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1. Introduction.

In this paper we treat the regularity of solutions of the Dirichlet
problem for elliptic equations of the second order in a domain with edges.

In the case where the boundary of a domain is smooth, we know
well the regularity of solutions of the Dirichlet problem.

T. Carleman [1] had studied the boundary value problem of the
Laplace equation for a domain with edges. M. S. Birman and G. E.
Skvortsov [2] dealt with a kind of regularity of solutions of the
Dirichlet problem in the case where the boundary of a bounded domain
in R? consists of a finite number of three times continuously differenti-
able curves, which meet with the angles different from 0 or 2m.

V. A. Kondrat’ev [3] studied the general boundary value problem for
a domain with conical or angular points in R".

We shall extend the result of M.S. Birman and G. E. Skvortsov.
Let Q be a bounded domain in R? and let the boundary of Q consist
of a finite number of three times continuously differentiable curves,
which may meet even with the angles 0 or 2z, but they have not con-
tact of order oo.

Consider an elliptic differential operator of the second order:
(1.1) Lu=— 3 ay(0—24 4 %

i,j= ! axiaxj i=1

i, j=1 i

ai(x)aa—; +a(x)u



56 Kazuhiko Ibuki

where the coefficients a;;(x) are real functions continuous on £ having
the bounded first generalized derivatives, and a;(x) and a(x) are real
bounded measurable.

We set

D(L; Q={ue2}Q); LucsL?(Q)}.1
Then our main theorem is the following:

Theorem 1. The co-dimension of D[.(Q)NEE(Q) in D(L; Q) is

equal to the number of the edges with the angles larger than .
In section 5 this theorem will be proved with help of the result

of M.S. Birman and G.E. Skvortsov and of the following theorem.

Theorem 2. Suppose that
Q={(x, x); 0<x,<d, 0<x,<x%},

where a>1. Then the solution u(x)€2}.(Q) of the equation Lu=f
belongs to €3%:(Q), if feL*(Q).

We prove Theorem 2 in Section 2. In Sections 3 and 4, we prove
the propositions which are needed in Section 2. Finally we prove
Theorem | in Section 5.

2. Proof of Theorem 2.

In this section we prove Theorem 2 with help of three propositions
below, which will be proved in Sections 3 and 4.

Proposition 1. In the case where L=—A, Theorem 2 is true, that
is to say, for all f(x)eL*(Q) the solution u(x)e 2}.(Q) of the equ-

1) Throughout this paper, &%.(£2) denotes the Hilbert space of all functions u(x)e
L%(2) whose derivatives (in the sense of distributions) up to order k£ belong to
L(2), and 9%, is the closure of P (£2) (in Schwartz’ notation) in &%.(£2). For
u(x)e&%.(2), we denote its norm by [u(x)|, ... Namely,

bu@lte= T {107t ds.

viSk
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ation Au=f belongs to &%:(Q).

By definition, the set Ck(£2) consists of all functions which are
k-times continuously differentiable in 2 and vanish at the boundary
of Q.

Proposition 2. C3(2) is dense in 21:(Q)NE#:(Q).

Proposition 3. Let L, and L, be two elliptic operators of the form
(1.1). If the infimums of the coefficients a(x) are sufficiently large,

we have
(2.1) I(Lyu, Lyw)|zclull3,..  for ueC3(2),

where ¢ is a positive constant independent of u(x).
From Proposition 2, the estimate (2.1) also holds for u(x)e 2}.(Q)
NéE(Q).

Proof of Theorem 2. Set L,=L+A and L,=—4+A, where 1 is
a sufficiently large positive number. It is easily checked that

R(Ly)={Lu; ue 2},(2)Nn £2:(Q)}

is a closed subspace of L%(Q) by setting L,=L; in Proposition 3.
On the other hand, we see, from Proposition 1, that

(2.2) R(L;)=R(—4+1)=L%*Q).

In order to show that R(L,)=L2%*(Q), we have only to verify that
R(L,) is dense in L2(Q). In fact, suppose that there exists a ge
L%(Q) such that (g, Liu)=0 for all ue2L.(2)N&2:(Q). Then there
exists a solution w(x)€2}.(Q)NEE:(Q) of Ly,w=g owing to (2.2) and
(L,w, Lyw)=0. By virtue of Proposition 3, w=0, therefore g=0.
Accordingly R(L,) is dense in L2(Q).

Now, let us take the solution in question ue2}.(Q) of Lu=f.
This equation can be rewritten as

Liu=Lu+2Au=f+Au.

The right hand side f+Au=h(eL?(Q)) is the image of a ve 2L.(2)N
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€%,(Q) by L, as is shown just above. Hence, we have two equations
Liu=h and L,v=h. By the uniqueness of the solution in 2}.(Q),
we have u=v, that is, u itself belongs to &%.(Q). Thus, our Theorem
2 is proved assuming Propositions 1, 2 and 3.

3. Proof of Propositions 1 and 2.

Remark at first that we may suppose that d is sufficiently small,
because if necessary, we may take a C®-function ¢(x) with a small
compact support which is equal to 1| near the origin, and we may
consider gu in place of u;

a¢ ou 6;0 6u>
L(pu)=¢Lu+uLep+ § a,,(x) o, 6xj ax,

—a(x)pues L?*(Q)

We begin with the change of variable (x,, x,)—(&, #)

3.1
B

g:(ﬁ—l)xl‘tilTl X =(f-1)p1- g1k
or {
n=x; F-T.x, xXy=(B—=1PFF -,

where 1/a+1/f=1. Then the domain @ is mapped homeomorphically
onto the domain:

O={¢ meR?; &>A4,0<n<l}

where A=(B—-1)d7~l—1. We obtain the following rules of calculus:

’

L= (B 1) G "“

O 2p(p— 1y 2eg iy Lk

2
%;:m-n—ww

3.2
( ) ] +ﬂ2(ﬁ_l)—2ﬂ€2ﬂ—2n2%
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+BB= D200t By o ﬂ)(ﬁ—l)-”é”—lng—;‘
Pu_ _ g 22136“ —1)-28g28-1y
- _y Ou
., BB 1)2egzet L
0%u _ p_ 1y-2p¢28 978
m—(ﬂ 1)72% on?
(3.3) e Xa) (g 1)20g-20,

(&, n)

Hence, the relation between the Laplacians corresponding to two
systems of variables can be expressed as

2
() Ay = (B 172820 {4y, 1 2BE gt PE P

B g+ BT P
The formulae (3.2) and (3.3) lead us to the following;

Lemma 1. 1) u(x,, x,)EL2, if and only if EPug,mel,;

')) u(xl,xz)Eng, (f and O'lI,V l.f ﬁﬂu(é ’1)9 aé and gl:’ ELZ 'l;
ou 514
By EB-1 -1
Y ulx x)E6h, i & G o0 S O e Sk and
02
é 611” &>

where L2 and L, are understood as L?-spaces with respect to the

usual Lebesgue measures dx dx, and dédn respectively.

We introduce some functional spaces, at first define
§o={u(€ n); &Dy u& mMel, for [v<k}

with the norms
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”u(é, ’1)“3?,,_ Z “éﬂD" 1;u(§ ’1)”L€ 2

Because {./2 sin nmnn}, is a complete orthonormal system in
L0, 1), we can develop every function u((,n)eé&g, in a Fourier
series with respect to n;

(3.5) u(&, m= 3 uy) sin na,

with coefficients u,(£) such that &fu,(&)e Li(A, ).
We denote by 9,, the set of all functions u(¢, ) in &2
satisfy the following two conditions

', Which
(3.6) u(A, n)=0
and

au,, 0%u,

2z +11€# =z e 22} < oo.

(3.7 Z {n*l1EPunli Bz +n211E" =

The norm of u in 2,, is defined as the square root of the left hand
side of (3.7). Then, for every function belonging to 2,,, the norms
in £z, and in 2., are equivalent. The condition (3.7) implies a
boundary condition at n=0 and n=1 to each element of 2,,.

It is easy to see that 4,, is a bounded linear operator from
Dy to &2,. Our first step is to construct an operator G: £2,-2,,
which is the inverse of 4,,.

For g, neé?,, we develop g(&,n) in a Fourier series with
respect to n;

(38) g€ 1= 3 9,(&) sinnmn.

We define u,(¢) by

(3.9 (@)= | (eI oA g (s)ds

In fact u,(£) is the solution of the ordinary differential equation:

(3.10) d—(’%’(ﬂ— (nm)2u,+g,
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with the boundary conditions u,(A4)=0 and u,(c0)=0. Set

(3.11) Gg(¢, n)=”§]lu,,(é) sin nmn.

This is the operator which we have looked for. We are going to
check up (3.6), (3.7) for u=Gg and 4,,Gg=g on &2,. Assuming
the condition (3.7) for u=Gg, the condition (3.6) and the equality
4:,Gg=g are easily verified from (3.9) and (3.10). We now show
3.7).

Define two operators;

[ Ky,9() = [ Temiesg)ds
(3.12)

\l Kz‘,,g(f) — gjenn(ZA-é—s)g(s)ds,
and the space;
€2 ={u(); LPu(é)e L2 (A, =)}

with the norm:
lu(O)leo=11EPu(©)||.z .

Then the following lemma holds.

Lemma 2. K, , and K,, are bounded operators on &2, moreover

(3.13) K, << (=12

llepaee=—
where c is independent of A for sufficiently large A.

Proof We are going to show the inequalities:

(3.14) Swe‘""l tslgs <&
4 n
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(3.15) S o-nnlé- sl( )”d <<
n
(3.16) S‘”ewu—t-s)ds <<,
A n
@ nn(2A—&—s) 4 26 c
(3.17) SAe <T ) dEs<,

where ¢ is independent of n=1 and s, é=A.
(3.14) and (3.16) are trivial. For (3.15), we can write

S —nn|§—s|( ) dé= S emr({-s)(%)zﬂdf-I-S:oe‘nn(ﬁ-s)(%)Zpdé,

the first term of the right hand side ggs ert(e=dE <7177, In order to
A

estimate the last term, we set {=st and integrate by parts,

o0
the last term=sS e nms(t=1)¢ 284y
1

=_l__|_ ZB Sme—nn.\‘(t— 1 )tzp—ndt
1

<—;—, because s=A4.

We have then proved (3.15). (3.17) is simpler than (3.15).

(3.14) and Schwarz’ inequality,

|K1,ng<é)12§§ emle=slds S e=mml&=sl. g (5)|2d s

A

A

c (< —nn|§-s| . 2
—\ e lg(s)|?ds.
nJa

Moreover from (3.15) and Fubini’s theorem, we have

[T 1k, g@ae s e ("o g o) 2ds
4 n Ja 4

From

s fromeraf e )

s
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(£ ) ls@lizg,

which is precisely the estimate (3.13) for i=1. Similarly, we can
treat the case of K, . (Q.E.D)

By definition of K,, and K,,, we can write

(3.18) 4,(8) = = (K ,18(8) ~ K 2,184(D)}.

From Lemma 2,

319)  BntlBu,@lEs Seleea®lE<cllgE mlz,

Differentiate the both sides of (3.9), then

dun — 1 ® £ —nn|&-s| 1 (® 24-¢&-
=—— Asgn(s—S)e gn(s)ds——-\| em(247¢70g, (s)ds.
A

(3.20) dt 2

Therefore

(3.21) a2

n=1

pdu, ||? < S 208 22 B 2,
é dé lz= Zln {”C Kl.n(lgnl)”l.e'*'”é KZ,ngn”Le}
¥, n=

<cllg& e,

And from (3.10) and (3.19),

& d?u,

(3.22) e

2
~,scllg( miizs,
4

By (3.19), (3.21) and (3.22), which together mean (3.7), we find that
G is a bounded operator from £2, to 2,,.

Proof of Proposition 1. By (3.4), the equation 4., ,,u=f turns out
to be

' _{. 0%u 02u —10u
(323) At 288 nggp+ BG4 BE G4 QBT = HE NG

=(B—1)2PE-2Ff.
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Denote the right hand side of (3.23) by h(&, n), then h(&, n) belongs
to &2 ,. Look for the solution u of the form u=Gg with some ge
€2 ,, then, g must satisfy

(3.24) g+Tg=h,

where

(3:25)  Tg=2pt-n 8 +pre-a 08 1 prr 008

2 608.

2 -
+(2B%- B¢ an

Since G is a bounded linear operator from &2, to 2., T is a bounded
linear operator on &2 ,, and if we take sufficiently large A, the operator
norm of T may be smaller than 1. Therefore I+ T has the inverse
(I+T)='. Since the equation 4, ,u=f has a unique solution in
21:(2), if we know that 9,, is included in 2]2(Q), u=G(UI+T) 'h
is the unique solution of the equation 4., ,,u=f and belongs to 2,,,
a fortiori to &£72(Q).

Let us show the inclusion 2,,C2]2(2). Take an infinitely differ-
entiable function {(£) such that {()=1 on <24 and {(£)=0 on ¢>
34, and define

@ =t(=7)

For every u(é, n)= ﬁlu,,(é) sinnmy in D, we set
(3.26) (6 ) = 2 Ly (&) s o,

As M— oo, uy py(& 1) tends to uy(é, n)= Zu,,(é) sinnny in 9., and
as N—-oo, uy(é, n) tends to u(é, n) in Qg,, Because the topology of
D, is stronger than that of €¢12(Q) and because the left hand side
of (3.26) belongs to 2]2(Q), u(¢, n) belongs to 2]2(Q). .Thus we see
that 2,,c 2}:(2). Proposition 1 is proved.

Remark The three transformations in the diagram
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D13(Q) N EF(Q) 4022y [2(Q) U=DVEVX, g9 GUEDS g

are continuous and the composition of them is identity mapping on
21:(Q)NE22Q), therefore the norm in &3:(Q) and the norm in 2.,
are equivalent on 2}1:(Q2)NEFAQ).

Proof of Proposition 2. By the above Remark, we have only to
-— ) .
show that C3(£) is dense in 92,,. For every u(¢ n)= Zl u, (&) sinnmy

in 9,,, we extend u,({) to {<A4 in such a way that

(&) if =4
(327) un(c)={ ,

—u,(24-%) if £<A.
(3.28) uy,m, (& n)= ,gl{Pe(ﬁ)*(CM(f)un(é))} sin nm,

where p(&)* is Friedrichs’ mollifier and p,(&) is an even function of
&, then uy p (& 1) belongs to CF(2).2 As e-+0, uy p (& 1) tends
to uym(&,m) in Dg,, and as M—oo,uy u(& n) tends to uy(E, n).
Finally uy(&, ) tends to u(é,n) in 9,, as N—oo. Thus CP(L) is
dense in 2,,. (Q.E.D)

4. Proof of Proposition 3.

In the case where the boundary of a domain is of class C3,
Proposition 3 has already been proved by Ladyzhenskaya [4]. If the
boundary is piece-wise smooth and has no edge with the angle O,
Proposition 3 also holds.

In this section, for convenience, L, and L, are written as L and
M, respectively, and (x,, x,) as (x, y). Denote several positive con-
stants by c;.

Now we divide L and M as

L=L0+L'+l,

M=M,+M +2,

2) Cy(2) denotes ﬁoc",‘(g).
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where L, and M, are homogeneous parts of the second order of L
and M, L’ and M’ are lower order parts, and A is the positive num-
ber which will be determined later.

Lemma 3. If d>0 is sufficiently small, we have

(4.1)  Re(Lou, Mou)zc,llull3, La=collull}, . for ueC3(R)

Proof Denote

Lou=au,,+2bu,,+cu,,

4.2

Mou=a"u+2b"u,,+c'uy,
and
4.3) v=u,, w=u,,

then we can write
Lou=av,+bw,+bv,+cw,,
Mou=a'v,+b'w,+bv,+c'w,
Now set
LouMou=Jy+J,,
where
4.4 Jo=(av,+bw )@ b+ b w,)+(bv,+cw )b b,+c'W)
+(avy+bw))(b b+ ¢’ W)+ (bv,+cw,)(a b, + b'W,)
and
4.5) Jy=(av,+bw,)(b'b,+c'W,)—(av,+bw )b b, +c'W,)

+(bvy+cwy)a' D+ b'W,)—(bv,+cw,)a't,+ b'W,).
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Since v,=w,=u,,, we have Jo=c3(|uel?+2uyl*+[u,l?) with c; inde-
pendent of u and of (x, y), because of the ellipticity of L and M.%»
Accordingly

46) [ Jodxdyzeyuld o]}, o).

Next, we look at J,. Because Re(v,0,—v,b,)=Re(w,w,—ww,)=0,
we have

ReJ, =F(v,w,—v,w,—w,D,+w,b,)
where F =%(ac’ +ca’—2bb’). Furthermore,

ReJ dxdy=F(dv Adw—dw A db)
=d{F(vdw — wdb)} + (vdw —wdv) AdF
=dw+J,dxdy

where w=F(vdw—wdv), and J, is a sum of products of the first
derivatives of F, the first derivatives of u and the second derivatives
of u. Therefore for an arbitrary small positive number &,

3) Using the equality v, =w,, we obtain
Jo=(avo+bv,)(@ 5.+ 0;)+ (bw,+cw,) (b, +c’'® )+
+(aw,+bw ) (V' 5+ ¢"w,)+ (bv,+cv ) (@', + b w,)
=a’ {7 (av,+bv,)+7,(bv,+cv,)}
+b" {w (avo+bvy)+w,(bv,+cv,)}
+0 (B (awo+bw,)+5,(bw.+cw,)}
+e'{w(aw,+bw,)+®,(bw,+cw,)}.

Set A:I:Z I;:', then there exists a real orthogonal (2, 2)-matrix T such that

crar=[ & 22](1,, 2,>0). Setting [5;]: ‘T[::] and [%ﬂ: ‘TI:’;::I, we obtain
Jo=a (V124 25| Ve |+ AV W+ 2.V, W) +
+V (M P+ LV W)+ ¢ (A | W1 |24+ 25| W, | %)
Ze(|V 12+ Vel 2+ | W12+ | W2 | ®)
=cy([Urz|®4+2|uzy B4+ uyyl?),

’ 7’
where we used the positivity of the matrix 4’=| ¢, b, L
y b ¢
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@7 {1, 72axdy| scaelull3,ate iz, 1o,

We will estimate

SS dw=g w+ S w— o =l+1,+1,
] y=0 x=d y=x%
0sxsd O0sSysd® 0sxsd

Because u=v=dv=0 on y=0, I,=0. Similarly I,=0. As v=—ax*"lw
on y=x* so

d
I,= —S Fea(e—1)x*"2-|w|%dx
0

We pass to the coordinate system (&, n) defined by (3.1), then

dx=—(B-1-&Pdl,  x*"2=(B—1)"F=2¢2,

and
_ ou
—(B—1)-Bgs x 94
w=(B—-1) fxan(ﬁ,l)
Therefore
-3} au 2 _ © (3u 2
2p-2 | Ou 2 p oU
4.8) |13|§CSSA£ Ianl discsd S,«l‘5 a"ll %.

If we take an infinitely differentiable function y(n) such that

1

y(n)=
. 1
1 if nz—-
then
o0 au 2 (1 a au 2}
[ el = - 2| &%
@9 [7ler G| ae= {70 o-{romees | G| fana

(70 oo G| anag+

AJO
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(1 ou 02u
S EBEZE || EB
#2070 lyon - |e0 G| | ep G | ana
§C6||“||33,,§C7”“”§,L3
Thus

(4.10) \Sa‘?z‘ Scgd | ull3, Lz

Taking sufficiently large A, we obtain (4.1) from (4.6), (4.7) and (4.10.)
(Q.E.D))

Let us finish the proof of Proposition 3. Writing
(Lu, Mu)=(Lou, Mou)+{(L'u, Mou)+(Lou, M'u)} +A{(Lou, u)
+(u, Mou)}+A{(L'u, u)+(u, M'u)} +A%||ul|f4 (L'u, M'u),
we estimate each term,
Re (Lou, Mou)Zcllull3, 2= callull}, L2
I(L'u, Mou)+(Lou, M'u)| <cg(ellull3, 2+ [ullf,L2)
)~Re{(Lo“’ u)+(u, Mo“)}g'lclo(”u”iu-||u“12,2)
AL u, u)+ (uy Mu)| ey (ellullf,pa+e HuliZ2).
I(L'u, M'u)| <cy,llullf, L2
Summing them up, we have
Re (Lu, Mu)Z (cy—&co)llull3, L2+ (Acyo—Aec, —e L eg—cr—cya)lullf, L2
+(A2 =&ty — A o)|lull2e.
There exist a large A and a small ¢ such that
c;—&ce>0
Acjo—Aec  —€ teg—cy— ¢y, =0

and
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A2—e" e —Acio=0.

Proposition 3 is hence established.

5. Outline of the proof of Theorem 1.

Using a partition of unity in the same way as in [2], we have
only to examine the case where the boundary has only one edge.
And we have only to examine the case where the angle is equal to 0
and the case where the angle is equal to 2m, for in other cases this
question is solved in [2].

In case of the angle 27, we can apply the method of M. S. Birman
and G. E. Skvortsov after mapping a neighborhood of the edge onto
a rectangle with a slit OE (fig. 1). But the two sides of OE must
be distinguished.

B A
o —”‘ E

C D
fig. 1

In turn, in case of the angle 0, this question is reduced to Theo-
rem 2 after mapping a neighborhood of the edge onto the domain
defined in Theorem 2.

The author would like to thank Professor S. Mizohata and Professor
N. Shimakura for their many helpful and constructive suggestions.
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