An example of indecomposable vector bundle of rank n-1 on P^n .

By

Hiroshi TANGO

(Communicated by Prof. Nagata, Dec. 20, 1974)

Introduction and notation

It is well known that there exists a vector bundle of rank n-1 on \mathbf{P}^n for n odd, which is not direct sums of line bundles cf. [1]. In this paper we shall give an example of indecomposable vector bundle of rank n-1 on \mathbf{P}^n for each $n \ge 3$.

In this paper we shall use the following notation: $\mathcal{O}_{\mathbf{P}^n}$ is the structure sheaf of n-dimensional projective space P^n defined over an algebraically closed field k of an arbitrary characteristic; $\mathcal{O}_{\mathbf{P}^n}(1)$ is the line bundle associated with a hyperplane of P^n ; $\Omega_{P^n}^1$ is the sheaf of germs of regular differential 1-forms; T_{P^n} is the tangent bundle on P^n ; \check{E} is the dual vector bundle of a vector bundle E; E(m) is the vector bundle $E \otimes \mathcal{O}_{\mathbf{P}_n}(1)^{\otimes m}$; $c_i(E)$ is the *i*-th Chern class of E; $c(E) = 1 + c_1(E) + c_2(E) + \cdots$ is the Chern polynomial of E; h $=c_1(\mathcal{O}_{\mathbf{P}^n}(1))$ i.e. the first Chern class of a hyperplane; $H^t(E)$ $=H^{i}(X,E)$ and $h^{i}(E)=\dim_{k}H^{i}(X,E)$ for a vector bundle E on a complete nonsingular variety X defined over k; Gr(n, d) is the Grassmann variety which parametrizes d-dimensional linear subspaces of P^n ; Q(n,d) is the universal quotient bundle of Gr(n,d); L_x is the d-dimensional linear subspace of P^n which is represented by a point x of Gr(n,d); $\omega_{s,0,\dots,0}(A) = \{x \in Gr(n,d) | L_x \cap A \neq \emptyset \}$ is the special Schubert variety for an n-d-s dimensional linear subspace A of P^n ; and $\omega_{s,0,\dots,0}$ is the Schubert cycle associated with a $\omega_{s, 0, 0, ..., 0}(A)$.

Construction of the example

Lemma 1. $\Omega_{\mathbf{P}^n}^1(2)$ is generated by its global sections.

Proof. Consider the following commutative diagram with exact rows and exact colums.

It is easy to see that f and f' are surjections. Hence, the Snake lemma shows that g_0 is surjective. q.e.d.

By virtue of the proof of Lemma 1, we have

$$h^{0}(\mathcal{Q}_{\mathbf{P}^{n}}^{1}(2)) = (n+1)h^{0}(\mathcal{O}_{\mathbf{P}^{n}}(1)) - h^{0}(\mathcal{O}_{\mathbf{P}^{n}}(2)) = \frac{1}{2}n(n+1).$$

We denote Kernel g_0 by \check{E}_n . Then, we have the following exact sequence of vector bundles

$$(1) 0 \to T_{\mathbf{P}^n}(-2) \to \bigoplus^{N_n} \mathcal{O}_{\mathbf{P}^n} \to E_n \to 0$$

where $N_n = \frac{1}{2}n(n+1)$ and rank $E_n = N_n - n = \frac{1}{2}n(n-1)$. Using the long exact sequences of cohomology groups

$$0 \rightarrow H^{0}(T_{\mathbf{P}^{n}}(-2)) \rightarrow H^{0}(\overset{N_{n}}{\bigoplus} \mathcal{O}_{\mathbf{P}^{n}}) \rightarrow H^{0}(E_{n}) \rightarrow H^{1}(T_{\mathbf{P}^{n}}(-2))$$

$$0 = H^{0}(\overset{n+1}{\bigoplus} \mathcal{O}_{\mathbf{P}^{n}}(-1)) \rightarrow H^{0}(T_{\mathbf{P}^{n}}(-2)) \rightarrow H^{1}(\mathcal{O}_{\mathbf{P}^{n}}(-2)) = 0$$

$$0 = H^{1}(\overset{n+1}{\bigoplus} \mathcal{O}_{\mathbf{P}^{n}}(-1)) \rightarrow H^{1}(T_{\mathbf{P}^{n}}(-2)) \rightarrow H^{2}(\mathcal{O}_{\mathbf{P}^{n}}(-2)) = 0$$
we obtain $h^{0}(T_{\mathbf{P}^{n}}(-2)) = h^{1}(T_{\mathbf{P}^{n}}(-2)) = 0$ and $h^{0}(E_{n}) = N_{n}$.

Theorem 2. E_n has an indecomposable quotient bundle E_n' of

rank n-1.

In order to prove the Theorem, we need the following four lemmas.

Lemma 3. $c_n(E_n) = 0$ and $c_{n-1}(E_n) \neq 0$.

Proof. Indeed the exact sequences

$$0 \to T_{\mathbf{P}^n}(-2) \to \bigoplus^{N_n} \mathcal{O}_{\mathbf{P}^n} \to E_n \to 0$$

$$0 \to \mathcal{O}_{\mathbf{P}^n}(-2) \to \bigoplus^{n+1} \mathcal{O}_{\mathbf{P}^n}(-1) \to T_{\mathbf{P}^n}(-2) \to 0$$

shows that $c(E_n) \cdot c(T_{\mathbf{P}^n}(-2)) = 1$ and

$$c(T_{\mathbf{P}^n}(-2)) \cdot c(\mathcal{O}_{\mathbf{P}^n}(-2)) = c(\bigoplus^{n+1} \mathcal{O}_{\mathbf{P}^n}(-1)).$$

Hence, we have

$$c(E_n) = c(T_{P^n}(-2))^{-1} = (1-2h)(1-h)^{-n-1} = \left(\sum_{i=0}^n {n+i \choose i} h^i\right)(1-2h).$$

Therefore, $c_n(E_n) = \left(\binom{2n}{n} - 2\binom{2n-1}{n-1}\right)h^n = 0$ and

$$c_{n-1}(E_n) = \left(\binom{2n-1}{n-1} - 2 \binom{2n-2}{n-2} \right) h^{n-1} \neq 0$$
. q.e.d.

Lemma 4. Let E be a vector bundle of rank r on a complete nonsingular variety X. Suppose that E is generated by its global sections and $\mathbf{c}_{\mathbf{s}}(E) = 0$ for a positive integer $\mathbf{s} \leq \mathbf{r}$. Then E has a trivial vector bundle of rank $\mathbf{r} - \mathbf{s} + 1$ as a subbundle.

Proof. Since E is generated by its global sections, there exists an exact sequence of vector bundles

$$\bigoplus^{m+1} \mathcal{O}_{\mathbf{r}} \to E \to 0$$

where $m+1=h^0(E)$. Then, there is a canonical morphism $f\colon X\to Gr(m,m-r)$ such that $E=f^*Q(m,m-r)$. Since $0=c_*(E)=f^*c_*(Q(m,m-r))=f^*\omega_{*,0,\dots,0}$, we see that $f(X)\cdot\omega_{*,0,\dots,0}=0$. Hence, there exists a linear subspace A of dimension r-s of P^n such that

 $L_{f(x)} \cap A = \phi$ for any point x of X (cf. [2]). This shows that E has a trivial vector bundle of rank r-s+1 as a subbundle. q.e.d.

Lemma. 5. Let $n>s>d\geq 0$ and let f be a morphism from \mathbf{P}^n to Gr(s,d), then $f(\mathbf{P}^n)$ consists only of one point, cf. [2].

Lemma 6. (i) Let E be a nontrivial vector bundle of rank r on \mathbf{P}^n . If E is generated by its global sections, then $h^0(E) \ge n+1$. (ii) Let E be a vector bundle which has no trivial vector bundle as a direct summand. Assume that E is generated by its global sections and that $h^0(E) \le 2n+1$. Then, E is indecomposable.

Proof. (i). Since E is generated by its global sections, there exists an exact sequence of vector bundles

$$\bigoplus^{m+1} \mathcal{O}_{\mathbf{P}^n} \to E \to 0$$

where $m+1=h^0(E)$. Then, there exists a canonical morphism $f: \mathbf{P}^n \to \mathbf{Gr}(m, m-r)$ such that $E=f^*\mathbf{Q}(m, m-r)$. Since E is nontrivial vector bundle, we see that $f(\mathbf{P}^n)$ is not one point. Hence, we have $m \ge n$, by virtue of Lemma 5.

q.e.d.

Proof of Theorem 2. Since E_n is generated by its global sections and $c_n(E_n) = 0$, we have the exact sequence of vector bundles

$$0 \rightarrow F \rightarrow E_n \rightarrow E_n' \rightarrow 0$$

where F is a trivial vector bundle of rank $\frac{1}{2}n(n-1)-n+1$ and E_{n} is the quotient bundle of rank n-1, by virtue of Lemma 4. From the exact sequence of cohomology groups

$$0 \to H^0(F) \to H^0(E_n) \to H^0(E_n') \to H^1(F) = 0$$

we obtain that $h^0(E_n') = h^0(E_n) - h^0(F) = 2n - 1$. The fact that $c_{n-1}(E_n') = c_{n-1}(E_n) \neq 0$ shows that E_n' has no trivial vector bunble as a direct summand. Since E_n is generated by its global sections, so is E_n' . These results shows that E_n' is indecomposable, by virtue of Lemma 6 (ii).

Remark. Canonically Gr(n,1) is embedded in P^{N_n-1} . By this embedding $\omega_{n-1,0}(P) = \{x \in Gr(n,1) L_x \ni P\}$ is n-1 dimensional linear subspace of P^{N_n-1} . Hence, we have a map $\varphi \colon P^n \to Gr(N_n-1,n-1)$. On the other hand, by virtue of the exact sequence (1), we have a morphism $\Psi \colon P^n \to Gr(N_n-1,n-1)$. In this senes φ and Ψ are projectively equivalent, i.e. there exists a collineation $f \colon P^n \to P^n$ such that $\varphi = \Psi \circ f$.

KYOTO UNIVERSITY OF EDUCATION

Bibliography

- [1] Hartshorne, R. Varieties of small codimension in projective space. to appear.
- [2] Tango, H. On (n-1)-dimensional projective spaces contained in the Grassmann variety Gr(n, 1). J. Math. Kyoto Univ. Vol. 14-3 (1974).