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§0. Introduction.

Let E be a o-Hilbert space topologized by a sequence of norms
{I'll,, n=1,...}. A. N. Kolmogorov has defined the functional dimension
d/(E) of E as follows:

() =sup i i R
where H(eU,, U,) is the e-entropy of U, with respect to the norm
Ill,. If, in particular, E is a space of functions on a compact manifold
M, of a certain type, it is known that the functional dimension d(E)
of E is in close connection with the dimension of M. (Y. Komura
[9] and S. Tanaka [16])

Give a Lie group G acting on M as a group of differentiable
transformation, then we can define the representation D=(T,; g €G,
L?(M)) by means of these transformations. Throughout this paper
the general o-Hilbert space is taken to be the space Z(D) of analytic
functionals of the representation D in the sense of E. Nelson [12], and
calculate the functional dimension of this space. Let D be one of
the following representation:

1) The regular representation of a connected compact semi-simple
Lie group G (in this case the manifold M is the group G itself);



216 Shigeo Takenaka

2) The regular representation of the n-dimensional torus T
(M coincides with T");

3) The quasi-regular representation of SO(n) on the (n—1)-dimen-
sional sphere S»1!;

4) The class 1 irreducible unitary representations of the group
M(n) of n-dimensional Euclidean motions (in this case M =8""1),

In the above cases, we shall prove the following main theorem.

Theorem. d(#(D))=dim M.

To prove the theorem we shall proceed as follows: In §1 we
shall discuss the functional dimension d,(E), in the case where the
countable norms ||, of E are defined as |'|,=|4"| by using a
positive definite operator A. In this case we can calculate d(E) with
the help of the spectrum of the operator A. In §2 and §3 we shall
consider the space Z(D) of analytic functionals of a representation
of Lie group and prove that #(D) is an example of the space E dis-
cussed in §1. In §4 we shall show that the operator 4 may be taken
to be the Casimir operator ¢ for a compact semi-simple Lie group.
In §5 we shall calculate the spectrum of the Casimir operator % to
prove the main theorem in the case of a compact semi-simple Lie
group. The last section will be devoted to some other applications
and to the proof of the theorem in the remaining cases.

A characterization of #(D) and Lemma 2 in this paper have also
been given, independently of the present work, in a rescent work of
K. Okamoto and others [5], a part of which the author was able to
know by private communication. The author expresses his thanks
to the members of the Seminar on Probablity in Nagoya University
and the members of the Seminar on Representations of Groups in
Kyoto University, and especially to Professor H. Yoshizawa.

§1. Preliminaries.

Let {E,, |‘l,}, (n=1,...), be a sequence of Hilbert spaces which
satisfies the following conditions

EnDErH-l and ””nS"”n+] .



On functional dimensions of group representations Il 217

Then we define the o-Hilbert space E as the projective limit of the
sequence, E=lim E,. Now, let us introduce the functional dimension
d(E) of E fg)llowing A. N. Kolmogorov [8] and I. M. Gelfand [3].
Let U, be the unit ball of E, and

H(U,, U,)=inf{log ,(¥N); NcE,, VxeU,,3yeN, xey+eU,}.

Definition 1. We call

b

(1) d,(E)=snupi'£1f£Lng%/£]l;"—)—l
the functional dimension of the o-Hilbert space E.

To calculate the functional dimension of E, we can avail ourselves
of the following results. Assume that we are given a self-adjoint
compact operator T on a Hilbert space . Let S be the unit ball
of  and U be the image of S by T, U=T(S). Let my(¢) be the
number of eigenvalues of T, taking multiplicities into account, greater
than 1/t. Then we have the following theorem:

Theorem 1. (B.S. Mityagin [11] and S. Takenaka [14])
If the limit

g log,H(eS, U)
y_lzl_.n(l) log, log, 1/

exists, then it holds that,

log ;,m4(t) =ylog ,log 5t + o(log ,log ,1).

The converse is also true.

Let T be a positive self-adjoint compact operator on a Hilbert
space . Define E,=T"$ and the norm of E, by the form |-|,=
|T~"|l5. Then the sequence {E,, |‘|,} defines the o-Hilbert space
E. The functional dimension d (E) of E can be calculated from the
spectrum of T as follows:

Corollary 1. Let mqy.(t) be the function of eigenvalue distribution
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of T". If
li,r'n log o(myn(1)) =y log ;log ,t + o(log log , 1),

then d(E)=1y.

§2. Analytic vectors of representations.

Let G be a real Lie group and g be its Lie algebra with a base
{x;;i=1,...,d}. Let D=(T, ) be an unitary representation of the
group G and 0T be the representation of g derived from the operators
{T,; g €G}. Following E.Nelson [12] we define the analytic vectors
of D as follows:

Definition 2. An element f of 9 is called an analytic vector
of the representation © if the condition

0 I!Itn i aT(Xa i )
@) $ oy = ] <o

n=0 oceG(n)

n!

holds for all multi-ind(ix t=(t,, ty,..., ty) with |t;|<t, for some positive
constant t,, where G(n) denote the totality of mappings from {1,..., n}
into {1,...,d}.

Set

3) A=— 3 (AT(X))? and  A=JT+4.
fr=g

Then, using the method of analytic domination, E. Nelson [12] and
R. Goodman [4] have obtained the following theorem:

Theorem 2. An element f of $ is an analytic vector if and only
if the condition

00

tnAn
n!

(4) f“<oo

n=0

holds for all positive t less than some positive constant t,.
Let B be a positive self-adjoint operator acting on the Hilbert
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space . Then we shall define two kinds of exponentials of B as

follows:

Definition 3.

(4) 1) Exp(iB)= io’"f!" ,

n=

T
(5) 2) etB= S:e"dEl,

ey ={rer| e d(E, 1, 1)< oo}

where {E,; <0} is the system of projections in the spectral decompo-
sition of the operator B.
From the definitions it is easily seen that

(6) D(Exp (tB)) = D(e'B).

Here arises a question asking whether the converse inclusion
holds. To discuss the problem we prepare the following two lemmas:

Lemma 1. An element f of s# belongs to the domain D (Exp(t,B))
for to#0, if and only if there exist positive constants M and C
such that

) |B*f]| <CM"n!.

Proof. Let f be in D(Exp(t,B)) and let g be in 5. Then the
function (Exp(tB)f, g) of t is holomorphic in the disk 2, ={teC,
lt|]<to}. Therefore, F(t)=Exp(tB)f is a #-valued holomorphic func-
tion in the disk 2,,. Thus we can apply the Cauchy’s estimation
of the coefficients to prove the only if part. The if part is clear.

Q.E.D.

Lemma 2. (Fundamental lemma). If f belongs to the domain
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D(e'°B), for some positive constant t, then f belongs to the domain
D(Exp(tB)) for all t in the disk 2,

Proof. Since f belongs to D(e'®®), we can define the function
Fyt)=e'Bf in the disk 2,. By Lemmal, to prove our lemma it
is enough to show that F () is holomorphic in 92,,. Take t and ¢ in
2, such Re()>Re(t'). Then, we have following estimation;

to

| Fp(t)—Fp(t')]|? =S: le'*—e""*|2d(E, f, f)
sgwe“'"l [ —e I 24(E, f, f)
0
SSwezl'“(l + [e 2074 —2Re(e 2" A(E, |, f)
0

34Swe2""d(E4f, f=4lef|*<oo.
0

Therefore by Lebesgue’s theorem, |[[F (t)—F(t)|—0 as |t—t|—0.
That is, F(t) is a continuous function. Let ¥, be a circle included
in 2,, with center ¢ and put

1 F,(z)
lf(t)__?.m‘ %«, . dz.

For the any element g of s, we consider the inner product I (D), 9):

L ? ptod dz_
<L <§§0 et d(E, £, 9) 42 |

40, )1 =5 |§ (7 e s )

dz
t—z

<IFso)l-llgll

Therefore, by Fubini’s theorem, we can exchange the order of integra-
tions:

10, =" [ 558, Zdz|aE s 0)

27 ¢, I —
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=(Tenac, 1, )= F,0, 9.
This shows the analyticity of F(f). Q.E.D.

§3. o-norms of the space of analytic vectors.

We introduce norms |‘|lg, and |‘l.s on the spaces D(Exp(tB))
and D(etB) respectively, for a given positive self-adjoint operator B.

Definition 4.

® D Wlo=5 "B for re D(EXpeB):;

) 2) Iflen=lle®fle,  for feD(e'®).

With those norms D(Exp(tB)), D(e'B) become a Banach space and
a Hilbert space respectively.

Proposition 1. For any positive t and t' such that t'<t, the in-

clusions.
(10) D(Exp (tB)) <= D (e'8) = D(Exp (¢'B))

are continuous with respect to the norms (8) and (9).

Proof. The continuity of the first injection is clear, so we shall
prove the continuity of the second one only. Let f be in D(e'B),
by the analyticity of e'Bf (see Lemma 2) we have

et
Therefore,
NN Ecery KNS oem "S‘b(_tt’_)n =<tTtt,>"f“ B

Q.E.D.

Now we define two spaces of (real-) analytic vectors as follows:
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Definition 4.

(1) 1) 55“’=I,i111(1)D(Exp(tB));
t

(12)  2) 9" =lim D(e'?).
tlio

The topologies of these spaces are the inductive limit topologies derived
from the norms (8) and (9). Thus these spaces are dual-Fréchet spaces.

The set theoretical equation $H°=9'" is derived from (10) and
Lemma 2. Furtheremore by Proposition | we know that $°=H'® as
linear topological spaces. Thus we have

Theorem 3. ¢ is isomorphic to $'".

Our purpose of this section is to define the spaces by which we
can consider the ‘‘size’ of the group representations. By Theorem 2
we know the spaces of analytic vectors in the sense of Nelson is
equal to 9 with respect to the positive self-adjoint operator A=
J1+4 (see (3)). Then we can take the space $° as a candidate
to measure the ‘‘size”. By Theorem 3 we know the dual-o-Hilbert
structure of $H®. (see I. M. Gelfand [3]) Since the functional dimen-
sion is defined only to the o-Hilbert spaces, we will take the dual
space H* of $H“ and calculate its functional dimension d (H“*).
The o-Hilbert structure of the space $H“* is derived from the projective
limit of norms {[le"*4(")[ly; t>0}. And the space H°* seems to play
a certain role in the theory of group representations. (S. Helgason
[7] and K. Okamoto and others [5])

§4. Analytic vectors on a compact semi-simple lie group.

Let G be a compact semi-simple Lie group and ,=(T, L%(G))
be the regular representation of G. We denote the space of analytic vectors
H? of D, by (G) and the space of analytic functionals $®* by
Z(G). The space #(G) may be called the space of Hyperfunctions
on the group G. In this section we characterized the spaces /(G) and
#(G) by the spectrum of the Casimir operator of G.

Let g be the Lie algebra of G and {X;;i=1,...,d} be a base



On functional dimensions of group representations Il 223
of this algebra. Then following lemma holds:

Lemma 3. In the case of the regular representation of a compact
semi-simple Lie group, the operator defined in §1, (3) can be taken
as the Casimir operator €.

Proof. Using the base {X;}, the Killing form (-, -) can be realized
by a symmetric matrix M as (X, Y)=XM'Y. Since G is semi-simple,
M is negative-definite and nondegenerate, and so is the inverse matrix
M~-1, And the Casimir operator can be expressed by the following
form:

(13) € =(0T(X,),..., T(X )M~ V' (0T(X,),..., 0T(X ).

Let a;; be the i,j element of —M~!. As we have —X M !'X, =
a;;>0, so for dT(X)=(x,0T(X)),..., x,0T(X,)),

—XM'X =3 a,xx 0T(X)OT(X,)
i’j

—ay XX )2+ 3 (@ HOT(X JOT(X)
+OT(X)IT(X )} + P,
=a;,{x,0T(X,)*+ 2Zi:,(an/al DX0T(X)}2+P,

=Y%+P2,

where P, and P, are polynomials of variables X,,.., X, and Y,=
d —_—
_Zl(a,-,/\/a,,)X,—. Since M~! is negative-definite nondegenerate, P,

is a nondegenerate positive-definite Quadratic form. Thus by induction,
there exists a new base {Y;;,=1,...,d}, and

d
—%=3 0T(Y)*. Q.E.D.

Corollary 1 shows that in order to calculate d(#(G)) it is enough
to know the spectrum of €.



224 Shigeo Takenaka

§5. Spectrum of ¥ and d (#(G)).

In this section we shall prove the following theorem:

Theorem 4. Let G be a connected compact semi-simple Lie group
and %(G) be the space of analytic functionals on G. Then,

d (#(G))=dim G.

In §4, we have obtained the o-Hilbert structure of #£(G) by the
Casimir operator ¥. The theory of representations of compact connected
semi-simple Lie groups tells us about the spectrum of the Casimir
operator ¥. In what follows we shall count the eigenvalues of €
of the given Lie group G, and we prove our theorem in 2 steps.

Step I. Compact connected simply connected semi-simple Lie
group G. Let b be the Cartan subalgebra of the Lie algebra g
of G, and b, g, be the complexification of b, g. Let ay,..., o
be a system of positive roots of g, with respect to h. Set dimbp, =,
we take ay,..., o, a system of simple roots. Let 4,,...,4, be a dual
base of ay,...,a; with respect to the Killing form (-, ), that is,

(14) 2(1,‘, aj)/(aj, otj)=5,~j.
The set A of all the highest weight is defined as that
(15) A={m,A;+--+md;; m; is a non-negative integer}— {0}.

Then we can get all eigenvalues of ¥ from A as follows: Let e(4)
and d(4) be the eigenvalue and its multiplicity. Then,

(16) e(l)=—(1+26, 1),

am d(d) =(.~=ﬁl (A48, 0)/(5, 2;))*,
1 k

where 6=—§—i§ai.
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1°) To simplify the following calculations we introduce some
notations. For monotonically increasing positive functions f(x) and

g (x), we write
fFg, if g(x)=o(f(x)) and
fRg, if frg and fxg.
Now we set
(18) b()y=#{A €4; (A+26, )+ 1<1?},
(the symbol # denotes the cardinality of a set). Then we have
(19) b(r) Kt .

In fact
(1+26, )= inﬂ mim (2, A)+ ,-Zi my(4, 26),
where A=m A, +---+m,d,. We can have
(4 1) <max{(4, ) gmimj=sl(i§1 m,.)ZSaIS,(i};1 m?)

for some positive constant S,. Let K=infd?(4, X;), where X; is the
linear space spaned by {4, 4;,...,4_y, 44y, 4} and let d2(4, X,)
= inf(A+p, A+p). Since {A;} is linearly independent system, K has

neXi
to be positive. Then (4, ))>(maxm?)k. Therefore there exist two

positive constants S, and S; such that

(20) S,max m?<(A+25,)+1<85, Zd: m?.
i i=1
Set
Q1) a(=4{AeA; S, 3> m?<r?} and
i=1

(22) c()=#{A e A; S, max m? <2} .
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Then it is easy to see that a()<b(1)<c(t) and a()Xc(f)¥t'. Hence
we have (19).

2°) Let n(t) be the number of eigenvalues A=./—%+1 (see (3))
being less that ¢ taking multiplicities into account, then

(23) n(r) K 12++1,

In fact, let

A=lien: L cs m<ct?
e e Bt M Ay

Then by the same way as in 1°), we have #4,¥¢. For any element
A in 4,
k
d(M=l;I(Z m;A;+6, ;)2 [(6, a;)?
J
>5, 2 k11 G Ay )’
= 4(2—1) I+I_11( 1++ 1,(11-)

=S5t2k

where S, and S5 are some positive constants. This proves that n(z)=
12+l The upper estimation of n(t) is easily obtained. Thus, we have
(23).

3°) Compare two norms || -, and ||, introduced in %(G)
for 6'>06>0. We know that e(®"~9)4 is the injection from the space
(#(G), ||I'll-,) into the space (&(G), |'ll-,). Hence m(t) in Theorem
1 is estimated as

(23) n(log, 1)=m(t) X (log, )>**'.
Here 2k+1 is the dimension of G. With this and Corollary 1, we have

(24) d (#(G)) =2k +1=dimG.

Step II. Compact connected semi-simple Lie group G. Let G
be the universal covering group of G. Then there exists a finite sub-
group Z of the center of G such that G/Z=G. Let A and H be



On functional dimensions of group representations I1 227

the Cartan subgroup of G and G respectively, corresponding to the
Cartan subalgebra h of g. We note that any element 1 €A can
be viewed as a character of H. Set A,={AeA; A is trivial on Z}.
The eigenvalues e(4) and the multiplicities d(A) are given as follows:

(16) e(A)=(A+25,2)
a7 ¢l(/1)=(]:"[1 (A+6, 0)/(5, @))?, %€ Ay

Let m be a positive integer such that z"=e for any element z in Z.
Then, expmA(Y)=expA(mY)=A4(z")=1, for any element z of Z such
that z=exp Y. These equalities imply the relation

(25) mAc A,

By a similar arguments to that in the step 1 we can complete the proof
of our Theorem.

§6. Other applications of the results in §3.

In this section we shall apply the characterization in §3 of analytic
functionals Z(®D) of a group representation D to some other cases
to calculate the functional dimension d(%(D)).

a) The regular representation D, of the n-dimensional torus
Tr. In this case the operator 4, can be expressed as él%,
A system of eigenvectors is given as follows:

{e2mitmixittmaxn): . integer, |<i<n}, and its eigenvalues is

In this case it holds that m(e')=n(t){t". Therefore we have
(26) d(#(G))=n.

b) The quasi-regular representation D of SO(n) on the
(n—1)-dimensional sphere S"~!. The quasi-regular representation
D=(T, L3(S"')) of SO(n) is realized on the Hilbert space L2(S" '),
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as follows:

T,f(x)=f(gx),

where f(x) e L3(S""!') and where g acts xeS" ! as a rotation.

Let X;;=(ay) for i>j, where a,=06,0;—0;0,; that is, let X;;

be the infinitesimal rotation of i,j plane, then {X;;} forms a base

of the Lie algebra so(n). The element Z=—Z>X,?j is a nontrivial
t=>J

element of the center of the universal enveloping algebra U(so(n)).
on S*+1,

By the classical results of the spherical functions (P. Appell and J.

Then 4,=0T(Z) is essentially the spherical Laplacian 4,_,
Kempé de Fériet [1]), we know that the set of eiginvalues of A,_, is
{4y =—=1(l+n-2); | is a positive integer>n—2}, and that its multiplicity is
I"=2, Thus we have

(27 d(A(D))=n—1.

From the above results (26) and (27), we have

Theorem 5. Let © be the regular representation of T" or the
quasi-regular representation of SO(n+1) then

d (B(D))=n.

c¢) The class 1 irreducible unitary representation D, of the
n-dimensional Euclidian motion group M(n). Let M(n) be expressed
as the semi-direct product: M(n)=SO(n)x R". For a non-negative
number p, the class | irreducible unitary representation D, is realized
on L2(S" ') as follows:

T ,(h, x)f(y)=eirx> f(hy),

where xeR", heSO(n) and f(y)eL?S"'). (see N. Ya. Vilenkin

[17]) Let us decompose the operator 4 into two part 4=4,+4,.

The restriction of T, to SO(n) is equal to the quasi-regular representa-

tion of SO(n), therefore A4, is equal to the operator A,_;. The res-

striction to R" is the multipliers by variables, which implies 4,=—p2.
Therefore we can use the result in b) and we have
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Theorem 6. Let D, be the class | irreducible unitary representa-

tion of the n-dimensional Euclidean motion group M(n). Then

(1]
[2]
[31
[4]

[5]
[6]

(7]
[8]
[9]
[10]
[

[12]
[13]

[14]

[15]
[16]

[17]

d(#(D,)=n—1.
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