On the cut locus and the topology of Riemannian manifolds

By
Kunio Sugahara

(Received Sep. 19, 1973)

1. Introduction.

Let M be a connected complete Riemannian manifold with $\operatorname{dim} M \geqq$ 2. Let p be a point in M and let $Q(p)$ (resp. $C(p)$) be the conjugate locus (resp. the cut locus) in the tangent space $T_{p}(M)$ to M at p. (For the precise definitions of $Q(p)$ and $C(p)$, see section 2.) We say that M satisfies condition (C) at p or the pair (M, p) satisfies condition (C) if $Q(p)$ and $C(p)$ do not have common points.

In this paper, we study the structure of the cut locus $C(p)$ and the topology of the Riemannian manifold M assuming that M satisfies condition (C) at a given point p.
A. D. Weinstein [8] showed that any compact manifold M with $\operatorname{dim} M \geqq 3$ always admits a Riemannian metric g which satisfies condition (C) at some point p in M. Therefore, for our purpose, we need some further assumptions on the Riemannian manifold. The principal tool in our study is the map $N_{p}: C(p) \rightarrow \mathbf{N} \cup\{+\infty\}$ defined by

$$
N_{p}(v)=\#\left\{w \in C(p) ; \exp _{p} v=\exp _{p} w\right\}
$$

for all $v \in C(p)$, where $\exp _{p}: T_{p}(M) \rightarrow M$ denotes the exponential map.
The main results are stated as follows.
Theorem A. Assume that (M, p) satisfies condition (C). Then we have
(1) The set $N_{p}^{-1}(2)=\left\{v \in C(p) ; N_{p}(v)=2\right\}$ is open and dense in
$C(p)$;
(2) Define a map $f: N_{p}^{-1}(2) \rightarrow N_{p}^{-1}(2)$ by $f(v) \neq v$ and $\exp _{p} \cdot f(v)=$ $\exp _{p} v$, then f is a homeomorphism.

Theorem B. Assume that (i) M is compact, (ii) (M, p) satisfies condition (C) and (iii) $N_{p} \equiv 2$. Then we have
(1) The fundamental group of M is of order two;
(2) The universal covering space of M is homeomorphic to a sphere.

Theorem C. Assume that (i) (M, p) satisfies condition (C) and (ii) each geodesic emanating from p is a simple periodic curve with a common length. Then M is diffeomorphic to a real projective space.

Theorem D. Assume that (i) M is a 2-dimensional compact Riemannian manifold and (ii) (M, p) satisfies condition (C). Then M is not simply connected.

Let H_{p} denote the group of isometries of M which fix a point p in M.

Theorem E. Suppose that M is a 3-dimensional compact Riemannian manifold and that there is a point p in M such that $\operatorname{dim} H_{p} \geqq 1$. Further suppose that (M, p) satisfies condition (C). Then M is not simply connected.

Combining Theorem D and Theorem E with Rauch's comparison theorem (cf. [5] p. 76 Theorem 4.1), we obtain

Theorem F. Let k be a positive number. Suppose that M is a compact simply connected Riemannian manifold and that the sectional curvature of M is at most k. Further suppose that the following (i) or (ii) holds.
(i) $\operatorname{dim} M=2$.
(ii) $\operatorname{dim} M=3$ and there is a point p in M such that $\operatorname{dim} H_{p} \geqq 1$. Then the diameter of M is at least π / \sqrt{k}.

Remark 1. Given a point p in M, the Riemannian manifold M

On the cut locus and the topology of Riemannian manifolds 393
is called a C_{p}-manifold with a common length $2 l$ if it satisfies condition (ii) in Theorem C at the point p and if the common length is 2l. Theorem C is a partial refinement of R. Bott [3] in which the cohomology groups of C_{p}-manifolds were studied by the application of the Morse theory. We will prove in section 4 that if M is not simply connected and if M is a C_{p}-manifold for some point p in M, then the pair (M, p) satisfies condition (C) (Proposition 4.1). Therefore this fact combined with Theorem C yields the following.

Theorem \mathbf{C}^{\prime}. Assume that (i) M is not simply connected and (ii) M is a C_{p}-manifold for some point p in M. Then M is diffeomorphic to a real projective space.

A theorem of L. W. Green (cf. [2] VIII. 9) states that if M is homeomorphic to the 2-dimensional real projective space and if M is a C_{p}-manifold for any point p in M, then M is isometric to the 2-dimensional real projective space with the standard metric.

Remark 2. Theorem D was first proved by S. B. Myers [7] in the real analytic case. We will give a different proof which is useful in the proof of Theorem E .

Remark 3. Let k be a positive number and let K_{M} be the sectional curvature of M. In case of even dimension, we know the following fact: (*) If M is a simply connected Riemannian manifold with $0<$ $K_{M} \leqq k$, then the diameter of M is at least π / \sqrt{k}. This follows immediately from the next theorem of W. Klingenberg [4].

Theorem. If M is an even-dimensional compact simply connected manifold and if $0<K_{M} \leqq k$, then we have $d(p, \widetilde{C}(p)) \geqq \pi / \sqrt{k}$ for any point p in M, where d denotes the distance on M and $\widetilde{C}(p)$ is the cut locus of p. (For the precise definition of $\widetilde{C}(p)$, see section 2 .)

In case of odd dimension, the assertion of the above theorem is false in general. In fact, M. Berger [1] presented a 1-parameter family of counter examples $S U(2) \times \mathbf{R} / H_{\alpha}\left(0<\alpha<\alpha_{0}\right)$ which are diffeomorphic to the 3-dimensional standard sphere. However Theorem F indicates
that the weaker assertion (*) remains true even for the examples of M. Berger.

I am very grateful to Professor Y. Tsukamoto for his suggestion and for acquainting me with several important results in the global analysis of Riemannian manifolds. I would also like to thank Professor N. Tanaka for his advice and encouragement.
2. General properties of the cut locus.

Let v be a non-zero tangent vector at a point p in M. We define $\mu(v)$ by

$$
\mu(v)=\sup _{r>0}\left\{\|r v\| ; d\left(p, \exp _{p} r v\right)=\|r v\|\right\},
$$

where d denotes the distance function on M. Let $T_{p}(M)$ denote the tangent space to M at p.

Proposition 2.1. The map $\mu: T_{p}(M)-\{0\} \rightarrow \mathbf{R} \cup\{+\infty\}$ is continuous. (cf. [5] p. 98 Theorem 7.3.)

We define the cut locus $C(p)$ of p in $T_{p}(M)$ by

$$
C(p)=\left\{v \in T_{p}(M)-\{0\} ; \mu(v)=\|v\|\right\}
$$

and the cut locus $\tilde{C}(p)$ of p by

$$
\tilde{C}(p)=\exp _{p}(C(p)) .
$$

The point in $\tilde{C}(p)$ is said to be a cut point of p. The conjugate locus $Q(p)$ of p in $T_{p}(M)$ is defined by

$$
Q(p)=\left\{v \in T_{p}(M) ; \exp _{p} \text { is not of maximal rank at } v\right\} .
$$

For each $v \in Q(p)$, the point $\exp _{p} v$ is said to be a conjugate point of p along the geodesic $\exp _{p} t v(0 \leqq t \leqq 1)$.

Let $\mathscr{S}(p)$ denote the subset of $T_{p}(M)$ consisting of vectors w such that $d\left(p, \exp _{p} w\right)=\|w\|$. By Proposition 2.1, we can easily prove the following.

Proposition 2.2. (1) $C(p)$ is the boundary of $\mathscr{S}(p)$.

On the cut locus and the topology of Riemannian manifolds 395
(2) $\mathscr{S}(p)-C(p)$ is homeomorphic to the n-dimensional open ball, where $n=\operatorname{dim} M$.

Since we have assumed that M is complete, we obtain
Proposition 2.3. The map $\exp _{p}: \mathscr{S}(p) \rightarrow M$ is surjective.
Proposition 2.4. The map $\exp _{p}: \mathscr{S}(p)-C(p) \rightarrow M-\widetilde{C}(p)$ is a diffeomorphism. (cf. [5] p. 100 Theorem 7.4.)

Proposition 2.5. Let q be a cut point of p such that $d(p, q)=$ $d(p, \tilde{C}(p))$. Let $c_{1}(t)$ and $c_{2}(t)(0 \leqq t \leqq 1)$ be distinct geodesics from p to q. Suppose that the lengths of c_{1} and c_{2} are equal to $d(p, q)$ and that q is not a conjugate point of p along $c_{i}(i=1,2)$. Then the curve $c(t)(0 \leqq t \leqq 1)$ defined by

$$
\begin{array}{ll}
c(t)=c_{1}(2 t) & (0 \leqq t \leqq 1 / 2) \\
c(t)=c_{2}(2-2 t) & (1 / 2 \leqq t \leqq 1)
\end{array}
$$

is smooth at $q=c(1 / 2)$.
Proof: Let $\dot{c}_{i}(t)$ be the tangent vector of the curve c_{i} at the point $c_{i}(t)(i=1,2)$. We clearly have $\left\|\dot{c}_{1}(t)\right\|=\left\|\dot{c}_{2}(t)\right\|=d(p, q)$. Suppose that $\dot{c}_{1}(1) \neq-\dot{c}_{2}(1)$. Then there is a tangent vector v at q such that both $g\left(\dot{c}_{1}(1), v\right)$ and $g\left(\dot{c}_{2}(1), v\right)$ are negative, where g denotes the Riemannian metric. Let $\gamma(\alpha)\left(0 \leqq \alpha \leqq \alpha_{0}\right)$ be a curve emanating from q with the initial tangent vector v. Since $\dot{c}_{i}(0) \notin Q(p)$, there is a curve $\gamma_{i}(\alpha)(0 \leqq$ $\left.\alpha \leqq \alpha_{1} \leqq \alpha_{0}\right)$ in $T_{p}(M)$ emanating from $\dot{c}_{i}(0)$ such that $\exp _{p} \cdot \gamma_{i}(\alpha)=\gamma(\alpha)$ $(i=1,2)$. Let $c_{i, \alpha}(t)=\exp _{p} t \gamma_{i}(\alpha)$ and let $L_{i}(\alpha)$ denote the length of the curve $c_{i, \alpha}(t)(0 \leqq t \leqq 1)$. By the variation theory, we have

$$
\frac{d}{d \alpha} L_{i}(0)=g\left(\frac{\dot{c}_{i}(1)}{\left\|\dot{c}_{i}(1)\right\|}, v\right)<0
$$

(cf. [5] p. 80 Theorem 5.1). Hence there is a positive number α_{2} such that $L_{i}\left(\alpha_{2}\right)<L_{i}(0)(i=1,2)$. Since c_{1} and c_{2} are distinct geodesics, we may assume that $c_{1, \alpha_{2}}(t)$ and $c_{2, \alpha_{2}}(t)(0 \leqq t \leqq 1)$ are distinct geodesics from p to $\gamma\left(\alpha_{2}\right)$. Moreover we may assume that $L_{1}\left(\alpha_{2}\right) \leqq L_{2}\left(\alpha_{2}\right)$. Then
we have $\mu\left(\gamma_{2}\left(\alpha_{2}\right)\right) \leqq L_{2}\left(\alpha_{2}\right)$, which implies that

$$
d(p, \widetilde{C}(p)) \leqq \mu\left(\gamma_{2}\left(\alpha_{2}\right)\right) \leqq L_{2}\left(\alpha_{2}\right)<L_{2}(0)=d(p, q) .
$$

It contradicts the choice of q.

3. The map \boldsymbol{N}_{p}.

The following proposition is clear by the definition of N_{p}.
Proposition 3.1. If (M, p) satisfies condition (C), then the map $N_{p}: C(p) \rightarrow \mathbf{N} \cup\{+\infty\}$ is upper semi-continuous.

Proposition 3.2. If (M, p) satisfies condition (C), then for any $v \in C(p)$ we have $2 \leqq N_{p}(v)<\infty$. (cf. [5] p. 97 Theorem 7.1.)

Lemma 3.3. Assume that (M, p) satisfies condition (C). Let u and v be two vectors in $C(p)$ such that $\exp _{p} u=\exp _{p} v$. Assume that N_{p} is locally constant around u. Then, for any neighborhood U of v in $C(p)$, there exists a neighborhood $U(u)$ of u in $C(p)$ such that $\exp _{p}(U$ $(u)) \subset \exp _{p}(U)$.

Proof: Suppose that the conclusion is not true. Then we have a sequence $\left\{u_{i}\right\}_{i=1,2, \ldots}$ of vectors in $C(p)$ such that $\lim u_{i}=u$ and $\exp _{p} u_{i} \notin \exp _{p}(U)$ for any i. We have $N_{p} \equiv N_{p}(u)$ (which we denote by m) around u. Hence we can find vectors $u_{i}^{j} \in C(p)(1 \leqq j \leqq m)$ having the properties that $u_{i}^{i}=u_{i}, \exp _{p} u_{i}^{j}=\exp _{p} u_{i}$ and $u_{i}^{j} \neq u_{i}^{k}(j \neq k)$. We may assume that the sequences $\left\{u_{i}^{j}\right\}_{i=1,2, \ldots}$ are convergent. Let $\lim u_{i}^{j}=$ u^{j}. By the choice of $u_{i}^{j}, u^{j}(j=1,2, \ldots, m)$ are not contained in U. And condition (C) implies that $u^{j} \neq u^{k}(j \neq k)$. Hence we have

$$
\left\{w \in C(p) ; \exp _{p} w=\exp _{p} u\right\} \supset\left\{u^{1}, \ldots, u^{m}, v\right\}
$$

implying that $N_{p}(u)>m$. It is contradictory to the assumption.

Lemma 3.4. Let u and v be the vectors as in Lemma 3.3. Assume that (M, p) satisfies condition (C) and that N_{p} is locally constant around u. Then we have neighborhoods $U(u)$ and $U(v)$ of u and v
respectively in $C(p)$ such that the map $f_{v u}=\left(\exp _{p} \mid U(v)\right)^{-1}{ }^{\circ}\left(\exp _{p} \mid U(u)\right)$ is well defined and a homeomorphism of $U(u)$ onto $U(v)$.

In order to prove the above lemma, we need the following theorem in the dimension theory.

Theorem 3.5 (Brouwer's invariance theorem of domain). Let Y and Y^{\prime} be subsets of \mathbf{R}^{n}. Let f be a homeomorphism of Y onto Y^{\prime}. If p is an inner point (resp. a boundary point) of Y, then $f(p)$ is also an inner point (resp. a boundary point) of Y^{\prime}.

Proof of Lemma 3.4: Let U^{\prime} be a neighborhood of v in $T_{p}(M)$ such that the map $\exp _{p} \mid U^{\prime}$ is a diffeomorphism onto some open set of M. Let $U=U^{\prime} \cap C(p)$. Then, by Lemma 3.3, we obtain a neighborhood $U(u)$ of u in $C(p)$ such that $\exp _{p}(U(u)) \subset \exp _{p}(U)$ and such that the map $\exp _{p} \mid U(u)$ is injective. It is clear that the map

$$
f_{v u}=\left(\exp _{p} \mid U\right)^{-1} \circ\left(\exp _{p} \mid U(u)\right)=\left(\exp _{p} \mid U^{\prime}\right)^{-1} \circ\left(\exp _{p} \mid U(u)\right)
$$

is well defined and a continuous injection. On the other hand, by Proposition 2.1, we know that $C(p)$ is a submanifold of $T_{p}(M)$ (in the C^{0} sense). Especially $C(p)$ is a locally compact Hausdorff space, implying that $f_{v u}$ is a homeomorphism. Hence we can apply Theorem 3.5 to the map $f_{v u}: U(u) \rightarrow f_{v u}(U(u))$ and we can conclude that $f_{v u}$ is an open map. Therefore $f_{v u}$ is a homeomorphism of $U(u)$ onto an open set of U. Put $U(v)=f_{v u}(U(u))$.

Lemma 3.6. If (M, p) satisfies condition (C) and if N_{p} is locally constant around a vector $u \in C(p)$, then $N_{p}(u)=2$.

Proof: By Proposition 3.2, we have a vector $v \in C(p)$ such that $\exp _{p} v=\exp _{p} u$ and $u \neq v$. By Lemma 3.4, we have neighborhoods $U(u)$ and $U(v)$ of u and v respectively in $C(p)$ such that
(i) the maps $\left.\exp _{p} \overline{\|(u)}\right)$ and $\exp _{p} \overline{\mid U(v)}$ are injective,
(ii) the map $f_{v u}=\left(\exp _{p} \mid U(v)\right)^{-1} \circ\left(\exp _{p} \mid U(u)\right): U(u) \rightarrow U(v)$ is a homeomorphism,
(iii) there is a homeomorphism $h: B^{n-1}=\left\{x \in \mathbf{R}^{n-1} ;\|x\|<1\right\}$
$\rightarrow U(u)$,
where "__" denotes the closure and $\operatorname{dim} M=n$. Hence we can define a homeomorphism H from $B^{n-1} \times(0,1)$ onto an open set of M as follows:

$$
\begin{array}{ll}
H(x, t)=\exp _{p}((1 / 2+t) h(x)) & (0<t \leqq 1 / 2) \\
H(x, t)=\exp _{p}\left((3 / 2-t) f_{v u^{\circ}} h(x)\right) & (1 / 2 \leqq t<1)
\end{array}
$$

If $N_{p}(u) \geqq 3$, there is a vector $w \in C(p)-\overline{U(u)} \cup \overline{U(v)}$ such that $\exp _{p} w=$ $\exp _{p} u$. Since $\exp _{p} u$ is an inner point of $H\left(B^{n-1} \times(0,1)\right)$, the geodesic $\exp _{p} t w(0 \leqq t<1)$ must intersect the boundary of $H\left(B^{n-1} \times(0,1)\right)$ which is contained in $\left\{\exp _{p} r y ; y \in \overline{U(u)} \cup \overline{U(v)}\right.$ and $\left.0<r \leqq 1\right\}$. By Proposition 2.4, we see that $\left\{\exp _{p} t w ; 0 \leqq t<1\right\}$ and $\left.\exp _{p} \overline{(U(u)}\right) \quad\left(=\exp _{p} \overline{(U(v)}\right)$ do not have common points. If $\left\{\exp _{p} t w ; 0 \leqq t<1\right\}$ and $\left\{\exp _{p} r y\right.$; $y \in \overline{U(u)} \cup \overline{U(v)}$ and $0<r<1\}$ have a common point, Proposition 2.4 implies that $w \in \overline{U(u)} \cup \overline{U(v)}$. It is contradictory to the choice of w.

By the lemmata and propositions above, we obtain Theorem A.

Proof of Theorem B: Let $\operatorname{dim} M=n$. Since M is compact, we can define a homeomorphism $H: V^{n}=\left\{v \in T_{p}(M) ;\|v\| \leqq 1\right\} \rightarrow \mathscr{S}(p)$ by

$$
\begin{aligned}
& H(v)=\mu(v) \cdot v \quad \text { for } \quad v \neq 0 \\
& H(0)=0
\end{aligned}
$$

Since $N_{p}^{-1}(2)=C(p)$, we can extend the map f defined in Theorem A to a map $f: T_{p}(M) \rightarrow T_{p}(M)$ in such a way that

$$
f(r v)=r \cdot f(v), \quad \text { where } \quad v \in C(p) \quad \text { and } \quad r \geqq 0
$$

Let us identify $T_{p}(M)$ with \mathbf{R}^{n} with respect to an orthonormal basis and define a map $F: S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbf{R}^{n+1} ; \sum_{i=1}^{n+1} x_{i}^{2}=1\right\} \rightarrow M$ by

$$
\begin{array}{ll}
F\left(x_{1}, \ldots, x_{n+1}\right)=\exp _{p} \cdot H\left(x_{1}, \ldots, x_{n}\right) & \text { for } \quad x_{n+1} \geqq 0 \\
F\left(x_{1}, \ldots, x_{n+1}\right)=\exp _{p} \cdot f \cdot H\left(x_{1}, \ldots, x_{n}\right) & \text { for } \quad x_{n+1} \leqq 0
\end{array}
$$

It is clear by Theorem 3.5 that F is a local homeomorphism. Hence

On the cut locus and the topology of Riemannian manifolds $F: S^{n} \rightarrow M$ is a double covering and the theorem follows.

4. C_{p}-manifolds.

Proposition 4.1. Suppose that M is a C_{p}-manifold for some point p in M and that M is not simply connected. Then (M, p) satisfies condition (C).

In fact, we can express $Q(p)$ as follows.
Proposition 4.2. Suppose that M is a C_{p}-manifold with a common length $2 l$ for some point p in M and that M is not simply connected. Then we have

$$
Q(p)=\left\{v \in T_{p}(M) ;\|v\|=2 m l, \quad m \in \mathbf{N}\right\} .
$$

Lemma 4.3. Let v be a non-zero tangent vector to M at p. Suppose that M is a C_{p}-manifold with a common length $2 l$. Then we have
the rank of $\exp _{p}$ at $v=$ the rank of $\exp _{p}$ at $\left(1+\frac{2 l z}{\|v\|}\right) v$
for any integer z with $1+\frac{2 l z}{\|v\|} \neq 0$.

Proof: By our assumption, we have $\exp _{p}\left(1+\frac{2 l z}{\left\|w^{\prime}\right\|}\right) w=\exp _{p} w$ for any $w \in T_{p}(M)-\{0\}$ and $z \in \mathbf{Z}$. Hence the assertion is clear.

Lemma 4.4. Let v and M be as in Lemma 4.3. Then there exists a positive number t_{0} for which the following (1), (2) and (3) hold.
(1) If a geodesic $\exp _{p} t w(0 \leqq t<\infty)$ passes the point $\exp _{p} t_{0} v$, then v and w are linearly dependent.
(2) The point $\exp _{p} t_{0} v$ is not the conjugate point of p along any geodesic.
(3) The geodesic $\exp _{p} t v\left(0 \leqq t \leqq t_{0}\right)$ does not contain conjugate points of p along itself.

Proof: Suppose that (1) is false for any $t_{0}>0$. Then there
are tangent vectors $v_{i} \in T_{p}(M)-\mathbf{R} v$ and positive numbers $t_{i}(i=1,2, \ldots)$ such that $\exp _{p} v_{i}=\exp _{p} t_{i} v$ and $\lim t_{i}=0$. Since any geodesic emanating from p is periodic with a length $2 l$, we may assume that $\left\|v_{i}\right\| \leqq l$ $(i=1,2, \ldots)$. Hence we may assume that the sequence $\left\{v_{i}\right\}_{i=1,2, \ldots .}$ is convergent. Let $w=\lim v_{i}$. It is clear that $0<\|w\| \leqq l$. On the other hand we have

$$
\exp _{p} w=\lim \exp _{p} v_{i}=\lim \exp _{p} t_{i} v=p
$$

implying that the geodesic $\exp _{p} t w(0 \leqq t \leqq\|w\|)$ is closed. Hence we obtain a closed geodesic emanating from p whose length is at most l. It contradicts the assumption. Hence there is a positive number t_{1} such that (1) holds for any $t_{0}\left(0<t_{0} \leqq t_{1}\right)$. We take $t_{0}\left(\leqq t_{1}\right)$ small enough for which (3) holds. By Lemma 4.3, (2) also holds for the same t_{0}.

Proof of Proposition 4.2: It is clear that

$$
Q(p) \supset\left\{v \in T_{p}(M) ;\|v\|=2 l m, \quad m \in \mathbf{N}\right\} .
$$

Suppose that there is a vector $v \in Q(p)$ such that $\|v\| \notin 2 / \mathbf{N}$. By Lemma 4.3 we may assume that $\|v\|<2 l$. For this v we take the number t_{0} as in Lemma 4.4 and we put $q=\exp _{p} t_{0} v$. Let Ω denote the set of all curves in M joining p and q. Let $\lambda=\operatorname{dim} M$-the rank of $\exp _{p}$ at v. Then it is clear that the index of the geodesic $\exp _{p} t v\left(0 \leqq t \leqq t_{0}\right)$ is zero and that the indexes of the other geodesics in Ω are at least $\lambda(>0)$. Hence by the Morse theory we have

$$
\pi_{i}(\Omega)=\{0\} \quad(0 \leqq i<\lambda),
$$

where π_{i} denotes the i-th homotopy group. (cf. [6] p. 95 Theorem 17.3.) Therefore we have $\pi_{1}(M)=\pi_{0}(\Omega)=\{0\}$. It contradicts the assumption.

Proposition 4.1 follows immediately from Proposition 4.2.
Proof of Theorem C: By our assumption (ii), any geodesic emanating from p is periodic with a common length, say $2 l$. Hence we have $d(p, \widetilde{C}(p)) \leqq l$. Let q be a cut point of p such that $d(p, q)=$

On the cut locus and the topology of Riemannian manifolds 401
$d(p, \widetilde{C}(p))$. Then by Proposition 3.2 and Proposition 2.5, we have a geodesic $c:[0,1] \rightarrow M$ such that $c(0)=c(1)=p, c(1 / 2)=q$ and $L(c)$ $=2 \cdot d(p, q)$, where $L(c)$ denotes the length of c. We clearly have $2 l \leqq L(c)$. Since $L(c)=2 \cdot d(p, q) \leqq 2 l$, it follows that $L(c)=2 l$. Therefore we have $d(p, q)=d(p, \widetilde{C}(p))=l$ and $d\left(p, q^{\prime}\right)=d(p, \widetilde{C}(p))$ for any $q^{\prime} \in \tilde{C}(p)$. Applying Proposition 3.2 and Proposition 2.5 again, we obtain $N_{p} \equiv 2$. Above lines also prove that $C(p)=\left\{v \in T_{p}(M) ;\|v\|=l\right\}$ and $f(v)=-v$ for any $v \in C(p)$. Hence the covering map defined in the proof of Theorem B is a local diffeomorphism and M is diffeomorphic to a real projective space.

5. 2-dimensional manifolds.

Throughout this section, we assume that M is a 2-dimensional compact Riemannian manifold and that (M, p) satisfies condition (C).

Lemma 5.1. $N_{p}^{-1}(2)$ consists of a finite number of connected components.

Proof: Assume that $N_{p}^{-1}(2)$ has an infinite number of connected components $U_{\lambda}(\lambda \in \Lambda)$ and take vectors $v_{\lambda} \in U_{\lambda}$. Since $C(p)$ is compact, $\left\{v_{\lambda} ; \lambda \in \Lambda\right\}$ contains a convergent subsequence $\left\{v_{i}\right\}_{i=1,2, \ldots}$. Let $u_{i}=$ $f\left(v_{i}\right)$, where f is the map defined in Theorem A. Here we may assume that $\left\{u_{i}\right\}_{i=1,2, \ldots}$ is also a convergent sequence. Let $\lim u_{i}=u$ and $\lim v_{i}=v$. Then, from condition (C), it follows that $u \neq v$. Since the map μ is continuous and since the sequences $\left\{v_{i}\right\}_{i=1,2, \ldots}$ and $\left\{u_{i}\right\}_{i=1,2, \ldots}$ are convergent, there exist simple curves c_{i} and c_{i}^{\prime} in $\mathscr{S}(p)(i=1,2, \ldots)$ such that
(a) $c_{i}(0)=v_{i}, c_{i}(1)=v_{i+1}$ and $c_{i}(t) \notin C(p)$ for $0<t<1$,
(b) $c_{i}^{\prime}(0)=u_{i}, c_{i}^{\prime}(1)=u_{i+1}$ and $c_{i}^{\prime}(t) \notin C(p)$ for $0<t<1$,
(c) $\lim L\left(c_{i}\right)=\lim L\left(c_{i}{ }^{\prime}\right)=0$.

We define closed curves $\gamma_{i}:[0,1] \rightarrow M$ as follows:

$$
\begin{array}{ll}
\gamma_{i}(t)=\exp _{p} c_{i}(2 t) & (0 \leqq t \leqq 1 / 2), \\
\gamma_{i}(t)=\exp _{p} c_{i}^{\prime}(2-2 t) & (1 / 2 \leqq t \leqq 1) .
\end{array}
$$

Then we have $\lim L\left(\gamma_{i}\right)=0$, implying that γ_{i} is simple for large i and that $\lim d\left(\gamma_{i} \cup\left\{\exp _{p} v\right\}\right)=0$. Let V and V^{\prime} be neighborhoods of v and u respectively in $T_{p}(M)$ such that $\exp _{p} \mid V$ and $\exp _{p} \mid V^{\prime}$ are diffeomorphisms onto an open set U of M. Then there is an integer K such that $\gamma_{i}(i>K)$ are simple curves in U. By Jordan curve theorem, we see that $M-\gamma_{i}$ is composed of two connected components for large i. We denote the components by O_{i} and O_{i}^{\prime} and suppose that $O_{i}^{\prime} \ni p$. Then by the definition of γ_{i} it follows that O_{i} contains a point q_{i} which is in the image of the boundary points of U_{i} in $C(p)$. Hence there is a vector w_{i} in $C(p)-V \cup V^{\prime}$ such that $\exp _{p} w_{i}=q_{i}$. Then the geodesic $\exp _{p} t w_{i}(0<t<1)$ must intersect γ_{i}. By Proposition 2.4, we see that $\exp _{p} t w_{i} \quad(0<t<1)$ and $\gamma_{i} \cap \tilde{C}(p)$ have no common points. Therefore $\exp _{p} t w_{i}(0<t<1)$ and $\gamma_{i} \cap(M-\tilde{C}(p))$ must have a common point. Then Proposition 2.4 implies that $w_{i} \in V \cup V^{\prime}$, which is contradictory to the choice of w_{i}.

Lemma 5.2. Let $N_{p}^{-1}(2)=\bigcup_{i=1}^{m} U_{i}$, where U_{i} is the connected component of $N_{p}^{-1}(2)$. If $m \geqq 2$, i.e., $N_{p}^{-1}(2) \neq C(p)$, then $f\left(U_{i}\right)$ is also a connected component of $N_{p}^{-1}(2)$ and $f\left(U_{i}\right) \neq U_{i}$ for all i.

Proof: Since the map f defined in Theorem A is a homeomorphism, it is clear that $f\left(U_{i}\right)$ is a connected component of $N_{p}^{-1}(2)$ for each i. Suppose that $f\left(U_{i}\right)=U_{i}$ for some i. First we note that there is a homeomorphism $h: U_{i} \rightarrow(0,1)$. Then the map $\alpha=h \circ f_{\circ} h^{-1}:(0,1)$ $\rightarrow(0,1)$ is a homeomorphism such that $\alpha^{2}=i d$. Hence α is the identity map or a monotone decreasing map. In either case, α must have a fixed point, i.e., f has a fixed point, which is contradictory to its definition.

Proof of Theorem D: If $N_{p}^{-1}(2)=C(p)$, i.e., $N_{p} \equiv 2$, by Theorem B we see that the fundamental group of M is of order two. Therefore we have only to prove Theorem D in case that $N_{p}^{-1}(2) \neq C(p)$. Let $N_{p}^{-1}(2)=\stackrel{m}{i_{i=1}} U_{i}$ as in Lemma 5.2. Then we have a component U_{j} and vectors v and u such that:
(a) u and v belong to the different connected components of $C(p)-\left(f\left(U_{j}\right) \cup U_{j}\right)$,

On the cut locus and the topology of Riemannian manifolds 403
(b) $\exp _{p} u=\exp _{p} v$.
(If not, we obtain an infinite sequence $\left\{U_{i_{k}}\right\}_{k=1,2 \ldots}$ of connected components of $N_{p}^{-1}(2)$ such that $U_{i_{k+1}}$ and $f\left(U_{i_{k+1}}\right)$ are contained in the same connected component V_{k} of $C(p)-\left(f\left(U_{i_{k}}\right) \cup U_{i_{k}}\right)$, where $V_{k} \subset$ V_{k-1}. It is impossible by Lemma 5.1.) We consider the diagram

defined as follows:
(c) $\mathscr{S}(p)^{\prime}$ is the space obtained from $\mathscr{S}(p)$ by identifying U_{j} with $f\left(U_{j}\right)$ through f,
(d) $\quad M^{\prime}=M /\left(\tilde{C}(p)-\exp _{p}\left(U_{j}\right)\right)^{1)}$,
(e) h and h are natural projections,
(f) $\overline{\exp }_{p}(x)=h_{\circ} \exp _{p} h^{-1}(z) \quad$ for $\quad z \in \mathscr{S}(p)^{\prime}$.

Then it is clear that the diagram is commutative and the maps are continuous. Let $c(t)(0 \leqq t \leqq 1)$ be the closed curve in M defined by

$$
\begin{array}{ll}
c(t)=\exp _{p} 2 t u & (0 \leqq t \leqq 1 / 2), \\
c(t)=\exp _{p}(2-2 t) v & (1 / 2 \leqq t \leqq 1) .
\end{array}
$$

We fix an orientation of $C(p)$ and we endow $U_{i}(i=1,2, \ldots, m)$ with the orientation as its subsets. If $f \mid U_{j}$ is orientation-preserving, M^{\prime} is homeomorphic to the 2 -dimensional real projective space $P^{\mathbf{2}}(\mathbf{R})$ and $\bar{h}(c)$ represents a generator of its fundamental group which is \mathbf{Z}_{2}. If $f \mid U_{j}$ is orientation-reversing, M^{\prime} is homeomorphic to the space $S^{1} \times S^{1} / S^{1} \times$ \{one point \} and $\overline{(c)}$ represents a generator of its fundamental group which is \mathbf{Z}. Hence c is not homotopic to a constant map.
6. Throughout this section, M will denote a 3-dimensional compact Riemannian manifold. We fix a point p in M and let H denote the

[^0]identity component of H_{p}. First we study the case that $\operatorname{dim} H=1$. Let $\rho: H \rightarrow O\left(T_{p}(M)\right)$ be the linear isotropy representation. Then $\rho(H)$ $=S O(2) \subset O(3)=O\left(T_{p}(M)\right)$, i.e., with respect to a suitable orthonormal basis $\left(v_{1}, v_{2}, v_{3}\right)$ of $T_{p}(M), \rho(H)$ can be expressed as:
$$
\rho(H)=\{\sigma(\gamma) ; \gamma \in \mathbf{R}\},
$$
where
\[

\sigma(\gamma)=\left($$
\begin{array}{ccc}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}
$$\right) .
\]

We introduce a system of polar coordinates

$$
\varphi: \mathbf{R}^{2} \times[0, \pi] \longrightarrow T_{p}(M)
$$

as follows:

$$
\varphi(r, \gamma, \alpha)=r \sin \alpha \cos \gamma v_{1}+r \sin \alpha \sin \gamma v_{2}+r \cos \alpha v_{3} .
$$

Then it is clear that

$$
h \cdot \exp _{p} \circ \varphi(r, \gamma, \alpha)=\exp _{p} \circ \rho(h) \circ \varphi(r, \gamma, \alpha)=\exp _{p} \circ \varphi\left(r, \gamma+\gamma^{\prime}, \alpha\right),
$$

where $h \in H$ and $\rho(h)=\sigma\left(\gamma^{\prime}\right)$.
Lemma 6.1. On the assumptions and notations above, we have

$$
\left\{v \in C(p) ; \exp _{p} v=\exp _{p} \mu\left(v_{3}\right) v_{3}\right\}=\left\{\mu\left(v_{3}\right) v_{3},-\mu\left(-v_{3}\right) v_{3}\right\},
$$

if (M, p) satisfies condition (C).
Proof: Suppose that there is a vector $v \in C(p)-\mathbf{R} v_{3}$ such that $\exp _{p} v=\exp _{p} \mu\left(v_{3}\right) v_{3}$. Then we have

$$
\exp _{p} \rho(H) v=H \cdot \exp _{p} v=H \cdot \exp _{p} \mu\left(v_{3}\right) v_{3}=\exp _{p} \mu\left(v_{3}\right) v_{3}
$$

This implies that v is contained in the conjugate locus $Q(p)$ of p, which is contradictory to condition (C). Therefore we have

On the cut locus and the topology of Riemannian manifolds 405

$$
\left\{v \in C(p) ; \exp _{p} v=\exp _{p} \mu\left(v_{3}\right) v_{3}\right\} \subset\left\{\mu\left(v_{3}\right) v_{3},-\mu\left(-v_{3}\right) v_{3}\right\} .
$$

On the other hand, we have

$$
2 \leqq N_{p}\left(\mu\left(v_{3}\right) v_{3}\right)=\#\left\{v \in C(p) ; \exp _{p} v=\exp _{p} \mu\left(v_{3}\right) v_{3}\right\}
$$

by Proposition 3.2. Hence we have the lemma.
By Lemma 6.1, we see that $N_{p}\left(\mu\left(v_{3}\right) v_{3}\right)=N_{p}\left(-\mu\left(-v_{3}\right) v_{3}\right)=2$ if (M, p) satisfies condition (C).

Let $N_{p}^{-1}(2)=\cup_{i \in I} U_{i}$, where $U_{i}(i \in I)$ are the connected components of $N_{p}^{-1}(2)$.

Lemma 6.2. On the assumptions and notations above, we have $\#(I)<\infty$ if (M, p) satisfies condition (C).

Proof: Suppose that $\#(I)=\infty$. For each $i \in I$ we take a vector v_{i} in U_{i}. Since $C(p)$ is compact, there is a convergent subsequence $\left\{v_{j}\right\}_{j=1,2 \ldots}$ in $\left\{v_{i} ; i \in I\right\}$. We may assume that $\left\{f\left(v_{j}\right)\right\}_{j=1,2, \ldots}$ is also a convergent sequence, where f is the map defined in Theorem A. Let $\lim v_{j}=v$ and $\lim f\left(v_{j}\right)=v^{\prime}$. By condition (C) we have $v \neq v^{\prime}$. Since N_{p} is upper semi-continuous and larger than 1 , we have $N_{p}(v)=N_{p}\left(v^{\prime}\right)$ $\geqq 3$, implying that $v, v^{\prime} \notin \mathbf{R} v_{3}$. Therefore there are open sets U and U^{\prime} in $\mathbf{R}^{2} \times[0, \pi]$ and neighborhoods $U(v)$ an! $U\left(v^{\prime}\right)$ of v and v^{\prime} respectively in $T_{p}(M)$ such that:
(a) $\psi=\varphi \mid U$ is a diffeomorphism of U onto $U(v)$,
(b) $\psi^{\prime}=\varphi \mid U^{\prime}$ is a diffeomorphism of U^{\prime} onto $U\left(v^{\prime}\right)$,
(c) $\exp _{p} \mid U(v)$ and $\exp _{p} \mid U\left(v^{\prime}\right)$ are diffeomorphisms onto an open set V of M.
Let

$$
\begin{aligned}
& F=\psi^{\prime-1} \circ\left(\exp _{p} \mid U\left(v^{\prime}\right)\right)^{-1}\left(\exp _{p} \mid U(v)\right) \circ \psi: U \longrightarrow U^{\prime}, \\
& F(r, \gamma, \alpha)=\left(r^{\prime}, \gamma^{\prime}, \alpha^{\prime}\right),
\end{aligned}
$$

and let

$$
\begin{array}{ll}
\psi^{-1}(w)=(r(w), \gamma(w), \alpha(w)) & \text { for } \quad w \in U(v) \\
\psi^{\prime-1}(w)=\left(r^{\prime}(w), \gamma^{\prime}(w), \alpha^{\prime}(w)\right) & \text { for } \quad w \in U\left(v^{\prime}\right) .
\end{array}
$$

Since $\rho(H) \cdot U_{i}=U_{i}$ for any $i \in I$, we can assume that $v_{j} \in U(v), \gamma\left(v_{j}\right)=$ $\gamma(v)$ and $\alpha\left(v_{j}\right)<\alpha\left(v_{j+1}\right)$. Since $r(v)=r^{\prime}\left(\left(\exp _{p} \mid U\left(v^{\prime}\right)\right)^{-1} \circ\left(\exp _{p} \mid U(v)\right)(v)\right)$ and since $\partial r^{\prime} / \partial r \neq 1$ at $\psi^{-1}(v)$ by the variation theory, we see that the equation

$$
r-r^{\prime}=0
$$

can be solved for r as a function of γ and α around $\psi^{-1}(v)$. Let $r(\gamma, \alpha)$ denote the solution and let

$$
K=\{(r, \gamma, \alpha) \in U ; r=r(\gamma, \alpha)\}
$$

Here we can assume that $U-K$ is composed of two connected components which we denote by V_{1} and V_{2}. Let $V_{i}^{\prime}=F\left(V_{i}\right)(i=1,2)$ and $K^{\prime}=F(K)$. By the definition of $\mathscr{S}(p)$, we have:

$$
r \leqq \mu(\psi(r, \gamma, \alpha)) \leqq r(\gamma, \alpha) \text { if }(r, \gamma, \alpha) \in U \quad \text { and } \quad \psi(r, \gamma, \alpha) \in \mathscr{S}(p)
$$

Therefore we may assume that $\psi\left(V_{1} \cup K\right) \supset \mathscr{S}(p) \cap U(v)$ and $\psi^{\prime}\left(V_{2}^{\prime} \cup\right.$ $\left.K^{\prime}\right) \supset \mathscr{S}(p) \cap U\left(v^{\prime}\right)$. Since $\exp _{p} v_{j}=\exp _{p} f\left(v_{j}\right) \quad$ where $\quad v_{j} \in \mathscr{S}(p) \cap U(v)$ and $f\left(v_{j}\right) \in \mathscr{S}(p) \cap U\left(v^{\prime}\right)$, it is clear that $v_{j} \in \psi(K)$ and $f\left(v_{j}\right) \in \psi^{\prime}\left(K^{\prime}\right)$. Hence there are positive numbers r_{0} and γ_{0} for which we can define a family of (continuous) embeddings

$$
E_{j}:\left(-r_{0}, r_{0}\right) \times\left(-\gamma_{0}, \gamma_{0}\right) \times(0,1) \longrightarrow M \quad(j=1,2, \ldots)
$$

as follows:
(d) $R_{j}(x, y, z)=(1-x) \cdot r\left(\gamma(v)+y, z \cdot \alpha\left(v_{j}\right)+(1-z) \cdot \alpha\left(v_{j+1}\right)\right)$
for $(x, y, z) \in\left[0, r_{0}\right) \times\left(-\gamma_{0}, \gamma_{0}\right) \times(0,1)$,
(e) $\Phi_{j}(x, y, z)=\left(R_{j}(x, y, z), \gamma(v)+y, z \cdot \alpha\left(v_{j}\right)+(1-z) \cdot \alpha\left(v_{j+1}\right)\right)$
for $(x, y, z) \in\left[0, r_{0}\right) \times\left(-\gamma_{0}, \gamma_{0}\right) \times(0,1)$,
(f) $\quad\left(R_{j}(y, z), \Gamma_{j}(y, z), A_{j}(y, z)\right)=F\left(\Phi_{j}(0, y, z)\right)$
for $(y, z) \in\left(-\gamma_{0}, \gamma_{0}\right) \times(0,1)$,
(g) $\quad E_{j}(x, y, z)=\exp _{p} \circ \psi \circ \Phi \Phi_{j}(x, y, z)$
for $\quad(x, y, z) \in\left[0, r_{0}\right) \times\left(-\gamma_{0}, \gamma_{0}\right) \times(0,1)$,
(h) $\quad E_{j}(x, y, z)=\exp _{p} \circ \psi^{\prime}\left((1+x) \cdot R_{j}(y, z), \Gamma_{j}(y, z), A_{j}(y, z)\right)$
for $(x, y, z) \in\left(-r_{0}, 0\right] \times\left(-\gamma_{0}, \gamma_{0}\right) \times(0,1)$.
Let $0<\gamma_{1}<\gamma_{0}$ and let $\left\{r_{k}\right\}_{k=1,2, \ldots}$ be a sequence of positive numbers

On the cut locus and the topology of Riemannian manifolds 407
such that $r_{0}>r_{1}>r_{2}>\ldots$ and $\lim r_{k}=0$. Since the map μ is continuous, there is a subsequence $\left\{v_{j_{k}}\right\}_{k=1,2, \ldots}$ of $\left\{v_{j}\right\}_{j=1,2, \ldots}$ such that

$$
\begin{aligned}
& E_{j_{k}}\left(-r_{k} \times\left[-\gamma_{1}, \gamma_{1}\right] \times(0,1)\right) \subset \exp _{p}\left((\mathscr{P}(p)-C(p)) \cap U\left(v^{\prime}\right)\right) \\
& E_{j_{k}}\left(r_{k} \times\left[-\gamma_{1}, \gamma_{1}\right] \times(0,1)\right) \subset \exp _{p}((\mathscr{S}(p)-C(p)) \cap U(v)) .
\end{aligned}
$$

Let $\quad D_{k}^{\gamma}=E_{j_{k}}\left(\left(-r_{k}, r_{k}\right) \times \gamma \times(0,1)\right)$ and let $R_{k}=E_{j_{k}}\left(\left(-r_{k}, r_{k}\right) \times\left(-\gamma_{1}, \gamma_{1}\right) \times\right.$ $(0,1))$. Then the boundary of R_{k} is contained in $\exp _{p}((\mathscr{S}(p)-C(p)) \cup$ $\left.N_{p}^{-1}(2)\right) \cup D_{k}^{\gamma_{1}} \cup D_{k}^{\gamma_{1}}$. Since we assumed that $v_{j_{k}}$ and $v_{j_{k}+1}$ belong to the different connected components $U_{j_{k}}$ and $U_{j_{k}+1}$ of $N_{p}^{-1}(2)$ respectively, we have a vector $w_{k} \in U(v) \cap C(p)$ which is a boundary point of $U_{j_{k}}$ and which is such that $\alpha\left(v_{j_{k}}\right)<\alpha\left(w_{k}\right)<\alpha\left(v_{j_{k}+1}\right)$ and $\gamma\left(w_{k}\right)=\gamma(v)$. This means that $q_{k}=\exp _{p} w_{k} \in D_{k}^{0}$ is an inner point of R_{k}. Since $N_{p}\left(w_{k}\right)$ $\geqq 3$, we have a vector $w_{k}{ }^{\prime}$ in $C(p)-U(v) \cup U\left(v^{\prime}\right)$ such that $\exp _{p} w_{k}{ }^{\prime}=q_{k}$. Let $q_{k}{ }^{\prime}$ be the first point on the geodesic $\exp _{p} t w_{k}^{\prime}(0 \leqq t<1)$ which is in the boundary of R_{k}. Then Proposition 2.4 implies that $q_{k}{ }^{\prime} \in$ $D_{k}^{-\gamma_{1}} \cup D_{k}^{\gamma_{1}}$. Let $\quad P(\gamma)=\exp _{p}(\sigma(\gamma) v)$. Since $\lim d\left(D_{k}^{\gamma}\right)=0$. and since $\lim d\left(D_{k}^{\gamma}, P(\gamma)\right)=0$, we obtain

$$
\begin{aligned}
\|v\| & =d(p, P(0))=\lim d\left(p, D_{k}^{0}\right)=\lim d\left(p, q_{k}\right) \\
& =\lim d\left(p, q_{k}{ }^{\prime}\right)+\lim d\left(q_{k}^{\prime}, q_{k}\right) \\
& \geqq \lim d\left(p, D_{k}^{-\gamma_{1}} \cup D_{k}^{\gamma_{1}}\right)+\lim d\left(D_{k}^{-\gamma_{1}} \cup D_{k}^{\gamma_{1}}, D_{k}^{0}\right) \\
& =d\left(p,\left\{P\left(-\gamma_{1}\right), P\left(\gamma_{1}\right)\right\}\right)+d\left(\left\{P\left(-\gamma_{1}\right), P\left(\gamma_{1}\right)\right\}, P(0)\right) \\
& =\|v\|+d\left(\left\{P\left(-\gamma_{1}\right), P\left(\gamma_{1}\right)\right\}, P(0)\right)>\|v\| .
\end{aligned}
$$

It is a contradiction.
Proof of Theorem E: Let H be the identity component of H_{p} and $\rho: H \rightarrow S O\left(T_{p}(M)\right)$ be the linear isotropy representation as above. Since $\operatorname{SO}(3, \mathbf{R})$ does not have 2 -dimensional subgroups, $\operatorname{dim} \rho(H)=1$ or 3. In case that $\operatorname{dim} \rho(H)=3$, we have $\rho(H)=S O\left(T_{p}(M)\right.$), implying that N_{p} is constant. By Theorem A, we see that $N_{p} \equiv 2$. Hence the theorem follows from theorem B. Therefore we suppose that $\operatorname{dim} \rho(H)=$ 1. As in the beginning of this section, $\rho(H)$ can be expressed as:
$\rho(H)=\{\sigma(\gamma) ; \gamma \in \mathbf{R}\}$ with respect to a suitable orthonormal basis $\left(v_{1}\right.$, v_{2}, v_{3}) of $T_{p}(M)$. For each vector $v \in C(p)$ we define $\alpha(v)$ by

$$
g\left(v, v_{3}\right)=\|v\| \cdot \cos \alpha(v) \quad \text { and } \quad 0 \leqq \alpha(v) \leqq \pi,
$$

where g is the Riemannian metric on M. By Lemma 6.2, we see that $N_{p}^{-1}(2)$ is composed of a finite number of connected components which we denote by $U_{i}(i=1,2, \ldots, m)$. There is a sequence $0=\alpha_{0}<$ $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}=\pi$ such that:

$$
\begin{aligned}
& U_{1}=\left\{v \in C(p) ; \alpha_{0} \leqq \alpha(v)<\alpha_{1}\right\} \\
& U_{i}=\left\{v \in C(p) ; \alpha_{i-1}<\alpha(v)<\alpha_{i}\right\} \quad(0<i<m) \\
& U_{m}=\left\{v \in C(p) ; \alpha_{m-1}<\alpha(v) \leqq \alpha_{m}\right\} .
\end{aligned}
$$

This is clear from the fact that $\rho(H) \cdot U_{i}=U_{i}$ and $\alpha(v)=\alpha(\rho(H) v)$ and from Lemma 6.1. If $m=1$, we see that $C(p)=N_{p}^{-1}(2)$, which implies that M is not simply connected as in the first part of this proof. Hence we suppose that $m>1$. Let $\tilde{\alpha}: \rho(H) \backslash C(p) \rightarrow[0, \pi]$ be the map defined by $\tilde{\alpha}(\rho(H) v)=\alpha(v)$. Then it is clear that $\tilde{\alpha}$ is a homeomorphism. We have $f \circ h=h \circ f$ for any $h \in \rho(H)$, where f is the map defined in Theorem A. Hence the map

$$
\tilde{\alpha} \circ f \circ \tilde{\alpha}^{-1}:\left[\alpha_{0}, \alpha_{1}\right)^{\cup}\left(\alpha_{1}, \alpha_{2}\right)^{\cup \cdots \cup}\left(\alpha_{m-1}, \alpha_{m}\right] \rightarrow\left[\alpha_{0}, \alpha_{1}\right)^{\cup \cdots \cup}\left(\alpha_{m-1}, \alpha_{m}\right]
$$

is well defined and a homeomorphism. To simplify the notation, we write $\left(\alpha_{0}, \alpha_{1}\right)$ and $\left(\alpha_{m-1}, \alpha_{m}\right)$ for $\left[\alpha_{0}, \alpha_{1}\right)$ and ($\left.\alpha_{m-1}, \alpha_{m}\right]$ respectively. We distinguish three cases.
(1) The case where $f\left(U_{i}\right)=U_{i}$ for some i. By Lemma 6.1, we see that $i \neq 1, m$. Hence it implies that the map $\exp _{p}: U_{i} \rightarrow \exp _{p}\left(U_{i}\right)$ is a covering of order two. Let $c(t)(0 \leqq t \leqq \pi)$ be a curve in $C(p)$ such that $\alpha(c(t))=t$. By Lemma 6.1, we see that $\tilde{c}(t)=\exp _{p} c(t) \quad(0 \leqq t \leqq \pi)$ is a closed curve in $\tilde{C}(p)$. First suppose that the map $\tilde{\alpha} \circ f \circ \tilde{\alpha}^{-1}:\left(\alpha_{i-1}\right.$, $\left.\alpha_{i}\right) \rightarrow\left(\alpha_{i-1}, \alpha_{i}\right)$ is monotone increasing. Since $\left(\tilde{\alpha} \circ f \circ \tilde{\alpha}^{-1}\right)^{2}=i d, \tilde{\alpha} \circ f \circ \tilde{\alpha}^{-1}$ must be the identity map. It implies that the space $\tilde{C}(p) /(\widetilde{C}(p)-$ $\left.\exp _{p}\left(U_{i}\right)\right)$ is homeomorphic to the space $S^{1} \times S^{1} / S^{1} \times\{$ one point $\}$. It

On the cut locus and the topology of Riemannian manifolds 409
is clear that the image of the curve \tilde{c} in $\tilde{C}(p) /\left(\widetilde{C}(p)-\exp _{p}\left(U_{i}\right)\right)$ represents a generator of its fundamental group which is \mathbf{Z}. Hence $\pi_{1}(M)=\pi_{1}(\widetilde{C}(p)) \neq\{0\}$. Now suppose that the map $\tilde{\alpha} \circ f \circ \tilde{\alpha}^{-1}:\left(\alpha_{i-1}\right.$, $\left.\alpha_{i}\right) \rightarrow\left(\alpha_{i-1}, \alpha_{i}\right)$ is monotone decreasing. Then it is clear that $\tilde{C}(p) /$ $\left(\widetilde{C}(p)-\exp _{p}\left(U_{i}\right)\right)$ is homeomorphic to $P^{2}(\mathbf{R})$ and the image of the curve \tilde{c} in $\tilde{C}(p) /\left(\tilde{C}(p)-\exp _{p}\left(U_{i}\right)\right)$ represents a generator of its fundamental group which is \mathbf{Z}_{2}. Hence $\pi_{1}(M)=\pi_{1}(\widetilde{C}(p)) \neq\{0\}$.
(2) The case where $f\left(U_{i}\right)=U_{i+1}$ and $\exp _{p}^{-1}\left(\exp _{p}\left(\bar{U}_{i} \cap \bar{U}_{i+1}\right)\right) \cap$ $C(p)=\bar{U}_{i} \cap \bar{U}_{i+1}$ for some i. It is clear that the map $\tilde{\alpha} \circ f_{\circ} \tilde{\alpha}^{-1}:\left(\alpha_{i-1}\right.$, $\left.\alpha_{i}\right) \rightarrow\left(\alpha_{i}, \alpha_{i+1}\right)$ is monotone decreasing. Let v be a vector in $\bar{U}_{i} \cap \bar{U}_{i+1}$. Let $\gamma_{0}=\inf _{\gamma>0}\left\{\gamma ; \exp _{p} \sigma(\gamma) v=\exp _{p} v\right\}$. By condition (C), we see that $\gamma_{0}>0$. Since $\rho(H)$ acts on $\bar{U}_{i} \cap \bar{U}_{i+1}$ as a rotation, for any $w \in \bar{U}_{i} \cap$ \bar{U}_{i+1} we see that $\exp _{p} \sigma(\gamma) w=\exp _{p} w$ if and only if $\gamma \in \gamma_{0} \mathbf{Z}$. Hence $2 \pi / \gamma_{0}$ is an integer which we denote by n. And the map $\exp _{p}: \bar{U}_{i} \cap$ $\bar{U}_{i+1} \rightarrow \exp _{p}\left(\bar{U}_{i} \cap \bar{U}_{i+1}\right)$ is a covering of order n. By the choice of i, we have $n \geqq 3$. Let $\tilde{c}(t)(0 \leqq t \leqq 1)$ be the curve defined by $\tilde{c}(t)=$ $\exp _{p} \sigma\left(t \gamma_{0}\right) v$. Here it is clear that the space $\widetilde{C}(p) / \exp _{p}\left(\underset{i \neq i, i+1}{\cup} \bar{U}_{j}\right)$ is homeomorphic to the space $V^{2} \cup_{\xi} S^{1}$, where $V^{2}=\left\{x \in \mathbf{R}^{2} ;\|x\| \leqq 1\right\}$, $\xi: \partial V^{2}=S^{1} \rightarrow S^{1}$ is a covering map of order n and $V^{2} \cup_{\xi} S^{1}$ is given by identifying ∂V^{2} with S^{1} through ξ. Moreover the image of the curve \tilde{c} in $V^{2} \cup_{\xi} S^{1}$ represents a generator of its fundamental group which is \mathbf{Z}_{n}. Hence $\pi_{1}(M)=\pi_{1}(\tilde{C}(p)) \neq\{0\}$.
(3) The other case. We consider the orbit spaces $\rho(H) \backslash \mathscr{P}(p)$ and $H \backslash M$ and the commutative diagram

defined as follows:
(a) π and $\bar{\pi}$ are the natural projections,
(b) $\exp _{p}(\rho(H) v)=H \cdot \exp _{p} v$.

Since $\rho(H) \backslash N_{p}^{-1}(2)$ is composed of a finite number of connected components $\rho(H) \backslash U_{i}(i=1,2, \ldots, m)$, we have a component U_{j} and vectors
u and v in $C(p)$ such that
(c) $\rho(H) u$ and $\rho(H) v$ belong to the different connected components of $\rho(H) \backslash C(p)-\rho(H) \backslash U_{j} \cup \rho(H) \backslash f\left(U_{j}\right)$,
(d) $\exp _{p} u=\exp _{p} v$.

Let $c(t)(0 \leqq t \leqq 1)$ be the curve defined by

$$
\begin{array}{ll}
c(t)=\exp _{p} 2 t u & (0 \leqq t \leqq 1 / 2), \\
c(t)=\exp _{p}(2-2 t) v & (1 / 2 \leqq t \leqq 1) .
\end{array}
$$

Then we can prove that $\bar{\pi}(c)$ is not homotopic to a constant map, applying the method in the proof of Theorem D to the diagram

defined as follows:
(e) $(\rho(H) \backslash \mathscr{S}(p))^{\prime}$ is the space obtained from $\rho(H) \backslash \mathscr{S}(p)$ by identifying $\rho(H) w$ with $\rho(H) \cdot f(w)$ for $w \in U_{j}$,
(f) k and \bar{k} are the natural projections,
(g) $\overline{\overline{\exp }_{p}} x=k \circ \overline{\exp }_{p} \circ k^{-1}(x)$ for $x \in(\rho(H) \backslash \mathscr{S}(p))^{\prime}$.

Hence the curve c in M is not homotopic to a constant map, implying that M is not simply connected.

Department of Mathematics, Kyoto University

References

[1] M. Berger, On the diameter of some Riemannian manifolds, Technical report, Univ. of California, 1962.
[2] M. Berger, Lectures on Geodesics in Riemannian Geometry, Tata Institute of Fundamental Research, Bombay, 1965.
[3] R. Bott, On manifolds all of whose geodesics are closed, Ann. of Math., 60 (1954), 375-382.
[4] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math., 69 (1959), 654-666.
[5] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience, New York, 1969.
[6] J. Milnor, Morse Theory, Ann. of Math. Studies, Princeton, 1963.

On the cut locus and the topology of Riemannian manifolds 411
[7] S. B. Myers, Connection between differential geometry and topology, Duke Math. J., 1 (1935), 376-391.
[8] A. D. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math., 87 (1968), 29-41.

[^0]: 1) For the pair (X, Y) of topological spaces such that $Y \subset X, X / Y$ denotes the quotient space of X by the equivalence relation \sim that $a \sim b$ if and only if $a=b$ or a, $b \in Y$.
