/h')\Omega' \subset R'$ and $s'e' \in (h')$ for every $s' \in R' - \Omega'$. Then, t_1, \dots, t_{s-1}, h form an R-sequence and $e\Omega \subset (t_1, \dots, t_{s-1}, h)$. Hence we have

$$e\sum_{i=1}^{\prime}\xi_{i}(1\otimes df_{i})\in e\mathfrak{Q}R\otimes_{B}\mathfrak{Q}_{B/k}^{1}\subset(t_{1},\cdots,t_{s-1},h)R\otimes_{B}\mathfrak{Q}_{B/k}^{1}.$$

Therefore, there exist $c_1, \dots, c_n \in \mathbb{R}$ such that

$$e\sum_{i=1}^{r}\xi_{i}(1\otimes df_{i}) \equiv h\sum_{j=1}^{n}c_{j}(1\otimes dX_{j}) \text{ mod. } (t_{1}, \cdots, t_{s-1})R \otimes_{B} \mathcal{Q}_{B/k}^{1}.$$

We shall prove that $\sum_{j=1}^{n} c_j(1 \otimes dX_j)$ is not a linear combination of $1 \otimes df_i$ $(i=1, 2, \dots, r)$ over R modulo (t_1, \dots, t_{s-1}) . Assume the contrary. Then there exist $l_1, \dots, l_r \in R$ such that

$$e\sum_{i=1}^{r}\xi_{i}(1\otimes df_{i}) \equiv h\sum_{i=1}^{r}l_{i}(1\otimes df_{i}) \text{ mod. } (t_{1},\cdots,t_{s-1})R\otimes_{B}\mathcal{Q}_{B/k}^{1}.$$

Since $1 \otimes df_1, \dots, 1 \otimes df_r$ are linearly independent modulo (t_1, \dots, t_{s-1}) , it holds that

$$e\xi_1 \equiv hl_1 \mod (t_1, \dots, t_{s-1}).$$

We denote by ξ'_1 the class of $\xi_1 \mod (t_1, \cdots, t_{s-1})$. Then we have $e'\xi'_1 \in (h')$ with $\xi'_1 \in R' - \mathfrak{Q}'$, which is a contradiction. Hence if follows that h' is a zero-divisor for $R' \otimes_R \mathcal{Q}_{R/k}^1$, hence t_1, \cdots, t_{s-1}, h are not an $\mathcal{Q}_{R/k}^1$ -sequence, contradicting our assumption.

Yoshida College Kyoto University

References

- J. Limpan, Free derivation modules on algebraic varieties, Amer. J. Math., 87 (1965), pp. 874-898.
- [2] M. P. Malliavin, Condition (a_q) de Samuel et q-torsion, Bull. Soc. Math. France, 96 (1968), pp. 193-196.
- [3] E. Kunz, Differentialform inseparabler algebraischen Funktionenkörper, Math. Z., 76 (1961), pp. 56-74.
- [4] S. Suzuki, On torsion of the module of differentials of a locality which is a complete intersection, J. Math. Kyoto Univ., 4-3 (1965), pp, 471-475.