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Introduction. Let k& be a commutative field and ¢ be its involu-
tion, i.e. an automorphism of k such that ¢2=identity. Let V be a
symmetric bilinear (resp. symplectic; resp. Hermitian) space over k
with respect to o¢. Let U(V) denote the group of all isometries of V.
We shall concern with the conjugacy classes of the elements of U(V).
The problem has been studied by many mathematicians, and there are
known substantial amount of results. First of all, there is a canonical
injection from the set of all conjugacy classes of U(V,) for a symmetric
bilinear (resp. symplectic; resp. Hermitian) space V, into the set of the
equivalence classes of the pairs (V, x) consisting of symmetric bilinear
(resp. symplectic; resp. Hermitian) spaces V and its isometries x (c.f.
G. E. Wall [9] and J. Milnor [4]). The equivalence problem of the
pairs (¥, x) was solved by J. Williamson [10] under the assumption
that the base field is perfect and of characteristic #2, and then solved
by G. E. Wall [9] under the weaker assumption called ‘‘trace condi-
tion”. Then, to determine the conjugacy classes of U(V) we must
determine the image of the above canonical injection. The problem
to determine this image can be reduced to the form of our Problem
3.3, §3 (when k is perfect). When the base field k is finite, the latter
problem is solved by G. E. Wall [9], in fact he gave an explicit de-

scription of all the conjugacy classes over finite fields. When k is a
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local field, J. Milnor [4] gave an answer to this problem. (See our
Lemma 3.4.) Utilizing his results we get a similar answer when k is
an algebraic number field (Theorem 3.6 and 3.7) and give a com-
plete set of local invariants to each conjugacy classes. Since, it turns
out that local invariants correspond to the local conjugacy classes, we
can describe our results as the Hasse principle for the conjugacy classes
(Theorem 4.7, 4.8 and 4.9). Namely the following map ¢ is injective
and we can effectively characterize the image of ¢ in terms of local
invariants.

the conjugacy classes the conjugacy classes
N —
t

in U(V) in U(V,)

where v runs all the prime spots on ko={x € k|"x=x].

To our best knowledge, the injectiveness of the above ¢ was re-
marked for the first time by M. Eichler [0] (for the special case of
regular conjugacy classes in the anisotropic orthogonal group 0(V)),
and its general validity was remarked by H. Hijikata [1].

In the first two sections, we shall sum up the known results, mostly
from [4] and [7], in a form convenient for our later use.

This paper is preparatory to my subsequent paper to get the class
number formula of positive definite quadratic forms by means of Selberg
Trace Formula.

Finally 1 express my hearty gratitude to Professor H. Hijikata for
his kind guidance and encouragement.

§1. The conjugacy classes of the unitary, symplectic and
orthogonal groups

1.1. First we give some definitions. Let 4 be a commutative
ring with 1. Let a be an involution of A (i.e. « is an automorphism
of A and «?=identity). o may be identity. Let M be a finitely gener-
ated A-module. Let ¢=1 or —1. An e-Hermitian form on M over A4
with respect to a is a mapping F: M x M—A satisfying

(i) F(au+bv, w)y=a F(u, w)+ b F(v, w),
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(i) F(u, v)y=2F(v, u),

for any u,v, weM and a, be A. We call the pair (M, F) an e-Her-
mitian Module over A4 (with respect to «). If a=identity and e=1,
we call F a symmetric bilinear form and (M, F) a symmetric bilinear
module over A. If M is a free A-module, we call (M, F) an e-Her-
mitian space over A. We often indicate s-Hermitian spaces by M,
N,... instead of (M, F), (N, G),... if there is no confusion.

Let (M, F) be an e¢-Hermitian space over A. And let {e,,...,e,}
be a basis of M over A. We say (M, F) is non-degenerate if
the (n, n)-matrix (F(e;, ¢;)) is invertible. We often write (M, F)=
(F(e;, ¢;)) for brewty

Assume A= (—B A; and ®4;,=A,. Let 0 bc an element of A such
that d=(g,,... s)eA ®---®A, with =1 or —leAd; Even if we do
not assume d=1 or — 1, we can similarly define é-Hermitian forms over
A as above. A J-Hermitian module over A=.(-rBlA,- is always a direct

sum of g-Hermitian modules over A,

1.2. Let kK be a (commutative) field and o be its involution.
(6 may be identity.) We put e=1 or —1. Let (V,f) be an e-Hermitian
space over k with respect to ¢ and U(V, f) denote the group of all
isometries of (V, f).

For a monic polynomial p(X)=X"+c, X" '+---+¢, with ¢,#0,
we define its ‘‘dual™ polynomial p*(X) by

pX(X)=("c,)” ' X"("p)(X~1)

where (°p)(X)=X"+%, X" ' +..-+7¢,.
Let m(X) be the minimal polynomial of xeU(V,f). For any
polynomial h(X)e k[X], we have

Sh(x)u, v)=fu, (°h)(x~YHv) for any u,vew.

Thus we have

Lemma 1.1. (1) m*(X)=m(X).
(2) Put R=k[X]1/m(X). Then V is an R-module by the mapping
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(X x). There is an involution a of R such that *X=X"' and «|,=0.
And f(au, v)=f(u, *av) for any u, veV and aeR.

1.3. We define an equivalence relation in the set of the pairs
((V, f), x) consisting of the e-Hermitian spaces (V, f) and its isometries
x. Let (V.f), x) and ((W, g), y) be such pairs. Then ((V,f), x) and
((W, g), y) are called equivalent if there exists a mapping ¢:(V,f)
—(W, g) which is an isomorphism as e-Hermitian spaces and ¢(xu)
=yp(u) for any weV. We indicate this by the notation ((V,f), x)
~((w, g), y). Then we clearly have

Lemma 1.2. Let (V, f) be an e-Hermitian space over k with re-

spect to o and x, ye U(v, f). Then the following are equivalent.

(1) x and y are conjugate in U(V, f).
@) (V. ), )=V, f), y).

1.4. Linear function /. Let m(X) be a monic polynomial whose
constant term is not zero. We assume m*(X)=m(X). Put R=k[X]/
m(X). Since m*(X)=m(X), there exists a unique involution a of R
such that *X=X"! and a|,=0. Then R=R,®---®R, where R;(i=1,...,
r) are a-indecomposable, i.e. R; are not direct sums of non-trivial o-
stable subalgebras. Since a stabilizes R;, a induces the involution «;
of Ri(i=1,...,r).

Let m; be the radical of R; and d; be the positive integer such that
méi={0} and m¢i~1#{0}. «; induces the involution & of R;=R;m,
If o#identity, then obviously & is not identity (i=1,...,r). And if
o=identity and & =identity, then R,=k[X]/(X —1)% or k[X]/(X —1)%.

Lemma 1.3. (Springer-Steinberg [7], p. 254.) We wuse the above
notation. Assume that all &'s are not identity or char k#2. Then
there exists a k-valued linear function / on R such that

(1) The symmetric bilinear form (u, v)—Z(uv) on RxR is non-
degenerate.

2) Z(Cu)=°"°(/(du)) for any ueR
where 6=(g,,...,£)E R=R,® --@®R,
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with | g=1 if &;#identity,

g=(— D4V if a;=identity.

Proof. We prove the above lemma only when R;(i=l,...,r) are
separable extension fields of k. (For the general proof, see Springer-
Steinberg (loc, cit.).) ny; is a principal ideal and m; is generated by
an element n; such that

am=m, if a;#identity,

¢ig,=—m; if &=identity. (c.f. Lemma 2.9.)

Since R; is a separable and commutative algebra, we can show that
there exists a unique subalgebra E; of R; such that E;~R; Then ¢E,
=E; by the uniqucness of E,. (c.f. A. Malcev [3] and E. J. Taft
[8].) Any element ae R can be written uniquely as a=ag+a,m;+a,n?
+odagmfict with ag, ay,...,a4-,€E. We put Zfa)=Trg,ay-,.
Then /; is a k-valued linear function on R; which satisfies the required
condition in case R=R,. Define the k-valued linear function / on R
as follows.

/:R=R,®®R, — k
(Cpaeees ) — .‘;l/,-(ci).
Then / satisfies the required condition.

1.5. Let V be a vector space over k and xe GL(V). m(X) is the
minimal polynomial of x. We assume m*(X)=m(X). The notation and
the assumptions are as in 1.4. V is an R-module by the mapping (X
—x). We assume the assumption of Lemma 1.3, therefore there exists
a k-valued linear function /# on R with those properties listed in Lem-
ma 1.3. Hereafter we fix this function /. We have the following
three lemmas (c.f. Springer-Steinberg [7], p. 254).

Lemma 14. (1) Let f be a (not necessarily non-degenerate)
g-Hermitian form on V over k such that xe U(V, f). Then there exists
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a unique do-Hermitian form F(f) on V over R with respect to « such
that

flau, vy=/(aF(f)(u, v)) for any u,veV and aeR.

(2) f is non-degenerate if and only if F(f) satisfies the following
condition.

(¥) For any u#0eV, there exists veV such that F(f){(u, v)50.

Lemma 1.5. Let f,,f, be e¢-Hermitian forms on V over k such
that xe UV, f)(i=1,2). And let F(f)(i=1,2) be the uniquely de-
termined o6-Hermitian forms on V over R by Lemma 1.4. Then the
following are equivalent.

(M (Vo [ )=V, ). x).

(2) (V, F(f))=(V, F(f;)) (as o-Hermitian modules over R).

Lemma 1.6. Let (V, F) be any S-Hermitian module over R with
respect to o. Since R is a k-algebra, V is a vector space over k.
If we define g: VxV—-k by g(u, v)=/(F(u, v)), we get an gHermitian
space (V, g) over k with respect to a and xeU(V, g) where x is the
image of X in R=k[X]/m(X).

Definition 1.7. Under the notation of Lemma 1.6, we put
2((V, F))=(V, g).

1.6. The problem in determining the conjugacy classes in
uw, ).

Let (V,f) be a non-degenerate e¢-Hermitian space over k with
respect to 0. We assume o#identity or chark#2.

Theorem 1.8. Let C be a conjugacy class in GL(V). Fix any
element xeC. m(X) is the minimal polynomial of x. Then V is a
module over R=k[X]/m(X) by the mapping (X—x).

() If CnUWV, g)#8 for some non-degenerate e-Hermitian form
g on V over k with respect to o, then m*(X)=m(X).
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Conversely we assume m*(X)=m(X). Let o be an involution of
R such that *X=X"1, a|,=0. Write R=R,®--®R,, where R;(i=1,...,
r) are a-indecomposable subalgebras of R (i.e. R; are not direct sums
of a-stable subalgebras). The radical of R; is generated by an ele-
ment m;. d; is the positive integer such that nfi=0 and ndi——%0.
And put V,=R,V. Then the following are equivalent.

() CnUWV,g)=¢6 for some non-degenerate g-Hermitian form g
on V over k with respect to o.

(2) For 1<i<r, R-module V; has the following form.

Vi=Vio®@ @V, 4, with
(i) Vi; is a free module over Rin{i=' R, (j=0,....d;—1).

(i) If o=identity and R;=k[X]/(X+ 1), then the rank of
V.j as a module over Ri/mn{i"iR; must be an even number if
(—l)d"_”fz:—l
(IT) Assume C satisfies the above equivalent conditions. Put

0=(g, .., &)ER where
g=(—14"1eR;, if a=identity and R;=k[X]/(X+1)4,

g=1€R; otherwise.

Let {(V, Fpliel} be the set of the representatives of the equivalence
classes of the gd-Hermitian forms on V over R satisfying the condition
(%) in Lemma 1.6.

Then
the conjugacy classes iel
in U(V, f) which UV, F)
are contained in C AV, F)=(V, f)

where / is a k-valued linear function satisfying the conditions listed

in Lemma 1.3.

Proof. (1) By Lemma 1.4, 1.5 and 1.6, we see that (1) is equivalent
to the following condition.
(3) Therc exists an gd-Hermitian form F on V over R with respect
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to o which satisfies the condition (*) in Lemma 1.4,

The equivalence of (2) and (3) comes from Lemma 2.7 and corol-
lary 2.12 in §2.

(II) is an easy result of Lemma 1.4, 1.5 and 1.6.

The above theorem shows that the problem to determine the
conjugacy classes in U(V, f) consists of the following problems.

(a) The equivalence problem of the Hermitian forms on V over
R with respect to o satisfying the condition (*) in Lemma 1.6.

(b) Let F be an ed-Hermitian form on V over R with respect to
a. Determine the isomorphism class of /Z((V, F)) from the isomor-
phism class of (V, F).

Remark 1.9. If o=identity and ¢=—1, then (V,f) is a symplectic
space. The non-degenerate symplectic spaces having the same dimension
are all isomorphic. So the problem (b) is trivial in this case. Thus
in considering the problem (b), we may assume ¢=1.

§2. Hermitian forms over local rings

Here we study the Hermitian modules of some type over the
commutative rings which are the direct sums of complete local rings
whose maximal ideals are principal. But first we consider the Her-

mitian spaces over more general rings.

2.1. The trace condition (G. E. Wall [9], p.17). Let R be a not
necessarily commutative ring with | and R its (Jacobson) radical.
We assume that the NR-topology of R is Hausdorff and is complete.
(R-topology of R is the topology which is obtained when we take
{Rmm=0, 1,...} as a basis of neighbourhoods of 0eR. HR-topology is
HausdorffesN\R"={0}) Let « be an involution of R (i.e. a is an anti-

automorphism and «?=id.).

Definition 2.1. (c.f. G. E. Wall [9], p. 17.) We say the pair (R,
o) satisfies the trace condition if the following is valid.

(Tr) For any positive integer m, if there exists xeR™ such that
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ex=nx (4==+1), then x=y+n*y for some yeR".

Remark 2.2. If 2 is an invertible element in R, R satisfies the
trace condition. And there are some cases when R satisfies the trace
condition even if 2 is not an invertible element in R (cf. [9], p. 18).

Let R* denote the set of all invertible element in R. Define (R*)*
={xe R*|*x=x} and (R*)"={xeR*|*x=—x}. Put R=R/R, and de-
fine R*, (R¥)*, (R*)~ similarly. Denote ¢: R—»R the canonical mapping.
Then we have the following lemma due to G. E. Wall.

Lemma 2.3. (Approximation Theorem. [9], p.18.) Assume R
satisfies the trace condition, then

(1) The canonical mappings (R*)*—(R*)* and (R*)"—=(R*)~ are
both surjective.

(2) For any x, ye(R¥)* (resp. (R¥)7), if there exists aeR*
such that ap(x)*a=@(y), then there exists ae R* such that ax*a=y.

2.2. Non-degenerate Hermitian spaces. Let A be a commutative
ring with 1 and wm its (Jacobson) radical. Let a be an involution of
A. We assume that the m-topology of A is Hausdorff and is com-
plete. Remark that this condition is satisfied if 4 is a complete local
ring. Now let (M, F) be any non-degenerate e-Hermitian space of rank
n over A(e=+1). If we put M=M/mM, M is a module over A
=A/m. And F induces canonically the e¢-Hermitian form F on M
with respect to the involution of A induced by a.

Lemma 2.4. Define an involution * of a matrix algebra M(n, A)
as following:

For C=(c;)e M(n, A), let C*=(c;;). Then (M(n, A), *) satisfies
the trace condition if and only if (A, &) satisfies the trace condition.

Proof. It is an easy matter to show the lemma if we notice that
the radical of M(n, A) is M(n, m) and that (M(n, m)y*=M(n, ms) for
any positive integer s.
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Combining Lemma 2.3 and Lemma 2.4 we get the following Propo-
sition.

Proposition 2.5. Assume that A satisfies the trace condition.
Then

(1) Any non-degenerate e-Hermitian space over A is induced by
some non-degenerate e-Hermitian space over A.

(2) Let (M, F) and (M’', F') be non-degenerate e-Hermitian spaces
over A. Then (M, F) and (M', F') are isomorphic if and only if
(M, F) and (M', F’) are isomorphic.

2.3. The Hermitian module which satisfies the condition (*).
(See below.) Let A be a direct sum of (commutative) complete local
rings whose maximal ideals are principal and a be any involution of A.

The following lemma is obvious.

Lemma 2.6. If A is o-indecomposable (i.e. A is not a direct
sum of non-trivial a-stable subrings), then (A, a) is one of the follow-
ing two types.

(1) A is a complete local ring whose maximal ideal is principal
and o is any involution.

(ITy A=B®B where B is a complete local ring whose maximal

is principal. And o is given by
a: B®B — B®B ((x, y)I— (¥, X)).

Let A= é A; where A; (i=1,...,r) are a-indecomposable. Then «
induces the i‘;\:olution o; on each A, Now, let d=(¢g,...,5)€A be
given, where g=1 or —1e4d; for i=I,..,r. We study here the J-
Hermitian module (N, G) which satisfies the following condition.

(*) For any u#0eN, there exists veN such that G(u, v)#0.
Obviously we have the following lemma, and thus we may assume A
is a-indecomposable.

Lemma 2.7. Let (M, F) be any 8-Hermitian module over A with
respect to o. If we put M,=AM, then the o-Hermitian form F
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induces e-Hermitian form F; on each M; over A; (with respect to o).

Conversely, let (M, F;) be any e-Hermitian module over A;
(i=1,...,r). Then we obtain a &-Hermitian module (M, F) over A.
Moreover (M, F) satisfies the condition (¥) if and only if each

(M;, F,) satisfies the condition (*).

2.4. The trace condition (continued). Hereafter in this §, we
assume that (A4, @) is one of the two types listed in Lemma 2.6. Let
m be the radical of A. When A4 is of type I (in Lemma 2.6), m
is the maximal ideal. When A is of type Il (in Lemma 2.6), m=
m’@m’ where m’ is the maximal ideal of B. We put A=A/m. « induces
the involution & of A, since a stabilizes m. Any gHermitian module
(M, F) over A induces an e-Hermitian (M, F) over A.

Lemma 2.9. Assume (A, a) satisfies the trace condition, then
there exists a generator m of m such that *n=nmn,
where ( n=—1 if & is identity and o is not identity,

n=1 otherwise

Proof. We may assume m#{0}. Let m be any generator of .
Then *m=un for some ue A*. Since a?=id., u*u=1 (modm). There-
fore if & is not identity, there exists an element ve 4% such that u
=v(*v)~! (mod m) by Hilbert’'s Theorem 90. Thus *(vr)=(vr) (mod r?).
If @ is identity, u=+1 (mod=n?). So, in any case we may assume °x
=nn (modn?). Then “*nr—nprem?. Since *(*n—nn)=(—n)(*n—nn),
there exists an element bewm? such that *r—nprn=>b+(—n)*b. Then we
have *(m+nb)=n(n+nb). Moreover n+nb is a generator of m, so we
may assume *m=nn (4=+1). But if & is identity and *m=n, then «
is identity. This completes the proof.

Proposition 2.10. (1) If & is not identity, (A, o) satisfies the trace
condition.

(2) Assume that & is identity and m#{0}. Then (A, o) satisfies
the trace condition if and only if 2 is an invertible element in A.
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Proof. (1) Assume there exists an element xem® such that *x
=nx (h=+1). Since a#id., there exists ae A* such that a+%a=5b
€ A*. Then x=b"'bx=b""(a+2a)x=b"ax+n*(b~'ax). Thus the trace
condition is satisfied.

(2) Assume A satisfies the trace condition. Since & is identity, A4
is of type I (in Lemma 2.6.) Let m be a generator of m such that
*r=—n (c.f. Lemma 2.6). n#0, since m##{0}. There exists an ele-
ment unem=nA such that n=(un)—%(un) by the trace condition.
Therefore n=2un (modn?). Thus 2 is an invertible element in A.

2.5. Jordan splittings. (See O. T. O’'Meara [6], p.243 and
Springer-Steinberg [7], p.256.) A is a commutative ring and o is
its involution. We assume that (A4, «) is one of the two types listed
in Lemma 2.6, and that (A, x) satisfies the trace condition. Let =
be a generator of the radical m such that *m=nyn (n=+1). (See Lem-
ma 2.9.) Let (M, F) be an &-Hermitian module over A4 (with respect
to a) which satisfies the condition (x) in 2.3. We now give the decom-
position of (M, F) which we call the Jordan splitting of (M, F).

Theorem 2.11. (Jordan splittings and their uniqueness.)
Case |. When n"#0 for any positive integer n, M is an A-free
module and (M, F) has the following decomposition.

M=M,®---®M,, (as A-modules) with

(a) i#j=FM; M;={0}.
(b) FM, M)<r' A for any i and if we put

Fyx, y)=n"F(x, y)€ A for x, yeM; then (M, F)) is a non-degenerate
n'e-Hermitian space over A.

The sequence of the isomorphism classes of the Hermitian spaces
{(M;, F)|i=0,1,..., m} are uniquely determined. Conversely the se-
quence of the isomorphism classes of the Hermitian spaces {(M,, F)li
=0, 1,..., m} determines the isomorphism class of (M, F).

Case 2. When n4=0 and n?"'#0 for some positive integer d,
(M, F) has the following decomposition.
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M=M,®--®M,., (as A-modules) with

(a) i#j==F(M; M)={0},

(b) w4 iM;=0 and M, is a free module over Aln*"'A.

And for any x,yeM, n*"iF(x, y)=0, therefore we can write F(x, y)
=ntF(x, y) with F(x, y)e Aln""'A. Then (M,, F)) is a non-degenerate
nie-Hermitian space over A[n*"'A with respect to the involution in-
duced by o.

The sequence of the isomorphism classes of the Hermitian spaces
{(M;, F)|i=0, 1,...,d—1} are uniquely determined. Conversely the
sequence of the isomorphism classes of the Hermitian spaces {(M,,
F)li=0, 1,..., m} determines the isomorphism class of (M, F).

In any case, the sequence of the isomorphism classes of {(M,,
F)li=0,1,...} or {(M;, F)|i=0,1,...} is a complete invariant for the
isomorphism class of (M, F).

Proof. (M, F) is an e-Hermitian module over A with respect to 4.
Put N={xeM|F(x, M)=0}. Then there exists a subspace M, of M
such that M=M,®N as A-modules. Then (M,, Flg,) is a non-
degenerate Hermitian space. Let {é,,...,é,} be a basis of M, over A.
Choose a representative element ¢; in M which is mapped onto ¢é,e M,
(i=1,....r). If we put My=Ae, +---+ Ae,, then M, is an A-free module
and (M,, Flg,) is a non-degenerate Hermitian space over A. So we
can decompose M into M=M,®M’ where M’'={xe M|F(M,, x)=0}.
Then F(M’', M')cnA. Thus we may assume F(M, M)cnA from the
beginning.

Assume that n"#0 for any positive integer n (Case 1). Then A4
is a domain if A4 is of type I (in Lemma 2.6), and if 4 is of type Il
in Lemma 2.6, B is a domain. So in any case, (u, v)H%F(u, v) defines
an gn-Hermitian form on M.,

Assume that n¢=0 and 7 '#0 for some positive integer d (Case
2). In this case F(M, M)c<nA implies that n¢~'M =0 by the condition
(*). So M is a module over A/n%"'A. Moreover if we put F(u, v)
=7nG(u, v) for any u, ve M, then G(u, v) is determined as an element in
Aln*"1A. And (u, v)»G(u, v) is an en-Hermitian form over A/mé~'A.
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If we repeat the above process, we get the required decomposition.

Give such a decomposition M=M,®M,®---®M,. Let M(i)
={xeM|F(x, M)cn‘A}. Then M()=r'M ®n""'M,® --OM,®M,, ,®
- @®M,.

Assume that n"#0 for any positive integer n (Case 1). Then
(u, v)n—»%F(u, v) defines an en’-Hermitian form on M(i). This induces an
en‘-Hermitian form G; on the A-module N;=M(i)/{M(i+1)+aM(i—1)}.
(We put M(—1)=0.) Then we can easily show that

(N;, G)~(M;, F}) as Hermitian modules (i=0, 1, 2,...). Thus the
isomorphism classes of {(M;, F))|i=0, 1,...,r} do not depend on the
particular decomposition. (See Proposition 2.5.)

Similarly we can show the uniqueness of the Jordan splittings,
when n¢=0 and 7¢~'#0 for some d (Case 2). (See Springer-Steinberg
[7]. p. 256.)

Corollary 2.12, We assume n?=0 and n4~'$#0 for some positive
integer d. Let N be any A-module. Then the following are equiva-
lent.

(1) There exists an ¢-Hermitian form F on N which satisfies the
condition (x).

(2) N=N¢®:--®N,_., (as A-modules) with

(i) N; is a free module over A[n~JA.
(iiy When da=identity, the rank of N; as a module over

Aln?=iA must be an even number if &(—1)i=—1.

Proof. This comes from the above theorem and the following fact.
“Let ¢=1 or —1. Then there exists an ¢-Hermitian space of any rank
over A with respect & except when &=identity and ¢'=—1. When &
=identity and ¢ = —1, the rank must be even.”

Definition 2.13. Under the notation of Theorem 2.11, we write
(M, F)= @ (M, ©F).
i=1

This is called the Jordan splitting of (M, F).
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§3. To determine the isomorphism class of / ((V, F')) from the
isomorphism class of (V, F)

3.1. We keep the notation and assumption of §1. In this 8§,
we assume k is perfect. And when o=id., we assume chark#2 in
addition. The k-valued linear function / on R is the one constructed
in the proof of Lemma 1.3. / depends on the choice of =; (i=1, ..,
r). (See the proof of Lemma [.3.) (V, F) is an ed-Hermitian module
over R with respect to a. So (V, F) is a direct sum of eg-Hermitian
modules (V;, F) over R; with respect o;, where V,=R,;V and «;=ofg,
(i=1,...,7r). Let (V, F,-)=d‘_(-_%l (V;;» miF;;) be the Jordan splitting of
(Vi F). ’

Put ni= ([ —1 if o=identity and R;=k[X]/(X+1)%,
I otherwise
Then we easily have the following lemma whose proof is omitted.

Lemma 3.1. (1) /(V, F)) = ® /{(V,, F)), where /,, ../, are as
i=1
in the proof of Lemma 1.5.

@) 4V F) =8, (Vi nlF).

(3) When d,—j is an even integer, then

AV miF))= [0 l)@m@‘o 1.
(1 0 (1 0)

(4) When d,—j is an odd integer 2s+1, then

/i((Vi,ja n{F.‘))=<0 1>@"'@'0 l)@']?TrR,/k((Vi,j, Fi,j)),
1 0 (1 0

where niTrg,,(V;;, Fi;)) is V.; considered as a vector space over k
with the Hermitian form (u, v)—niTrg,,F; (u, v) with respect to .
(See Definition 1.7)

(4) When R; is a direct sum of two fields, then
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niTre (Vi g Fi )= <0 I >®"'@ 0 1 )
10 (1 0

By Theorem 1.8, Theorem 2.11 and Lemma 3.1, we have

Theorem 3.2. We use the notation of Theorem 1.8. Let C be
a conjugacy class in GL(V) which satisfies the equivalent conditions
in Theorem 1.8, (I). Assume R; is a finite extension field of k for
1<i<s and R; is a direct sum of two copies of finite extension field
of k for s+1<i<r.

Put n; ;=dimg, V,; and

0= [ —1 if o=identity and R,=k[X]/(X+1)4,

1 otherwise.
Then there is a following 1—1 correspondence.
[ The conjugacy classes in U(V, f)]

which is contained in C.
(@) H,;(1<i<s, 0<j<d;—1) runs the]
=L (. Hyjld) equivalence classes of n; ;j-dimensional

endi—i='-Hermitian spaces over R; with
respect to o,

(b) 6‘) [ TrR"/kHi’j

]<i<s, O<j<d,—|,]

d;—j is odd.

@(0 1)@ ............ @(0 1):([/,]')
10 1 0

For the definition of Trg,,H;; see Lemma 3.1, (4). When o=identity
and e=—1, the condition (b) in the right side of the above correspond-

ence is unnecessary.
We must solve the following problem.

Problem 3.3. Let k be a field and E a finite extension field of
k. Let « be an involution (sidentity) of E such that *k=k. Put
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o=a|,. Given any non-degenerate s-simensional Hermitian space (W, F)
over E with respect to «. Determine the isomorphism class of the
Hermitian space Trg,(W, F) over k with respect to ¢ from the isomor-
phism class of (W, F), where Trg,(W, F) is W considered as a vector
space over k with the Hermitian form (u, v)—Trg,F(u, v) with respect
to o.

J. Milnor [4] gave an answer to the above problem when k is
a local field and o=identity. (See Lemma 3.5.) In the following,
utilizing his results we give a similar answer when k is an algebraic
number field.

3.2. We introduce some notation and conventions. Let k be a
field and R a.finite (commutative) k-algebra. Trg, (resp. Ng,) denote
the trace (resp. the norm) of the regular representation. If k is an al-
gebraic number field and v is a prime spot on k, and if W is a o-
Hermitian module over R (with respect to some involution a of R),
then W induces the J-Hermitian module W, over R,=R®.k, with
respect to the involution of R, induced by «. ,

If V is a symmetric bilinear space over a local field, S(V) means
the Hasse symbol of V. If V is a symmetric bilinear space over an
algebraic number field F and if v is any prime spot on F, then S (V)
=S(V,).

Now we consider the problem 3.3. We use the notation of Prob-
lem 3.3. We write W instead of (W, F). Let W, be the Hermitian
space of the same rank s as W over E with respect to a such that

Wo?<l 0).
0l
Put K={xeE|’x=x} and ko={xe€k|°x=x}.
Lemma 3.4. (1) When ag=identity,
det (Try W) =det(Try, Wo) mod (k*)2.

(2) When o#identity,
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det(Trg, W)= Ngy (det W)det (Trg, W) mod Ny, (k*).

Proof. (1) See J. Milnor [4], Lemma 2.2 and Theorem 2.7. (2)
is similar to (1).

Lemma 3.5. (See J. Milnor [4], §2.) Assume k is a local field
and o=id..

(1) The Hasse symbol S(Trg, W) of the symmetric bilinear space
Tregp W is given by S(Trg, W)=S(Trg, Wo)dW, where dW is the Her-
mitian invariant of W, i.e. dW=1 or —1 according as det We Ny, (E)
or not.

(2) When k is the field of real numbers and E is the field of
complex numbers, the index I(Trg, W) of Trp, W (i.e. the number of
negative entries when we put Trp, W into a diagonal symmetric
mairix) is given by I(Trg, W)=2I(W), where I(W) is the index of W
(i.e. the number of negative entries when we put W into a diagonal
Hermitian matrix).

Lemma 3.6. Assume k is a local field and o=identity. The
Hermitian invariant of the Hermitian space Trg, W over k with respect
to o is given by d(Trgy W)=dWd(Trg, W,), where dW is the Hermitian
invariant of W.

Proof. By the local class field theory,
(x, E/K)=(N ko), klko) for any xeK*.

Thus det We Ngx(E*) if and only if Ny, (detW)eN,, (k*). There-
fore we have the lemma from Lemma 3.4, (2)

Theorem 3.7. Assume k is an algebraic number field and o=
identity. Let v be any prime spot on k and {w,,..,w,} be the set of

all prime spots on K which divide v. Then

g
SU( T"E/I‘ ”,) = S'( TI'E/,‘. 'VO) { ]—l; dWwi} N
i=
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where dW,, =1 or —1 according as detW,, e N i (E) or not.
When v is a real spot, we may assume {w,..., w,} ={w;|E®@gK,, >~
the field of complex numbers}. Then

I(Triu W) =2 3 L(W)+s(K: kK1=1).

where I(Trp, W) (resp. I,(W)) is the index of (Trgu W), (resp. W,).

Proof. (Tregp W)y=Trg W,

g g
=Tre,m,( ,G_BI W,) . E,=E®k,~ @1 E,)

g g
= G-)] (T"E\‘v;/k-' w,) . Trep,= @1 T"Ewi/k,,)
i= i=

g
Thus S(TrguW)=S((TrgW),) =S @1( T"Ewi/kv W)

g
={ .I;I‘(det(TrEwi/kv"Vw,)» det(T”ij/k,, Ww,))} { l—[l S(T"Ewi/k,,wwi)},
i<j i=

where ( , ) denotes the Hilbert’s symbol.
Similarly

S(Trgp Wo)

= (LTt (T, Wodu. det (Tr (Wl D} { 1T S(Tr i (Wobu)

i<j

g A g
Thus  S(Trg W)sv(T"E/k Wo)={ ;=n| S(TrEwi/k., W, l;]l S(TrEwi/ku( Wo)w,} .
So we get the first assertion of the theorem if we prove

S(Tre,, e, W) =S( Tre, i (Wolw) dw,, for any .

But this is Lemma 3.6, if E,, is a field. And if E,, is a direct sum of
two copies of K, we clearly have W, ,~(W,),, and dW, =1, therefore
the above equation is trivially valid.

The second equation of the theorem is easy and we omit the proof.

Similarly we can prove
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Theorem 3.8. Assume k is an algebraic number field and o#
identity. Let v be any prime spot on ko={xekl|°x=x} and {w,,..., w,}
be the set all prime spots on K which divides v. Then

d((Trep W))=d((Tre Wo)) {1 dWo}

Remark 3.9. (1) Under the notation of Theorem 3.6, S,(Trg, Wy)
=1 if v is non-dyadic and any prime spot on E which divides v is
unramified over v.

(2) Under the notation of Theorem 3.7, d((Try, Wy)=1 if v is
non-dyadic and any prime spot on E which divides v is unramified
over v.

§4. Hasse principle for the conjugacy classes

4.1. Hasse principle for the Hermitian forms over a k-algebra.
Let k be an algebraic number field. Let R be a finite k-algebra gener-
ated by one element (i.e. R=k[X]/m(X) with m(X)#constant). Let
o be an involution of R such that 2k=k. Put o=af, and k=
{x ek|*x=x}. Write R= é—) R;, where R; (i=1,..., r) are a-indecomposable
subalgebras. Let ny; be ltl_léz radical of R;(i=1,...,r). d; is the positive
integer such that mfi={0}, m#~'#{0}. o« induces the involution q;
on each R; and thus induces the involution & on each R;=R;m,.
m; is generated by an element =m; such that *im,=nn, where n,=—1
or | according as & =identity or not. (See Lemma 2.9.) We assume
R; is a finite extension field of k for 1<i<s and R; is a direct sum of
two copies of a finite extension field of k for s+1<i<r. Let §
=(&4,..,&)ER with g=1 or —1€eR;(i=l,..,r). Let (M,F) be a
J0-Hermitian module over R with respect to a satisfying the condition
(*¥). (See 2.3.) Then (M, F) induces canonically a J-Hermitian module
over R,=R®,,(ko), for any prime spot v on k,. We indicate this
Hermitian module by (M,, F,) or (M, F),.

Proposition 4.1. Let (M, F) and (N, G) be 6-Hermitian modules.
Then the following are equivalent.
() (M, F)=~(N, G).
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(2) (M, F),~(N, G), for any prime spot v on k.

Proof. (1)=(2) is trivial.
(2):(1). Put Mi=R;M and Fi=F|M." Thel‘l (M, F)= .@1 (M", Fi)'

Similarly we write (N, G)= é (N;, G)). Then (M, F),~(N, G), implies
i=1
di—1 .
(Mi’ Fi)v'z (Niv Gi)v (l = ]s'“ ) l'). Let (Mb Fl) = .@)0 (Mi,js nht!Fi,j) (l'eSp.
j=

(N G)="® (N, 1G, ) be the Jordan splitting of (M F) (resp.
(N;, G)). J(=Ig,-),, is not a-indecomposable in general. But if we apply
the uniqueness of the Jordan splittings very carefully, we see that
(M, F}),~(N;, G)), implies (M, F;;),~(N;; G;;), for 0<j<d;—1.
Thus (M, ;, F;),~(N;;, G;j), for any i j and v. On the other
hand (M, F)~(N, G)<(M, ;, F,)~(N,;, G;;) for any i, j. Therefore it
suffices to prove that (M, ;, F; )~(N;;, G;;) if and only if (M} F,)),
~(N;;, G;;), for any v. But this is trivial when R; is a direct sum
of two copies of some algebraic extension field of k. Thus our asser-
tion comes from the following lemma.

Lemma 4.2, Let E be a finite extension field of k and a be
an involution (maybe identity) of E such that *k=k. Put o=aof,
K={xeE|*x=x} and ky={xek|"x=x}.

(1) Let v be any prime spot on ko and {w,,...,w,} be the set of
prime spots on K which divide v. Then any Hermitian space over
E,=E®,k, with respect to a is a direct sum of Hermitian spaces
over E,=E®xK,, (i=1,..., g). ,

(2) Let V and W be non-degenerate Hermitian spaces over E
with respect to a. Then V=W if and only if V,~W, for any prime
spot v on k.

Proof. Since E,,='C;|j-) E,.., (1) is trivial. (1) implies that if V,~W,
for any prime spot v 6;111"0, then V,~W,, for any prime spot w on K,
therefore V~W by the usual Hasse principal for the Hermitian or
quadratic spaces. (See W. Landherr [2] and O. T. O’'Meara [6].)

Now we ask the following question.
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Problem 4.3. For any prime spot v on k, there corresponds a
J-Hermitian module (M, F),, over R, with respect to «. When does
there exist a J-Hermitian module (M, F) over R such that (M, F),
~(M, F), for any prime spot v on k,?

To answer the above problem we give a preparatory lemma with-
out proof, which is easily derived from Theorem 2.11. (See also the
proof of Proposition 4.1.)

Lemma 4.4. Let M; be an Ri-module. Let G be any g-Hermitian
Sform on (M),=M;®,k, over (R)),=R;®;k. with respect to o; which
satisfies the condition (%) in 2.3. Then (M), G) has the following
decomposition.

(M),=(MD)yo® - ®M)),4,-1 (as Rr-modules) with

(@) Jj#j'=G(M),; (M),,;)={0},

(b) m¢imi(M,), ;=0 and (M)),; is a free module over (R;/n{i~iR)),.
And for any x,ye(M,),;, ntiiG(x, y)=0, therefore we can write
G(x, y)=miG{x, y) with G{x, y)e(R/ndi"IR),. Then ((M)),;, G)) s
a non-degenerate nic-Hermitian space over (R;/n#i7iR}), with respect
to the involution induced by a;.

The sequence of the isomorphism classes of the Hermitian spaces
{(M)),.;» G))} is uniquely determined. ((M),;, G;) induces canonically
the nie-Hermitian space (M), ;, G,) over (R),=(Ry/mR)), And the
sequence of the isomorphism classes of the Hermitian spaces
{GM—i)v’j, —G—j)|j=0....,d,~—l} is a complete invariant for the isomor-
phism class of (M;),, G). We write (M)),, G)=t(-=|—9; (M, TG)).

We easily have the following two propositions. Combining them
we see that Problem 4.3 is solved completely by the usual Hasse princi-
ple for the Hermitian spaces or symmetric bilinear spaces. (See W.
Landherr [2] and O. T. O'Meara [6].)

Proposition 4.5. Let M be any R-module. Put M;=RM (i
=1,...,7). Then M=M,®@---®M,. Assume for any prime spot v on
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ko there corresponds a d-Hermitian form F, on M, over R,=R®k,
(with respect to «). F, induces e-Hermitian form (F)., on
eaCh (Mi)w and (Mv’ F(v))= '@l ((Mi)v’ (Fi)(v))' Let ((Mi)v’ (Fl')(u)) =

dél((M,-),,'j, mi(F))w,) be the decomposition as in Lemma 4.3. Then
j=0

the following are equivalent.

(1) There exists a 6-Hermitian form F on M over R such that
M,, F,)~(M,, F,) for any prime spot v on k.

(2) For i=1,...,s and j=0,...,d;— 1, there exists an nie-Hermitian

space W,

. over R; such that

(W )o=((M) ;s (F)),;) for any prime spot v on k.

Proposition 4.6. We use the notation and assumption of Lemma
4.2. Assume that for any prime spot v on k, there corresponds a
Hermitian space V,,, over E, with respect to a. Let {w,,..,w,} be
the set of prime spots on K which divide v. Since V, is a direct
sum of Hermitian spaces V,, over E =E®¢K,, (i=1,...,g), so for
any prime spot w on K there corresponds a unique Hermitian space
Viwy over E,. Then the following are equivalent.

(1) There exists a Hermitian space W over E such that V,~W,
for any prime spot v on k.

(2) There exists a Hermitian space W over E such that Vi,~W,
for any prime spot w on K.

4.2, Hasse principle for the conjugacy classes. Let (V,f) be a
non-degenerate e-Hermitian space over k. Put G=U(V,f) and GL
=GL(V). We consider G and GL as algebraic groups defined over kg,
where ko={xek|°x=x}. For example, G(k,) is the k,-rational points
of G. Then Proposition 4.1 and Theorem 1.8 shows

Theorem 4.7. (H. Hijikata [1]) For x,, x,€ G(ky), x, and x, are
conjugate in G(ko) if and only if x, and x, are conjugate in G((ky),)

for any prime spot v on k.

By Theorem 1.8 and Proposition 4.5, we have
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Theorem 4.8. We use the notation of Theorem 1.8 and Theorem
3.2. Let C be a conjugacy class of GL(ky) which satisfies the equiva-
lent conditions in Theorem 1.8, (I). For any prime spot v on kg,
C determines the conjugacy class C, of GL((ky),) and each conjugacy
class D of G(k) determines the conjugacy class D, of G((kg),).

(I) There is a following 1—1 correspondence.

The conjugacy classes in G((kg),)
1—1

which is contained in C,.

(@) (H;j), (1<i<s, 0<j<d;—1) runs the
(ooos (Hy j)oys-+-) isomorphism classes of n; ;-dimensional
néi—i-'-Hermitian spaces over (R)),
with respect to &,

(b) @{Trgu(H; )l <i<s, 0<j<d;—1}
@(0 1)@"'@(0 |>1’(Kf)u
1 0O 1 0

When e=—1 and o=identity, the condition (b) in the right side of

the above correspondence is unnecessary.

(I1) Assume for any prime spot v on ky there corresponds a
conjugacy class D, of G((ko),) which is contained in C,. And we
assume

Dyyy—s (ooes (Hi o)

by the above correspondence. Then the following are equivalent.

(1) There exists a conjugacy class D of G, such that D,=D,
for any prime spot v on k. ,

(2) For 1<i<s,0<j<d;—1, there exists nl~Ji~'-Hermitian form
W.

.j over R, with respect to & such that (W, ;),~(H, ;) for any prime

spot v on k.

For semisimple elements in the orthogonal group, the existence
theorem of prescribed local behaviour (the second part of the above
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theorem) has another form. The minimal polynomial of the semisimple
element has the following form.

m(X)= [T m(X) where
i=1

(i) For 1<i<s, m(X) is a monic irreducible polynomial and
m{(X)=m¥(X).

(ii) For s+1<i<r, m(X)=p(X)p¥(X) with p(X) is a monic ir-
reducible polynomial and p¥(X)# p(X).

(iii) i#j=2m(X)#m(X).

Theorem 4.9. Let G be an orthogonal group and m(X) be the
polynomial as above. Assume that for any prime spot v on k there
corresponds x,€ G(k,) whose minimal polynomial is m(X). Put (V,)px.)
={ueV,m(x)u=0}. Assume dimy (V,).x, (i=1,...,r) are independent
of v, i.e. the elementary divisors of x, are independent of v. Then
there exists xe G(k) such that x and x, are conjugate in G(k,) if
and only if the following conditions are satisfied.

(1) S(V)myxy)=1 for almost all v (i=1,...,s).

(i) TIS((Vomxy) =1 (i=1,...,; s=1).

(iii) l}’ (X=1D(X+1) divides m(X), then there exists dek* such
that det(V,),-1,=d mod (k).

Proof. This comes from the following lemma whose proof is
omitted. (c.f. the proof of Theorem 3.6.)

Lemma 4.10. Let E be a finite extension field of k and «a an
involution of E such that ao|,=identity. Assume that for any prime
spot v on k there corresponds a Hermitian space W, of rank s over
E, with respect to o. Then the following are equivalent.

(i) There exists a Hermitian space W of rank s over E such
that W,~W,,, for any prime spot v on k.

(i) W, =~ (I 0>for almost all v, and [1S(Trg,,, W,y =1.

. v

0 1
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There is an analogue of Theorem 4.9 for semisimple element in
the unitary group.
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