A note on Malliavin's result

By
Satoshi Suzuki

(Received May 11, 1972)

In this note, we show that by a similar method to that used in the author's [4], we can give a direct proof and a slightly preciser statement for M. P. Malliavin's result on modules of differentials of localities of complete intersection in [2].

Let A be an affine ring over a field k. Let \mathfrak{p} be a prime ideal of A. We put $R=A_{\mathfrak{p}}$ and we denote by $\Omega_{R / k}^{1}$ the module of differentials of R over k. Then, the equivalence of 1° and 3° in Proposition 6 in [2] amounts to saying the following.

Theorem. Assume that k is perfect, and R is a complete intersection and reduced. Let q be a non-negative integer. Then the following two statements are equivalent.
(1) If $\mathfrak{\Omega}$ is a prime ideal of R such that $K r u l l-\operatorname{dim} R_{\Omega} \leqslant q$, $R_{\text {』 }}$ is a regular local ring.
(2) Every R-sequence with q-elements or less is an $\Omega_{R / k}^{1}$-sequence.

In case $q=1$, this is J. Lipman and the author's result in [1] and [4], " With the same assumption as above, $\Omega_{R / k}^{1}$ is torsion free if and only if R is integrally closed" and in case $q=2$, it is J. Lipman's result in [1], "Under the same assumption as above, $\Omega_{R / k}^{1}$ is reflexive if and only if R has no singularities of codimension 1 and 2".

Malliavin has given a proof of the above theorem, using an
argument on q-torsion but we will give here an elementary proof, in the course of our proof, we will find out the following preciser statement.

Corollary. With the same assumption as in the theorem, let \mathfrak{Q} be a prime ideal of R such that Krull- $\operatorname{dim} R_{\mathfrak{\Omega}}=s$. Assume that $R_{\mathbb{Q}}$ is not a regular local ring. Then, every R-sequence t_{1}, \cdots, t_{r} in $\mathfrak{\Omega}$ with $r<s$ can be imbedded in an R-sequence $t_{1}, \cdots, t_{r}, t_{r+1}, \cdots$, t_{s} in \mathfrak{Q} which is not an $\Omega_{R / k}^{1}$-sequence.

As in [4], the above theorem and corollary are also valid, if k is not perfect but we take a differential constant field k^{*} of R in the sense of E. Kunz [3] instead of k and $\Omega_{R / k^{*}}^{1}$ instead of $\Omega_{R / k}^{1}$, respectively. However, for the simplicity we will treat only the case where k is perfect. We can easily extend our proof to that for the general case, referring to the argument in [4].

Lemma. Let S be a noetherian local ring. Let \mathfrak{n} be a prime ideal of S such that height $\mathfrak{R}=$ depth $\mathfrak{R}=1$. We denote by \mathfrak{R}^{-1} the set of elements x in the total ring of quotients of S such that $x \Re \subset S$. Then it holds that $\mathfrak{N}^{-1} \supsetneqq S$. Actually, we can find elements $a, b \in S$ such that a is a non-zero divisor in $S, b / a \in \mathfrak{N}^{-1}, b / a \notin S$ and $s b \not \ddagger(a)$ for every element $s \in S-\mathfrak{N}$.

Proof. By our assumption, there exists a non-zero-divisor a in \mathfrak{n}. Let (a) $=r_{0} \cap r_{1} \cap \cdots \cap r_{h}$ be an irredundant primary decomposition of (a) such that the associated prime ideal of r_{0} is $\mathfrak{\Re}$. Then, there
 $\cap r_{1} \cap \cdots \cap r_{h}$. Take an element b of S such that $b \in \mathfrak{\Re} \mathfrak{M}^{-1} \cap r_{1} \cap \cdots \cap r_{h}$ and $b \notin(a)$. Then, it holds that $b / a \notin S$ and $b / a \in \mathfrak{M}^{-1}$ because $b \mathfrak{\Re} \subset(a)$. Let s be an element in $S-\mathfrak{n}$. Assume that $s b \in(a)$. Then we have $b \in a S_{\mathfrak{R}} \cap S=r_{0}$. Hence $b \in{r_{0}}^{\cap_{r_{1}} \cap \cdots \cap_{r_{h}}=(a) \text {, which }}$ is a contradiction. Hence we get our lemma.

Proof of the theorem. By our assumption, there exists a polynomial ring $B=k\left[X_{1}, \cdots, X_{n}\right]$, a prime ideal \mathfrak{F} of B and a reduced ideal \mathfrak{S} of B_{\Re} which is generated by r elements $f_{1}, f_{2}, \cdots, f_{r}$ in B with $r=$ height \subseteq such that $R \simeq B_{\mathfrak{F}} / \subseteq$. Let d be the canonical derivation of B into $\Omega_{B / k}^{1} . \quad x_{1}, x_{2}, \cdots, x_{n}$ denote the classes of X_{1}, X_{2}, \cdots, X_{n} modulo \mathfrak{S}. Then we have

$$
\Omega_{R / k}^{1} \simeq R \bigotimes_{B} \Omega_{B / k}^{1} / \sum_{i=1}^{r} R\left(1 \otimes d f_{i}\right)
$$

and

$$
1 \otimes d f_{i}=\sum_{j=1}^{n} \frac{\partial f_{i}(x)}{\partial X_{j}}\left(1 \otimes d X_{j}\right) \quad(i=1,2, \cdots, r)
$$

Let t be an arbitrary minimal prime ideal of R. Then R_{t} is a field and we have

$$
\Omega_{R \mathrm{t} / \mathrm{k}}^{1} \simeq R_{\mathrm{t}} \otimes_{R} \Omega_{R / k}^{1} \simeq R_{\mathrm{t}} \otimes_{B} \Omega_{B / k}^{1} / \sum_{i=1}^{r} R_{\mathrm{t}}\left(1 \otimes d f_{i}\right)
$$

$\Omega_{B / k}^{1}$ is a B-free module and $\Omega_{R_{\mathrm{t}} / k}^{1}$ is an R_{t}-free module. Since $\operatorname{rank}_{B} \Omega_{B \mid k}^{1}-\operatorname{rank}_{R_{1}} \Omega_{R_{\mathbb{t}} / k}^{1}=r, \quad 1 \otimes d f_{1}, \cdots 1 \otimes d f_{r}$ are linearly independent over R_{t}. Hence they are linearly independent modulo t . Since t is arbitrary, $1 \otimes d f_{1}, \cdots, 1 \otimes d f_{r}$ are linearly independent over R.
$(1) \Rightarrow(2)$. We use an induction on the number of elements in an R-sequence. Let $h_{1}, h_{2}, \cdots, h_{s}$ be an R-sequence with $s \leqslant q$. By our induction assumption, h_{1}, \cdots, h_{s-1} form an $\Omega_{R / k}^{1}$-sequence. We put $\bar{R}=R /\left(h_{1}, h_{2}, \cdots, h_{s-1}\right)$ and $M=\Omega_{R / k}^{1} /\left(h_{1}, h_{2}, \cdots, h_{s-1}\right) \Omega_{R / k}^{1}$. Then it holds that $M \simeq \bar{R} \bigotimes_{B} \Omega_{B / k}^{1} / \sum_{i=1}^{r} \bar{R}\left(1 \otimes d f_{i}\right)$. Let \bar{h}_{s} be the class of h_{s} modulo (h_{1}, \cdots, h_{s-1}). We have only to prove that \bar{h}_{s} is not a zerodivisor for M. Let $\bar{x}_{1}, \cdots, \bar{x}_{n}$ be the classes of x_{1}, \cdots, x_{n} in \bar{R}. Assume that we have a relation

$$
\bar{h}_{s}\left(\sum_{j=1}^{n} \bar{t}_{j}\left(1 \otimes d X_{j}\right)\right)=\sum_{i=1}^{r} \bar{l}_{i}\left(1 \otimes d f_{i}\right)
$$

in $\bar{R} \bigotimes_{B} \Omega_{B / k}^{1}$, where $\bar{t}_{j}, \overline{l_{i}} \in \bar{R}$. It means that

$$
\bar{h}_{s}\left(\sum_{j=1}^{n} \bar{t}_{j}\left(1 \otimes d X_{j}\right)\right)=\sum_{j=1}^{n}\left(\sum_{i=1}^{r} \bar{l}_{i} \frac{\partial f_{i}(\bar{x})}{\partial X_{j}}\right)\left(1 \otimes d X_{j}\right) .
$$

That is, we have simultaneous linear equations

$$
\begin{equation*}
\sum_{i=1}^{r} \frac{\partial f_{i}(\bar{x})}{\partial X_{j}} \bar{l}_{i}=\bar{h}_{s} \bar{t}_{j} \quad(j=1,2, \cdots, n) \tag{1}
\end{equation*}
$$

with respect to $\bar{l}_{1}, \cdots, \bar{l}_{r}$. Let $\overline{\mathfrak{\Omega}}$ be an associated prime ideal of $\left(\bar{h}_{s}\right)$. Let \mathfrak{Q} be the pre-image of $\overline{\mathfrak{Q}}$ in R, which is an associated prime
 by our assumption and the Jacobian criteria it holds that the rank of the matrix $\left(\frac{\partial f_{i}(\bar{x})}{\partial X_{j}}\right)_{\substack{i=1,2, \ldots, r, r \\ j=1,2, n}} \bmod . \overline{\mathfrak{D}}$ equals r. Therefore, it follows from (1) that $\bar{l}_{i} \in \bar{h}_{s} \bar{R}_{\bar{\Omega}} \cap \bar{R}$. Since $\overline{\mathfrak{\Omega}}$ is arbitrary, we have $\bar{l}_{:} \in \bar{h}_{s} \bar{R}$ $(i=1,2, \cdots, r)$. Hence, we can put $\bar{l}_{i}=\bar{h}_{s} \bar{l}_{i}^{\prime} \quad(i=1,2, \cdots, r)$, where $\bar{l}_{i}^{\prime} \in \bar{R}$. Then we have

$$
\bar{h}_{s}\left(\sum_{j=1} \bar{t}_{j}\left(1 \otimes d X_{j}\right)-\sum_{i=1}^{r} \bar{l}_{i}^{\prime}\left(1 \otimes d f_{i}\right)\right)=0
$$

and therefore

$$
\sum_{j=1}^{n} \bar{t}_{j}\left(1 \otimes d X_{j}\right)=\sum_{i=1}^{\gamma} \bar{l}_{i}^{\prime}\left(1 \otimes d f_{i}\right),
$$

because \bar{h}_{s} is not a zero-divisor for $\bar{R} \bigotimes_{B} \Omega_{B / k}^{1}$. Hence it follows that \vec{h}_{s} is not a zero-divisor for M.
(2) $\Rightarrow(1)$. First we show the following assertion by induction on s. "Let h_{1}, \cdots, h_{s} be an R-sequence with $s \leqslant q$. Then $1 \otimes d f_{1}, \cdots$, $1 \otimes d f_{r}$ are linearly independent modulo (h_{1}, \cdots, h_{s}) in $R \bigotimes_{B} \Omega_{B / k}^{1}$." We already proved it in case $s=0$. Assume that $s \geqslant 1$. Let $\beta_{1}, \cdots, \beta_{r}$ be elements in R such that

$$
\beta_{1}\left(1 \otimes d f_{1}\right)+\cdots+\beta_{r}\left(1 \otimes d f_{r}\right) \equiv 0 \bmod .\left(h_{1} \cdots, h_{s}\right) R \bigotimes_{B} \Omega_{B / k}^{1}
$$

that is, there exist $m_{1}, \cdots, m_{s} \in R \bigotimes_{B} \Omega_{B / k}^{1}$ such that

$$
\beta_{1}\left(1 \otimes d f_{1}\right)+\cdots+\beta_{r}\left(1 \otimes d f_{r}\right)=h_{1} m_{1}+\cdots+h_{s} m_{s}
$$

Since h_{1}, \cdots, h_{s} are an $\Omega_{R / k}^{1}$-sequence, there exist $l_{1}, \cdots, l_{s-1} \in R \bigotimes_{B} \Omega_{B / k}^{1}$ and $r_{1}, \cdots, r_{r} \in R$ such that

$$
m_{s}=h_{1} l_{1}+\cdots+h_{s-1} l_{s-1}+r_{1}\left(1 \otimes d f_{1}\right)+\cdots+r_{r}\left(1 \otimes d f_{r}\right)
$$

Hence we have

$$
\begin{aligned}
& \left(\beta_{1}-h_{s} r_{1}\right)\left(1 \otimes d f_{1}\right)+\cdots+\left(\beta_{r}-h_{s} r_{r}\right)\left(1 \otimes d f_{r}\right) \equiv 0 \\
& \bmod .\left(h_{1}, \cdots, h_{s-1}\right) R \bigotimes_{B} \Omega_{B / k}^{1} .
\end{aligned}
$$

Therefore, by induction assumption we have

$$
\beta_{i}-h_{s} r_{i} \in\left(h_{1}, \cdots, h_{s-1}\right) \quad(i=1,2, \cdots, r)
$$

Hence it holds that

$$
\beta_{i} \in\left(h_{1}, \cdots, h_{s-1}, h_{s}\right) \quad(i=1,2, \cdots, r)
$$

Hence $1 \otimes d f_{1}, \cdots, 1 \otimes d f_{r}$ are linearly independent modulo (h_{1}, \cdots, h_{s}).
Assume that (1) does not hold. Then, there exists a prime ideal \mathfrak{Q} of R such that height $\mathfrak{Q}=s \leqslant q$ and R_{Ω} is not a regular local ring. Then $1 \otimes d f_{1}, \cdots, 1 \otimes d f_{r}$ are linearly dependent modulo \mathfrak{Q} by the Jacobian criteria. Hence there exist $\xi_{1}, \cdots, \xi_{r} \in R$ such that

$$
\left(\xi_{1}, \xi_{2}, \cdots, \xi_{r}\right) \not \equiv(0,0, \cdots, 0) \bmod . \mathfrak{Q}
$$

and $\xi_{1}\left(1 \otimes d f_{1}\right)+\cdots+\xi_{r}\left(1 \otimes d f_{r}\right) \in \Omega R \bigotimes_{B} \Omega_{B / k}^{1}$. We may assume that $\xi_{1} \notin \mathfrak{Q}$. Since R is a Cohen-Macaulay ring, there exists an R-sequence t_{1}, \cdots, t_{s-1} in $\mathfrak{\Omega}$. We put $R^{\prime}=R /\left(t_{1}, \cdots, t_{s-1}\right)$ and $\mathfrak{Q}^{\prime}=\mathfrak{Q} /\left(t_{1}, \cdots, t_{s-1}\right)$. Then we have depth $\mathfrak{Q}^{\prime}=$ height $\mathfrak{Q}^{\prime}=1$. Hence we can apply the lemma and find elements $e, h \in R$ whose residue classes modulo (t_{1}, \cdots, t_{s-1}) are e^{\prime}, h^{\prime} such that h^{\prime} is not a zero-divisor in $R^{\prime}, e^{\prime} / h^{\prime} \notin R^{\prime}$, $\left(e^{\prime} / h^{\prime}\right) \mathfrak{Q}^{\prime} \subset R^{\prime}$ and $s^{\prime} e^{\prime} \notin\left(h^{\prime}\right)$ for every $s^{\prime} \in R^{\prime}-\mathfrak{Q}^{\prime}$. Then, $t_{1}, \cdots, t_{s-1}, h$ form an R-sequence and $e \mathfrak{\varrho} \subset\left(t_{1}, \cdots, t_{s-1}, h\right)$. Hence we have

$$
e \sum_{i=1}^{r} \xi_{i}\left(1 囚 d f_{i}\right) \in e \mathfrak{\Omega} \bigotimes_{B} \Omega_{B / k}^{1} \subset\left(t_{1}, \cdots, t_{s-1}, h\right) R \bigotimes_{B} \Omega_{B / k}^{1}
$$

Therefore, there exist $c_{1}, \cdots, c_{n} \in R$ such that

$$
e \sum_{i=1}^{r} \xi_{i}\left(1 \otimes d f_{i}\right) \equiv h \sum_{j=1}^{n} c_{j}\left(1 \otimes d X_{j}\right) \bmod . \quad\left(t_{1}, \cdots, t_{s-1}\right) R \bigotimes_{B} \Omega_{B / k}^{1}
$$

We shall prove that $\sum_{j=1}^{n} c_{j}\left(1 \otimes d X_{j}\right)$ is not a linear combination of $1 \otimes d f_{i}(i=1,2, \cdots, r)$ over R modulo (t_{1}, \cdots, t_{s-1}). Assume the contrary. Then there exist $l_{1}, \cdots, l_{r} \in R$ such that

$$
e \sum_{i=1}^{r} \xi_{i}\left(1 \otimes d f_{i}\right) \equiv h \sum_{i=1}^{r} l_{i}\left(1 \otimes d f_{i}\right) \bmod . \quad\left(t_{1}, \cdots, t_{s-1}\right) R \bigotimes_{B} \Omega_{B / k}^{1} .
$$

Since $1 \otimes d f_{1}, \cdots, 1 \otimes d f_{r}$ are linearly independent modulo (t_{1}, \cdots, t_{s-1}), it holds that

$$
e \xi_{1} \equiv h l_{1} \bmod . \quad\left(t_{1}, \cdots, t_{s-1}\right)
$$

We denote by ξ_{1}^{\prime} the class of $\xi_{1} \bmod .\left(t_{1}, \cdots, t_{s-1}\right)$. Then we have $e^{\prime} \xi_{1}^{\prime} \in\left(h^{\prime}\right)$ with $\xi_{1}^{\prime} \in R^{\prime}-\mathfrak{\Omega}^{\prime}$, which is a contradiction. Hence if follows that h^{\prime} is a zero-divisor for $R^{\prime} \otimes_{R} \Omega_{R / k}^{1}$, hence $t_{1}, \cdots, t_{s-1}, h$ are not an $\Omega_{R / k}^{1}$-sequence, contradicting our assumption.

Yoshida College
 Kyoto University

References

[1] J. Limpan, Free derivation modules on algebraic varieties, Amer. J. Math., 87 (1965), pp. 874-898.
[2] M. P. Malliavin, Condition (a_{q}) de Samuel et q-torsion, Bull. Soc. Math. France, 96 (1968), pp. 193-196.
[3] E. Kunz, Differentialform inseparabler algebraischen Funktionenkörper, Math. Z., 76 (1961), pp. 56-74.
[4] S. Suzuki, On torsion of the module of differentials of a locality which is a complete intersection, J. Math. Kyoto Univ., 4-3 (1965), pp, 471-475.

