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0. Introduction.

Consider a following linear autonomuos system in R*:

&:B’X(t)
dt '

(0-1)
where B is a 2X2 constant matrix. If small linear ‘“white noise
type” perturbations act on the system (0-1), we have a stochastic

system:
(0-2) dX*(t)=B-X*()dt+e{C-X*(¢)dB,(¢) +D-X*(¢)dB,(¢)}.

where C and D are 2X2 constant matrices and B;(z) (i=1,2) are
independent one dimensional Brownian motions. Our interest is to
study relations between properties” of the singular point {x =0} of the
system (0-1) and of the system (0-2) for sufficiently small .

With respect ‘o radial parts, the relations are known, i.e., if the
origin is not a center for the system (0-1), then

(0-3) lim lim| X*(¢) | =lim| X ()|  a.s.,
t—oo

e—0 t—oo

but if the origin is a center, then the equality (0-3) is not neces-
sarily valid. Therefore, our purpose in this paper comes to establish

such relations between an angular part 0(¢) of X(¢#) and the other

one 0°(¢t) of X°(#).

b Many books, for example, Coddington and Levinson [1], discuss properties of the
origin for the system (0.1).
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In case that ¥ (0) (see the equality (0-8)) does not vanish, our
results (Theorems 1 through 3) coincide with a slight modification of
Nevel’son [7] However, in case that #(0) may vanish, the circum-
tances are different. In order to prove our results, we essentially need
that the system (0-:2) is linear and that the stlate space is two
dimensional, because we know all asymptotic behaviours of 6°(¢#), which
we studied in [8], only for that case It should be remarked that
Friedman and Pinsky [2] also studied the asymptotic behav ours of
0°(t) and some of our results may be covered by theirs. But they are
not interested in the limiting property of the system (0-2) as ¢l0.

For simplicity, we may assume that D=0 in the system (0-2):
(0-2") dXF(t) =B-X°(t)dt+eC-X°(£)dB,(t).

In fact, all cases which arise 'n the system (0-2) also arise in the

system (0-2"). Making use of a simple calculation and Ito’s formula,

we have
) do () _
(0-4) 2 D5(0(2)),
(0-5) dot(t) =0°(0°(¢))dt+ e¢'(05(t))d§(t),

where E(t) is a new one dimensional Brownian motion,
(0-6) 0°(0) =05(0) +€°0:(0),

[05(0) = — (B-e(0), ¢*(6))

©D (0:(0) = (A (e (6) -¢(0), *(0)).
and

(0-8) T2 (0) = (A(e(0)) -e*(0). *(0)).

in which

2
(A (.1:) ) i = Z lcfmxmcjn’rn 72)
m,n=

e(0) = (cos 0, sinf), and e*(0) =(sin0, —cos0). Note that O.(0+m)
=0°(0) and P*(O0+n) =¥*(0).

® ¢y is an (4,7) element of a matrix C, and so on.
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Let H be a real constant regular matrix. If Y=H-X, then the

system (0-1) is transformed into

aY@) _ H.B-HY Y (),
dt

where the transformed matrix (H-B-H™) is one of the following

canonical forms :

@/ b bz> b, #0, 1y (bl 0) bi#by,

\—5, 5, 0 b,
(110) <b, o> 50, av)y <b 0.
b, b, 0 bl

Thus, we may assume that the matrix B is one of the canonical forms
(ID) through (IV). For the system (0-1), the origin is a center or
a spiral point, if the matrix B is (I). It is an improper node or a
saddle point, if B is (II). If B is (III), it is an improper node, and
if Bis (IV), it is a proper node (see Coddington and Levinson [1]).

1. A center and a spiarl point.

If the matrix B is (I). then it follows from the equality (0-4)
that 0(¢) =0(0) —b,t. As for the behaviour of 0°(¢), we have:

Theorem 1. If the matrix B is (I). then it holds that. for
any 0>0,

lim P, {lim

e—~0 t—ooo

0—:@+bz‘§a}=1.

where 0, is arbitrary.

Proof. Note that there exists a constant K such that |0°(®)
+b6,| <e’K and P*(0)<K. Then, integrating the equality (0.5), we

have
11 .. R L, K = ~
7(0 (&) —0 (0))+bz|§6 K+ —t-IB(t) —B(0)].

By virtue of the law of iterated logarithm, the theorem is obtained.
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2. An improper node and a saddle point.

In case that the matrix B is (II), the system (0-4) has two
stable equilibrium points (say «; and a,=a,+7) and two unstable
equilibrium points (say $; and (83,=p,+7), i.e.,

a  B—r<0(0)<B

lim 6.(¢) = B 6(0) =4
Unaed [2%] £:<<6(0) <B:
B. 0(0) =P,

Note that either ;=0 and #,=7/2 or a,=7r/2 and B,=r.

Theorem 2. If the matrix B is (I1), then it holds that, for
(lny 6>0y dnd 005&31’ 329
(2-1) lim lim P, {0°(8)eUs(ey) or Uy(an)} =1,

e=0 t—ooo

where U,( ) is 0-neighbourhood of «,.

In order to prove the theorem, we prepare the following lemma,
which is a modification of Nevel’'son [7].

Lemma 1. Let f.(x)=fo(x) +eh(x). For cach e>0, there
exists a point acc(a, b) such that max,c.<ofe (x) =fc(ae), and k+1-th
derivative of f.(x) exists in a neighbourhood of a. for some k>0
independent of e. Let g(x) be continuous at a, and [3g(x)exp
X {(1/e)fe(x) /et ds converge for some e. Then as ¢—0.

b 1 _exp{(1/e)fe(al) } I ((1/k)) g (as)
Lg (x)exp {?f (X) } dz LY (- (£ (ag) T

X (2+0(e"*)),

where I'(p) is the Gamma function.

Proof of theorem 2. In the following proof, we assume that q;
=0 and (8, =%m, without losing generality. As for the existence and a
representation of an invariant measure density which appears in this and
later proofs, see [8].
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Case 1, 7*(0) >0. There exists an invariant measure x°(d0) such

that for arbitrary 0,

(2-2) lim P, {0°(8) € -} =4 (-)
2-3) 1 (o) = 21" () +v:"(0)

.[02” (1)1‘E (ﬂ/)) + v, (¢) ) d¢
copy — JWE(O, 9)dy
j" O = Sy W 0, 0)

copy — JIWEO, 9)dy
O = W 2, 6)

(2-49)

in which (and later on) we set

Wf(ol, 02) =exp{_?12‘ oﬂl%zd(/)} '

Let «;° (1=1,2) be stable equilibrium points and (8;* be unstable

equilibrium points of the dynamical system

40()

. B _ge
(2-5) 2 ?*6@)).

It is clear that a.*=a,°+7 and B =B °+7 and that lim.., a;*=q;
and lime_,o B{e _—_ﬁi.
If we apply Lemma 1 to »;°(0) in the same way as Nevel’son [7]

did, then we have
WO + v (0)) - d0 = of [ W (0) + v (0)) D)),
£0,2m)\Z¢U g (@) SUs(ap) .
from which it follows that
lim 2% (U;(0) + Uy (7)) =1.
e—0
If ¥ (0) vanishes, then it does, at most, at four points in [0, 27),

say 0=n=nr=n(=n+n)=n(=nr+r)<2r. Note that 7,’s are

independent of ¢.

Case 2, 71,50 (i=1,2). There exists an invariant measure
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density v*(0), which includes a neighbourhood of 0 and one of 7 in
its support. Suppose that 0<7,<7,<3}7, then

J ngG (Tla ¢)d¢ T!§0<7’2

e¥E0) We(y,, 0)

W W (re, p)dy
S E(0) We(y,, 0)

vé(0—m) 1+ r<60<r,+2r.
We estimate [,*"v°(0)d0. For any 6>0,

(2-6) ve(0) =

71.=0<7,+7

f”»f(o)daz j v (0) d6+ j v (0)d6

SUs(ai®) Us(ro)
+ v (0)do .
00,22\ (Z¢Us(a®) + S1Us(r))

Since it holds that @°(7;) <0 uniformly with respect to &, it follows
from the equality (2:6) that

v (0)do<M ,

IyUs(ro)

where M is a constant independent of e&. By Lemma 1, we have

2A°A,°
v ()=, L (2+0(e))
IUg2a8) V(o) We (B, ai® + 2m)
and
v@do=o | »©an),
[0,2m)\(Z¢U (&) + Vs (ry)) S U (@)
where

Af=

R

4 =3 T

l\::|b—l

Thus, as ¢—0,

(2-7) [svaany® 0)d0_,
S 0.2y (0)dO

’
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which proves the theorem, because

Jvé(0)do

2.8 fim Po {05 & ) = g
( ) ‘illl aq{ () } f[u.zn)”e(a)dg

For the other 7:, we can prove the theorem in the same manner as the

above.

Case 3. 7,=0. In this case, 0 and 7 are natural boundary points,
because it follows, from the assumption that 7, =0, that ¢, =0, which

proves that @°(0) =0. If 7,57, then it is easy to see that

g _20000) <k ho) 8]
0= o) — 0 ’

bg 2000) <k gepg,0)
0= T 0

(2-9)

where 0 and £; are positive constants independent of &. From the

inequality (2-9), we see that

(&) <wr@.o=(Z)"" o020

1 1

<g_:> " é we (03, 04) é <%‘—> " 0s, 04 [ - 6’ 0) ’
3

which proves that O and 7 are attracting (see [8]). Hence, we obtain
that

P, {'im6°(¢) =0 or 7} =1 Oy, 3.
t—o0
If 7,=7., then we can prove in a similar way.

Remark. If 8; (¢=1,2) are not natural boundary points, then
the equality (2-1) is valid for 0,=p,, 3. But, if they are natural

boundary points, then

Pg{0.(t) =5} =1.

3. An improper node.

Since @5(0) =b, cos® 0 in case that the matrix B is (III), the system

(0-4) has only two stab e equilibrium points 47 and 27, i.e.,
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1 _1 1
. i In<<0(0)<ir
tlirol: 0 (t) = 3 1 <3
2 $1<06(0) =3n

Theorem 3. If the matrixz B is (III), then it holds that, for
any 0>0 and any 0,
(3-1) lim lim P, {0°(8)eU,(37) or U,(3m)} =1.

£—0 t-roo

In order to prove the theorem, we need the lemma due to

Nevel’son [7]:

Lemma 2. (Nevel’son) Let f(x) be a non-negative increasing
Sunction in some neighbourhood of x=a such that the order of the
JSirst non-vanishing derivative of f(x) at a is k>1 (with k odd).
Moreover, f**" (x) exists in the neighbourhood of x=a, and ¢ (u, x)
be continuous at (a,a). Then, for sufficiently small 6>0, it holds
that

[ ax [T aug @ 2ew{-Lrw —r @)

(k) —-2/k
=9(a,a) (T29) A+ o0(em)
ck!
as €0, where

A= [T ap [T daen s = 0 +0).

Proof of Theorem 3. We discuss the proof for each type of
the matrix C.

Case 1. Oc(37)>0. Note that @*(0) >0 for any (. If ¥ (0) does
not vanish, then there exists an invariant measure x°(df)), written by
the equalities (2-3) and (2-4). Applying Lemma 1 to the equality
(2-4), we have

1

vE0) 42O = g s

(A+o0(e?),

from which we obtain the equality (3-1), using the euality (2-3) and
that
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(3-2) 0% (im) -0 as ¢—0.

If ¥ (0) vanishes, then 7;5%347 (i=1,2). Actually, if ;=37 ({=1, or
2), then it follows that c¢,,=0, which is equivalent that @;(37) =0.
Thus in case that ¥ (0) vanishes, 0°(#) has an invariant measure density
y¢(0) such that

Jewe (771, ‘/’)d¢) <<
W) | OST

(3-3) v (0)=1{ [eWe(p,¢)dy
e (0) W* (7, 0)

e (0 —1) n+r<lo<r +2rn

7:<0=7+7

with some 7;’s. Applying Lemma 1 to the equality (3-3), we see

3 — 1 2 .
v (0)———06(0)(1+0(8)) 0$Z{ Us (1)

e (0) =M be L; U; (13),

which proves the equality (3-1).

Case 2. 0q(37) =0 and O, (47)>0. In this case, there are two
stable equilibrium points «;° and two unstable equilibrium points
(2¢—1/2)7 (i=1,2) for the dynamical system (2-5). It is easy to
see that
2i—1

(3 . 4) ath 2

T as ¢—0.

If #(0) does not vanish, then 0°(#) has an inveraiant measure density,
written by the equations (2:3) and (2:-4). We estimate [2°(0)d0
(:=1,2). For any 0>0, there exists some ¢ such that ;€U
x ((2i—1/2)x), and

[Tvi@ao= [ve@an+ [ve@ao,

I,

where I, =[0, 22)\>; U;((21—1/2)x) and L=, U;((2i—1/2)7). Ap-
plying Lemma 1 to the equality (2-4), we have

[ fuf(@)do _ fﬁ}@(mo(&))d()
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& _2e7PW (i, 3m) g e g 2/3
(3-5) J le (0)do = 7 (o) AfAS (44 0(e¥))

I,

j:” v,f (6)dO=o0 (&),

in which
oo re
1 & 2 ”
(3.6) 2 ((Z(D (012 glf) (0)))0=(1/2)n

L) /T (O)) e
This and the equality (2-4) prove the equality (3-1).

If ¥ (0) vanishes and if 7,547, then it is not difficult to obtain
the equality (3-1) in the same way as in Case 2 of the proof of
Theorem 2. However, if 7;,=3%7m for some 7 (it does not arise that 7,
=71,=%7 by virtue of the assumption that @5(3n)>0), then the
circumstance is different. We cannot state if a natural boundary point
im is repelling® If it is repelling, then there exists an invariant

measure density v°(0), given by

1 1

- - 1 0 el
roween <"
VO =1 o) Ts<3<%7f
0 otherwise,

where we assume that 7,=34m, without losing generality, and & is
some point in (73, 7). Estimating [,*v*(0) d0 in the same way as in the
equality (3-5), we obtain

2
O° (b —0) W (¢, dn—0)

j»*(e)d0= (1+0(e?)

I,

“ ¢ 2(1+o0(e)) ¢
& > d = Ao
l fgv Oav= ; (21—1/2)’7_61} (a0 eV () We(§, ar)

3-7

where A,° is given by the equality (3-6). It follows from the
equality (3:7) that

»  See [8].
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j»* (0t = of jve (0)dt)

1 2

which proves the equality (3-1) by virtue of the equation (2-8). If
ir is attracting, then the equation (3-1) is clear.

" Case 3. 0o(37) =0 and 0 (37) =0. It holds that

(0°0)>0  0+br,
loscoy=0  6=4r,

T

s wofed

T,

for sufficiently small e. Thus, it is not difficult to obtain the equality
(3-1) making use of Lemma 2 in case that ¥ (f) does not vanish, or
that ¥ (0) vanishes at 054(2{—1/2)7 (i=1,2). But, if ¥ (0) vanishes
at 0= (2{—1/2)x, then we see, by calculating W*, that 7+0 or in
—0 is attracting. The equality (3-1) is obtained.

Case 4. O0g;(37) =0 and O, (37)<0. For the dynamical system
(2-5), there are two stable equilibrium points (2/—1/2)7 and two
unstable equilibrium points 8;° (=1, 2) such that

2i—1
T
2

as ¢—0,

B:1

Thus, there is little different in proving the equality (3-1) between
Case 2 and Case 4.

Case 5. 0;(37)<<0. In this case, the dynamical system (2-5)
has two stable equilibrium points «;® and two unstable equilibrium
points 3;* (=1, 2) such that

21_17'[ as ¢—0

a,-‘T

©8 21

2

lﬁﬂ, i as ¢—0.

If ¥(0) does not vanish, then there exists an invariant measure
45 (d0), written by the equalities (2-3) and (2-4). Estimating [,*"v¢(0) 46
according to the same procedure as in Case 2, we obtain the equality
(3-1). If ¥ (@) vanishes, then 71,5447 (i=1, 2) by virtue of the as-

sumption that @¢(47)<{0. Thus, an invariant measure density, given
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by the equality (3-3), exists. For any 6>>0, there exists some &>0
such that «af€U,((2i—1/2)7) and B e€U,((2i—1/2)n). Let J,
=22 Us (1), L=20: U,((2i—1/2)7), and Jy =[0, 22]\J\J,. Estimat-
ing ["(0)d0 in the same manner as in Case 2 of the proof of

Theorem 2, we see

”vﬁ(())dagM
i bet 2B°By*
& > & — 1 Do
(3-9) ¢ i'v @)do= Ei st 0)do T W (ar, 85 1+o0(e))
(e - 1 2
) v (0)do = sze @ (1+0(e?))do,

where M is a constant independent of ¢, and

eI
oIS

The equality (3:9) proves the equality (3-1) by verture of the
equalities (2-8) and (3-8).

4. A proper node.

If the matrix B is (IV), then it is clear that 0(¢) =0(0) for the
system (0-4). However, there is a counter example such that for

some 0>0 and some 0,

(4-1) lim P, {lim 6°(£)eU;(lim 6(2))} =0.
e—0 t—co t—oo

Example. Let the matrix C be such that

<c‘ O> c,<cy .
0 ¢

Then, we can solve the stochastic differential equation (0-2"):
(4-2) zf(t) =25 (0)exp{(b—tlc) t+c(Bi(t) — B (0))} (i=1,2).

Applying the law of iterated logarithm to the solution (4:2), we see



Two dimensional autonomous systems 69

that for x,°(0)=£0

lim z," () _ 0
te 1, (t)

Thus, for any ¢>0
Do, {lim 6°(2) =0 or m}=1 0,50, 7 ,
t—od

from which the equality (4-1) holds.

From the above-obtained relations between the systems (0-1) and

(0-2), we have the following remark:

Remark. If the orgin is a spiral point, an improper node,
or a paddle point in the system (0-1), then the system (0.2),
preserves the property of the origin in the system (0.1) with
probability arbitrarily close to one, for sufficiently small e¢. But,
if the origin is a center or a proper node in the system (0-1), then

it 1s not necessarity true in the system (0-2).
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