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Introduction and notation

It is well known that there exists a vector bundle of rank n—1
on P" for n odd, which is not direct sums of line bundles cf. [1].
In this paper we shall give an example of indecomposable vector
bundle of rank »—1 on P for each n=3.

In this paper we shall use the following notation: Opa. is the
structure sheaf of n-dimensional projective space P" defined over an
algebraically closed field 2 of an arbitrary characteristic; Op. (1) is
the line bundle associated with a hyperplane of P"; Qp. is the sheaf
of germs of regular differential 1-forms; 7'p. is the tangent bundle
on P"; E is the dual vector bundle of a vector bundle E; E(m) is
the vector bundle EQOp, (1)®™; c;(E) is the i-th Chern class of E;
c(E)y=1+¢,(E)+c,(E)+--- is the Chern polynomial of E; h
=¢,(0Op.(1)) ie. the first Chern class of a hyperplane; H!(E)
=H'X,E) and h*(E) =dim, H*(X, E) for a vector bundle E on a
complete nonsingular variety X defined over k; Gr(n,d) is the Gras-
smann variety which parametrizes d-dimensional linear subspaces of
P*; Q(n,d) is the universal quotient bundle of Gr(n,d); L, is
the d-dimensional linear subspace of P™ which is represented by a
point = of Gr(n,d); w,,,.,c(A)={xe6Gr(n,d)|L.NAs¢} is the
special Schubert variety for an n—d —s dimensional linear subspace
A of P"; and w,,,..,o is the Schubert cycle associated with a
Ws, 0,0, - 0 (A).
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Construction of the example
Lemma 1. 25.(2) is generated by its global sections.

Proof. Consider the following commutative diagram with exact

rows and exact colums.

0 0
Kernel g, L-———» Kernel g,
n+1 f v
0—->H' (2 (2)) @iOpn=>H (D Op» (1)) ®:0pr — H’(Op(2)) ®:Op»
l Jo - [ [
0 > @pa(2) — —— DO0p.(1) — > Opa(2) —0
0 0

It is easy to see that f and f” are surjections. Hence, the Snake

lemma shows that ¢, is surjective. q.e.d.

By virtue of the proof of Lemma 1, we have
R (2p(2)) = (n+ DA (Opa (1)) —h"(Ops(2)) =%n(n+1).

We denote Kernel ¢, by E,,. Then, we have the following exact

sequence of vector bundles

N
€Y 0T pi(—2)> P Opn—E,—0

where N,=1n(n+1) and rank E,=N, —n=%4n(n—1). Using the long

exact sequences of cohomology groups
N,
0->H"(Tp.(—2)) >H'"(D Opa) >H " (E,) >H' (Tp:.(—2))
0=H*(@ Opr(—1)) > H' (Tpa(~2)) >H' (Opn(—2)) =0
0=H' (@ Opn (= 1)) > H' (T'ps (—2)) > H*(Ops (~2)) =0

we obtain A (T p.(—2)) =h'(Tp.(—2)) =0 and A°(E,) =N.,.

Theorem 2. E, has an indecomposable quotient bundle E,” of
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rank n—1.

In order to prove the Theorem, we need the following four
lemmas.

Lemma 3. c,.(E,) =0 and c,_,(E,) 0.

Proof. Indeed the exact sequences
v,
0-Tp.(—2)> P Op.—>E,—0

0-0ps (~2) = @ Opa(—1) >Tpe (~2) -0
shows that ¢(E,) -¢(Tp.(—2)) =1 and

¢ (Tpe(—2)) -¢(Ops (~2)) =e (D Opr (—1)).

Hence, we have
n

C(E) =¢(Tpn(—2))"= (1—2h) (1 —h)"' = <2<”;.Li>h‘) (1—2%).

i=0

Therefore, ¢,(&,) = <<2n> -2 <27z - 1) ) h"=0 and

n n—1

ers (B = ((P221) —2(*2 2 %) a0, qed.

n

Lemma 4. Let E be a vector bundle of rank r on a complete
nonsingular variety X. Suppose that E is generated by its global
sections and c,(E) =0 for a positive integer s<r. Then E has a
trivial vector bundle of rank r—s+1 as a subbundle.

Proof. Since E is generated by its global sections, there exists
an exact sequence of vector bundles

m+1
(—é 0,—»E-0

where m+1=hr"(E). Then, there is a canonical morphism
f: X>Gr(m,m—r) such that E=f*Q(m,m—r). Since 0=c,(E)
=f*c,(Q(m, m—r))=f*w,,, ..o we see that f(X)-w,,,,.,0=0. Hence,
there exists a linear subspace A of dimension »—s of P" such that
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L;,yNA=¢ for any point x of X (cf. [2]). This shows that E has
a trivial vector bundle of rank »—s+1 as a subbundle. q.e.d.

Lemma. 5. Let n>5s>d=0 and let f be a morphism from P"
to Gr(s,d), then f(P") consists only of one point. cf. [2].

Lemma 6. (i) Let E be a nontrivial vector bundle of rank r
on P". If E is generated by its global sections, then h'(E)=n+1.
(i) Let E be a wvector bundle which. has no trivial vector bundle
as a direct summand. Assume that E is generated by its global sec-
tions and that h*(E) <2n+1. Then, E is indecomposable.

Proof. (1). Since E is generated by its global sections, there
exists an exact sequence of vector bundles

m+1
<'B+ @pn—>E'—)O

where m+1=h"(E). Then, there exists a canonical morphism f: P*
—Gr (m, m—r) such that E=f*Q(m, m—r). Since E is nontrivial
vector bundle, we see that f(PP") is not one point. Hence, we have
m=n, by virtue of Lemma 5.

(ii). (ii) follows from (i). q.e.d.

Proof of Theorem 2. Since E, is generated by its global sec-
tions and ¢, (E,) =0, we have the exact sequence of vector bundles

0—-»F—>E,—»E,—0

where F is a trivial vector bundle of rank 4n(#—1) —n+1 and E,’
is the quotient bundle of rank n—1, by virtue of Lemma 4. From

the exact sequence of cohomology groups
0-H°(F)—»H'(E,)»H"(E,)>H'(F) =0

we obtain that A"(E,) =h"(E,) —h°(F)=2n—1. The fact that

¢ (E)) =¢,_1(E,)50 shows that E,” has no trivial vector bunble as

a direct summand. Since E, is generated by its global sections, so

is E,’. These results shows that E,” is indecomposable, by virtue of
Lemma 6 (ii). q.e.d.
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Remark. Canonically Gr(n,1) is embedded in P¥»~!, By this
embedding w,_,,(P) = {x=€6Gr(n,1)L,> P} is n—1 dimensional linear
subspace of PY»~!, Hence, we have a map ¢: P"—>Gr(N,—1,n—1).
On the other hand, by virtue of the exact sequence (1), we have a
morphism ¥: P"—>Gr(N,—1,n—1). In this senes ¢ and ¥ are
projectively equivalent, i.e. there exists a collineation f: P*"—P" such

that p=¥of.
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