An example of indecomposable vector bundle of rank $n-1$ on P^n.

By

Hiroshi TANGO

(Communicated by Prof. Nagata, Dec. 20, 1974)

Introduction and notation

It is well known that there exists a vector bundle of rank $n-1$ on P^n for n odd, which is not direct sums of line bundles cf. [1]. In this paper we shall give an example of indecomposable vector bundle of rank $n-1$ on P^n for each $n \geq 3$.

In this paper we shall use the following notation: \mathcal{O}_{P^n} is the structure sheaf of n-dimensional projective space P^n defined over an algebraically closed field k of an arbitrary characteristic; $\mathcal{O}_{P^n}(1)$ is the line bundle associated with a hyperplane of P^n; \mathcal{O}_{P^n} is the sheaf of germs of regular differential 1-forms; T_{P^n} is the tangent bundle on P^n; \tilde{E} is the dual vector bundle of a vector bundle E; $E(m)$ is the vector bundle $E \otimes \mathcal{O}_{P^n}(1)^{\otimes m}$; $c_i(E)$ is the i-th Chern class of E; $c(E) = 1 + c_1(E) + c_2(E) + \cdots$ is the Chern polynomial of E; $h = c_1(\mathcal{O}_{P^n}(1))$ i.e. the first Chern class of a hyperplane; $H^i(E)$ = $H^i(X, E)$ and $h^i(E)$ = dim$_k H^i(X, E)$ for a vector bundle E on a complete nonsingular variety X defined over k; $Gr(n, d)$ is the Grassmann variety which parametrizes d-dimensional linear subspaces of P^n; $Q(n, d)$ is the universal quotient bundle of $Gr(n, d)$; L_x is the d-dimensional linear subspace of P^n which is represented by a point x of $Gr(n, d)$; $\omega_{s, o, \ldots, o}(A) = \{x \in Gr(n, d) | L_x \cap A \neq \emptyset\}$ is the special Schubert variety for an $n-d-s$ dimensional linear subspace A of P^n; and $\omega_{s, o, \ldots, o}$ is the Schubert cycle associated with a $\omega_{s, o, \ldots, o}(A)$.
Construction of the example

Lemma 1. \(\mathcal{O}_{p^*}(2) \) is generated by its global sections.

Proof. Consider the following commutative diagram with exact rows and exact columns.

\[
\begin{array}{ccccccccc}
0 & \to & H^0(\mathcal{O}_{p^*}(2)) \otimes \mathcal{O}_{p^*} & \to & H^0(\mathcal{O}_{p^*}(1)) \otimes \mathcal{O}_{p^*} & \to & \mathcal{O}_{p^*} & \to & 0 \\
& & \downarrow g_0 & & \downarrow g_1 & & \downarrow g_2 & & \\
& & 0 & & \mathcal{O}_{p^*}(2) & & 0 & & \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & & 0 & & 0 & & \\
\end{array}
\]

It is easy to see that \(f \) and \(f' \) are surjections. Hence, the Snake lemma shows that \(g_0 \) is surjective. q.e.d.

By virtue of the proof of Lemma 1, we have

\[
h^s(\mathcal{O}_{p^*}(2)) = (n + 1) h^s(\mathcal{O}_{p^*}(1)) - h^s(\mathcal{O}_{p^*}(2)) = \frac{1}{2} n (n + 1).
\]

We denote Kernel \(g_0 \) by \(\tilde{E}_n \). Then, we have the following exact sequence of vector bundles

\[
0 \to T_{p^*}(-2) \to \bigoplus_{s=0}^n \mathcal{O}_{p^*} \to E_n \to 0
\]

where \(N_s = \frac{1}{2} n (n + 1) \) and rank \(E_n = N_n - n = \frac{1}{2} n (n - 1) \). Using the long exact sequences of cohomology groups

\[
\begin{align*}
0 &\to H^0(T_{p^*}(-2)) \to H^0(\bigoplus_{s=0}^n \mathcal{O}_{p^*}) \to H^0(E_n) \to H^1(T_{p^*}(-2)) \\
0 &\to H^s(\bigoplus_{s=0}^{n+1} \mathcal{O}_{p^*}(-1)) \to H^s(T_{p^*}(-2)) \to H^s(\mathcal{O}_{p^*}(-2)) = 0 \\
0 &\to H^1(\bigoplus_{s=0}^{n+1} \mathcal{O}_{p^*}(-1)) \to H^1(T_{p^*}(-2)) \to H^1(\mathcal{O}_{p^*}(-2)) = 0
\end{align*}
\]

we obtain \(h^s(T_{p^*}(-2)) = h^1(T_{p^*}(-2)) = 0 \) and \(h^0(E_n) = N_n \).

Theorem 2. \(E_n \) has an indecomposable quotient bundle \(E_n' \) of
An example of indecomposable vector bundle

rank \(n - 1 \).

In order to prove the Theorem, we need the following four lemmas.

Lemma 3. \(c_n(E_n) = 0 \) and \(c_{n-1}(E_n) \neq 0 \).

Proof. Indeed the exact sequences

\[
0 \to T_{p^n}(-2) \to \bigoplus \mathcal{O}_{p^n} \to E_n \to 0
\]

\[
0 \to \mathcal{O}_{p^n}(-2) \to \bigoplus \mathcal{O}_{p^n}(-1) \to T_{p^n}(-2) \to 0
\]

shows that \(c(E_n) \cdot c(T_{p^n}(-2)) = 1 \) and

\[
c(T_{p^n}(-2)) \cdot c(\mathcal{O}_{p^n}(-2)) = c(\bigoplus \mathcal{O}_{p^n}(-1)).
\]

Hence, we have

\[
c(E_n) = c(T_{p^n}(-2))^{-1} = (1 - 2h)(1 - h)^{n-1} = \left(\sum_{i=1}^{n \choose i} h^i\right)(1 - 2h).
\]

Therefore, \(c_n(E_n) = \left(\frac{2n}{n} - 2\left(\frac{2n - 1}{n - 1}\right)\right)h^n = 0 \) and

\[
c_{n-1}(E_n) = \left(\frac{2n - 1}{n - 1} - 2\left(\frac{2n - 2}{n - 2}\right)\right)h^{n-1} \neq 0. \quad \text{q.e.d.}
\]

Lemma 4. Let \(E \) be a vector bundle of rank \(r \) on a complete nonsingular variety \(X \). Suppose that \(E \) is generated by its global sections and \(c_i(E) = 0 \) for a positive integer \(s \leq r \). Then \(E \) has a trivial vector bundle of rank \(r - s + 1 \) as a subbundle.

Proof. Since \(E \) is generated by its global sections, there exists an exact sequence of vector bundles

\[
\bigoplus \mathcal{O}_{p^n} \to E \to 0
\]

where \(m + 1 = h^*(E) \). Then, there is a canonical morphism \(f: X \to \text{Gr}(m, m - r) \) such that \(E = f^*Q(m, m - r) \). Since \(0 = c_s(E) = f^*c_s(Q(m, m - r)) = f^*\omega_{s, s, \ldots, s} \), we see that \(f(X) \cdot \omega_{s, s, \ldots, s} = 0 \). Hence, there exists a linear subspace \(A \) of dimension \(r - s \) of \(P^n \) such that
Lemma 5. Let \(n > s > d \geq 0 \) and let \(f \) be a morphism from \(P^s \) to \(\text{Gr}(s, d) \), then \(f(P^n) \) consists only of one point. cf. [2].

Lemma 6. (i) Let \(E \) be a nontrivial vector bundle of rank \(r \) on \(P^s \). If \(E \) is generated by its global sections, then \(h^0(E) \geq n + 1 \).

(ii) Let \(E \) be a vector bundle which has no trivial vector bundle as a direct summand. Assume that \(E \) is generated by its global sections and that \(h^0(E) \leq 2n + 1 \). Then, \(E \) is indecomposable.

Proof. (i). Since \(E \) is generated by its global sections, there exists an exact sequence of vector bundles

\[\oplus \mathcal{O}_{P^n} \to E \to 0 \]

where \(m + 1 = h^0(E) \). Then, there exists a canonical morphism \(f : P^n \to \text{Gr}(m, m - r) \) such that \(E = f^*Q(m, m - r) \). Since \(E \) is nontrivial vector bundle, we see that \(f(P^n) \) is not one point. Hence, we have \(m \geq n \), by virtue of Lemma 5.

(ii). (ii) follows from (i). q.e.d.

Proof of Theorem 2. Since \(E_n \) is generated by its global sections and \(c_n(E_n) = 0 \), we have the exact sequence of vector bundles

\[0 \to F \to E_n \to E_n' \to 0 \]

where \(F \) is a trivial vector bundle of rank \(\frac{1}{2}n(n-1) - n + 1 \) and \(E_n' \) is the quotient bundle of rank \(n - 1 \), by virtue of Lemma 4. From the exact sequence of cohomology groups

\[0 \to H^0(F) \to H^0(E_n) \to H^0(E_n') \to H^1(F) = 0 \]

we obtain that \(h^0(E_n') = h^0(E_n) - h^0(F) = 2n - 1 \). The fact that \(c_{n-1}(E_n') = c_{n-1}(E_n) \neq 0 \) shows that \(E_n' \) has no trivial vector bundle as a direct summand. Since \(E_n \) is generated by its global sections, so is \(E_n' \). These results shows that \(E_n' \) is indecomposable, by virtue of Lemma 6 (ii). q.e.d.
An example of indecomposable vector bundle

Remark. Canonically $Gr(n, 1)$ is embedded in P^{n-1}. By this embedding $\omega_{n-1,1}(P) = \{ x \in Gr(n, 1) \mid L_x \supseteq P \}$ is $n - 1$ dimensional linear subspace of P^{n-1}. Hence, we have a map $\varphi: P^n \to Gr(N_n - 1, n - 1)$. On the other hand, by virtue of the exact sequence (1), we have a morphism $\mathcal{V}: P^n \to Gr(N_n - 1, n - 1)$. In this sense φ and \mathcal{V} are projectively equivalent, i.e. there exists a collineation $f: P^n \to P^n$ such that $\varphi = \mathcal{V} \circ f$.

Kyoto University of Education

Bibliography