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1. Introduction.

Let {X(s);s€S} be a path continuous real valued centered
Gaussian random field with a parameter space S, where S is a non
compact locally compact topological space. Denote by S| {co} a one
point compactification of S. Then, after P. Lévy, we can formulate
the asymptotic behavior at the infinity point {oo} of sample functions

of the Gaussian random field as follows:

Definition 1. A positive continuous function ¢(s) defined on a
neighborhood of {co} is called a function belonging to the upper class
U(X) if there exists a neighborhood U of {oo}, with probability 1,
such that X (s)<7,(s)p(s) holds for any seUNS, where 7,(s)=
(E[X D™

Definition 2. A positive continuous function ¢(s) defined on a
neighborhood of {oo} is called a function belonging to the lower class
L(X) if there exists no such neighborhood U of {oo}, with pro-
bability 1, that X (s)<7,(s)¢(s) holds for any se UNS.

In case of Brownian motion, I. Petrovsky [6] and K. L. Chung-
P. Erdés-T. Sirao [1] first proved the criterion which determines
whether ¢(s) is of the upper class or the lower class. T. Sirao [7]
also proved in case of Lévy’s Brownian motion with multidimensional
parameter. Recently many authors have investigated the asymptotic

behavior of sample functions of Gaussian random fields in our sense,
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(21, 3], [51, 8], [9], [10], [11], [12], [13].

In this paper, we investigate a path continuous real valued center-
ed Gaussian random field {X(¢);¢=R"} such that

E[(X (9 ~X®)]=r'(s=0) = 202 (Is,— ), M

where s;, ;&€ R, N;+--+Ny=N, s= (s, -, 54, t=(t;, -, ts) and
|s;—¢;] is the usual N-dimensional Euclidean metric.

If each ¢/(]s;—¢:|) is conditionally positive definite, then so is
=) =>%,0%(s;:—t]). Therefore we can easily give many ex-
amples satisfying our assumption (1).

We investigate the following five cases but the methods of the
proofs of the theorems corresponding to each case are each other

almost the same.

Case [I]. The uniform upper class U,(X; D) and the uniform
lower class L,(X;D). Let D be compact set of RY which contains
an N-dimensional ball. Set

S=DxD—{(,t);teD}. 2

Then S is naturally a locally compact set and after our definition 1
and 2, we call a function ¢(x) defined on the real line belonging to
the uniform upper class U,(X;D) or the wuniform lower class
L,(X;D) of the random field {X(¢);¢eD} when the function
o(r(s—1t)) belongs to the upper class or the lower class of the random
field {Y(s5,8) =X(s) =X (¢); (s,¢) €S} in the sense of Definition 1

and 2 respectively.

Case [II]. The local upper class U,(X;t,) and the local lower
class L,(X;t). Set

S=D— {2}, (3)
where D is the closed ball of RY which has the radius 1 and the

center #,. Then S is naturally a locally compact set. We call a
function ¢ (x) belonging to the local upper class U,(X; t,) or the local
lower class L,(X;t,) when the function ¢(y(s—¢,)) belongs to the
upper class or the lower class of the random field {Y(s) =X(s)
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—X (%) ;s€S} in the sense of Definition 1 and 2 respectively.

Case [III]. The upper class U,,(X:t,) and the lower class
L,,(X;t). Set

D*={(xy, -, zw) €RY; 2, <x,<t,'+1, 1<;<N},
D™= {(x), -, zw) €RY; 1, —1<z,<t,", 1<j<N},
and |
S=D*XxX D™ — {(to, t0) }, €))

where = (¢, -+, ¢x"). Then S is naturally a locally compact set.
We call a function ¢(x) belonging to the upper class U,,(X;t) or
the lower class Ly, (X:t,) when the function ¢(y(s—¢)) belongs to
the upper class or the lower class of the random field {Y (s, ) =X (s)
—X(@): (s,t) €S} in the sense of Definition 1 and 2 respectively.

Case [IV]. The upper class Uy (X) and the lower class L7 (X).
In this case, in addition to (1) we assume that y(¢) satisfies

lim y(¢) = + oo. (5)

Jtl-r+oo

Then we call a function ¢(x) belonging to the wupper class U7 (X)
or the lower class Ly (X) when the function ¢(y(¢)) belongs to the
upper class or the lower class of the random field {X (¢) —X(0) ; & R"}
in the sense of Definition 1 and 2 respectively.

Case [V]. The upper class U;”(X) and the lower class Ly°(X).
In this case, in addition to (1) we assume that

E[X(®)Y =1

holds for all £eR”. Then we call a function ¢(x) belonging to the
upper class Uy (X) or the lower class Ly°(X) when the function
¢(|t]) belongs to the upper class or the lower class of the random
field {X(¢) ;¢ R"} in the sense of Definition 1 and 2 respectively.

In §2, we give the integral tests which determine whether ¢ ()
belongs to the upper class or the lower class corresponding to each

case under some regularity conditions. In §3 we prove Theorem
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1-5 when the integral tests converge and in §4 we prove Theorem
6-10 when the integral tests diverge. In § 5 we discuss the invariance
of the upper classes or the lower classes between two random fields
such that E[(X(s) —X ()] =2 [si— ™, 0<ai<1, s;,2,€R™,
s,teR¥ and N,+---+N,=N.

Finally, we are concerned only with, real valued, path continuous,
centered Gaussian random fields, which we will generally refer to
simply as a Gaussian random field.

I would like to express my hearty thanks to Professor H. Watanabe
for his valuable suggestions and discussions.

2. Integral tests.

First we define a nearly regular varying function with exponent
a(>0) (nrw.f. (@) at x=+o (or at x=0).

Definition 3. A real valued function f(x) defined on the half
line is called n.r.v.f. (@) at x=+oco (at x=0) if and only if there
exists a regular varying function r(x) with exponent @ (>>0) such
that

f@) Rr@)*, 21 +o0 (x|0). (6)

Remark 1. A locally bounded measurable function »(x) defined
on (0, +0o0) is called a regular varying function with exponent
a(>0) at x=+oo (at x=0) if and only if

lim »(x) /r(x) =¢t*
Z->+ 00 (+0)
holds for any 2z>0. Especially, if a continuous function f(zx) is a
nrow.f. (@) at x=+ oo (at x=0) then there exists a non-decreasing
continuous regular varying function »(x) with exponent « such that
f(x) Rr(zx), =1 +o0 (x10), and the inverse function f~'(x)=
in f{y; f(y) =x} of a non-decreasing continuous n.r.v.f. (@) at x= + oo
(at x=0) is also a nrw.f. 1/a) at x=+o00 (at £=0).

* We describe by f(t)Hg(t), [} 1 400 (J¢] L 0) when there exist two positive con-
stants ¢ and C such that

0<e< lim  f@/g@)< Tm  f@)/g()<C<+oo.
) [t >+ 00(+0)

[t|->+ oo (+0
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To describe our theorems, set

O(x) = Lme""”du/ v2r,

K@N:p = [ [0 @1

K(aN/bN;71,¢) () =K (aN;7) () /K(6N; 1) (x/9(2)),
07 (x) =inf{y;0:(y) = z}.

Now we have the theorem about the upper class corresponding
to each case under the Assumption U.

Assumption U. Each 0;(x) is a non-decresing continuous n.7.v.f.
(a;) at £=0. In case of Theorem 4, in addition to this it is a
nro.f. (o) at x=+ oo,

Theorem 1. A non-increasing positive continuous function ¢(x)
is a fuuction belonging to the uniform upper class U,(X; D) if

L= [ 2706@)K(N/2N:1,0) (2)dz< + oo.

Theorem 2. A non-increasing positive continuous function ¢(x)
is a function belonging to the local upper class U,(X;t,) if

L= | 20 G@)KW/N:1,0) (2)de< +oo.

Remark 2. The integral tests of Theorem 1 and 2 are es-
sentially equivalent to those of Theorem 3 and 7 in [3] when
d=1 under the condition x0;"(x) R0:;(x) (0 (x) is the derivative
of 6;(x)). This condition is satisfied if ¢*(x) is a concave n.r.v.f.

at x=0.

Theorem 3. A non-increasing positive continuous function ¢(x)
is a function belonging to the upper class U, (X) if

L= [ 270 K@N/2N:1,¢) (2)da< + .
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Theorem 4. A non-decreasing positive continuous function ¢ (x)
is a function belonging to the upper class Uy (X) if

I7(r:0)= jrw (0 (@)K (N/N: 7, ¢) (2) da< + 0.

Theorem 5. A non-decreasing positive continuous function ¢ (x)
1S a function belonging to the upper class Uy (X) if

IP(ri9)= f”x”-'m (0(@) /KN 7) (1o (2))dz< + oo

Remark 3. Just the same result of Theorem 5 is obteined for
the asymptotic behavior at {oo} of the random field {X(¢) —X(0):
tR" under the condition 7°(¢) XC instead of the assumption of
Case [V].

Remark 4. Theorem 1-5 are still valid under the weaker con-
dition E[(X(s) —X(@)) TR Ziaal(s:i—t).

Next we have Theorem 6-9 about the lower class corresponding
to the case [I]-[IV] respectively under the Assumption L which is
stronger than the Assumption U. In case of [V] we have Theorem
10 about the lower class under the Assumption U with an additional

condition.

Assumption L. Each 0;(x) is a non-decreasing twice con-
tinuously differentiable n.r.v.f. (a;) at x=0 which satisfies the re-

lations
z|0 (x) | <di0:(x), (7-2)
20 (x) |=d.0:(2), (7-b)
in the mentioned domain and
0<a;<<1 for each 1. (7-¢)

In case of Theorem 9, in addition to this it is a nr.wv.f. () at
x= +o0o such that 0<<a;/<1, where d, and d;, are constants inde-
pendent of x and 7.

Strictly speaking, it does not need the assumption (7-b) for
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Theorem 7 and 9.

Theorem 6. A non-increasing positive continuous jfunction
¢o(x) is a function belonging to the uniform lower class L,(X; D)
if

L(r; (0) =+ 00,

Theorem 7. A non-increasing positive continuous function
¢ (x) is a function belonging to the local lower class L,(X;t,) if

I,(y;¢9)=+oo.

Remark 5. Theorem 6 and 7 are still valid under the condi-
tion that ¢%(x) is a concave nr.w.f. (2a;) at x=0 such that
0<<a;<<1/2 instead of the Assumption L. (c.f. [3]).

Theorem 8. A non-increasing positive continuous function ¢(x)
is a function belonging to the lower class L,,(X;t) if
L., (1;¢) = +o00.
Theorem 9. A non-decreasing positive continuous function ¢ (x)
is a function belonging to the lower class L7 (X) if
I7(r19) = +oo.
Theorem 10. A non-decreasing positive continuous function
¢(x) is a function belonging to the lower class Ly (X) if
I (r; @) = + o,
under an additional condition
E[X (&) X(9)]I=0(log|t—s||7*), ([t—5| 1 +o0),
B>N/a’ +4,
where o' =min(qy, -+, &, 1 —a), a=max(a,, -, Q).

Remark 6. The additional condition of Theorem 10 is weaker
than that of [12].
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Remark 7. Theorem 10 is still valid under the condition

E[(X@®) - X)) =i (ti—s).

Remark 8. It is remarkable that the integral test for the Case
[IV] is not dependent on the asymptotic bahavior at the origin of
0:(x) but on the asymptotic behavior at the infinity of ¢;(x), whereas
that of the Case [V] is dependent only on the asymptotic behavior
at the origin of ¢;(x). This phenomena is, as far as I know, first
pointed out by M. B. Marcus [4].

3. Upperbounds.

First we show that it is sufficient to prove our theorems under

the restricted condition respectively, described in Lemma 1 bellow.

Lemma 1. (i) It is sufficient to prove Theorem 1 and 6 for
@ (x) such that

2log 1/K(N; 1) () —2loge 1/2<¢*(x) <3 log 1/K(N;7) (x) (8)

holds near the origin.
(ii) It is sufficient to prove Theorem 2, 8, 7 and 8 for ¢(x)
such that

2 lOg(z) 1/1‘ -2 lOg(a) 1/x§¢2 (.r) SB lOg(g) 1/.2: (9)

holds near the origin.
(i) It is sufficient to prove Theorem 4 and 9 for ¢(x) such
that

2 loge x —2 loge x=¢*(x) <3 logy = (10)

holds near the infinity.
(v) It is sufficient to prove Theorem 5 and 10 for ¢(x) such
that

2N log x —2 log r<¢’(z) <3N log x (11

holds near the infinity.

Proof of (i). Set
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¢ f(x) =21og 1/K(N; 1) (z) =2 loge 1/x,
¢’ (x) =3 log 1/K(N;7) (x).

We assume that there exists a sequence x, | 0 such that ¢ (x,) <¢,(z,).
Denote by #, the maximal number of m such that x,<<2-™. Since

0;7'(z) is a nearly regular varying function and ¢(x) is a non-in-
creasing function, we have

L= [ e 0p@)K(N/2N:1,0) (1) de
=0 [ [1107@1 K @N/2N; 7,0) () de

=60 (g (2) T1 [ @meey ]2

>c,(log1/x,)* 1 + 00 as x, 0. 12)

This implies that if I,(7; @) <+ oo, then ¢,(x) <¢(x) holds near the
origin. Moreover by the trivial relations

LG (@Vo) Ae) <L 7;0Ve) +L(r: ¢,
L(r:p)<H4o0, (13)

where ¢,\/¢(z) =max {p,(2),9(2D)}, (V@) Ag:(x) =min {p\V¢(2),
¢:(2)}, we have L. (75 (91 @) \g2) <+ oo from L, (7;9) < +oo. There-
fore if we can prove Theorem 1 under the condition (8), then ¢ is of

U,(X; D) when I, (1; ¢) < + oo because of (¢,\/¢) Ng:<¢ and (¢;\/¢)
Ne€Uu(X; D).

To prove L(1: (¢\V¢) \¢g2) = +00 under the condition I, (y;¢)
= + oo, set

4" ={z; 0V (x) <@:(2)},
4~ ={zx: Vo (@) >e:(2)},

LG GNVo Mg = [+ [ =141,

L(r;eVe) = L'+ L_EL + L.

Since ¢;,7'(x) is a nearly regular varying function, we have
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I=a [ 0Ve@) GKW:) () aVe () *@dz
e [0 @) @K E: 1) @) 7 (0 (2) "

<e [ 0@ KW 1) @) (0 (2)) @z

<+ o0, (14)

where N(a)=N,/a,+ -+ Ny/as. On the other hand, from (12)
obviously it follows that I,(y;¢) = + oo yields I;+I;= +co. There-
fore combining this with (14) we have I,+I,= + 0. Furthermore
if we can prove (¢,\V¢) Ng: € L. (X; D), then ¢,\/ ¢ is also of L,(X; D)
because of g, € U,(X; D) by Theorem 1 and if ¢,\/¢ is of L,(X; D)
then ¢ is also of L,(X; D) by definition. This completes the proof
of (1).

Proof of (ii). Set
¢’ (x) =2 logy 1/x—2logw 1/x,

(p22= 3 lOg(g) 1/1’.

We assume that there exists a sequence x, | 0 such that ¢ (x,) <¢, (z,).
Since ¢(x) is a non-increasing function, we have

LG9 = [ 2706 KW/Nit.0) @ds
Ze (o) [ a7z

>e (gi(2) [ o7

>cs(loge 1/x,)" 1 +o00 as x, | 0.

By virtue of the same argument of (12), (13) and (14) it is suf-
ficient to prove Theorem 2 and 7 under the condition (9). In case
of I,,(y;¢), the proof is just the same as that of I,(y;¢). This
completes the proof of (ii). The proof of (iii) is also just the same

as that of (ii), so we omit it,
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Proof of (iv). Set
¢’ (x) =2N log x —2 log, x,
@’ () =3N log .

We assume that there exists a sequence x, 1 4+ oo such that ¢(z,) <<

¢:1(x,). Since ¢(x) is a non-decreasing function, we have

Ir(ri9) = j "2 10 (p(2)) /K (N 1) (1 (2)) d
>c j "0 (p(x)) de

= () [ ida

=cs(logx,)'# 1 +00 as x, 1 +oo.

By virtue of the same argument of (12), (13) and (14), it is suf-
ficient to prove Theorem 5 and 10 under the condition (11). This
completes the proof of Lemma 1.

Next, to describe our fundamental lemma in the general form,
we introduce a metric space S satisfying condition A with a dimen-

sion N or a condition B with a dimension M, respectively.

Definition 4. We call that a complete metric space S satisfies
the condition A with a dimension N if there exist a positive con-
stant d, and a positive integer N such that for any ¢>0 and for any
compact subset K of S,

N(e:K)=<d,(d(K)/e)"

holds, where N (e; K) is the minimal number of ¢-net on K and d(K)
is the diameter of K.

Definition 5. We call that a complete metric space S satisfies
the condition B with a dimension M if there exist two positive con-
stants d;, d, and a positive integer M such that for any &¢>0 and
any compact subset K of S,

dy(d(K)/e)"<=M(e; K) <d(d(K)/e)"
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holds, where M (¢: K) is the maximal number of e-distinguishable set
on K.

Now under the following situation we have Lemma 2, essentially
due to T. Sirao [7]. Let {X(s);s=(sy, -, 50) ES=S;x--- xSz} be
a Gaussian random field, where each S; is a compact metric space
with a metric p; satisfying the condition A with a dimension N,.
We assume that E[X(s)’]=1 and that there exist non-decreasing

continuous functions ¢;(x), i=1, ---,d such that
(ELX ) =X D=d0:(0:(s:, (5):)),

where s= (s, --+, 54), ()i = (51, ", Si_1, S, Siz1, **+Sa) ES.

Lemma 2. If therc cxist constants ds>0 and 3;>0,i=1,---,d
such that

0 (tu) /0:(8) <dsu®

holds for all <DL, d(S)H* and 0=u<1, then there exists
a constant d, independent of d, d;, x and S such that

Plsup X(9=2]1<d0(@) [ N(e.(@); S)
holds for any x=1, where ¢;(x) =0,""'(1/(d dsx)) /2.
Proof. Take any compact subset K; of S; such that
4330/ @d(K))e=<1,

and set

K=K, x - xKg,
Fu(@)=ds | 0.z e™)du,
d
A= {w; sup X()=Zx+c D Fo(d(K))}.
e i=1

Then by the slight modification of Lemma 9 in [3], choosing a
sufficiently large constant ¢,, we have

P(A) =cu0 (2), 15)
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where ¢, and ¢,, are constants independent of d, d;, x and K,. Now
let {¢;;: 1<j<N(e:(x):S:)} be a ¢;(x)-net of S; and set

B ;j={s€S::0:(t:,5,5) e ()},
Ajga=A0; sup X(s) =z},

SEB‘,]lX"'XBd.jd

E={w;sup X(s)=x}.
seS
Since it follows that

d a
dsx ;10'1 (d(By,))) <dsx Zl 0:(2¢;(x)) <1,
and

S (@(Bo ) < S Fe, (26 (2)

d oo
<> | dse?*du/x,
i=1 Jo

applying (15) to A;,.,;,, we have
P(A;, .. ;) <d0(x),

where d; is a constant independent of d, d;, x and (j,, -+, js). There
fore it follows that

PEY=P( U A, .;)
Gunda)

<d0(@) [N (@) 5.

This completes the proof of Lemma 2.

Now we begin to prove Theorem 1 under the condition (8) by
virtue of Lemma 1.

Choose a closed ball D; of R": such that DCD,x--- x D, and
set

K,={(s,) eDxD; 2 '<y(s—t) <27},
S;=D;x D;,

L= A{(st,s) €Si; 0:(|si—s/|) <27/ d},
L= {1, 57) €827/ Vd <0,(|s; —s|) <27},
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here S; is naturally a metric space with a 2N;-dimensional Euclidean

metric. Then easily we have

e s e )

={E[(X(s) —X(():)+ X)) =XO)T- G G-
7 (O =@OMNI =7 = @O}
<cu0 ((si—s 1P+ [t =2/ 1DV 2™ on Ly X XLy a,
for (il’ ...,id)#(l, e ]_)’
N(e; Lai,0) <cu (0.7 @) /)™ (d (D) /o)™, 0=1,2,

and

KnC U Ln,],ilx"' XLn,d,id-
[CITREIE PO I CHRIS))

Since each ¢;(x) is a nearly regular varying function, the condition

of Lemma 2 is satisfied, so setting
A= {o: sup (X0 =X /1(6=0Zp @™},

from Lemma 2 we have

P(A,) <cul (9(27M) ﬁN(E:(¢ (27)) s La,i2)

<cul (p(2)) K (N/2N;1,9) (271,

where ¢;; and ¢,, are independent of ». Finally by virtue of nearly

regular varyingness of ¢;7'(x) and the condition (8), we have

Z P(A,,) Sclt’aIu (T 5 (ﬂ) < + 0o,

Therefore by Borel-Cantelli lemma, there exists an #,(w), with pro-
bability 1, such that

sup (X(s) =X () /1 (—1)<p(2™")

s, HEK,

holds for any n=>#n,(w). By non-increasingness of ¢(x), it follows
that

X - XO)<r(s—=)e(s—1))
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holds for any y(s—¢)<(2 ™), This completes the proof of Theorem
1.

Proof of Theorem 2. First we notice that it is sufficient to
prove the theorem under the condition (9) of Lemma 1. Set

K,=(eD;277'<y (s—t,) <27},

Lui={si€ R 0:(Isi — ) <27"7*/Vd},

Luie= (i€ R 277 /Vd <g:(|s; — 1) <277},

A= {w; sup (X(9) =X () /1 (s—t) =927},
where t,= (¢, .-, £"), t’€R". Then we have

E[<X(S) — X)) _ X((®) -X@)
T(s—t) 7 () —to)

on Ly, ; X-+XL,qa,: for (@, i)+@1,- -, 1),

2
> ]Scwaiz(l Si _Si,| ) 2

N(e; Lnio) <cu(0:7'(27") /&), 0=1,2,

and

K.C U Lpii, X oo X Loy ki
(i i) 1)

Therefore by just the same argument of the proof of Theorem 1, we
have

S P Zar 2 0@ [ NEG@™) 5 L)

<1 21092 K(N/Ns1,0) 27

n

§02011(72¢7)<+°°,

and we get Theorem 2.

Proof of Theorem 3. First we notice that it is sufhcient to
prove the theorem under the condition (9) of Lemma 1. Set

D*= {(xi, -+, 171\',) eR"t; tf‘ijIJSti':j"' 1, 1<j<N;},

Dim={(xy, -, zn) €ERY 15, —1=x,<t;;, ISj<N},
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where £'= (¢,°, -+, ta"), t8= (t, -, tin)),
K,={(s,t) eD*x D~ ;27" "<y (s—t) <27},
Loa={(so57) €D X Di: aullsy—s/1) <277/ V),
Luix=A{(si, s) €Di* x Dy : 2777 /Vd <ao(Is; — s/ ) <27},
and
A= {o; sup (X() =X@)/r(s=)Zp@™)}.
Then we have

e e e reor

Scu0d ((|si—s P+t =275 2

on Lﬂ,l,il X XLn,d,id
for (G, -, i)+, -, 1),
N(e; Lpi,0) <cn(0:,71(27) /&)™, 0=1,2,

and

Knc U Ln,l
(g ia) (1)

X+ X Ly a i,

121

Therefore just by the same argument of the proof of Theorem 1, we

have
S P(A) Ze 2 0(p2)) [T N (i@ 2™) : Luio)
<eu D 0(p@ ™)K @N/2N: 7,0) (27)
Seulu, (73 9) <+ 00,

and we get Theorem 3.

Proof of Theorem 4. First we notice that it is sufficient to
prove the theorem under the condition (10) of Lemma 1. Set

K,={seR";2"<y(s) <2"*%},

L= {ss€ R, 0. (|s)]) <2~/ d},
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Lyio={s;€RY; 2" /Vd <0,(|s:]) <2"*1},
A= {w;g}) (X () —X(0)/7(s)=p2M}.

Then we have

X(s) —X(0) _X((s)i/) —X(0)\* 2o ’ 7\ —1
E|(FO DITXOLN <= 00 ¢ @7

<cu0([si—s/1D27" on Ly X X Li,a,14
fOr (il’ Tty id)se(]" Ty 1)’
N(E 5 Ln,i,ﬂ) Scﬂ (o't_l (2n) /6) N" 0 = 17 2y

and

K.C U Loy, X XLy g,
(A nig)(d, 1)

Therefore just by the same argument of the proof of Theorem 1 we
have

S P(A) Sen 202N TTNE @) 5 Luid)
<ew 00N KN/N;7,0) (27)

<cl7 (75 9) <400,

and we get Theorem 4.

Proof of Theorem 5. First we notice that it is sufficient to
prove the theorem under the condition (11) of Lemma 1. Set

C,= {s€R"; absolute value of each coordinate of s<<n},

K,=Cpyy—Chi= U} S,,, (C.t is the interior of C,)
j=1
Any={w; sup X(s)=p(n)},
SESy, g

where S, ; is a N-dimensional cube whose coordinate of vertexes are
integer and p,<2¥(n+1)"'. Then we have

E[(X(s) = XN T=71"(— ()

=0/ (si—s1).
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Therefore applying Lemma 2 to A, ; we have

P(Ap, ) Scul (p(m)) /K(N; 1) A/p(n))

and

(NS

212 P(An ) =ea 23 0(p(m)n" /K (N3 1) /9 ()

1

[
1

cuwly (15 9) <+ o00.

This proves Theorem 5.

4. Lowerbounds.

To prove our theorems about the lower classes, we have to pre-
pare some lemmas. The following Lemma 3 is essentially obtained
by rewriting Lemma 2.1 of [11].

Let {X(s);5= (s, ", 5) €S=S8;x--- xS;} be a Gaussian random
field with a parameter space S and let each S; be a compact metric
space with a metric p; satisfying the condition B with a dimension
N;. Naturally S is a compact metric space. We assume that E[X(s)?]

=1 and that there exist non-decreasing continuous functions ¢;(x),
i=1,---,d such that

E[(X() =~ X©)2ds 32 06 (0:(s0 1),

where s= (s, -+, 5a), t= (£, -, ta), si, t:€S; Set
A(ey, -, €a; S, X - XSy x)

={o; sup X&), -, 1) =},

where {¢t{7; 1<;<M(e;;S:)} is an ¢;-distinguishable set of S;. Then
we have

Lemma 3. If there cxist constants dy and 0;>0, i=1,---,d
such that
0:(tu) [0:(8) =dots™

holds for all 0<:<(3L,d(S)HH and u=1, then therc crists a
positive constant dy independent of ds, x and S such that
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P(A(e(x), -+, ea(x) ; SiX -+ X a3 2))

=40 (2) 1 M(e@); S)

holds for all x>dy/{V dsmin{o;(d(S))}}, where ¢;(x)=0"(dw/
(Vdsx)).

Proof. Denote by A4, . ;, the event {w; X(¢3), -, t{Y) ==z}, then

we have

P(A(ei(x), -, ea(2) 581X+ X Sq, x))
Z(j?;jjd)P(A,,,...,jd)— 2 P(Aj e Ak, d) (16)

“dd)
(k1) o k)

In order to estimate the second term of the right hand side of
(16), set

B(ji,n) = {SESi; ”i&‘i(x) S(Oi (tS"Z, s) < (n;4+1)¢; (x)},
n;=1,2 .-

By virtue of the condition B with a dimension N, the cardinal
number of the set {¢{?; e B(j,n;)} is not larger than d,(n;+1)"
Since it follows that

P(Ajl,...,j.z mAkl,‘..,kd) Scum (x) exp {_ 1 ;r xZ} ,
where
1—r=1—E[X(P, -t XD, )]
:E[(X(t(f,), .. <a) X(tﬁ‘l’, ---tﬁ‘?))“] /2

d
=ds/2 308 (0:(457, 46)))
i=1

d
Zdﬂ/z Z 6f2(7li€i(-r)) fOI‘ (’)EB(Jl’ n ),
i=1

and ¢y is a constant independent of x and », we have

E P AN Ak )

J
=‘F(’€1 d)

<26,0(x) Y X dint DM exp{—dua® 3 0¢ (misi(2) /8}

G fa) 1<i<d
ng=>1
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d d
<2¢4d,0 () I_],I M(e;(x);S;) 1s2¢s.z(n£ +1)¥exp{—dids Zi n/8}.

ng=>1

Therefore we can choose a sufficiently large d,, such that

d
2634d41 Zd (ni+ 1) Y exp{—didi, Y n /8 <1/2. (17)
&= =
ni>1

Combining (16) and (17) we get the proof of Lemma 3.

Lemma 4. Let 0,(x) be a function which satisfies the assump-
tion L without the additional condition for Theorem 9 and let s,,
1<p=<<4 be four points of R . Set |s,—s,| =7, and

RiERi (51, S25 S3, 54) = 6i2 (r14) + O'tz (rzs) - 6i2 (7‘13) - O-iz (7”24) .
Then there exists a constant d,, independent of ry; and r, such that
| Ry <dy (7'127'34/7‘02) =g, (712) 05 (730) (18)

if 4+ oo>dip>r, ra, T, 7‘2327’02712/427'34/4,

[ R <1 (rsu/712) 04 (71) 00 (7'31) (19)
if  +00>dw > /421 /N1 =T,
and
|Ri| <dui (7s4/712) 790, (1) 0 (r30) + A0 (r30) (20)

if  +00>d>re/4Zry =1 /Ny,
where 1>a>max(ay, -+, @), min(ay, -, &g, 1 —@)) >a’>0. More-
over if each 0;(x) satisfies the additional condition for Theorem 9,

we can drop dyn by setting 1>a>max(ay, -+, Qa, @, -+, @’), min
(a, a0, -, ad’, 1—a) >a’>0.

Proof. By twice continuous differentiability of ¢;*(x), it follows
that

doi (rs0)
dx

R, (51, S25 S3, $0) = (rutry—7ruy —7'13)

+ j (703 — ) dJ (x) L0t dr+ j. (r13—x) dai (x) =2 e dr
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i dzo't (.17

+ (ru—71) . T )_gz. (21)

By virtue of the four point propetry (c.f. Lemma 7 of [3]) and the
Assumption L, we have

|7”14 T 7oy — 79— 7‘13| S4r12734/7‘24,
dol(r
47575 —‘zi( 2) /7‘2436’357'127'340'3 (7o) /7'02
x

= o3 (Tarse/70") (05 (70) /03 (75 ) (03 (70) /0 (712) ) 04 (710) O (730)

<y (7"127'34/7”02) 1240 (r12) 04 (730)

and

T23 242 To3
J; (rzz—x)%ﬂdxyfrui

202
a5 |,
X

<curuoi’ (o) /1o
s (r1975s/70) V0 (712) 05 (754)

where ¢y and ¢y are constants depending on a and d,. Since we
obtain the same estimates as above with respect to the third and
the fourth term of (21) respectively, we get the first argument of
Lemma 4,

Next let us prove the second part of Lemma 4. In this case, by
differentiability, nearly regular varyingness of ¢;(x) and the relation
718, Tu=r1/2, we have

" doi (x) dx

| 0 (1) — ol (ru) | = s dz

<csrubi (712) /712
=Cy9 (r34/712) (03 (712) /03 (730) )0 (712) 04 (750)

<o (Tsa/712) 70 (r30) 0 (r12), (22)

and

™ do’ (x) dr
Ta4 dx

Scurmf (7”23 /\rz4) /(7"23 /\7'24)

[0}2(7‘23) —0i2(7'24)| =
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=cu(Tas/Tus N\12s) (07 (72 N720) /05 (r30))
X (0:(ras A1) /01 (712) ) 03 (719) 02 (730)
Seu (ros /T Nro) ' (o NTo/719) 0y (r12) 0 (70)
Seu(ra/r12) 0 (r12) 0: (734).« (23)

Combining (22) and (23) we get (19). In the third case, (22) is
still valid and from the relation 6. (7ry) + 0 () <202 (70 A\ 7as+ 730)
<cu0(rs), we get (20). This completes the proof of Lemma 4.

Lemma 5. [10] Let {X,,:n=1,2 -, k=1,2, .- kE(n)} be a
Gaussian system such that each random variable obeys a standard

normal distribution and set
rimd =E[ X, X, 5],

An,k = ’{tl); Xn,kzxn} s

k(n)

B.,=NA%..
k=1
Then it follows that

[P((B) ~ [T P(By)|

ORI
<1/2 >} X
=1

nEm k=1 7

1
) j GOrEd s z)dl,  (24)

where §(Ar, z,y) = V1= " exp{—(z’ +y' —22ray)/2(1 - 27)}.
Therefore we notice that if Y w1 P(B,°) =+ o0 and the right hand
side of (24) converges then we have P(lim B,°) =1.

Now we begin to prove Theorem 6. First we notice that it is
sufficient to prove the theorem under the condition (8) of Lemma 1.
Choose a closed ball D, of R¥ such that DDOD,x---x D, and let
{9, 1<;<M(e; D;)} be an ¢{P-distinguishable set of D,, where

eP=¢,7'(0™) and a constant § (1>0>>0) is chosen suitably later.
Set

Viy=A{se Dy |s— ;)| <0, (ad")}, (25)

then we can make each ball contain two closed balls B, and B,
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such that d(B,) =d(B\%,,) =0,7'(66™) and inf{s—t|;s€BY ,te
Bi% o} =0, (c6"), where a,b and ¢ (¢>b) are constants independent
of n chosen suitably later. To apply Lemma 3, let us estimate the

following:
o[ X)) =X X)) —-XE)\
v(s,t,s,t)_E[< G0 (S =) >]
={'G—s)+7t—t) — (G (s—t) =7y —t))*
+ L RIG G016~
where

R,=R;(s;, s t’,¢t;), (defined in Lemma 4),
s=(s,, , 5a), & =(s, ),
t=(ty, - ta), ' =(t', -, t),
s, 88 €BW, 4, bt €BY, .
Then by Lemma 4 we have
|Ri| <cus (b/)* =07 %a 2 ((|s:— /1" + [t — £/ )V .
On the other hand by virtue of differentiability of 6;(z), we have
GG=8) =7 =)= 6= =7 (" —t"))/ (r (s—8) + 7 (s" —¢"))*

d
<cup 21 &/c) Ct g ((|si— s 1P+ |8 — 8|V

Since we can choose constants » and ¢ such that 4/c is sufficiently
small, we have

d
v(s, 235 ,t") =cad™™ iz__‘io-iz((lsi_si,|2+ [t;—21)'7)
if s=(s, 80, =(s', -, s)EBY 1 X XBH, |

t= (th Y td)’ t/= (tl,’ Tty td/) EB1E.1)11'2>< t XBn(,d}dﬂ?

where ¢ is a constant independent of » and §.
Now set

O) (e 7 e 1Y) — . X(S(/j))_X(SI(E))> n
A(ﬂ) (nth ’Jd) {wa T(S(ﬁ) —‘S’(D)) __(0(06 )}’
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AR so= U AR (234, da),
@, e
s(I) = (55, o, 84, @) = (5P, -, 51,
@ = (s, -+, 1ta), (®) = 1, -+, va),
1< =M (e; BY;,1), 1<p,<M(ef’; B{Y;,»),

where {s@}, {s°} are e{’-distinguishable set of B’ , and B{; , re-
spectively. Then setting

eP =cu0; 7 (0" /o (c0™))

in Lemma 3, we have
d
P(Ag')l. i) =>1/20 (p(cd™) il;[l M (e, Br(f:)h.l X BT(::)M?

Zcol (p(c0™) K (2N/2N; 7, 9) (c0™).

Since the cardinal number of V& X .- x V¥, for fixed n is larger
than c,/K(N; 1) (c0™), we have

2 2 )P(A§}'3,~-~,m)2€m;QW(C(?"))K(N/ZN: 7,¢) (c0™)

™ G
Zenl, (15¢9) = + 0. (26)
Next with the help of Lemma 5, we have to show

P( N A0 =0.
W Fu g0

Set
A (n,7) = {(m, by, ---ky) s m=n+cos log n},
Ay (2, 7) = {(m, by, -, k) s n<m<rn+cy log n,
[80;, —tQ | =007 (0"), i=1,--,d},
Ao, 7) = {0, by o k) - Oty 1y ++00) s n <+ s log 3,
|83, — e | =<n®=0,7" (0™},

where ¢ >a(@N/a’ +3)/(a’ log 1/0) and ¢ >a(2N/a’ +3) /{21 — )} .
Then by Lemma 5, we have

IPC N Al .s0) — 11 P(AG..;0)
[COF FERENE D) M Frae dd)
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< N (Y +y 4y

@, Fieja) A f) A () i=1 43,5 (D, () @), (G

| [0 Grefs o e, o(e0m)da
=L+ L+1,
where
gy - B[ XE@) = XC 0) | XCE)) =X @) |
o T (@ —5 () 16— 6)

={r (@ —sE)r @) -G} X R/2,
R¢=R¢(s§f,), s,‘(l) Sff,) , s.,,“))
s(@) = (55111), : ng,)) EBS)} 1 Xoe X Bn Fals
s (@) = (50, -, 55P) € BP0 X - X B, »,
s(#') = (521.)', - (d)) EB(I)k,.l X Bm kals

SE) =9, -, 5P EBY 2 X - X BDy 0.

Choosing a of (25) and ¢ sufficiently small, then by Lemma 4 we
have

lrmfs [ Sesd ™™/ and  |rfEs 0 (0" @ (0™) | <cs
if (m,ky, - k) €4,(n,5),

B | Seun~ 00 and  |rEEE 0 (0N ¢ (0™ | i
if  (m,ky, - k) €4:(n,j), and

[ fps | <e<min (N, -+, No) /N (@)

if (m,ky, - ky) €4s,:(n,j),i=1, -, d, N(@) => %, N;/a;, where c;;~
c¢i; are independent of (7, J, &, v) and (m,k,i’,5"). Since the cardinal
number of (x4, -+, #ta) and (yy, -+, v,) are less than cun"/* for each
(n,j1,+,ja), and the cardinal number of (n,j, -+, j;) for fixed = is
less than ¢, (K (N;7) (¢6™)) ™, we have
L<c Z N ema ey Ve N/ exn (o (cd™) + ¢F (cO™)) /2)
o fr g0 A

Scsl E Nl 6(m—n)a’/anIV/a’+1’nN/a’+!
n m>=>n+cg logn
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Scez Z\I 712N/a’+‘2—c“(log 1/8)a'/a< + oo ,
n

LS 31 33 a0l exp (= (p(e0") + (™) /2
n, j nendd 2 Y

SC(M Z‘, (log ;l) n?N/“"F?—CN 2(l—a)/a< + o0,
n

Since the cardinal number of (m,k,, -, ky) €4;,; for fixed m and i
is less than cegn®¥ [0, (c6")]"/K(N;7) (c0"), we have

d
L<ce ) @ 25 D a™“m™* exp{— (¢’ (ci™)

i=1 (M Jy, Jd) A

+¢* (™) —2e¢(c0™) ¢ (c0™)) /2}

a —
Seop 2 2 e g7 (ed") IV K (N 1) (e0) ] 70 + oo,

i=1 n

These yield I,+ I+ I;<+oo. Therefore with the help of (26) we

have
P(NA{GE..;0) =0. (27)

This completes the proof of Theorem 6.

Proof of Theorem 7. First we notice that it is sufficient to
prove the theorem under the condition (9) of Lemma 1. Choose a
sequence of points (£™, -+ t,"™) €D such that

|8 =2’ = (1+e)a,7' (0", 1>0>0, 1>¢>0,
i=1,---,d, and set
Vo= {si€ Ds; [t;™ —s:| <c0:7' (0™},

where ¢ and ¢ are constants indepent of 7 chosen suitably later. To

apply Lemma 3, let us estimate the following:

v (s, 2) EE[< X (:)(s_— ?tf gto) ~ X(tht—_ i{;)(to) >2]

=@ G—t)rt—1t)) H{r'(s—t) = (r (s—t) —7 (& —1))7}.

By the Assumption L for ¢,(z), we have

(r(s—t) =7 (=)= (y"(s—t) =7 (¢—2))*/ (y (s —t) + 7 (¢ —1t))*
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d 2 a
< D cwlsi— il () /ri,
i=1
where 7;=|s;—¢°'|A\|t;—¢"|]. Therefore choosing sufficiently small
¢>0, we have
v (s, 2) Zed 7" (s — 1),

for 5,teV,®x ... x V,® where ¢y is a constant independent of 7.
Now set

A jimio =105 (X)) —XE)) /1) —t) =@M},

A= U A(n,11.~~-.m,
G da)

s(7) = (P, -, s,
where {s{)} is a e,"-distinguishable set of V,®. Then setting
€D =1cn0;7 (0" /9 (0™))

in Lemma 3, we have
d
P(A)>1/20(¢@8") |1 M(e.®; Vo)
i=1

Zen@ (p(0") K(N/N;1,0) 07).

Hence we have
2 P(A) Zenl, (7;59) =+ o0,

Next with the help of Lemma 5, we have to show P(NA,°) =0.

By Lemma 5, we have
P(N4,9 ~ 11 P(4.)]

=2 2 + X

n m>=>m(n) a<mm(n) (Fy, fa) By k)
_ 1 -
B j 0 QrB 0 (0", p(0™)) dA

EII+I2»

where

7.(m,§)_E|:_X_(‘ﬁ)_)A_£(tO) X (75)_) — X (%) }
7(s(j) —to) 7 (k) —t)

7
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- — L
=G 6G) w7 B —6) 7 Y Ry2,
Ri = Ri (S,(fit)a tia 5 tl(c?a tio) ’
S(J‘) = (5511)’ R 55’?) = V7El) XX Vrf‘”}
t(ky= (P, ) e VP x XV,
m(n) =n+cnloge 1, c>a/(a’ log 1/0).

o

Choose ¢ sufficiently small, then by Lemma 4 we have

[rmR<cid™ "=/ and |r{Re (") (0™ e
if m=>m(n), and
lrmB|<e<1/2

if n<<m<m(n). Since the cardinal number of (n,j, ---, j;) for fixed

N/@e’)
)

n is less than c;(log 7) we have

L<cn Y, 2 0™ ™ (log n log m) ¥/ ¢

n m>=m(n)
x exp{— (¢"(0™) +¢*(0™)) /2}

<cn ) X 0™ MY/ (log n log m) ¥/ (m) 1

n m>=>m(n)
<c 2 n i (log n) o<l + 0,
and

125681 2 Z (log n log m) N/Q2a’)
™ a<m<m (n)

X exp{— (¢" (") +¢"(8™) —2e9 (0™ ¢ (8™)) /2}
<cw 31 27 (log 7) Y%+ log n< + 00

This yields the proof of Theorem 7 by just the same argument of
27.

Proof of Theorem 8. First we notice that it is sufficient to
prove the theorem under the condition (9) of Lemma 1. Choose two
sequences of points (5,7, .-+, 5,™) € D*, (¢,™, .-+, ¢,") €D~ such that

|5 =2 = (L+¢) 0,7 (67) /2,
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£~ 2] = (1+ )07 0™ /2,
[s:™ —t, M| =A+c)o; 7 (0™, i=1,---,d, 1>0>0, 1>¢>0,
and set
Vii={sie D*; [si— ™| <ca,7 (0") /2},
Vit=A{sie D ; |s; =t |<c0:7' (0") /2},

where ¢ and ¢ are constants independent of 7 chosen suitably later.

To apply Lemma 3, let us estimate the following:
’ . ’ 2
v(s,t;s’,t’)EE[< X —X@®) _X(s )’ )f'(: )> ]
r(s—1) (" —1")

By just the same argument as in case of Theorem 6, choosing ¢
sufficienly small, we have

a
v(s, b8, ") Zcpd™™" 21 08 ((Isi—=s"1*+ |t —2/1H )

i s=(s, 80, =, ,8) VX X V@,
t: (tl’ R td)9 t,: (tl,, ) td ) S V(l) V}dz),
where ¢i, is a constant independent of 2. Now set

n X)) —X k) n
A()... kg ka) — s > 6
G d kg ka) {a) () Zt () @( )}

A= U Au, wia ke da)

(1
(k1 ka)

s(7) =G5, -, 50D,

t(R) = (¢Q, -+, t®),

where {s{?} and {¢t{)} are e¢{’-distinguishable set of V] and V) re-
spectively. Then setting

€. 9 = o0 0™/ (0™)

in Lemma 3, we have
d
P(A)Z1/20(p(0™) |1 M(el?; Vil X VD)
i=1

Zcud (9 (0") K (2N/2N; 7, ¢) (07).
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Hence we have

\; P(A)Zculu, (71 0) =

Next with the help of Lemma 5, we have to show P((NA,°) =0. By

Lemma 5 we have
P(NAD ~TT PAD)]

SSNEPMED SN N SID

n m=>m(n) a<m<m@) (j,fd
(kyyee kg
2y J ok’ (m,
) (Lo @i 00m, e @m) a2
EIl_*-IZ’

where

3 E[ X)) —X@R) | X((G) —X(t(l?»ﬁ]
™ 5 k) N _ (b N (B’
7(s(h) —t(k)) 7(s(j) —2 (k"))

. = . - 3
=) =tk —e RN T L Ry/2,
Riz-Ri (s‘(f?s tgclg) > s,(il),y t(i)i) ’
S() = (5, o ) S VA X XV,

t(R) = (D, ) e VI x - x VA,

s(7) = (P, o, 5D e Vi x x Vi,
LR = (0, t0) € VX - X VA,

m(n) =n+cg loge 1, cs>a/ (@’ log 1/0).
Choose ¢ sufficiently small, then by Lemma 4 we have

|7 d e | Zegd ™ and @ e (0 @™ [ Sew

if m=>m(n), and
lrmde1<e<1/2

if n<m<<m(n). Since the cardinal number of (n,j k) for fixed »

Nyjar

is less than cg (log 7) /%, we have
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I<<cy > 3. (lognlog m)®/*gm-—mea/a
n m>n(n)

x exp{— (¢*(O™) +¢*(6™)) /2}

<cy X D )(log n log m) Ve +1gm=—mea’/a (5,) -1

n m>m(n

<cg D 7 (log 1) <+ 00,
and

L<c;dY' > (lognlogm)¥*

n a<m<m(n)
X exp{— (¢ (0") +¢*(0™) —2ep(0)p(0™)) /2}
<coy 3 17 (log n)™/%+? log e, n<oo.

This yields the proof of Theorem 8 by just the same argument of
27.

Proof of Theorem 9. First we notice that it is sufficient to
to prove the theorem under the condition (10) of Lemma 1. Choose
a sequence of points (£, .- £,") € R such that

[t:P] =1 —c)a,7'(0"/d), 6>1,1>c>0, i=1,---,d,
and set
V9= {s;e RY; |, — ;| <c0,7* (6"/d)},

where ¢ and ¢ are constants independent of 7 chosen suitably later.

To apply Lemma 3, let us estimate the following:

e e

={rG—D -G -1}/ GOr®).

By the Assumption L for ¢;(x), we have

GG —7@) =G =7 @Y/ () +r@®))*
<cos i |Sf_ti|20i2(ri)/rf2,

where 7;=|s:;| A|t:|. Therefore choosing sufficiently small ¢, we have
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v (5, t) chea—zn']’? (S — t)

for 5,t€V,Ox...xV,™ where ¢4 is a constant independent of 7.

Now set
Af s =105 (X(s(5)) = X)) /7 s()) =M},

— (n)
A"_ U A(j;.“-,fa)’
G da)

s() =G5, -, 550,
where {s{)} is an e,?-distinguishable set of V,®. Then setting
en?=cn0,71 (0" /9 (07))

in Lemma 3, we have
d
P(A)Z=1/20(p(0™) [T M(e,; V)
i=1

=l (9 (0M)K(N/N: 7, 0) (0™).
Hence we have

L: P(A,))Zcul7 (r;¢9) = +o0.

Next with the help of Lemma 5, we have to show P([A4,°) =0.

Lemma 5 we have

|P(0An0) _1;1 P(Anc)l

=2 (2 4+ X)X

e
nn2mn) alm<m(n) (k- ka) (Frenfa)
= 1 =
@Rl [ o Gres e0m, p@m)d
EI] + IZ )

where

rigf— B[ XCW) =XO  Xe®) —XO)]

TG T @)
= UGN TEE} LR,

Riz'Ri (s,(fi;)9 07 tii‘)’ 0)7

By
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s(j) = (59‘), -, 55,13) eV, "X ... xV,®,

£(R) = (60, -+, 42) € VO x oo X VD,

m(n) =n+cu loge 7, cw>a/ (@ log 1/0).
Choosing ¢ sufficiently large, by Lemma 4 we have

[rwBl <ci6~ ™™=/ and 7GR (0™ e (0™) | Zcue
if m>m(#n), and
IRl <e<<1/2

if n<m=<<m(n). Since the cardinal number of (j,---,j;) for fixed

n is less than c¢yy(log 2)¥/¢*) we have

L<<c,s X >} (log 7 log m)¥/Cahg-(m-ma’/a

n m>zm(n)

xexp{— (¢*(6") +¢*(0™))/2}

<cus X X ) (log n log m) M/@en+1g—m=ma’/a (z,2,) -1

n m=m(n
<cuo > nt (log n) ¢ <+ o0,
and

L<cp>, > (lognlogm)?/e)
)

w n<m<m(n
X exp{— (¢*(6") +¢*(0™) —2e (0" ¢ (0™)) /2}
<cus 2 (log n) ¥/* =% log, n< 400
This yields the proof of Tneorem 9 by just the same argument of

@n.

Proof of Theorem 10. First we notice that it is sufficient to
prove the theorem under the condition (11) of Lemma 1. Let {z,,;
1<j<M(h;B,)} be an h-distinguishable set of B,= {x= (x,, ---, zx)
eR¥ x>0, i=1,---, N, Cn—Dh<|z|<21h} and set

. 1% . .

Vily=A{sie RV |z, —s,| <1}, 1<j<M(h, B,),
i N

x”yj: (xfll,)j’ R ‘rfl'.i?i > ‘r’gtl,)j ER ‘7

where 4 is constant chosen suitably later. Set
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AL sy =03 X(s(B) =9 (2nh)},
A= U Afu.

gy ttg)

1)
s() = (s, o 56D,
where {s{’} is e{’-distinguishable set of V?. Then setting
e =c0: 7' (1/ (2nh))
in Lemma 3, we have

P(A;")=1/20 (p(2nh)) l'_t] M(e,®; V&)

Zeml (p(2nh)) /K (N5 1) (1/9(2nh)).

Hence we have
Y PAM) =1 210 (9 nh))n" /K (N3 1) (1/9(2nh))
n n

Zenady” (r;0) =

Next with the help of Lemmr 5, we have to show P(N A4;™°) =0.
I
Set.

Ay(n, §) = {(m, k) ;m=n"*"}, (a>0),
Ay (n, j) = {(m, k) ; n<m=n"**,
|22y — 2| Zn' "k, i=1, -, d}, (1>6>0),
As,:(n, 7) = {(m, k) # (n, ) ; n<m=<n'**, | 2P, — 2P, |<n'~"h}.
Then by Lemma 5 we have

[PCN A;™ — 1 P(A;™)]
@) @9

<Y (T 4+ Y +n N )%

@, 7) Ay(nj)  Ax(n, ) i=1 Ay 4(n, 7)) (H1tg) (1va)
ky9) .
e [ o Gris o @), o @iy di
=IL+5L+1,

where
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riin =E[X(s(@) X ®)],
s(B) = (s, oy s48) € Vil X X VT,
t@)=t@P, -, ) eVihx-- - x V.
By the additional condition of Theorem 10, we have

Ir%'j’:';))l <cu(log(m—mn))~# and

|7’57,'J’5319))¢ (2nh)p(2mn) | <cus
it (m,k)ed,(n,y),
|rml | <cys (log n) # and
[rimfme Cnh) o 2mh) | <cin
if (m,k)e4,(n,j), and
|rim | <e<<bNo/ (2N)
if (m,k)ed;;:(n,j) for sufficiently large A, where Ny=min(V, -,

N,). Since the cardinal number of (uy, - -, #s) for fixed (7,5) is less

than ¢;;3(log #) */®®), we have
IL<<c.x, > > (log nlog m) ™" 1" (log(m—n)) ~*#
n m>nita

x exp{— (¢’ (2nh) + ¢* (2mh)) /2}

<cp > Y (log nlog m) MO (um) 7' (log (m —n)) ~#

n m>nlta

<cp > (log n) Vo' +2=Ep'< o0,

L<cy > 2 (lognlogm)™eu" 1" (log n)~*#

n am<Lnlta

X exp{— (¢*(2nh) +¢*(2mh)) /2}
el 25 (log m) ™ **=8 () ™!

a<m<nta
<t Y (log n) ¥/*'+3-Fp-' + o0,
n

and

L<<cy; Y, > (lognlogm)™¥/en¥-1yN-1-tN

n<m<nt+a

X exp {— (¢’ (2nh) + ¢’ (2mh) —2e9p 2nh)p (2mh)) /2}
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<cups > > (logn) /@iyl 1ot Not2eN
™ s

n<m<nt+a

<t Y (log n) M/e+in=1=0Ned2eN 4 oo,
This yields the proof of Theorem 10 by just the same argument of
@7).
5. Examples.

In this section we consider the following examples. Let {X,,(?);
teR¥}, i=1,---,d be independent Gaussian random fields such that

E[(Xe(8) =X ()] =1s =2, (0<a:<1),

and set

d
Xo(0) =3 Xo,(8), t= (s, -+, ta) s ;& R™s,

a
N+ +Ne=N, N@ = X Ni/a:.

Then we can apply our Theorem 1-4 and Theorem 6-9 for the
Gaussian random field {X;(?) ;€ R"}, and the examples of the upper

classes or the lower classes are following:

¢’ (x) =2N(a@)log 1/x+ (2N(@) + 1)logw 1/x+ (2+¢)logw 1/x
eU,(X;; D) if >0,
eL,(X;; D) if <0,

@' (x) =2loge 1/x+ (N(@) -+ 1)logy 1/x+ (2+¢)logy 1/x
eU,(Xz:t) if e>0,
el,(X.;t) if <0,

@' (x) =2loge 1/x+ 2N (@) +1)logy 1/x+ (2+¢)logy 1/x
€U, (Xast)) if >0,
eLl,, (X;8) if <0,

¢ (x) =2logy x+ (N(@) +1)logw x+ (2+¢)logw x
eUy(Xz) if &>0,
el3(X,) if e<0.
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Next let us consider two Gaussian random fields {Xj (?) ; £ R"}
and {X, (¢");t'eRY}, (N;+--+N;=N, N/+--+Nz=N"). Then
as the easy corollary of our theorems, we have the following theorem
concerning the invariance of the upper classes or the lower classes

between two random fields {X5(¢)} and {X. (")}.

Theorem 11. The upper classes U,(Xz; D), U,(Xz;te), Ui,
(X3t and Uy (X,) or the lower classes L,(X;; D), L,(Xz;ty),
Ly, (Xz;t) and L7 (Xy) coincide with the upper classes or the lower
classes corresponding to the random field {Xg (¢')} respectively if
and only if

N/a,+ -+ Ny/aa=N,"/a,/ + -+ N /e’
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