J. Math. Kyoto Univ. (MJKYAZ)
14-2 (1974) 371-390

On potential densities of one-dimensional
Lévy processes

By
Toshio TAKADA

(Communicated by Professor Yoshizawa, Sept. 19, 1973)

§1. Introduction

In this paper, we will study some behaviors near the origin of
the derivatives of potential densities of some typical one-dimensional
Lévy processes.

In the study of one-dimensional Lévy processes, their potential
densities play an important role. For example, there is a close relation
between the hitting probability for a single point and properties of
potential densities: roughly, we can say that the positivity of hitting
probability for a single point is equivalent to the existence of a bounded
potential density and the regularity of a single point is equivalent to
the existence of a bounded continuous density. These facts were
well known and used in the study of stable processes (cf. Kac [3])
and have been established for general one-dimensional Lévy processes
by Kesten [4] and Bretagnolle [1]. We note that Port and Stone
[6] proved independently the existence of continuous densities (and
hence, the regularity of a sinlge point) for asymmetric Cauchy processes.

Even in the case when a continuous potential density exists, its
derivative behaves quite differently and it is our purpose of the present
paper to study the behavior of derivatives near the origin for several
one-dimensional Lévy processes. The behavior of derivatives reflects
some aspects of the hitting of sample paths to a given point as is
explained in Ikeda and Watanabe [2].
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The author dedicates his thanks to Prof. S. Watanabe for valuable
suggestions and to Prof. N. Kébno who communicated to the author
the existence of the paper [S].

§2. Results

Let {X,, P.}/>0,-er be a one-dimensional Lévy process with ex-
ponent Y(&):

Eo(eitXe)=et¥(®
where
@.1) (&)= —iat—(1/2)02E2 + SR“’"“‘ 1= iEy/(1+y2)n(dy).

Its p-potential U, (p>0) is defined as follows:

@) U@=E] (T soxar|={ U ansee.

where the measure U,(dy) is defined by

2.3) U8 =Eo[ | ernaxar).

If U,dx) has the density u,(x), it is called the potential density.

Theorem 1. Let X, be a process with exponent given by (2.1),
where ¢2>0 and the Lévy measure n(dy) has a compact support.
Then, the potential denisty u,(x) exists which is continuous in R
and continuously differentiable in R—{0}. Further, u;,(0+)=J1‘11%1 up(x)

and up(0_)=lim uy(x) exist with finite values and
xl0

(2.4) u,(0.)—uy(0,)=2/c2.

The following theorem was proved in [2]. We quote it here for
reference.

Theorem 2. Let X, be a process with exponent \ given by
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2.5) Y(&) =—C &= (1 —ip, tan (nx,/2)  sgn ()
— C,[¢|*2(1 — iB, tan (nay/2) sgn (£)) ,

where o,>1, o;>0,>0, a;x1 and —1<B <1, (i=1,2). ie X is
an independent sum of stable processes with index a;>1 and a,.
Then, the continuous density u,(x) exists which is continuously dif-
ferentiable in R—{0} and

n(l+h%)C,

(2.6) up(x)=— (sgn (x)+B)|x|=1~2

+(a,sgn(x)+b,)|x|2*1-2"2
+(a,sgn (x)+by)|x|3x172%2 2 4.0,
+(a, sgn (x)+b,) | x |17 2+n@i—ad 4 Y (),

where h,=ptan(na,/2) and V,(x) is a bounded continuous function.
n is the greatest integer such that a,—2+n(x; —o,)<O0.

Theorem 3. Let X, be a asymmetric Cauchy process with expo-

nent y given by
27 Y(&)=—ial—CI¢|(1 +i-sgn(Sh-log|<)),

where C>0, h=2B/n and —1=ZB<1 (Bx0). If p=—1, X, is a one-
sided Cauchy process with positive jumps and if f=+1, X is a one-
sided Cauchy process with negative jumps. Then a continuous density
uy(x) exists which is continuously differentiable in R—{0} and as
Ix110,

- I 1
(2.8) u;,(x)=4—ﬁ%(sgn(x)+ﬁ) 1 2+0< 1 3>
*1(log ) \IxI(toe )

Theorem 4. Let X, be a process with exponent  given by
(2.9)  Y(&)=—ial—C,|¢|(1+ih, sgn(&)log|é])— C,|¢|*(1 +ih; sgn(E)),

where h,=2B,/x, hy=p,tan(na/2), —1=B,=1 (i=1,2), B;=0, and
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O<a<l or l<a<2. ie. X, is an independent sum of an asymmetric
Cauchy process and a stable process with index ox1. Then, the
continuous density u,(x) exists which is continuously differentiable
in R—{0} such that as |x||0,

(2.10) u;,(x)=4[;—27é(sgn(x)+ﬁ,)——l—lz—
1+1 x (Og >

[ x|
1
+O0 ———M——— O<a<l)
N3
(o 57

and

—I2—a) sin -

(2.11) uy(x)= FTIEY A 3ToN

(sgn (x)— ) Ix|*"2 4+ R(x),

where
O(|x|2*=3 log (1/x)) (1<a<3/2)

R(x)= ¢ O((log 1/Ix])?) (x=3/2)
a bounded continuous function (B2<a<?2).

§3. Proof of theorem 1

3.1. The following two lemmas are well known or easily proved
and their proofs are omitted.

Lemma 3.1. If Lévy measure n(dy) has a compact support (i.e.
IM >0, supp[n(dy)lc[—M, M]), then

[" (—coseym@ay) and " Gsingy—eyi+y2mcay)

are analytic functions of £&. Particularly, they are bounded variation
for real & in all bounded intervals.

Lemma 3.2. St: (1 —coséy)n(dy) and St: (sin &y —Ey/(1 + y*)n(dy)
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are o(£?) as |¢|too. These estimates are valid without the assumption
that n(dy) has a compact support.
From the hypothesis of theorem I, u,(x) can be written as follows.

(3.1) up(x)=Sxe_,,.l:_zl_n_gme_iz:xe:w(é)dgjldt
0 -0

=21_n§ : {e7i¢x[(p— (&)}

=7‘?§tm{f‘5>°085)<+g<€)sin EXY(f2(E) +g2(E))dE,

where f(&)=p+o2¢2/2+(" (1-coseymdy) and g(@=ac+{" Giney—
Ey[(1+ y2)n(dy).

3.2. Continuity of u,(x) in R. This is easily seen in view of
(3.1) and lemma 3.2 and the bounded convergence theorem.

3.3. Continuous differentiabliity of uyx) in R—{0}. We can
prove this by using the classical theorem of the change of orders of
differentiation and integration. According to the theorem, we have
only to check that the following condition is satisfied:

For every &é>0 and 6>0, there exists N=N (g 6)>0 such that
for all N'>N and |x|=4,

@2 || (Esiner Q)+ Eeos g (B} (£2(E) + a7 (O)dE | <e.
N'z|glzN :

Since £g(&)/(f2(E)+g2(&)) is a function of bounded variation of ¢ by
lemma 3.1, we have the following estimate by virtue of the second
mean-value theorem:

For some P such that NXP<N/’,

+ ’f2<flvv")g11;/;)<N') || cos £xae|

P N’
Since |S cos 6xdf| s ‘S cos .fxdé' are at most 2/ if |x|=d and
N P
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Ng(N)[(f*(N)+g2(N)), N'g(N)/(f*(N)+g*(N))—»0 as N,N'-o by
lemma 3.2, (3.2) is proved for cosine term and we can prove similarly
for sine term. Thus, u,(x) is continuously differentiable in x € R—{0}

and we are allowed to write as follows.

(3.3) ”;’(x):%gi: —ff(f);ilzéf)xjgézg(g)coséx dE (x#0).

3.4. Behavior of wujp(x) as |x||0. For simplicity, we rewrite

up(x) as follows. uj(x)=1I,(x)+1,(x), where Il(x):_zl__nSJ:oo £1(E)

+o0
sin &x/(/2(E)+ g2, 1) = | £g(&) cos Ex /(120 + 920
Considering oddness and evenness of sinéx and coséx respectively,

we consider the case x>0. As for I,(x), we have by the change of

variable such as n=£&x,

+o

(4 Lw=—-d

-

0-2’72

nsin n{PxZ +

[ 0.2,12 M ,7) , 2
1Px2+-2—+x2. I—COS?J n(dy)

-M

—I-ngM (l—cos 1 y>n(dy)}dr1
J-m

X

+ {aﬂx + xlgflM(sin '%CX - ;ﬂﬁ)n(dy)} ’

Let W(x, n) be the integrand of (3.4).

| Wix, )| et HEL

2
a’n? ZSM< n > on ‘ g% -
5 0N —cos L
Px?+ 5 +x%) 1 cos -y n(dy) 5

Therefore, W(x, ) is integrable in n on each bounded interval (—N,
N) uniformly in x. Meanwhile, by the second mean-value theorem,
we see that for every &>0 there exists N=N(¢)>0 such that for all
N'>N,

’—»-I— Wi(x, n)dn | <e uniformly in |x|=1.

2n SNélnléN'
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+oo
Thus, I(x)— — 21n S n;zmzn dn=—1/c? (x]0).

Now let us proceed to I,(x). We separate I,(x) into two terms
and denote them by —zln—.ll(x) and 717{ J,(x) erspectively:
| oo Ecoséx fal+ (2= it >"(dy)}d¢
35) I == -
(35 L=z (" JHGETE(S

M .
+Lg+w€cos{x(g_M(smvfy-é.V)n(d.V))dé
27 )_ o fHE+g%(¢)
= L)+
271 2" 2

Since the integrand of J,(x) is dominated by integrable function, we
have only to consider J,(x).

(3.6)

|¢|S Isin Ey— Ey |n(dy)
ASIH e de
4

Let us consider y>0 part and change variable ¢ by n=¢&y in the right
side of (3.6). Then,

M +o
Jo (57 ASBAZN gy < + <o

4

As for y>0 part, the same is true. Therefore,

Iy(x)— S”’A@—— . (x]0).

fHE) +g%(¢)
Hence, |h,l? up(x)—_Lsgn(x)+A as |x||0,
where D I 9@ 4
A= 32) ame -
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§4. Proof of theorem 3

4.1. Preliminary. We provide here some simple results for the
proof of theorem 3.

Lemma 4.1. For an arbitrary positive integer N and k=2

1 L /i 1\ 6D 1\
: - = log — {l+0<log—> }
Nn(logjlc—+logn> k=1\ x) x

8

Il

n

as x]0.

Proof. Note the following:

© dt & 1
(4.1) SN =2 T
t logt+log7 n(logn+log—;
égw dk ~
N-1 t(logt+log?>
= dt 1/ I \e= 17
(4.2) S . =|:— —(logt+log — jl
N t(logt+log%> k=1 x> N

Lemma 4.2. Let n be a sufficiently large integer and z €[0, 1].
Then,

+0(1/n3?)

2n+l+z_2n+l—z> 1-2z

(4.3) l°g( ¥z n+2-z) " Cn+z)n+i—2z)

as n— o0,

z+2n+1\ _—(Q2z+1) 3
(4)  1og(HEZED) 1 j2n= 3T 0 )

as n—> 0.

Lemma 4.3. Let z €(0, 1/2]. Then,

(4.5) ﬁ{z+2n+l2n+l—z}_]+cosnz

=0l z+2n 2n+2—zf  sinnz
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Proof. Since the above infinite product is absolutely convergent,
we can change the order of multiplication to get

—Is

[

{2+2n+12n+1—z}_ (1+2)2(1-2)?

w=o l z+4+2n 2n+2—z§ z(1-2)(2—2z)(2+2)

(3+2)2(3—2z)? (5+2)32(5-22
B+2)3-2)(4+2)(4—2) 5+2)(5-2)(6+2)(6—2)

U O-mE )l /80— 025 25

_ 14 cos nz
sinmz

Lemma 4.4.

172 l+cosnz>
(4.6) go cosrrzlog(—W dz=1/2.

4.2. Continuity of u,(x) in R. 1In this case u,(x) can be written

as follows.

| (to e idx 1 (e (p+cé)coséx dé
@7 uylx)= zn§wp-w_é)dé‘Tgo(p+cé)2+62(a+chlogé)2

_ g” Ela+chlog &) sinéx dé
o(p+cé)2+E2(a+chlogé)?

The first term of (4.7) is obviously continuous in x € R by the bounded
convergence theorem. For the second term, we extract a non-absolutely
integrable part and consider the following:

(4.8) E(a+chlog&)sinéx _ sinéx
) (p+cé)?+E2(a+chlogé)?  chélogé
. E(a+chlogé) } 1
+sin éx{(p+c§)z+§2(a+ch log&)2 ™ Cht 1ogc}
Non-absolutely integrable part %S:%ﬁgé d¢ is a continuous function

of xx0 by using the same method as in 3.3 (the second mean-value
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theorem). Moreover, it is seen that o w-ﬂ{c—dﬁ -0 as |x]|/0
n Jochélogé

by the change of variable n=¢&x.

4.3. Continuous differentiability of wu,x), when xx0. The
proof is the same as that of 3.3 and u,(x) is written as follows, when
x %0,

(4.9) I g‘” E(p+cg)sinéx dE

4= )y (pel)? +E2(a+chlog §)°

LS‘” E2(a+chlogé) cos Ex dE
T Jo(p+cé)?+E%(a+chlogl)?”

We denote the first and the second term of (4.9) by K,(x) and K,(x),
respectively.

4.4. Behavior of u)(x) as [x||0. We investigate K,(x) in 4.4.1
and K,(x) in 4.4.2.
4.4.1. We write K,(x) as follows, by extracting non-absolutely in-
tegrable part.

o sin éx d¢
2
0 <c+gc—>+2ah log &+ ch? log? &

+Ln3w sin fx[ p) !
0 (c+7)+2ah log &+ ch? log? &

(4.10) K,(x)=——7lz—g

((p+cd)
(p+cé)2+62(a+chlogé)2:| d

The second term of (4.10) is a bounded continuous function of x €R.
Therefore, we have only to investigate the first term:

(4.11) I,(x)=—%gw = sin £x dé .
°(c+7>+2ahlogé+chzlog26

By oddness of K,(x) and I,(x), we consider the case x>0. In (4.11),
we divide the domain of integration into a half period of sin{x and
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change variable & by éx=2nnx+nz in the intervals where sinéx is
positive and by ¢x=(Q2n+1)n+nz in the intervals where sinéx is
negative. Then,

_ 1 e z+2n+l) . }
@12 Lm=--1 Z[Solog<—z+2n P,(z, z)sin nz dz |, where

n=0
chz{log <¥n)
Pul(z, x)= a? 2n+z 21 af2n+z
{<c+7)+2ah 1og< n>+ch log (Tn)}

X
+log(2n+x2+ ln)}

2 > .
{(c + %) + 2ah log (_Zn +xz +1 n>+ ch? logz(z———n +x“ +1 n)}

We claim that, for an arbitrary natural number N,

(4.13) _ L& B;P,,(z, X)Sin 12 dz]

1
X n=N
= —n 1 2+0< ll 3> and
2 - -
48 cx<log X > x(log X )

a0

(4.14)  I,(x)— {__:lc"..gv (S; P.(z, x)%sin nz dz)}

=0<x—<logl—]—)3>, as x|0.
X

From (4.13) and (4.14),

- I !
(4.15)  1,(x) =95 sen (x) 1 2+o< 1 3>,
xi(toe )"\ ix(loe 1)

[x]
as |x|]O.

We now prove (4.13).
We put Q,(x)=(logn+logl/x) (n=1,2,..) and rewrite P,(z, x) as
follows.
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2 2
(4.16) P,(z, x)=m+(})n(z’ x)_m)

The order of the second term of (4.16) is at most 1/Q(x) as x|0,
n—oo. Hence, using lemma 4.1,

‘ ——;— 2} {S P,(z, x) smnzdz}

n=N

"=N SO cth3(x) B smnzdz}

__)lc__ i S [P (z, x)— h2Q3( )}sin nzdz

- . ! )
T 4p3c x(log —xl—>2 +0<x<log —;—>3>

Now, we proceed to the proof of (4.14). Separating the first N
terms and remaining terms and considering (4.4) and the fact that
Pz, x) is of order 1/Q3(x),

@[ B n o ppinne ad |

n=N

1 1 N—J Z+2n+l> ‘
_)E—‘So "§0 10g<—z—_|:§;1_ Pn(z9 x) sin mz dz‘

_1_‘100 : (L_ z+2n+1>
+ > SongNP,,(z,x)smnz 5 ) dz

2y

4.4.2. Behavior of K,(x) as |x|]0. We write K,(x) as

IIA

___ 1 (= (hlog &+ 6) cos Ex
(4.18)  Ky(x) S T et i sy dt

+

Sw[ hlogé+6

1
n 0+ w log & + ch? log2¢
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 &*a+tchlogl)
(P+cé)2+E%(a+chlogé)?

i|cos Ex dE.

Here 0, w, & are determined so that the second term of (4.18) is
integrable for all x. By a direct calculation, 6, ®, 5 must be (c2+
a?)/c3, ha(c?+a?)/c?, a(c®+a?)/c3 respectively. By this choice of 6,
w, §, the second term of (4.18) is a bounded continuous function.
So, we have only to investigate

__ 1 (> (hlogé&+d)coséx
(4.19) Lx)= ngoe+wlogc+ch21og2¢df

when x|0, condisering evenness of the integrand. In (4.19), we devide
the domain of integration by the period of coséx. Then,

2n+2

-l e 22" (hlogé+0d)coséx
(4.20) I2(x)"_1r—n;ogm 0+wlog€+ch210325d€'

Moreover, we divide each term of (4.20) into four parts each of which
is 1/4-period of coséx. In each 1/4-peroid of coséx, we change the
variable by éx=nx+2nn, éx=n(12—2)+2n+1/2)n, éx=nz+(2n+ 1)z,
Ex=n(1/2—2)+(2n+3/2)r respectively. Then,

. 1 & (1/2 2n+1+4z
(4.21) Iz(x)——T’;oS cosnz{log<2+ )A(z x)

oh? log< n+z ) og(2”+)cl+z7t)
2n+z 21 a2f2n+z }
{0+wlog<———x n)+ch log (Tn>
+ch2{log (2n+z >+10g <%’$€n>}+<5w—6h)
{9+ o log (gn—+—1+zn)+ ch? log2<wn)}
X P
1 1
I 3 O 1\
ch(log > +log n) ch(log '—x—>

A,(1—z, x), when n%0 or =0 respectively. Then,

where, Az, x)=

Now, we extract from A,(z, x) and
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1

4.22) Az, x)= i
ch(log ~ T log n)

3 1
2+{A,.(z, X) ch(log%ﬂogn)?}

1
1 2
ch<log —x—>
By a direct calculation, it is seen that the order of the second term of

I 1 i since the order i L 3

<log7+log n) (log—)-c—+logn)
4

Quite similarly the second term of (4.23) is 1/<log—;—>. As for

A (1—2z, x), the same is true. By (4.3) of lemma4.2 and the fact

that log<2—"ﬁ5> as well as log(—zﬂz;i> is O(1/n), we see easily

1

(4.23)  Ay(z, x)= +{A0(z, x)—

(4.22) is vanishes.

2n+z 2n+1-z
the following:

1 (12 2 2n+1+22n+l—z> I d
= —_— z
(4.24) L(x)=—— SO cos .z "§01°g( Intz Int2—z C,,<log%>2

1

- _x_g;/z cos 1z {log (l—--:-z>{Ao(z, x)— C}I(Tg_l_—)i}
—1log (%){Ao(z, x) ————l—)z}]dz

ch(log —)lc—

_ 1 (2 & 2n+l+z>
TSO cos Tz "gl[log(————zn 2

{ 1 _ 1

1 2 I \2
ch(log -1 log n) ch(log —x—>

+(A,,(z, x)— L )}

1 2
ch(log > +log n)
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_10g<2n+2—z>{ I _ 1
2 . 2 2
n+l-z ch<log % +log n> ch(log %—)

+(A,01-2, - ‘ )2>}]dz.

ch(log xL +logn

—1 _ —n
20hx<log —)%—)2 - 4cﬂx(log _)1(_)2

by lemma 4.4. The second term of (4.24) is obviously 0(———11——3)
x(log ——)
x

The first term of (4.24) is equal to

as x|0. The third term of (4.24) is also of order 0( I

—— )
x(log—x—)
noting (4.3) of lemma 4.2, lemma 4.1 and the fact that
ll 5 — l T3 is of order —1—1—3 for fixed =n
ch(log—x—+log n) ch(log T) (log7>
and A4,(z, x)— ll 3 is of order l 1 3 for
ch(log7+logn> (log—x—+logn)
fixed z.

§5. Proof of theorem 4

5.1. Continuity in R and continuous differentiability in R—{0}
of u,(x). In this case, u,(x) can be written as follows:

+o e—i{x

Y 2 IP(C)

G =

2n dt

-1 g"" (pte,8+Cyd*)coslx—(c h L log&terhyl +al)sin Lx
n Jo (p+c &+c 82+ (c hElog &+ h % +ad)?

When 1<a<2, continuity of u,(x) in R is obvious from the bounded
convergence theorem. When 0<a<1, continuity of u,(x) in R is prov-
ed as in 4.2. The continuous differentiability in R—{0} of u,(x)
is proved as in 3.3 and for xx0, uj(x) can be written as follows.
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rieve 1 (® &(pt+cE+cyl?)sinéx
52 upx)=-— S 1L esf sin &y

+&(c hElog &+ ch, %+ al) cos éxdé
+(c,hElog&+cyh 8%+ al)?

For simplicity, we put the denominator of the integrand of (5.2) as

F(&);
(5.3) F(&)=(p+c,&+c89)2+(cihLlogl+cyh 6 +al)?

The behavior of u)(x) as |x||0 is different according as O<a<lI or
1<a<?2.

5.2. Behavior of uy(x) as |x||0 when I<a<2.  We rewrite
uy(x) as follows:

vy b J(® e éx TsinEx cohy &1 cos Ex
(5.4) wup(x)=—— {So (3 e+ {7 2l “HE e

i

_ 1 (®c;&*sinéx (c hE2log E+ ak?) coséx
[, ey ar -t FE) dt

The third term of (5.4) is a bounded continuous function by the bound-
ed convergence theorem. When 3/2<a<2, the second term is also
a bounded continuous function by the same theorem.

5.2.1. The case 3/2<a<2. In this case, we have only to investi-
gate the first term of (5.4). By evenness and oddness of cos¢x and
sinéx respectively, we consider the case x>0. Let us rewrite the
first term of (5.4) as follows:

_ 1 f(®cy&*Tsinéx c hE*t cos Ex
(5.5 = {fs AR T | cahatn i

_ 1 sin £x hy © cos Ex
o= Cz(l+h S ¢t d€+cz(|+h%)go &=t df}

i
Rt Eo e S R el
rfaa

%)S cos Cx dé— Sw cyh, é;:é)coséxdé}.
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Since 3/2<a<2, the second and the third term of (5.5) are bounded
continuous functions by the bounded convergence theorem. The first
term of (5.5) can be calculated by the following formulas:

Sw sin &x dE = nxe”! , (0<a<2, 0<x)

¢ 2T (a)sin -

Sw co‘fsa{xdé= ”x"—'n , (0<a<l1, 0<x).
o 2I'(a) cos 5
Rherefore,
re—ou) sin%‘—
up(x) = - {sgn ()= B2}|x|*"2+ (a bounded contin-

c,n(1+h3)
uous function).

5.2.2. The case 1<a<3/2. We rewrite uj,(x) as follows:

Pl 1 ® sin &x © hycoséx
(5.6)  uy(x)= cﬂ(Hh%){So s d§+go 2008 dé}
_L.w 1 _§p+c,§+02§“ :
t So{cz(l+h§)é““' F(&) }smé"dé
—ng{ h, _5(0111151035+Czhzf°‘+af)}
7 Jolé, (T hD)E 1 F(&)

cos &x dx.

For simplicity, we denote the second and the third term of (5.6) by
-Ti-gwR(é)sinéde and %Sw’l’(é)coséxdé respectively. The behavior
0 0

of the first term of (5.6) is the same sa in 5.2.1. As for the second
term of (5.6), we use the theorem 1 of [5]. Then,

1 (= . I 1
TSO R()sin Exde~—Ls(2u-2) R(T)
’ 1 b4
=0 x2“‘3log—>, where S(m)=——""——"—.
( * 2I(m) sin 22+

2
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As for the third term of (5.6), we rewrite it by the integration by part
so that the theorem | of [5] can be applied:

(7@ cos xar =L {[ ey S Y (M T sin ex ]

X E=¢ € dé X
Letting M—>o and ¢—0 for fixed x>0,

(5.7) %S T(¢) cos Ex d ___SO

mXx

aT(¢)
dé

sinéx dé&.

Since d—T‘?(ZQ has the index 1—2a as £— oo, the theorem 1 of [5] can

be applied if a=3/2. Then,

%S T(E)coséx déE=— _ SO dggf) sinéx d&é ~

-1, 1 aTr(%) _ - 1
- TS(2 1)—=~ & §=%—0(x2 3logT>.

When «=3/2, we must use the theorem 3 of [5] for a function with
index —2. Then,

(5.8) %S T(&) cos Ex dE = xgo dzg)sméxdé~ xxs(')”‘c dgf)dc.

Describing the highest power of ¢ in the numerator and denominator
of ¢4T&)
dac
vdT(ﬁ) 5610g5+
(-9 dé €7+ +h

Here k and h are constants=0.
Therefore, the behavior of S”xémdf as x|0 is determined by
0

d¢
kS”x—lO?é dé, since édi,(g) has no singularity except powers of log¢

1
from (5.9). Now, the proof of theorem 4 for a=3/2 is accomplished

by nothing

e
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5.3. Behavior of uy(x) as [x||0 when O<a<l. We rewrite
uy(x) as follows:

sin Ex de
2
¢ +—z]—>+2ah, log &+ ¢, h? log2¢

| ((
(5.10)  uh(x)= ‘T{go(

S‘” (h,log&+0d)coséx d&}
o0+wlogé+c h?log?é&

+ ng G(¢)sinéxdé+ I/nSoo H(E)coséxdE, where
b/ 0 0

5.1 GO)=r——3 ! - f‘“;éj“zé“) and
<c.+—cl—>+2ah,logé+c,hflogé
_ hlog&+6 _&(c hElog 4 hyE*+ad)
(5.12)  HO)=groqoerreilog’e K&

The first term of (5.10) has been already investigated in 4.4. As for
the second term of (5.10), we can apply the theorem I of [5], since
G(¢) has the index a—1. Then,

(5.13) %g:G(é)sinéx d€~—7lt—x“S(l—oc) G<—L—>

From (5.13), %ng(é) sinéxdfé has a lower order of infinity than
0
1
o 7—7)
x(log T)
theorem 3. The third term fo (5.10) has also no effect, since dH(&)/d¢
has the index a—2 and the theorem 1 of [5] can be applied and

as x|0. Therefore, it has no effect on the assertion of

1 (= _ =1 (>dH() ..
TSOH(é)coséxdi—Tx—SoTésméxd€~

—nlx—x- 15(2—0:)——‘”5?) L

DEPARTMENT OF APPLIED PHYSICS
FACULTY OF SCIENCE
Tokyo INSTITUTE OF TECHNOLOGY



390

[1]

[2]

[31]
[4]
[5]

[6]

Toshio Takada

References

J. Bretagnolle: Resultats de Kesten sur les processus a accriossoments indepen-
dants, Seminaire de Probabilites V, Lecture Notes in Math. Vol. 191, Springer
(1971), 21-36.

N. Ikeda and S. Watanabe: The local structure of a class of diffusions and
related problems, Proc. of 2nd Japan-USSR Symposium on Probability Theory,
Lecture Notes in Math. Vol. 330, Springer (1973), 124-169.

M. Kac: Some remarks on stable processes, Publ. Inst. Statist. Univ. Paris
Vol. 6 (1957) 303-306.

H. Kesten: Hitting probabilities of single pionts for processes with stationary
independent increments, Memoir 93, Amer. Math. Soc. (1969).

E.J. Pitman: On the behavior of the caharacteristic function of a probaiblity
distribution in the neighbourhood of the origin, J. Australian. Math. Soc. Vol. 8
(1968) 423-443.

S. Port and C. J. Stone: The asymmetric Carchy processes on the line, Ann.
Math. Stat. 40 (1969) 137-143.



