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Introduction. Let f:X-—>S be a smooth, projective, geometrically inte-
gral morphism of locally noetherian schemes with an f-very ample invertible
sheaf #3(1). In this situation

Definition ([3] and [8]). A coherent module F of rank # on the fibre
over a geometric point S of S is said to be stable (or, semistable) (with respect
to #,(1)) if and only if it is torsion free and for all proper coherent subsheaves
E of rank {(1=<{=7), the inequalities

Py(m)=y(E(m))/[t<Ps(m)=3(F(m))/r (or, =, resp.)

hold for all large integers 2, where for a coherent moule H on X,, H(m)=H
RoOx(m) and x(H(m))=3,(—1) dim H(X,, H(m)).

For a numerical polynomial H and for a scheme T locally of finite type
over S, set Z(T)={F|F is a coherent Ox,-module with the following
property (%)} /~, where Fy~F; if and only if F,Q®¢,L=F; with some
invertible sheaf L on T3

(%) F is Tflat and for all geometric points ¢ of T, FQgk(t) is stable with
respect to O4(1)R o0 and y(FRok(t)(m))=H (m).

Then an S-morphism g:7’— T defines a natural map g*: 3%,(T)—>2%«(T").
Clearly 3% is a contravariant functor of the category (Sch/S) of schemes lo-
cally of finite type over S to (Sets). This functor is not necessarily a sheaf for
the étale topology in (Sch/S) even if f has a section. Hence 3% is, in general,
not representable. Neverthless 3%, may have a coarse moduli scheme (see
[10]). In fact, we know that if S=Spec(k) with an algebraically closed
field £ and if dim X <2, then our functor has a coarse moduli scheme ([12],
[13], [7] and [3]) and moreover our main theorem (Theorem 5. 6) says that
if S is an algebraic scheme over a field, then there exists a coarse moduli
scheme M y,s(H) of 2%,s which is locally of finite type over S.

As is stated in [7], to construct a coarse moduli scheme of I% by using
“invariant theory”, the problem is devided into three parts, that is, (1) bound-
edness, (2) openness and (3) existence of a geometric quotient of a scheme by
an affine algebraic group. Though (2) is proved in [8], (1) is still an open
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problem except for some special cases; (a) the relative dimension of X over
S=<2 (see [7] or [3]) or (b) the rank of members of Z¥(7T) is 2 ([9]). For
this reason we introduce the notion of e-stable sheaves (Definition 3.1) and
show that a stable sheaf is e-stable with some non-negative integer ¢ and the
property that a coherent sheaf is e-stable is bounded and open (§ 3). Thus X%,
is covered by open subfunctors 2% (6=0) and each of X%¢ is bounded. Hence
our problem reduces to showing (3) for X¥;i. Thanks to the results of D.
Mumford [10], M. Nagata [11] and W. Haboush [5], it is almost equivalent
to the following;

What point in Q:Quot;c%N/X/s is stable for a natural action on it of
SL(N) with respect to a suitable fixed invertible sheaf?

Since no direct answers to the above question are known, we construct a
morphism of an open set for the étale topology of @ to a suitable scheme and
measure stability of a point using its image by the morphism. Now we know
two “measuring spaces”. One is a product of Grassmann varieties (see [12]
and [7]) and the other is a projective bundle over a finite union of connected
components of Picys (see [3]). This is simpler than that because the latter
needs only an open set € XS’ such that X;—>S’ has a section and the former
does a rather finer covering. Thus our section 4 is devoted to generalizing and
sharpening the techniques and the results in [37]. By virtue of our main theo-
rem in § 4 (Theorem 4. 17), our problem reduces to the following;

Does a point of @ corresponding to a stable sheaf enjoy the property
(4.15.1)?

Proposition 3. 6, which is an immediate corollary to Fundamental lemma
in § 2, implies that the answer is affirmative.

The main part of this work was prepared for a series of lectures at Nagoya
University in December, 1975. The author wishes to thank the attentive and
patient audience at Nagoya University.

Notation and Convention. Throughout this paper a variety is a geo-
metrically integral algebraic scheme over a field. For a coherent sheaf F' on a
k-variety X, hi(X, F) or simply h'(F) denotes dim,H X, F') and 3(F) does
> (—1)h'(X, F). The rank of a coherent sheaf F on a variety X is the di-
mension of E(x)=EXe¢k(x) as a vector space over k(x) with generic point x of
X and is denoted by #(E). For S-schemes Y and T, Y(T) is the set of T-
valued points of ¥, that is, Y(T')=Homg(7,Y). In particular, if 7T=Spec(K)
with K an algebraically closed field, then a point y in Y(T)=Y(K) is said to
be a geometric point of Y and K is denoted by k(y). Thus a geometric point
y of Y defines an S-morphism of Spec(k(y)) to Y. Let f:X—S be a smooth,
projective, geometrically integral morphism of locally noetherian schemes and
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let £4(1) be an f-very ample invertible #-module. For a geometric point S of
S, X, is the geometric fibre of X over s, that is, X,=X X ¢Spec(k(s)). For a
coherent module E on a geometric fibre X, of X, the degree of E with respect
to O4(1), which is denoted by d(FE, (1)), is that of the first Chern class of E
with respect to Ox,(1)=0x(1)Rv0x.. For integers a and b, (a, b) is the bi-
nomial coefficient (¢+b)!/a'!b!. Thus we have the equalities (@, b)=(b, a) and
(a,b)=(a,b—1)+(a—1, b).

§1. Preliminaries.

First of all let us recall some results of the geometric invariant theory
which will be used in § 4. Combining the results of D. Mumford [[10], M.
Nagata [11] and W. Haboush [5], we have

Theorem 1.1. Let X be an affine scheme over a field k, let G be a
reductive affine algebraic k-group (i.e. the unipotent part of the radical of
G is trivial) and let 6:G X, X—X be an action of G on X. Then there exist
an affine k-scheme Y and a k-morphism ¢ of X to'Y such that (Y, ¢) is a
good quotient of X by G (see [14] Definition 1.5) and ¢ is universally
submersive. (Y, ) is a geometric quotient of X by G if and only if the
action o is closed. Moreover if X is an algebraic k-scheme, then so is Y.

To globalize the above result, we need the following notions due to D.
Mumford ([10] p. 30 and p. 36).

Definition 1.2. Let F be a coherent module on a scheme over a field 2
and let ¢ be an action of an algebraic k-group. A G-linearization of F is an iso-
morphism ¢ :0*%(F)3p.*(F) such that (pX1.)*(¢)=p2s*(P)(1e X 0)*¥(¢), where
1:G X, GG is the group law and p, (or, pss) is the projection of G X, X to X
(or, GX,GX,X to GX,X, resp.).

Definition 1.3. Let X, G, ¢ and p; be as above and let L be an invertible
0 +-module with a G-linearization ¢.

1) A geometric point X of X is said to be semi-stable if there exist a posi-
tive integer # and an invariant section s of H%(X, L®) (i.e. if ¢, is induced by
¢, then ¢,(a*(s))=p2*(s)) such that X,= {ye X |s(y)+#0} is affine and x is a
geometric point of X..

2) A geometric point x of X is said to be stable if there exist a positive
integer # and an invariant section of H°X, L®") such that X, is affine, the
action of G on X, is closed and x is a geometric point of X,. A stable point x
is said to be properly stable if the dimention of the stabilizer group at x is zero.

It is clear that there exists an open set X*(L) (X*(L) or X*(L)) in X such
that the set of semi-stable (stable or properly stable, resp.) points is the set of
geometric points of the open set.
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Theorem 1.4. Let X be an algebraic scheme over a field k and let G
be a reductive affine algebraic k-group. If L is a G-linearized invertible
O x-module, then there exists a good quotient (Y, ¢) of X*(L) by G. Move-
over,

(1) Y is an algebraic k-scheme and ¢ is universally submersive,

(ii) there exists an ample invertble sheaf M on Y such that ¢*(M)=
L®" for some integer n, hence Y is quasi-projective over k.

(iii) there exists an open subscheme Y’ of Y such that X*(L)=¢ (Y")
and that (Y', ¢| X*(L)) is a geometric quotient of X*(L) by G.

Let X be a scheme proper over a field &, let G be a reductive affine alge-
braic k-group and let L be a G-linearized ample invertible sheaf on X. Pick a
geometric point ¥ of X. To study the stability of a fixed geometric point x, we
may assume that % is algebraically closed and x is a closed point of X. For a
one-parameter subgroup 4:G,—G, let us consider the morphism f:G,>a—>
o(A(a), x)€ X, where o is the action of G on X. Since X is proper over &, f
can be extended to a morphism f of A' to X. Clearly f(0) is a fixed point
under the action of the one-parameter subgroup on X. Then the G-linearization
on L induces an action of G, on A' which is the dual space of LQkE(f(0)).
This action is given by a character y of G,;x(a)=a" for all e=G,, (k). For this
7, set p (x, A)=—r. If we replace Theorem 1. 10 of [107] by Theorem 1. 4, the
following is obtained by the same argument in Chap. 2, § 1 of [10].

Theorem 1.5. Let X, G, L and x be as above. Then

(i) x1is contained in X**(L) if and only if p*(x,2)=0 for all one-pa-
rameter subgroups 2;

(ii) x is contained in Xo*(L) if and only if p“(x, 2)>0 for all one-pa-
rameter subgroups A.

We shall close this section by a lemma which will be used frequently in
the sequal.

Lemma 1.6. Let Y be a quasi-projective variety with a very ample
invertible sheaf 0.(1) and let F be a torsion free coherent 0 y-module. Then

1
for a general s in H Y, 0,(1)), F®ma,,:coker(F(—1);F(—1)®0Y—@i

F(—1)®X0,(1)=F) is a torsion free Oymodule, where H is the closed
subscheme of Y defined by s=0.

Proof. For FV=2Z..0,(F,0y), there are an integer m and a surjective

homomorphism ¢:0,(—m)® — FV because #,(1) is ample. Then we obtain
y v

h:F-—]—>(FV)V'—q—>0Y (m)?¥”, where j is a canonical homomorphism. Since Y
is an integral scheme, j induces an isomorphism on a non-empty open set of Y.
Thus j is injective because F' is torsion free. This implies that /4 is injective.
Let E be the cokernel of A Since Y is noetherian, Ass(E) is a finite set,
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whence for a general s in H'(Y, 0,(1)), Ass(E)N {s=0} =¢. Moreover, we
may assume that the closed subscheme H of Y defined by s=0 is integral.
Using this s, we get the following exact commutative diagram

0 0
1
FRO, - 0,(m)» —> ERO,—> 0

1

00— F—h—> O, (m)®r > FE 0

I 1Xs Il@s Iz’

0—F(—1)— 0,(m—1)¥— E(—1)—0

[ |

0 0

Since Ass(E)N {s=0} =¢ implies that  is injective and since ker(%)=ker (i)
by Snake lemma, we know the injectivity of z. On the other hand, @4(m)®" is
torsion free € yz-module, whence so is FQg,0 4. q.ed.

§2. A fundamental lemma.

Let f:X—S be a smooth, projective, geometrically integral morphism of
locally noetherian schemes and let #4(1) be an f-very ample invertible sheaf
on X. If S is connected, then the self-intersection number of #x[(1), or the
degree of X, with respect to #x,(1) is independent of the choice of a geometric
point s of S, and we denote it by 4. If F is a coherent 0x,-module of rank 7,
then

(2.1) Pe(m)=y(F(m)/r=hm"/n! + {d(F, 0(1))/r
—d(Kx, 05(1))/2}m™1/(n—1)! +terms of degree<n—2,

where #=dim X, and K, is the canonical invertible sheaf of X,. Since Kx,
=0%Rosk(s), it is easy to see that d(Kx,, Ox(1)) is independent of s and we
denote it by ¢(X). Our aim of this section is to prove the following which
plays an important role in the sequal.

Fundametal lemma 2.2. Let S be a locally noetherian, connected
scheme, f:X—S be a smooth, projective, geometrically integral morphism
of relative dimension n and let 04(1) be an f-very ample invertible sheaf
on X. Assume that a, (or, e) is a negative (or, non-negative, resp.) integer
with a,+e<0, r is a positive integer and that a;, (2<i<n) are rational
numbers. Set

Pm)=hm"/n! + {a\/r—c(X)/2} m*'/(n—1)! + éainn—i.

Then there exist integers L and M such that if F is a torsion free coherent
O x-module of rank v’ <r with some geometric point s of S and if F has the
properties (1), (2) and (3);
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(1) for general® non-singular curves C=D;«Dz+---+D,_,, D,€|0x,(1)],
every coherent subsheaf E(#0) of FQRO; has a degree <r(E)a,+e)/r,

(2) 4 'P(m)=d4"'Py(m) for all large integers m, where for a nu-
merical polynomial g(m) of one variable, we define that Ag(m)=g(m)—
g(m—1) and 4*g(m)=A4(4*"1g(my)),

(3) h(F(m)=r"P(m) for some m=1L,

then the following holds; d(F,0,(1))=M.
Before proving the above lemma, let us show some lemmas.

Lemma 2.3. Assume that a coherent torsion free Ox-module F has
the property (1) of Lemma 2.2. Then we have

(1) for each i (0=<i<m), there exists a non-empty open set U; of V,=
{Dy+Dsze---+D;| Dy, -+, D, |0x(1)|, Dy+Dy+---+<D; is a smooth variety of
dimension n—i} (V(1=i<n) is an open set ot of a Grassmann variety and
Vo is the point X,) such that for every k(s)-rational point Y ; of U,, FQ0y,
is torsion free and every cohevent subsheaf E(#+0) of FQOy, has a degree
=r(E)a,+e)/r.

(2) for every k(s)-rational point Y, of U, and for every coherent
subsheaf E of FR0Oy,, H'(Y ;,, E)=0.

Proof. (2)is an immediate consequence of (1) because if H (Y ,, E)+0,
then #vy, is a subsheaf of £ and because @;+¢<0. To prove (1) let us consider
the universal family X—V; XX, of the subvarieties of X, corresponding to
the points of V. Set F®¥=p,*(F) with the second projection p.;: X;—>X,. It
is easy to see that the first projection p,,: X,—>V; is a smooth, projective, geo-
metrically integral morphism with a very ample invertible sheaf L;=p,,*(@x,(1)).
Shrinking V; if necessary, we may assume that F'*” is flat over V,. By virtue of
Proposition 2.1 of [8] and Lemma 1. 6 there exists a non-empty open set V',
of V; such that for all points v of V/, F®®k(v) is torsion free. The property
(1) of Lemma 2. 2 for F X0, means just that F Q0. is cotype ((a,+e)/r—b/7’,
-, (@i +e)/r—>b/r"), where b=d(F,041)). Thus U,_,; exists by virtue of
Theorem 2.8 of [8]. Now let W, be the subscheme of V,_; X ;,VV; which defines
the incidence correspondence between the open sets of the Grassmann varieties
V.1 and V,. Since W, is an open set of a flag variety, the second projection
q2:: W —V, is flat. Hence for the first projection qy;:W,—>U,_;, U;=¢q:.(q::"*
U..))NV/ is an open set of V;. Note that for a k(s)-rational point Y; of U,
if one takes sufficiently general members D,,y, .-+, D,_; in |Ox,(1)], then Y,
D;ye+-+eD,_, is contained in U,_;. Assume that for a k(s)-rational point Y; of
U;, FQOy, has a coherent subsheaf E with degree >7(E)(a,+e)/r. If D;,,
---, D,_; are sufficiently general members of |€x,(1)|, then for C'=Y;+D,,+

D U={C=D;++Dpy|D;€|0x1)|, C is a non-singular curve} forms an open set of a
Grassmann variety. We have only to assume that there exists a dense subset V in U(k(s))
such that every curve in V satisfies the condition (1).
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wweD, 1, EQRO,. is a subsheaf of FX0, (see the proof of Lemma 1.6), the
degree of EQR)0,. is equal to that of EQCy, and C’ is k(s)-rational point of U, _.
This is a contradiction. Therefore the above U,’s are the desired open sets.
g.e.d.
We need some numerical lemmas.

Lemma 2. 4.

(1) Set P(n, m)=>1" (n—2,1), then Pln, m)=mn—1, m—1).»

(2) Set Qn, m)=3/5'(n—2,i)(m—1i), then Qn, m)=(n, m—1).

(3) P i—t c—1)=Yii(a—t—1,i)b—a, c—i) for all integers a, b, c
and t with b=a>t=0 and c>0.

Proof. 1f one notes the equalities P(n, m)=Pn—1, m)+ P(n, m—1) and
Qn,m)=Qn—1, m)+Q(n, m—1), then (1) and (2) are proved easily by in-
duction on #+m. Let us show (3) for every fixed ¢ by induction on a+c¢. Set
R, b,c,t)=%"_.(i—t ¢c—1) and R'(a,b,c,t)=Xz(a—t—1,i)(b—a, c—1i).
Then, using (1), we obtain

RG+1,b, ¢, t):iél(i—t, c—1)='g<c—1, i)
=1;(c+1,b—t+l)—_1=(b—t, o)—1.
On the other hand,
R(t+1,b,c, t):}@i(b-tq, =)= b—t—1,)
:I;(b—t—{—l, c+1)—1_:(b—t, c)—1.

Thus we have R(i+1,b,c,t)=R'(t+1,b,c,t) for all b and ¢. Moreover,
R(a,b,1,t)=b—a+1=R’(a, b, 1,1) for all @ and b. Next assume that a=¢-+2
and ¢=2. Then since

R(a,b,c,t)= bZ_]t (c—1,i)=P(c+1,b—t+1)—P(c+1,a—1),

Pl
we have

R(a,b,c,t)=R(a,b,c—1,t)+ R(a—1,b—1,c, ).
By the induction assumption we obtain
R(a,b,c,t)=R'(a,b,c—1,t)+ R'(a—1,b—1, ¢, t).

Now let us prove that the right hand side of this equality is equal to R'(a, b,
¢, t), which completes our proof.

R'(a,b,c—1,t)+ R'(a—1,b—1,c,t)
=S (a—t—1,i)b—a,c—i—1)+ 3 (a—1—2,i)(b—a, c—i)

:Z}:(a—t—l, i—1)(b—a, c—i)+z‘(a—t—2, i)(b—a,c—1)

—(b—a, c)+Z]l a—t—1,i—1)+(a—t—2,0)} (b—a, c—i)

2  See Notation and Convention.
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=§(a—t——l, )b—a,c—i)+(b—a,c)

S(a—t—1,i)b—a c—i)=R'@b,c,1) q.ed.

Lemma 2.5. For f(x)=x", the coefficient of x" ! in (4if)(x—1) is
—@+2n!/2n—i—1).

Proof. 1t is clear that for g(x)=(x—1)", 4'g(x)=(4'f)(x—1). Since g(x)
=31 (=1)i(n—1i,7)x", our lemma holds for i=0. Assume that our assertion
holds for i=j. Then 4g(x)=m!/(n—j))x" 7 —((j+2n!/2(n—j—1)!)x"~I1
+terms of lower degrees. Hence

#g() =l f(n— 1) (I —(@— 1)) —(G+2)n /2 — j—2) a2

+terms of degrees<n—j—3=n!/(n—j—1)!)x" 7!
—m! /(= Nm—!/2n—j—2) a2
—((j+2m!/2(n—j—2))xi"*

+terms of degrees<n—j—3=n!/(n—j—1)Hx 7!
—((j+3)m!/2(n—j—2)!)x" /"2 4 terms of lower degrees.

Therefore our proof is completed by induction on Z.

The following is due to M. F. Atiyah [1].

Lemma 2.6. Let F be an indecomposable vector bundle on a non-
singular projective curve of genus g and let d and r be the degree and the
rank of F respectively. For a maximal splitting (L., ---, L,) of F, we have
the following inequalities;

d/r—(r—1)@g—2)<d(L)=d/r+(g—1)(r—1)+(E—1)g
=d/r+(2g—1)(r—1),°
where d(L,) denotes the degree of L.

Proof of Lemma 2.2. The idea of our proof is essentially the same as
Gieseker’s in the proof of Lemma 1. 2 of [3]. The main part of our proof con-
sists of an evaluation of A°(F'(m)).

As in [3] let H,, be the smallest coherent subsheaf of F(m) such that
HY(X,, H,)=H"X,, F(m)) and F(m)/H, is torsion free. Since d(H ., Ox(1))
>0, the assumption (1) and (1) of Lemma 2.3 imply that H,=0. Moreover,
the exact commutative diagram

0—'_)H0(Xs’ Hm) _N_éHO(Xs’ F((m)) _—')H()(Xs’ F(m)/Hm)

0 0 0
yields

®  This inequality is sharper than Atiyah’s original one. But the fact is not essential.
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(2.2.1) HYX,, H,.(—p)=H%X,, F(m— p)) for all non-negative integers

We claim

(2.2.2) H,(p) is a subsheaf of H,,, for all non-negative integers p.

In fact (2.2.1) implies that the subsheaf H,’ of F(m) generated by
HX,, F(m)) is that of H, ,(—p) generated by H(X,, H,.,(—p)). Let H,"”
be the inverse image of the torsion part of H,,,(—p)/H,' by the natural
homomorphism H,.,(—p) > H,p(—p)/H,'. Then F(m)/H," is torsion
free because so are F(m)/H ,.,(—p) and H,.,,(—p)/H,". Since H'(X,, H,")
=H%(X,, Hn,(—D))=H%X,, F(m)), we have that H,”=H,. This means
that H,(p) is a subsheaf H,,,,.

Choose so general k(s)-rational members D,, --+, D._; of |0x,(1)]| that each
Y ;=D;j«---+D; is contained in U; of Lemma 2. 3 and that H,,X vy, is a subsheaf
of F(m)QX0y, The exact sequence

0—-H, ,(-1)>H,>H,X0y,—0
and (2. 2. 1) provides us with the inequality

R(Fm)=h"(H ,) <h"(H »(—1))+h"(H.&0y,)
= hO(F(m_ 1)) +h0(Hm®ﬁY1)°
Summing up these inequalities from 0 to 72, we obtain
h(F(m) = Z h(H.Q0y,).

By virtue of Lemma 2. 3, (2) and the exact sequence
0->H,(j—1DQ0y,~> H.(—))Q®0y,—> H.(—))&Qy,,—>0
the inequalities
HH(— RO v)= 5 W(H (~ ~ R R0y..)

are obtained. Thus we have

u u—ji

h°(F(M))<Z Zh"(Hu( Jl)®ﬁy2)<2 2 L h(H(—j1—j2)@0y,)

u=0j1=0j2=0

—Z > H(—j1—J)ROy) <"
OOTRES

§Z 2 WH (= ji—je— = Ja-2)QOy, )
u= OSII+ "‘Jn 2Su
J1s 0 n-220

From this the following is obtained
2.2.3) BEm)SE 5 -3, JH )@, ).

Let ¢ be the genus of the curve Y,_;. Since S is connected, ¢ is independ-
ent of the choice of s and Y,_;. Let my,,---, m, be the integers such that
H,,#H,, ). Clearly [=<7'. We denote the rank of H,, by 7,

In the first place, assume that m<lm,. Set E=H ,,_(—m,+1)Q0y,_,.
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By (2.2.2), H.(—7) is a subsheaf of H,, (u—j—m,+1) if u<mm, Thus
H,(—j)®0y,, is a subsheaf of E(u—j). This and (2. 2. 3) assert

h°<F<m>>§ufz'0 z (n—3, Hh(E— ) =§O 2 (n—3,i—H(E(®)

= £ WEDNE (13, 1),
By Lemma 2. 4, (1) we have
(2. 2. 4) h%F(m))étﬁo(n—z, m—DR(E®), if m<m,

Write E=E,@E:P---@E, with indecomposable vector bundles E; of rank p; on
Y ._:. Since each E; is a coherent subsheaf of F&0Oy,_,, d(E;)=d;Zp{a;+e)/r
by the assumption on Y, ;. By Lemma 2. 3, (2) we have that A% E;)=0. We
shall apply Lemma 2. 6 to E,. Let (L,?, ---, L{?) be a maximal splitting of E,.
If W(E,Q0Ox(f)+#0, then one of L,(j)=L,®x,(j) has a non-negative
degree, whence d;/p,+ jh+(29—1)(0;—1)=0 by virtue of Lemma 2.6. Let
t; be the integer such that {—d;/p;—2g—1)(o;—1)}/h+1>t;=2{—d./p;—
(29 —1)(0;—1} /h and let ¢/ be the integer max (¢;,0). Then we have

g:o(n—Z, m—th(E(t)= té‘,(n_z, m—th(E (1))
| Aot +di—p(g—1)+ R(E (D) (n—2,m—1)

{pzht+d —pi(9g—1)}(n—2, m—1t)

.'LM§ L‘Ms

+Z} Zh‘(L OE)(n—2, m—1),

o ey
where E/(t)=E®0x(b). Since d(L, (/)2 —(o:—1)(3g—2)— (29— 1)(p,—1)
=—(0;—1)(59g—3), we have that for t=¢/, h'(L,(t)) <max {(o;,—1)(59g —3)—
(t—tHh+g—1, g} Smax{(p;—1)(65g—3)+g—1, g}. Since p,<7'<7, there
exists an integer A,, which depends only on # and g, such that A'(L,(¢))< A,
for all 7, &, and ¢ with t=¢/. On the other hand, since d(L,(t/+1¢))=th—
(p;—1)(59 —3), we see that h'(L, Pt/ +1))=0 if > {(0;—1)(59—3)+29—2} /h.

Combining above results, we obtain
(2.2.5) Z(ﬂ 2, m—Hh(E(1) = Z Aot +d;—pi(g—1)} (n—2, m—1)

+A(7L 2, m—1t), where d(E) d, r(E)=p;, and A depends
only on #, 2 and g.

Now let us come back to the computation of h°(F(m)). By (2.2.5) we
have

HE )< T (0 =2, m—1) 5 K(E (D)

(n 2, m—t){tph+d;—p(g— 1)}+Z<n 2, mA

IA
M= ©
l'.[vj§

~
I
-

t
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gz %(n 2, m—t){toh+ o (a+e)/ r—p(g—1))
+ Z}l(n—z, m)A.

Let £, be the integer such that {—(a,+e)/r+(g—1)} /h+1>t= {—(a,+e)/7+

(¢9—1)}/h. Then our computation proceeds as follows;
IEm)S 3 (=2, m—1)r(E) {th+(@+e)/r—(g— 1)}

7 E)n—2, m)A= r(E)”:go(n—Z, 1) (m—t)h+(ar )/ 7

—(9—1)} +7(E)Yn—2, m)A=r(E)Lh(n, m—t,)
+ {(a1+e)/r—(9g—D)(n—1, m—ty)+(n—2, mA]l.
Since »(E)<»', we know
(2.2.6) If m<m, h(F(m)=g.(m)= " —1)[hin, m—t)+ {(a+e)/r
—g+1}(n—1, m—ty)]+m—2, m)B, where f, is an integer
depending only on a,, e, 7, g and s, and where B depends only
on 7, and ¢.

In the next place, we shall evaluate #°(F'(m)) for m=m,. We may assume
that F(m,)Q0y,_, is generically generated by its global sections and that

(2.2.7) dF,0:(A)<vr'a,/r—v'(e+1).

If we set
v(m)—uzm E (n=3, PhEF U~ NR0y,..),
then (2. 2. 3) imphes

hO(F (m)) < Z Z(n 3, N H (— )HR0y,..)

u=07=0

+ 5 Z(n 3, Nh(F(u— ROy, .)<gr (m,—1)+v(m).

u=nmy ]—

On the other hand,
v(m)= Z Z(” 3, i—H(Ft)Q0y,.,)

i=my t=0

Z Z(n—B i—Hh(F()R0y,.,)

t=my i=
mi—1 m

+ 2 X (=3, i—Oh(F(Q0y,..).

t=1i=m

Thus we obtain
(2.2.8) If m=m, then I (Fm)<g, (ml—1)+v,(m)+vz(m) where

vy(m)= Z Z (n—3,i—Hh"(F#)Q0y,.,) and vy(m)= Z 5 (n—

t=my i=t t=1i=m

3, i—t(FROy,.,).Y
;;7if n=1 or 2, then v,(m)=0.
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Since F(m,)QX0y,., is generically generated by its global sections, every
member of a maximal splitting of F(m,)®fy, , has a non-negative degree.
Thus if m>m,+(29—2)/h, then W'(F(m)XPOy, ,)=0. Moreover, h*(F(m)Q
Oy, )=<r'g if m<m=<m,+(29—2)h. These and the fact that ¥(F(¢)&?y,.,)
=4""1y(F(t)) imply that if ¢, is the integer with (29 —2)/h<t,<(29—2)/h+1,
then

vl(m)—' Z {4y (FE@)+R(FOROy,. 1)} (n 3,i—1)

ZA"“x(F(t))Z(n 3,0+ ZVQZ(” 3,9)

—tZ (n—2, m—)4"" ‘x(F<t))+ Z r'g(n—2,m—t)
__<_t=Z n—2,m—t){r’' 4 Pt)—a} + K(n—2, m—m,),

where a=7'a,/r—d(F, 031)) and K=(f;+1)rg. By the assumption (2) we
know that a is non-negative. Our aim is to show that a is bounded above.
We claim

52 (n—2, m—8)4"1 P(t)= P(m)— P(m,—1) —”22(1%—%, N4 P, —1).
t=m j=1
In fact, since

2_, n—2, m—)4~ 1P(t)— Z (n 2, A P(m—t),

t=m

we have only to show that

S =2, A P —t) = 5 (n—2—i, )4 P(m—1)
t=0 t=0

— Z'}l n—1—j, m—m)4" "I P(m,—1).
Assume that this hi)lds for i. Then
" g, DA Pon—t) = 27 Plm)+ 3, {(1—2—i 1)
” —n—2—1,t—1)} 42 P(m—t) —(1;1—2—1', m—m,)4* 2" P(m,—1)
—jio n—1—j, m—m)4 "7 P(m,—1)

m—m i+1
=3 l(n—3—z', DA i Pm—1t)— Y, (n—1—j, m—m,)4" "~ P(m,—1).
t=0 J=1

Thus our claim is proved by induction on Z. Set N=m—m,+1. Then we
have

tZ’)n(n —2, m—1)4"P(t)=P(m)— P(ml—l)—— Z(N 1, )4’ P(m,—1)
and l

Z} n—2,m—1t)= Z (n 2, )=(m—m,n—1)=(N—1,n—1).

t=my
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Therefore we obtain
(2.2.9) vy(m)<r'{P(m)—P(m,—1)} —a(N —1,n—1)
— "3 (N =1, )4/Plm,~1)+ K(N —1,n—2), where N=m—m,
+1 ]a_nld where K depends only on 4, 7 and g¢.

Let us compute vy(m). Using Lemma 2. 4, (3) for a=m,, b=m, c=n—2
and {={, we obtain

va(m) :WZ_I h°(F(t)®ﬂy,,_l)E3(ml —t—1, ) (m—my, n—2—1)
t=1 =0
=”“’z_l1 WEBR0y,.) 5 (m—t—1, n—2—i)(N —1, )
t= =1

="22(N—1, i)wz_l(ml—t—l, n—2—(FBROy...)

Z(N Li)fs

where ;z:'";l (my—t—1, n—2—Dh(F(OROy,.).

Write FQOy, ,=F ,®F®---@®F, with F; indecomposable vector bundles
onY._.. If d;=d(F)), p,=7(F,), then we may assume that d,<p,a,/r—e—1
and d;<p/ a,+e)/r for 2<i<u because of the assumption (1) and (2. 2. 7).
As (2. 2.5) we have

m’il(m, Ct—1, n—2— i) O(F (1)
t=

<" ot +d,—p,(g — 1)} (m—t —1, n—2—i)+ A(m, n—2—i),

t=t;’
where ¢/=max (1, ¢;) with the integer ¢; such that —{d,/p;+(29—1)(0,—1)}/
h<t,<—1{d;/p;+(29—1)(p;—1)} /h+1. For the integer ¢, (or, ;") defined by
—{(@+e)/r+9—1}/h+1>t'= —{(a1+e)/r+9g—1}/h (or, —{ai/r—(e+1)/ps
+9—1}/h+1>1"=— {a)/r—(e+1)/p1+g—1} /h, resp.), put #=max(1,{’)
and #”=max (1, ;). Then f; is evaluated as follows;

my—1
fi§ Z {oiht+p1a:/r—e—1—pi(g—1)(m,—t—1,n—2—1)

U m—

+2 X {pjht+pf<a1+e)/r—pj(g—1>} (m,—t—1,n—2—1)

j=2t=1t;
+uA(m, n—2—1)
m—1

> {r’ht+v'a/r—1—v(9g—1)}(m,—t—1,n—2—1)

t=t'
Z{plhtﬂnal/r e—1—pi(g—1)} (m—t—1,n—2—1)
+uA(ml, n—2—1).

IA

Furthermore,
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—t:Z; {o:ht+p1a:/v—e—1—pi(g—1)} (m,—t—1, n—2—10)
< {(e/r+(e+1)/p))/h+1}pilai/r—(e—1)/pi— (9 —1) | (m,, n—2—1)
sA'(m,n—2—1),

where A’ is an integer which depends only on e, 7, 2 and ¢g. Thus we obtain

m—1
[iSv'hY, m,—t—1,n—2—i)t
t=¢'
m—1
+ {r’al/r—l—r’(g—l)}t_zt}, (m,—t—1,n—2—1)+B'(m, n—2—1)

my—2
<r'h lZ} t, n—2—1i)(m,—1—1t)
=0

m—t' —1
+ {r'a,/r—1—7r'(g—1)} ZO (t, n—2—i)+B'(my, n—2—1)
t=
=r'h(m,—2,n—1i)+ {r'a;/r—1—r'(g—1)}(m,—t'—1, n—i—1)
+B'(m, n—i—2).
The last part in the above inequality can be regarded as a polynomial with
respect to #,. The leading term of the polynomial is #’hm,"*/(n—i)!. Since
g—1={(n—1)h+c(X)}/2 by the adjunction formula, the term of degree n—i
—1 of the polynomial is

[(:ﬁ__lzk)r’h/(n—i)! + (Fayr—1
—r'(n—1)h+c(X))/2} /(n—i—1)Jm, i1
=[r'h{n—i—-3)(n—1i)/2(n—1i)!—(n—1)/2(n—i—1)!}
+@#'a/r—1—7'c(X)/2)/(n—i—1)m, "1
={—=7r'h(@+2)/24+7a,/r—1—r'"c(X)/2}m 1/ (n—i—1)\.
Therefore
(2. 2.10) vz(m)§:l§(N—l, 1)g:(m,), where ¢,(m,) is a polynomial with
respect to m, of the following form;
g:(m)=v"hm,"/(n—i)! + {—r" h(i+2)/2+7a;/r —1—7"c(X)/
2ym» "/ (m—i—1)! +terms of degree<<n—i—1 and the coef-
ficients of ¢;(m) depend only on ay, e, 7,7/, h,n and ¢.
Since by virtue of Lemma 2. 5
4P, —1)=hm,"[(n—i)!+ {—h(i+2)/2+a,/r
—c(X)/2}m» "1/ (n—i—1)! +terms of degree<<n—i—1,
the inequalities (2. 2. 8), (2. 2. 9) and (2. 2. 10) imply
(2.2.11) If m=m,, then h°(F(m))—r'P(m)<g,(m,—1)—»'P(m,—1)—
a(N —1, n—l)-l—’:ii 6:"°(m,)(N —1, i), where ¢, (m,) is a

polynomial with respect to m, of the following form;
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¢, (m,)=—m,"" " /(n—i—1)! +terms of degree<n—i—1 and
the coefficients of ¢,"?(m,) depend only on @y, e, 7, 7/, b, n and
g.

Since the leading term of ¢,.(m) is (#'—1)hm"/n! and that of #'P(m) is
r’hm™/n!, there exists an integer L such that

(2.2.12) ¢.(m—1)—r'P(m—1)<<0 and ¢, (m)< 0 fo; all 7,7 and m=L.

(2. 2. 6) says that if m=L and h°(F(m))—»'P(m)=0, then m must be greater
than m,—1. If one takes this L in advance and assumes that F' has the prop-
erties (1), (2) and (3) for L, then the above fact and the property (3) imply that
h(F(m))—v'P(m)=0 for some m=m, Assume that m,=L and F satisfies
the assumption (2. 2. 7). Choose an integer m such that m=m, and h°(F(m))
—¢'P(m)=0. Then (2. 2.11) and (2. 2. 12) assert that

0= (F(m))—#'P(m) < g.(m'—1)—r'P(m,—1)—a(N —1,n—1)
+§ ¢, (m,)(N —1, £)<0

This is a contradiction, whence m,<L. Therefore if F' enjoys the properties

(1), (2), (3) and (2.2.7) for this L, then F(L) is generically generated by its

global sections. Thus d(F(L), 0,4(1))=0, which implies that d(F, #,(1))=

—w#Lh. Therefore M =min{—7Lh, a;—r(e+1)} is the desired integer.
q.e.d.

§ 3. e-stable sheaves.

In this section we shall assume that f:X-—>S is a projective, smooth,
geometrically integral morphism with relative dimension # and an f-very
ample invertible sheaf #4(1) and S is connected and noetherian. To construct
the moduli schemes of stable sheaves we cover the family of stable sheaves by
subfamilies which are open and bounded. For this purpose let us introduce
the following notion.

Definition 3.1. Let ¢ be a non-negative integer. A stable (or, semi-
stable) sheaf F' (with respect to 04(1)) of rank # on a geometric fibre X, of X
over S is said to be e-stable (or, e-semi-stble, resp.) (with respect to &4(1)) if for
general non-singular curves® C=D;+D;+---+D, ;, D, |0x(1)|, every co-
herent subsheaf E of F R0, of rank {(1<¢t=<7—1) has a degree=< {td(F, O(1))
+e}/r.

Remark 3.2. The condition on FX&, in the above definition means
that FQ&I, is of cotype (B) with §,=e/rt or equivalently it is of type (a) with
a,=te/(r—t)?r (see [8] Definition 1.1). Note that ;< a;<---Za,_;.

To show that the family of e-stable sheaves is bounded we need

Lemma 3.3. Let @y (e, H) be a family of classes of coherent sheaves

® See the footnote (1).
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on the fibres of X over S such that if FE®y(e, H), then F is a torsion free
module of rank r on a geometric fibve X, of X over S, for general curves
C=D,+D;+--++D,_,, D;c |0x(1)|, FQO. is of cotype (B) with B,=e/rt and
the Hilbert polynomial of F is H. Then ®y(e, H) is bounded.

Proof. Let F be a coherent sheaf of on a geometric fibre X, of X over
S. Assume that F is contained in @(e, H). Then, as in Lemma 2. 3, we can
find k(s)-rational members D;, D, ---, D,_; in |Ox,(1)] such that (1) Y,=X,,
Y,=D,,--,Y,.1=D;+D;3+---+D,_; are non-singular, (2) FQ0y, is a torsion
free Oy -module and that every coherent #y,-submodule E of F®?fy, of rank
t(1<t<7—1) has a degree=< {td(F, 0x(1))+e¢} /7. On the other hand, there
exists an integer m, which depends only on H and e, such that {d(F(m), 04(1))
+e<0 for all £. Then A%(Y ., Fm)QRFy)=0 for all i1=0,1,.--,n—1. This
and Theorem 1. 13 of [6] complete our proof.

Let ©Sy/4(e, H) be the family of classes of coherent sheaves on the fibres of
X over S such that F is contained in &y,s(e, H) if and only if F is e-semi-
stable and the Hilbert polynomial of F' is H.

Corollary 3.3.1. Foreache, H, Sy e, H) is bounded.

From now on we assume
(3.4) for all geometric points s of S and all :™>0, H{(X,, 0x,(1))=0.

If one replaces 0x(1) by Ox(m) with m a sufficiently large integer, then the
assumption (3. 4) is satisfied. Moreover, a coherent & x-module F is stable (or,
semi-stable) with respect to #4(1) if and only if it is so with respect to &(m).
Thus, without losing any generalities, we may assume that &,(1) satisfies

(3.4

Lemma 3.5. Under the assumption 3. 4, the property that a coherent
sheaf is e-stable (or, e-semi-stable) is open.

Proof. The assumption (3. 4) implies that fx(F(1))=F is a locally free
O¢module (E.G.A., Ch. III, 7.9.10). Moreover, X is a closed subscheme
of P(E), 04(1)=0pr(1)R0y and H(P(E),, Op) (1))=H(X,, O0x(1)) for all
geometric points s of S. Put 7#(E)=N. Let us consider the Grassmanian
Y =Grassy_,(E) and the closed subscheme P(Q) of P(E) XY with @ the uni-
versal quotient bundle. Let X’ be the scheme theoretic intersection P(Q) and
X XY in P(E)XsY. Itis clear that X’ is a fibre bundle over X, and hence
the first projection p:X’—>X is smooth. Using the Jacobian criterion for
smoothness, we know that for the second projection g:X’—Y, there exists an
open set U of Y such that (i) gy: X’,—U is smooth and geometrically integral,
(ii) dim X’, =1 for all points # of U and (iii) U NY ;¢ for all geometric points
sof S (see E.G.A,, Ch. IV, 17.13. 2 and 17.13. 4, (i)).
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b

PQNXXxsY)=X'—""—>X
oX,U ‘
q l f
U
e
Y——S

Set F/=P*(F) for the given S-flat coherent #ymodule F. For a geometric
point s of S, U, is a variety over k(s) and qy, is proper. Thus there exists a
non-empty open set V; of U, such that F'®gk(S) is flat over V. Since F is
fflat and since p is a flat morphism, F” is flat over S. Therefore, applying
Theorem 11. 3. 10 of E.G. A., Ch. IV, we see that F’ is g-flat at every point of
q (V). Replacing U by an open set of U, we may assume that F’; is flat over
U and U enjoys the properties (i), (ii) and (iii) above. By virtue of Theorem
2.8 of [8] and Remark 3. 2, the property that a coherent sheaf is of cotype (8)
with B,=e/rt is open. Thus there exists an open set U’ such that fos every
algebraically closed field &, U’(k)= {ucU k)| F'Qoyk(u) is of cotype (B)}. Itis
easy to see that for a geometric point s of S, U/, is non-empty if and only if for
general curves C=D;+Dye-+-+D, 1, D;e |0x(1)|, FQO. is cotype (B). Sine Y
is flat over S, the image W of U’ in S is open. On the other hand, we can find
an open set W’ such that for every algebraically closed field &, W/(k)={se S(k)|
F&eosk(s) is stable (or, semi-stable, resp.)} ([8] Theorem 2.8). Then it is
obvious that the open set W NW’ is the desired one in S. q.e.d.

The following, which plays a key role in the sequal, is a corollary to
Lemma 2. 2 and Corollary 3. 3. 1.

Proposition 3.6. Foreach ©y;(e, H), there exists an integer N such
that

1) for all FEy (e, H), m=N and >0, F(m) is generated by its
global sections and h'(F(m))=0,

2) if Fis contained in Sy 5(e, H) and if it is stable, then for all m=N
and all coherent subsheaves E of F with 0+E EF’

ho(E(m))/ r(E)h*(F(m))/ r(F),

3) if F is contained in Sy (e, H) and if it is not stable, then for all
m=N and all coherent subsheaves E of F with Oq&EEF,

W(E(m)/ r(E)<h*(E@m))/r(E)

and, moreover, there exists a coherent, non-trivial subsheaf E, of F such
that h°(E.(m))/v(E.)=h(F@m))/v(F) for all m=N.

Proof. By virtue of Corollary 3.3.1 there exists an integer N, such
that (1) holds for N=N,. By taking &y,(e, H)(mo)= {F(m) | F €Sy,5(e, H)}
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instead of &y s(e, H) with m, a sufficiently negative integer, we may assume
that d(F, 0,4(1))+e<0 for every FE&y(e, H). Let us apply Lemma 2. 2 to
the case that P(m)=y(F(m))/r(F)=H(m)/v(F), r=7(F) and e=e, where F
is a member of &ys(e, H). Then we obtain the integers L and M satisfying
the conditions in Lemma 2. 2 because @;+e=d(F, 04(1))+¢<0. We may as-
sume that L=N,. Let Z be the family of classe of coherent sheaves on the
fibres of X over S such that E is contained in & if and only if (a) E is a coherent
subsheaf of a member F of &y (e, H), (b) F/E is torsion free and (c) h°(E(m))
=r(E)P(m)=r(E)h°(F(m))/r(F) for some m=L. Then every member E of
% enjoys the properties (1), (2) and (3) in Lemma 2. 2 for F=FE. Thus the set
{d(E, 0,1))| E€ %} is bounded below by M. Since Sy,(e, H) is bounded,
the condition (b) above and Corollary 1.2.1 of [8] imply that Z is bounded.
Therefore, there exists an integer N =L such that for all >0, m=N and
Ec%, h(E(m))=0. This and the definition of the stable (or, semi-stable)
sheaves imply that 2°(E(m))/r(E)<h*(F(m))/r(F) (or, <, resp.) for all m=N
and all coherent subsheaves E of F such that E+0, F/E is torsion free and
F is contained in &y (e, H). Pick a coherent subsheaf E of Fe&y(e, H)
with 0##FE+#F. There exists a coherent subsheaf E’ of F' such that »(E)=
7(E", ECE’ and F/E’ is torsion free. Thus if #»(E)<r, then h°(E(m))/7(E)
Sh(E'(m))/ r(EN<h(F@m))/rv(F) (or, <, resp.) for all m=N. If h'%(F(m))
=h*(E(m)), then H(F(m))=H°E(m)) and hence E(m)=F(m) because F(m)
is generated by its global sections. Thus if #(E)=7 and if E+F, then we
have also that h%(E®(m))/r(E)<h°(F(m))/r. Finally assume that a member F
of &ys(e, H) is not stable, then we can find a coherent, non-trivial subsheaf
E, of F such that y(E.(m))/7(E.)=y(F(m))/r(F) and F/E, is torsion free.
It is easy to see that E, is contained in #. Hence for all m=N, and all :>>0,
hi(Eom))=0. Thus h°(E.(m))/r(Ey)=h*(F(m))/r for all m=N. N is there-
fore the desired integer. q.e.d.

§4. Techniques of Gieseker.

In this section we shall recall and generalize the results of D. Gieseker [3]
on the quotient of an algebraic scheme by an algebraic group.

From now on k denotes a field of characteristic p=0. Let V be an N-
dimensional vector space over k and let V'’ be another finite dimensional vector
space over k. For G=SL(N, k), &, denotes a natural dual action of G on V;

60:V—>V®:k[G]. For an integer r with 1<7=<N,set W =H0mk(/T\V, V), then
6o provides us with a dual action 6 of G on WV, where WV is the dual vector
space of W. Fix a basis e;, €s, ---,ey of V and a basis fi, f2, ---, fa4 of V.
Then for suitable functions {x;;} defining a system of coordinates of SL(N, k),
& can be written as follows;

a(ei/\-Nei, Qf V)
= X X ejl/\"'/\ejr®fjv®(Sgn(f)xilirm'""xirfr(r>)

1<<jrr€S;y
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where {f,"} is the dual basis of {f;} and S, is the 7-th symmetric group. Thus
we obtain an action ¢ of G on P(WV) and a G-linearization on the hyperplane
bundle L on P(WV). Since the center of G acts trivially on P(WV), ¢ induces
an action @ of G=PGL(N, k) on P(WV). and G-linearizations on L& for all
integers @. For an algebraically closed field K containing &, a non-zero element
T of W®,K defines a K-linear injection K=2a—>aTcW,K, whence T
induces a K-linear surjection WV&,K—>K. The last map yields a K-rational
point of P(WV), which is also denoted by 7. T can be regarded as an alterna-
tive multilinear map of V®,K to V'Q.K. For vectors vy, ---, v, in VR, K, the
value of T at v,/A\v./\---/\v, is denoted by T(vy, ---,v,). Now let us employ
the following notion due to Gieseker.

Definition. Let K be an algebraically closed field containing k£ and let T
be a non-zero element of W®,K or a K-rational point of P(WV). Vectors
Vy,--,0q in VX, K are said to be T-independent if there exist vectors v, +, 0,
in V®,.K such that T (v, -+, 0,)#0. A vector v in VR, K is said to be 7-
dependent on vy, -+, Uy if T(V1, V4,0, Wayy, -+, W,) =0 for all vectors Wy, -+, W,
in VR,K. The vector subspace of VX),K formed by vectors which are 7-
dependent on vy, ---, v, will be called the T-span of vy, ---, v,.

By the same argument as in Proposition 2. 3 and Proposition 2.4 of [3]
and by Theorem 1.5 we obtain

Proposition 4.1. Let K be an algebraically closed field containing k.

1) A point T in POWVYK) is properly stable (ov, semi-stable) with
respect to the action o and the G-linearized invertible sheaf L if whenever
vy, -, U, inVRK are T-independent and U is the T-span of vy, ---, vy, then
dimU<dN/r=(d/r)dimV. (or, dimU=<dN /v, resp.)

2) For a point T in PWV)K), assume that there exist a vector sub-
space U of VR,K and an integer d such that T (vy, -+, Uy, Vgyy, -++) =0 when-
evey vy, -, Vyy, ave in U and that dimU >dN/r. Then the T is not semi-
stable.

Let f:X—>S and 04(1) be as in §3. Moreover, assume that S is an
algebraic k-scheme. Fix a numerical polynomial

Hm)=rhm"/n!'+ {a,—rc(X)2}m* 1/ (n—1)! + terms of degree<n—1,
where 7 is a positive integer, % is the degree of X with respect of #,(1) and
where ¢(X) is the degree of the canonical divisor on a fibre of X over S. Let
Q be a union of some of connected components of Quotgga"/(v % and let
X¢=XXsQ. The universal quotient sheaf on X, is denoted by ¢:V®,0x,—>
F. Fix a basis ey, ---, ey of V and functions {x;,} defining a system of coordi-
nates of SL(N, k). Define a homomorphism of &¢y,g-modules ¢ of V®:0¢x,0
to itself as follows;
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P @)= 2 e, @

Set ¢=p.*(¢) and F=p*(F) with P2:G X, X,—>X, the second projection.
Then we obtain the homomorphism qﬁ:V@kﬂkaXQ-éF , where 1 is the base
change of ¢ by X. By virtue of the universality of (F, ¢) and the connect-
edness of G, we obtain a morphism 7:G X @—@ and an isomorphism A :7*(F)
3F such that the following diagram is commutative;

V®kﬁc;,<kx0—¢> F —>0
1| Jex
V&iOc .x, *F) —0

where 7:G X, X,—>X, is the base extension of 7. Let X;=G X, X, X:=
G XG XX, p23: X2—>X; be the projection to the second and the third factors
and let z:G X, G—>G be the group multiplication. Then we know easily

1L X*DERIRIQD= 16,®r;Q1O1

P ERIRIQD= £e,Q10%,®1

(XL (D R1R1®D= 26, Q(E ru @) R,
whence we have

P+ X P =(u X L *(A).
Consider the following commutative diagram;

z . ) )k . z *
FHpeX Ly )*(V @b x) PR (F(pe X Lx)P*(F)
1 (rrx 1*(2) Crex 1*)
(D> X Ly V¥V QO x,) = ps*(V RuO x,)

= (Pl (VR:Ox)— LD pos(F)
por@ | I Pza*(x,)I
P2l XTN*V RO x,) =T P2:)*(V RO x,) L))—» (Th2s)*(F)
1ex 3)*(A (e x 2)*(
o [ Qoxr (Zax (P ’ 3( )]
(T(loxf))*(v@)kﬁ%) (T(1GXT))*(F)

where p;: X:—> X, is the third projection. Note that all the sheaves of the left
hand side of the above diagram are canonically isomorphic to V&),0x, The
equality
(X Ly ¥ (A)(T(pr X 1)) () = Ds*(#) (1 X 1 x)*(2)
=P35*(P) P23 *(A) (16 X T)*(2) = pas*()(1e X D) *¥(X) (7 (16 X 7)) *(9)

implies that
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(e X 1x,) =7(1¢X7) and
(X Lx)¥(X) = pas*(A) (1 X T)(X)

because of the universality of (@, F,¢). These facts mean that z (or, 7) is an
action of G on @ (or, X, resp.) and, moreover, ¢ (4 or X') defines a G-lineariza-
tion on V&Ocx,x,(V®ifx, or F, resp.). It is obvious that the structure mor-
phism P:Q—S is a G-morphism with the the trivial action of G on S.

The following is a generalization of Lemma 4. 1 of [3].

Lemma 4.2. Let U be the largest open set X, over which F is locally
Sfree. Then there exists a G-linearized invertible sheaf L on X, and a G-

homomor phism y: /T\F —L which is an isomorphism on U.

Proof. Since p:Q—S is a G-morphism, Ox,(1)=(1xXp)*(0x(1)) carries
a G-linearlzation. If one notes that in the diagram

lgx ¢
17 -
G x kaXQ__, Gx XQ____,X
l 1% 1xq 1 J
lgx -
CX,GX,Q——— kaQ—* Q
1x1lg T

every square made by corresponding morphisms is cartesian and every mor-

phism in the lower row is flat (z:G X ,Q (Lo, ©) G XkQ& @ and (15 7) is an
isomorphism etc.), then it is easy to see that for every G-linearized @ x,module
E, q«(E) has a G-linearization, whence so does g*q«(E) (see E.G.A., Ch. III,
1.4.15). Moreover, the canonical map ¢*q«(E)—>E is a G-homomorphism.
Now let us apply the above observation to F(m)=F&®0 x,(m). Then as in the
proof of Proposition 2.1 of [8] we have a resolution of F' by locally free, G-
linearized & x,-modules;

S

fooi  fo o S S

0 E, E., E, E, F 0

where all the f; are G-homomorphisms. Set

L=(detE)@(det E)) ' ®---Q (det E,)-D",

then L carries a G-linearization. This L is the desired invertible sheaf. Since
F is gflat, so is ker (f;). Thus ker(f,) and F are locally free on U and for all
points x of @,

0— E.Q0 k( )_,,Qk(x) i — E\Q0 k( )flok(x)
Rk
Eo®0ok(x) L25D, F@p k() —> 0
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is exact. We know therefore that for K,=ker(fo®k(x)) and yeq(x),
hd (K, ) £max {dim (€ -1¢),5) —1, 0}. This implies that if U’ is the largest open
set of X, over which ker(fy) is locally free, then (1) all the ker(f;) are locally
free on U’, (2) codim(X,—U"y, X,)=2 for all points y of @ and (3) U’'2U.
Since ker(f;) are naturally G-linearized, U’ is G-stable. Let us cover U’ by a
family of affine open subsets {U;} such that every K,;;=ker(f;)|U; is a free
Oyymodule. Let {a.(i, 7). -, a,(i, j)} be a free basis of K;; (¢=0) and let
b(i+1, j), -+, b, (i+1, 7) be elements of I'(U;, E;.,) whose images to K;; are
a.(t, 7), -+, a,,(i, j) respectively. Then the set {a(Z, j), -+, a,(i, J), b:(2, J), ---,
b,,..(i, j)} forms a free basis of I'(U;, E,) (i=1). Take sy, -+, s, from I'(U;, F)
and pull them back to ¢y, .-+, ¢, in I'(U;, E,). Let 7,(s;/\*--/\S,) be the element
of I'U;, L) defined as follows

(/N AL Nai 0, 7)/\-++/N\an(0, 7))
& (011, /N N\br(1, NG, NN
an(L, N7 ® @ bi(n—1, NN\ Nbr(n—1, DN\a:(n—1, H/N\-++/\
@y, (n—=1, D)V Q (b1, 7)/\ -+ Nby,.., (1, 7)) D™
Then it is clear that 7;(s;/\:-+/\S) is independent of the choice of ¢,,---,%,,a,(i, 7),

bn(?, 7). Thus we obtain a map of A\(F|y,) to L|y, and moreover, 7, coincides
with 7, on U;NU;. Patching them together, we get a homomorphis 7, :

/\F'|y-—L, which is an isomorhism on U. By the uniqueness of r;, we see
that 7, is a G-homomorphism. In order to extend the 7,» to a homomorphism
on the whole space X,, we need

Claim: For all points x of X, depth (O x4, x) =dim (O -1 4(x), 2)-

In fact, by virtue of E.G.A., Ch. IV, 17.5. 8 we have
dim (0 x,,) —depth (O xo,») =dim (Fg, 4(») —depth (Fg, 4x)
because ¢ is smooth. Thus
depth (0 x,,x) 2 dim (Ox,,x) —dim (O g, o) =dim (G140, 2)-

Since codim(X,—U";, X;,)=2 for all points y of @, the above claim im-
plies that depth(@x,, ) =2 for all points x of X,—U’. By this and E.G.A., Ch.
IV 5.10.5 we know

x(L|y)=L

where 7:U’—X, is the natural open immersion. Thus 7, can be extended to
a homomorphism on X, as follows

4 v «Cror
F AF = 1 AF [ o), po(L o)=L

where «a is a natural G-homomorphism. Since 7, p; are flat, we have
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*(L | v) = Qe Xa(rp)*(L | )
pa*nx(L1 ) = (Le X )s(P2,0)*(L | )
Pl AF ) =L X DalroHAF 1)
D1 AF | )= (o X DaBo ) AF | )
which imply that 74(ry-) is a G-homomorphism. g.e.d.

Following D. Gieseker we denote L in the above lemma by detF. From
NOW On we assume

(4.3) for all invertible sheaves A on geometric fibres X, of X, which
is numerically equivalent to (det F)Qo.k(y), h°(A) is constant and h'(A)=0
for all positive integers 1.

We also assume for a moment
(4.4) f has a section ¢:S—>X.

Since f is projective, smooth and geometrically integral, the Picard
scheme Picys exists and moreover, the assumption (4.4) implies that we
have a unique Poincaré sheaf L on X XsPicys such that (e X1pjc,,)*(L)=
Opicy,s» Let v be the morphism of @ to Picys defined by detF" and let P be a
union of a finite number of connected components of Picys such that (1) v(Q)
CP and (2) A°(LQerk(2)) is constant and A(LQepk(z))=0 for all geometric
points z of P and all positive integers . v can be regarded as a morphism of
Q to P and we shall use the notation L instead of L|, By the universality of
L, we see that (1;Xv)*(L)=(det F)®q*(M) for some invertible sheaf M on Q.

Lemma 4.5. v is a G-morphism with the trivial action of G on P.

Proof. Since det F is a G-linearized O x,module, there exists an isomor-
phism z*(det F)=S p,*(det ). Hence we see that

TH(Ly X ) (L) S po* (L X v)*(L) Q g (M)V )R po*q*(M)
= po*(Ly X v)*(L) ® (1 X @)K (M) @ po*(M))
which implies that vt =vp,. Therefore v is a G-morphism. q.ed.

By virtue of E.G.A., Ch. III, 7. 9. 10, the assumption (2) on (P, L) yields
the following;

E=n4(L) is locally free and v¥(E)=v*my(L)=q«(1x X v)*(L) = gx(det F)
QR M, where n: X X P—>P is the projection.

Now set
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Z =P (55m0:(A\V@:05, E))
Z=P (0 0o \V @i, q1(det F)QM)Y)

Then the dual action 6,:V—>V®,k[G] induces a G-action on Z and a G-line-
arization on the tautological line bundle #,(1). Since

V(o 0NV @Oy E)) = s 0o H NV R85, vH(E))
= o 0 NV @i, ax(det F) @M)
= 50 0o \V @106, 4x(det F)) @MY,
we have that Z=Z X ,Q and Z’EP(%,},ﬁQ(/r\V@,ﬁq, gx(det F))V). Thus G

acts on Z and the projections Z—Z and Z—Q are G-morphisms. Moeover,
this action is just one induced by the dual action ¢,. On the other hand, using

(4. 6)

the canonical G-homomorphism 7: /T\F —detF in Lemma 4. 2, we obtain a G-
homomorphism
P AV @ul0=aul AV @40 x) LD, g (AF) 2D g (det ).

Pick a point ¥ of @ and consider GQE(): AV ®k(y)—>qx(det F)®Rook(y). The
assumption (4. 3) provides us with a caonical isomorphism gx(det F)Qok(y)=
H(q ' (y), (det F)®0,k()). Thus if s; denotes the image of e; by I'(¢Qak(y)):
VRk(0)=Ho(q'(9), VRO 15)—>H(q ' (9), FRok(Y)), then GRE())(ei/\
.--/\¢e;,) coincides with s;/\---/\S;, on the largest open set U, over which
FQook(y) is locally free. Since Uy is not empty and sice sy, -++, Sy generate
F®o.k(y), 7®k(y) is not zero. This means that for the G-homomorphism
5:04—>m 0o NV @100, gx(det F)) defined by 7, the dual of 8, 8¥: 5w oo AV
RiOq, gx(det F))V—0,, is surjective. We obtain therefore a G-morphism Q-7
which is a section of the projection Z—Q. Consequently, composing this sec-
tion and the projection Z=Z X ,Q—Z, a G-morphism g:Q—>Z is obtained.
Moreover, the following diagram is commutative

Q-t .z

4.7 \ lo

P

where p is the natural projection.
To analize the morphism g we need

Lemma 4.8. Let f:X—>S be a projective, geometrically integral
morphism, E be a locally free 0 y-module and let both E, and E, be quotient
coherent O -modules of E. Suppose that for a point s of S, E,QReok(s) and
E.RQosk(s) have the same Hilbert polynomial.
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1) If S=Spec(K) with K a field, E, is torsion free and if for a non-
empty open set U of X, E.|y=E.|y as quotient sheaves of E|,, then E, is
isomorphic to E, as quotient sheaves of E.

2) If S=Spec(A) with A an artinian local ring, f is smooth, E, and
E; are f-flat, for the unique point s of S, both E,Qeosk(s) and E.Rosk(s)
are torsion free and if E,|,=E:|, as quotient sheaves of E |, for an open
set with codim(X—U, X)=2, then E, is isomorphic to E, as quotient
sheaves of E.

Proof. Let F; be the kernel of the homomorphism ¢,: E—>E;, J be the
coherent subsheaf of E generated by F; and F; and let E=E/].

1) Since J2F,, there exists a natural homomorphism a:E;—E. Our
assumption implies that Supp(ker(a))© X —U, and hence ker(a) is a torsion
sheaf. By this and the fact that E,; is torsion free, we get that ker(a)=0,
which means that J=F,. Thus F, contains ;. Hence we have the following
exact commutative diagram;

E

¢2./ \w

0—_')F1/F2 E2 El-——>0

N

0 0

Then F;/F;=0 because the Hilbert polynomial of F,/F; is 0. Thus E; is
isomorphic to E; as quotient sheaves of E.

2) Since f is projective and smooth, E; and E; are fflat and since
E Qosk(s) and E,Qosk(s) are torsion free, we obtain the following exact
sequences;

o [0}

0—EQ, LN Eo, o Ep L B B,
where E;° are locally free € -modules and #=dim X (see the proof of Proposi-
tion 2.1 of [8]). Furthermore, for a point ¥ of X with dim(€,,)=d, ker
(f9,). is a free Oy -module. Since F;=ker(¢;), hdgy, .(F,,) < max {dim(0y,,)
—2,0}. Asis claimed in the proof of Lemma 4. 2, depthgy (0 ,)=dim (0y,,).
On the other hand, we know the equality

depthﬁx,z(Fi,z)+hdﬂx,z(Fi,z)=depthﬁx,z(0‘\’,r) (See [2] Theorem 3 7)-

Thus we have that depth(F;,)=min {2, dim(€,)}. This and the assumption
that codim (X —U, X)=2 imply that for all points ¥ in X —U, depthgy .(F:.)
=2. Therefore if j:U—X is the natural open immersion, then j(F;|,)=F;,
which means that F'y=F, as subsheaves of E because j4x(E|,;)=FE. Thus we
see that E, is isomorphic to £ as quotient sheaves of E. g.e.d.

Let R be the open set of @ such that for every algebraically closed field
K, RIK)= {x=Q(K)| FQo.k(x) is torsion free} (see Proposition 2.1 of [8]).
Clearly R is a G-stable open set of Q.
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Proposition 4.9. p|. is an immersion. To be more precise, there
exists a G-stable open set Zy of Z such that p induces a closed immersion
of R to Z,.

Proof. Let K be an algegraically closed field containing k. Pick two
points %; and %; in Q(K). Suppose that x; is contained in R(K) and that
p2(K)(x)=p(K)(x2). If s is the point in S(K) over which x; and x; lie. Then
both E;=F®e0.k(x;) and E;=F X ook(x2) are quotient sheaves of VR, Ox,,
where X=X QiK. If U is a non-empty open set of Xy over which E;
and E; are locally free, then ¢@a,k(x;):V®:0x,—>E;—0 defines a morphism
a; of U to Grass(N, 7) such that ¢Qo.k(x,)| .V RO,—>E; | is the pull back of
the unversal quotient bundle by a;. The assumption that p(K)(%x;)=p(K)(%x,)
means that SN\ AsP=sPA\---As? in H(Xy, (detFQok(x:)=H(X,
(det F)®ook(x,)), where s, is the image of ¢, in H (X, E;) by I'(¢Q0o.k(x.)).
This asserts that @; =a;, and hence E;|,=E:|, as quotient sheaves of V(X),0,.
Since E; is torsion free, E; is isomorphic to E; as quotient sheaves of V(&),0x,
by virtue of Lemma 4. 8, (1). Thus x,=x,. We obtain therefore

(4.9.1) p(R)Nu@Q—R)=9,
(4.9.2) if x; and %, are mutually distinct points in R(K), then p(K)(x,)
# u(K)(%2).

Since @ is proper over S and since Z is separated over S, p is a proper
morphism (E.G.A., Ch. II, 5.4, 3). Thus if one sets Zy=Z —p(Q —R), then
Z, is G-stable open set in Z because @ —R is a G-stable closed set in @
and g is a G-morphism. (4.9.1) implies that ¢'(Z,)=R, whence p':R—>Z,
induced by p is proper. This and (4.9. 2) say that g’ is a finite morphism
and for every algebraically closed field K, p/(K):R(K)—Z(K) is injective.
Take a point ¥ in R and an artinian local ring A. Let ¥, and %, be A-
valued points of R whose images of the unique point of Spec(A) are x.
Assume that p(A)(%;)=p(A)(*z). Let E,=F ®0QA where Spec(A) is regarded
as a Q-scheme by the A-valued point %;,. Then F,; and E; are quotient coherent
sheaves of V®,0x, with the same X =X X Spec(A). Since E, is flat over
Spec(A) and since for the maximal ideal m of A4, EL-@AA/ m is torsion free,
there exists an open set U’ in X, such that both E; and E, are locally free on
U’ and that codim (X —U’, X)=2 (see Corollary 1.3.1 of [8]). By the same
reason as above, the assumption that p(A)(%,) =p(A)(%:) yields an isomorphism
of E;|, to E;|, as quotient sheaves of V@,ﬁ v Now if we apply Lemma 4. 8,
(2) to this situation, then we see that E; is isomorphic to E, as quotzent
sheaves of V®.fx,. Therefore p/(A): R(A)—>Z,(A) is injective, and hence ¢’ is
an unramified morphism. For a point x of R, set z=g/(x). Then since Oy, is
unramified over 0, k(Xx)=0&5 ./m, is a separablly algebraic extension of k(z)
=0,,./m, and m,=m, 0 ,, where m, and ni, are the maximal ideals of &, and
03, respectively. This implies that k(x)=£(z) because for every algebraically
closed field K, ¢/(K) is injective. On the other hand, since g’ is finite and in-
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jective, Oy , is a finite module over ,,. Combining these results and Nakaya-
ma’s lemma, we see that &,,—0; . is surjective. q.ed.

Now we shall remove the assumption (4. 4) from the above results. Since
f:X—S is smooth, there exists an étale, surjective morphism v:5’—S such
that f/=f XS": X’ XsS’—>S’ has a section ¢’ (E.G.A., Ch. IV, 17.16. 3). we

have the following commutative diagram:

1y > g7

1y x
XoXs(S X SN = X X 5, X g =3 X/p —255, X,

1x X g7
e’;'Iéz”qu” q’“ & lq

QX(S'XSN=Q' X Q=Q' ————— @' =,

e}

where @'=Q XS/, n is the pro;ectlon 71'1 (or, m;) is the first (or, the second,
resp.) projection and where &, €, and &€,” are the natural sections induced by
¢/. Since f/: XS and f"=f XS": X"=X'X 3 X"—>S5"=8"xsS’ have sec-
tions, we can construct P’ and Z’ (or, P and Z”) for X'/, S’ and detF’ (or,
X", 8" and detF", resp.) as in (4. 6) under the assumption that (4. 3) holds for
Q and F, where F' =1y X sn)*(F) and F""=(1 ;X gm,)*(F’). We can find a sub-
scheme P of Picys such that P’=P XS’ and P"=P X S"=P’'XpP’. Let L’
and L” be universal invertible sheaves on X X3P’ and X X P, respectively.
If %, and #. are the projections of P” to P’, then (1yXstt))*(L)=L"Ro M,
and (1xX st2)*(L)= L"Q@e M, for some invertible sheaves M; and M, on P”.
Thus we get an isomorphism a:Z,"=Z"=3Z,"”, where Z,” is the base change

of Z’ by u;: P"—P’. 1f m is the dimension of Z’ over P’, then (/\QZ,/P,)‘ isa
P’-ample invertible sheaf. Since #;*(£,,) is canonically isomorphic to 2,,/pr,
we obtain a canonical isomorphism &:%*((/\2z/p) ) Su*((/\L2z,»)1). It is
clear that (a, &) defines descent data of (Z’, (/\R2z,»)?) for the étale, surjective
morphism #:P’—P. Thanks to the descent theory of quasi-projective schemes

([4] VIII, Proposition 7. 8), there exists a couple of a P™bundle p:Z—P in
the étale topology on P and a p-ample invertible sheaf H on Z such that

ZXpP'=7" and HR,0»=(/\2,,r)"*. Since the actions of G on Z’ and Z”
come from the dual action 6, of G on V, the descent theory of morphisms
provides us with an action of G on Z and a G-linearization on H.
Z// -—pl,-——> Z/ —r___.__,Z
»" " } % »
t u g
P

P// P —
Uy

Clearly 7’ and p are G-morphisms with the trivial action of G on P.
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On the other hand, we have G-homomorphisms ?:AV@kﬁQ%q’*(detF )

and 7: /KV@kﬁQ,%q’*(detF ’) (see the construction of the morphism g before
(4.7)). Since = is flat, it is easy to see that det F'=(1xX gw)*(detF'), q’«(det F)
=n*qy(det F) and =*(7)=7’. We have therefore that for F"=(1,X gm,)*(F")

= (1x X sm2)*(F”) and for 71”:/T\V®k<ﬁo,—)q§£(detF”) (i=1,2),
det F"= (13X gr)¥(det F") = (1x X s71)*(1x X s7)¥(det F)
=(LeX sm2)*¥(1x X sm)¥(det F) = (1 X sme)*(detF),
q"x(det F")=r*q y(det F") =, *n*qy(det F)
=my*q «(det F’) and
P =) T ) e ) =
As in (4.7) we get the mophisms p¢/:Q'—Z" and p,”:Q""—>Z" for ¥ and
7" (i=1, 2), respectively. The above three isomorphisms show that z,” is the
base change of ¢ by i-th projection of S” to S” and p,” = p,”’. By virtue of the

descent theory again, a morphism of @ to Z is obtained. Since X S’=p' and
since ¢/ is a G-morphism, y is also a G-morphism.

Summarizing the above results, we have

Proposition 4.10. Assume that (4. 3) holds for Q and F. Then there
exist an open and closed subscheme P of Picys of finite type over S and a
Pr-bundle p:Z—P in the étale topology on P such that

1) G acts on Z and there exists a p-ample, G-linearized invertible
sheaf H on Z,

2) there exists a G-morphism p:Q—>Z with p| R an immersion,

3) if u:S’>S is an étale, surjective morphism such that f'= f xS’
has a section, then Z X S’ and pX S’ ave the same defined in (4.7).

Proof. By virtue of Proposition 4.9, (t]) XS’ is an immersion and it
is quasi-compact. Then p|, is an immersion because S’ is faithfully flat and
quasi-compact (E.G.A. Ch. IV, 2.7.1). g.e.d.

Our next task is to analize the sets of stable points of Z and R. Let us
begin with some general remarks.

Lemma 4.11. Let G be a geometrically reductive affine algebraic
group over k and let A and A’ be k-algebras with dual actions of G. If
¢:A—>A’ is a surjective G-homomorphism and if x is an element of A’°,
then there exists a positive integer t such that x* is contained in ¢(A°).

For a proof, see [117] 5. 1. B.

Lemma 4.12. Let f: X—>Y be a projective morphism of algebraic k-
schemes. Assume that a reductive affine algebraic group G over k acts on
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X and that f is a G-morphism with the trivial action of G on'Y. Let L
(ov, M) be a G-linearized ample invertible sheaf on X (or, Y, resp.). Then
there exists a non-negative integer o, such that for all a=ay, Xo*(LEK
SHME)=Uyev(X)o (LRoyvk(y)) and X (LR fH(M®)= U e y(Xs)* (LR oy
k(y)).

Proof. The inclusion Xo* (L fH*(M®)CUyer(X)o' (LRoyk(¥))=S;
and X*(LRQ f*(M®)) S U,ev(X)*(LQQok(y))=S; are obvious. Pick a closed
point ¥ of Y and a geometric point x of (X,)*(LXeyk(y)). We may assume
that {Y,|lues HY (Y, M), Y, is affine} covers Y, where Y,={z€Y |u(z)#0}.
Choose a member # of H(Y, M) such that y is a point of Y, and Y, is an af-
fine scheme Spec(B). Set X’=f"'(Y,). By a Leray’s spectral sequence and
the fact Y, is affine, there exists a positive integer #, such that for all #=#n,,
H\(X, I,QL®)=0, where I, is the definig ideal of X, in #,. Let us con-
sider graded G-algebras A=BP(P;:,B;) and A’=k(y)D(PD;>,.B/), where B;=
HY(X’, [®n) and B/=H%X’, (LQeyk(y))®m). Then we get a surjective,
graded G-homomorphism ¢:A—>A’. The assumption that x is a point of
(X)*(LQaoyk(y)) implies that there exists an element a of B¢ such that (X,),
is affine and x is a point of (Xy),. By virtue of Lemma 4. 11, a* is contained
in ¢(A°) for a positive integer ¢. Since ¢ is graded, we can find an element b
in B¢ such that ¢(b)=a‘. X', is an affine scheme because Y, is affine. More-
over, X’,N X,=(X,).. For a large integer a,, bQu®i*"= can be regarded as
an element of H(X, (LR f¥(M®=))®itno)6  Then for s=bRu®Gtmaz+l) X —
X’,. Thus we see that for all large integers a, X is a geometric point of
X#(LR f*(M®)). Furthermore, since X,CS;, S; is an open set of X. There-
fore the above argument shows that for all large integers a, there exists a
positive integer # and sections Sy, -+, S, in H(X, (L& f*(M®))®")¢ such that
S:=U X, and all the X, are affine. This means that S; is contained in
X5(LE fH(M®=)). If x is a geometric point of (Y ,)o*(L&Qeyk()), then X, can
be so chosen that the G-orbit 0(x) of x is closed in X,X).2(x). Since the action
of G at x is regular, there exist a positive integer j and a G-invariant section
s’ of (LR f*(M®))® such that x is a point of X,,, X, is affine and that the
action of G on X, is closed (see Amplification 1.11 of [10]). We see there-
fore that for all large integers a, ¥ is a geometric point of X (L&) f*(M®?)).
Since X,,=S;, S, is open in X. These results show that for all large integers
a, there exist a positive integer #’ and G-invariant sections §’y, -+, 8", of
(LR f*(M®)® such that S;=JX;, all the X, are affine and that the
action of G on each X, is closed. Therefore S, is a subset of X' (L&
SHM®). q.e.d.

We shall apply the above lemma to the following situation. Let H be the
_G-linearized invertible sheaf on Z obtained in Proposition 4.10, M be an S-
ample invertible sheaf on P and let {U;} be a finite affine open covering of S.
Lemma 4. 12 for XZZUL, I/Ui, fszn L=HU¢=H|ZU¢ and M:MIPUi im-
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plies that if one replaces H by HXp*(M®?) for a sufficiently large 1nteger a,
then for all 7,

(Zy)'(Hy)= U (Z o (H &0 k()
(Zy)*(Hy)= U (Z ) (H&Qork(y))

yEPU;

(4.13)

For the invertible sheaf £z(1) corresponding to the hyperplanes in Z,=P,,
H®eopk(y) is isomorphic to Oz(m+1). Thus Proposition 4.12 provides us
with a criterion for stability of a geometric point of Zy,. On the other hand,
Proposition 1. 18 of [10] says that

(4.14) (Ry)o"(w*(Hy) | Ru) 21 ) {(Zu)o"(H )}

The following which is due to D. Gieseker is an interpretation of Proposi-
tion 4.1 in the words of sheaves.

Lemma 4.15. Suppose that a geometric point vy of Ry, satisfies the
condition

(4.15.1) '(¢Rk()):VR:k(»)—>H Xy, FQRQok(y)) is bijective and for
all proper coherent subsheaves E (#0) of FRe.k(y) gener-
ated by a subset of HY(X,, FQo.k(y)), the following ine-
quality holds;

(X, EYr(EYh(Xy, FQok())/ 7.
Then y is a geometric point of (¢| ) * {(Zu)*(Huy)}.

Proof. The point z=p(y) can be regarded as a k(y)-linear map T, of

AVRk() to U=H(Xy, (det F)®aok(y)). If z is not stable in Zy, then (4. 13)
shows that T, is not stable, and hence there exist a subspace W of V&).k(y)
and a T,-independent set of vectors {v, -+, v} in W such that every vector in
W is T,-dependent on vy, -+, v, and that dimW =dN /r=dh"(X,, FQok(¥))/7
by virtue of Propsition 4. 1. Let E be the subsheaf of F&Qgyk(y) generated by
(T(¢RQE()w)|weW}. Then it is easily seen that #(E)=d and h%(X,, E)=
dimW. This contradicts to the assumption (4. 15. 1). q.e.d.

The following is an easy generalization of Theorem 1. 4.

Lemma 4.16. Let f:X—S be a projective morphism of algebraic k-
schemes. Assume that a reductive affine algebraic k-group G acts on X
and f is a G-mor phism with the trivial action of G on S. Let 04(1) be a G-
linearized f-ample invertible sheaf on X and let X*(0x(1)) (o7, X**(0x(1)))
be (X u)o'(@xu 1) (or, U X v)*(@xu(l)), resp.), where {U;} is a finite
affine open covering of S (note that they are independent of {U.}). Then
a good quotient (Y, 9) of X*(0(1)) by G exists. Moreover,

(1) ¢ is affine and universally submersive,
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(ii) for the natural morphism h:Y—>S, there exists an h-ample in-
vertible sheaf M on'Y such that g*(M)=0,(m) for some positive integer m,

(i) there exists an open subset Y' of Y such that X (0x(1))=¢g (Y")
and (Y', 9| x5(0x1)) iS a geometric quotient of X (0x(1)) by G.

Proof. Since {U}} is a finite covering and since all the X, are noetheri-
an schemes, there exist a positive integer m and G-invariant sections §;®, ---,
s in H(X y,, Ox(m)) such that all the (X¢,)s,« =U,;® are affine and |J,U,® =
(Xv)*(@xy,(1)). By virtue of Theorem 1.1, there exists a good quotient V,®
of U;” by G. Since for all affine open set U’=Spec(A) of V,®, I'(U,®
Xyl 0)°=T'U;®, 0)°Qrv;»,ov,«)A=A (see [10] p. 9, Remark 7) and
since Spec(I"(U;® X y,»U’, 05)°) is a good quotient of U, X v, U’ by G,U’
is a good quotient of U;® X y,&U’ by G. Thus we obtain

(4.16.1) for all open set U’ of V,, U’ is a good quotient of U;® X y, U’
by G.

Hence we can construct a good quotient Y; of (X y,)*(@xy,(1)) as in the
proof of Theorem 1.10 of [10]. Moreover, we see, by the same argument as
above, that for all open sets U’ of U,, Y ; XU’ is a good quotient of X X U".
Thus for U;;=U;NU;, Y, XU,; is a good quotient of X XU,; by G. Hence
we can patch Y'; together and obtain a good quotient (Y, g) of X by G. Fur-
thermore, 5,4 /5% is induced by a function ¢§}” of I'(V ;@ NV {", 6,) by virtue
of (4.16.1). Clearly {¢§/’} forms a Czech 1-cocycle for the covering {V;©} of
Y and in the sheaf #,*%. Thus we get an invertible sheaf M on Y such that
g*¥(M)=0x(m). The proof of the fact that M|y, is ample is completely same
as that in the proof of Theorem 1. 10 of [10]. The rest of the proof is similar
to that of Theorem 1. 10 of [10].

Now we come to our main theorem of this section.

Theorem 4.17. Assume that (4.3) holds for Q and F. Let U be a
G-stable subscheme of R such that every geometric point of U satisfies the
condition (4. 15.1). Then there exist an S-scheme Y and an S-morphism
q:U->Y such that (Y, g) is a geometric quotient of U by G and Y is quasi-
projective over S.

Proof. Since p,:U—Z is an immersion and U is noetherian, z|, is quasi-
affine. Thus, for a finite affine open covering {U,} of S, the morphism g,=
(plyXU; of V.=UXU, to Z;=ZXsU; is quasi-affine. Then Proposition
1. 18 of [107] implies that (V,)o*(zt:*(H | z)) contains g,  {{Z,)o"(H | z)}. On the
other hand, Lemma 4. 15 and our assumption assert that V; is a subset of
e {(Z Do (H | 2)}. Thus U=(p| )" {Zo*'(H)} =Uo*((| )*(H)) under the nota-
tion of Lemma 4.16. Therefore we obtain, by virtue of Lemma 4.16, a
geometric quotient (Y, ¢) and an S-ample invertible sheaf M on Y such
(M) =(g| ,)*(H®) for some positive integer . g.e.d.
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Remark 4. 18. Since the center of SL(V, k) acts trivially on @, the
above results can be regarded as those for the action of PGL(N, k) and also
for the action of GL(N, k).

§5. Construction of moduli of stable sheaves.

As in § 4, let f: X—S be a smooth, projective, geometrically integral mor-
phism of algebraic k-schemes and let #4(1) be an f-vary ample invertible sheaf
on X which satisfies the condition (3. 4). In this section, combining the results
of preceding sections, we shall construct coarse moduli schemes of stable sheaves
on the fibres of X over S. Without losing any generality, we may assume that
S is connected. Let # be the relative dimension of X over S, / be the degree
of 04(1) and let ¢(X) be the degree of /n\QX,S with respect to #,(1). For a posi-
tive integer 7, let H be a numerical polynomial;

Hm)=rhm"/n! + {a,—rc(X)/2) m* !/ (n—1)! +terms of degree<n—1.

To fix ideas let us introduce the following contravariant functor Y% of the
category (Sch/S) of locally noetherian S-schemes to the category of sets (Sets):

For Te(Sch/S), 2 %«(T)={E| E has the properties (5. 1. 1) and (5. 1. 2)} /
~, where~is such an equivalence relation that E~E’ if and only if E=E’
®erL for some invertible sheaf L on T.

(5.1.1) FE'is a T-flat, coherent O x4 r-module.

(5.1.2) For all geometric points ¢ of 7, the Hilbert polynomial of
EQek(t) with respect to Ox,(1) is H and EQek(t) is stable
with respect to 0 x(1)Xos0 1.

2% is not necessarily a sheaf for the étale topology in (Sch/S) even if f
has a section. The aim of this section is to show that ¥ has, neverthless, a
coarse moduli scheme.
To construct the moduli scheme of > % we need a subfunctor X} %5 of
25st
For Te(Sch/S), S %4¢T)={Ec X%s(T)| for all gemetric points ¢ of T,
EQueo k() is e-stable}.
For an integer m, set 2 %s(m)(T)={EQRQp*(Ox(m))|Ec X %s(T)} and
Lem)(T)= (EQp,*(Ox(m)) | E€ L %5(T)}, where p; is the first projection of
X XsT to X. Then %5 (or, 246 is isomorphic to X %s(m) (or, 2 5is(m),
resp.). Thus we may replace ). %5 and Y. %5 by 2%s(m) and > %¢(m), respec-
tively. By virtue of Corollary 3.3.1 and Proposition 3.6, we can find an
integer m, such that for all integers m>m,, all geometric points s of S and for
all E in X %5(Spec(k(s))),
(5.2.1) EQROx(m) is generated by its global sections and h(X,,
E®0x,(m))=0 if i>0,
(5.2.2) if an invertible sheaf L on X, has the same Hilbert polyno-
mial as det(EQOx,(m))=c(EQRQOx,(m)), then h'(X,, L)=0 for
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all positive integers i.
(5.2.3) for all coherent subsheaves E’ of E with 0+E’+E,
h(Xs, E'Q0x,(m))<r(Eh"(Xs, EQOx,(m))/r.

We may assume that m,=m, if e>e’. Let H,(m)=H(m-+m,), then the
Hilbert polynomial of a member of > #(m,)(Spec(k(s))) is H,. Set N,=
H(m,), then the condition (5.2.1) implies that for every member E of
21%5(m,) (Spec(k(s))), h°(X,, E)=N..

Now let us consider QzQuotg}@Ne ,xs and the universal qoutient sheaf
6. V. R0 xxs50—>F,, where V, is an N,-dimensional vector space over k. Then,
by virtue of Lemma 3. 5, for each integer with 0<e’<e, there exists an open
set R, such that a geometric point y of @ is contained in R, if and only if

(5.3.1) I'(pQk(¥)):V.—> H' Xy, F.Q0zk(y)) is bijective,
(5.3.2) Fe®0ak(y) is contained in X %5 (m,) (Spec(k(¥))).

For every geometric point s of S and for every E of };%¢ (m,) (Spec (k(s))), there
exists a surjective homomorphism «:V,®.fx,—~E such that I'(a):V &.k(s)—
H(X,, E) is bijective by virtue of (5.2.1). By the universality of (@, ¢, F.), a
corresponds to a geometric point y of @ lying over s. Clearly y is a geometric
point of R,,. Thus we obtain a surjective map R, . (k(s))— X% (m.)(Spec
(k(s))). On the other hand, for a natural action 7 of G=PGL(N,, k) on Q, R,...
is G-stable and if two geometric points y; and ¥, of @ are in the same orbit of
G, then clearly F Rosk(y)=F.Q0ozk(y:) (see §4). Conversely assume that for
geometric points ¥; and y; in R, . (k(s)) with s a geometric point of S, there
exists an isomorphism 8: F.Qozk(y1)SF.Qok(y2). Then I'(¢&Qk(y2)) ' ['(B)($
Rk(y1)): V. Ruk(s)SH(X,, F.Qozk(y)SH (X, F.Q0:k(y:))SV . Qik(s) is
a linear isomorphism which defines a k(s)-rational point § of G. Hence we
see that 7(g, y1)=y., whence y; and y: are in the same orbit of G. We get
therefore a natural bijection

(5.4) R, .(k(s))/G(k(s)=> L5 (m.)(Spec (k(s)))= L& (Spec(k(s)).

Let {Q, -+, Q.} be the set of connected components of @ having a non-
empty intersection with R, .. Then since the image of @; to Picys by the
morphism defined by (detF,)| x«so; is contained in a connected component of
Picys, for every geometric point y of @;, (det F,)®oyk(y) has the same Hilbert
polynomial as (detF,)®eozk(y,) where y, is a geometric point of @;N R, ..
Thus each @; enjoys the property (4.3) by virtue of the assumption (5. 2. 2).
Theorem 4.17 and the assumption (5. 2. 3) provides us with a geometric quo-
tient (M%,, 99.) of Q;N R, by G. Set M, . =]|,M%, and g, =1[;¢%, then
(M, g..) is a geometric quotient of R,, by G and M,,. is quasi-projective
over S.

Proposition 5.5. M, is a coarse moduli scheme of Y, %%, that is,
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(i) for all geometric points s of S, there exists a bijective map 6, of
225§ (Spec(k(s)) to M. ..(k(s)),

(ii) for Te(Sch/S) and Ec 355 (T), there exists a morphism f4° of
T to M., such that f3°(t)=0(EQaok(t)) for all points t in T (k(s)). Movre-
over, for a morphim g:T'—>T in (Sch/S),

f5 9= xor @

(iii) if M'e(Sch/S) and maps 0, :3 % (Spec(k(s)))—>M'(k(s)) satisfy
the above condition (i), then there exists a unique S-morphism ¢ of M,
to M’ such that ¢(k(s))+0,=0, and ¢+ f3° = f'y for all geometric points s of
S and for all E€ Y, %¢(T), where f'5 is the morphism given by the condition
#1) for M.

Proof. The proof is essentially the same as that of Theorem 4. 11 of [7].
The condition (i) is just (5.4). The restriction of ¢ and F, to X XsR, . are
denoted by ¢,,. and F,,. Then the triple (R,,, ¢¢.er» F..) has the following
universal property:

(56.5.1) Forall T in (Sch/S), E in 1, %¢(T), and for all surjective homo-
morphisms a:V,Q:0xxsr—> E such that for all geometric points
t of T, I'laQk®):V R:k(t)>HYX,, EQpk(t)) is bijective,
there exists a unique morphism %, of T to R, such that (1,

Xsh)*(Fe) = E and (L X sh)¥(.,.) = a.

Assume that T°=(Sch/S) and E€}%¢(T) are given. Set E'=EQ®
D1*(Ox(m,)) with the first projection p; of X XT to X, then E’ is a member
of X %&¢(m,)(T), and hence hi(X,, E'Qeo-k(t))=0, i>0 and E'QRepk(t), is
generated by its global sections for all geometric points £ of 7. By these and
the fact that the second projection p; of X XT" to T is proper and E’ is T-flat
imply that E” =(p.)x(E") is a locally free & ,-module of rank NN, and the natural
homomorphism f:p,*(E”)—E’ is surjective. Let us cover T by a family of
open sets {T';} such E”|r, is free. Take a basis {€’, ---, ey} of each E”|r,.
Using this basis, we obtain a surjective homomorphism

B::V . &l xxst— D X(E") | r,— LiLN E'| 7,

Moreover, for all geometric points ¢ of Y, E"Qok{t)>HYX,, E'Qork(t)),
and hence I'(8,Qk()):V . X:k(t)>H(X,, E'Qork(t)) is bijective. Therefore
the universal property (5.5.1) gives us a unique morphism %,:7,—>R, . such
that (1yX sh)*(F,,)=E'|r, and 8,=(1xX sh,)*(¢...). Since a change of basis
of E”|r, is represented by a T-valued point of GL(NN,, k) and since M, is a
geometric quotient of R, .. by an action of GL(N,, k), the morphism f,=g,.. -k,
is independent of the choice of a basis of E”|r,. Hence f;=f,on T,NT,
We get therefore a morphism f%* of T to M,..® Next assume that a
morphism ¢ of 7/ to T in (Sch/ S)is given. The fact that #2'(X,, E’ ®0Tk(t)) O

5} It is clear that fﬁ@ﬂrl‘ f -¢’ for every invertible sheaf L on T.
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>0 for all geometric points ¢ of T implies that ¢g*(E")=(p:)x(1xXsg(*)E"),
where p;’ is the projection X XsT’—>T’. Thus if we define 8/:V . Qilxx1—>
(AxXsO)*E)| 7, on T,/=g Y(T,) by using the basis {g*(e’1), ---. g(e})} of
g*(E")| 7, then B/=1xXs(g|7,))*(8). Similarly to the above, 8/ defines a
morphism A/:T/—>R,,. It is obvious that 4/=h,+g. Therefore, f4“-g=
S x> which completes the proof that M,,. has property (ii). In order to
prove (iii), let us consider the following diagram;

T’

GX R, . R,
qim, S'Feer I}IJ:IFM'

where 7/ is the action of G=SL(N,, k) on R,,. induced by the r in §4 and
where ¢. is the projection. Since F,, carries a G-linearization, (z/)*(F,,) is
isomorphic to g;*(F..), which implies that f’g, ..*q2=f"Fe*7t’. Thus there
exists a unique mophism ¢: M,  —M' with ¢+g, .= f'F. . because (M, ., Go.0r)
is a geometric quotient of R, . by G. By the functoriality of f%* and f’, and
by the universality of R, .., we see that ¢« f4“ = f/; for all E in X %5 (T). Itis
clear that ¢(k(s))«0,=0, . g.e.d.

Since both M,,,» and M,, . are coarse moduli schemes of the same functor
B e obtain a unique isomorphism ¢¢, o, : M, o—>M,, » such that ¢¢, ., &€
= f%°. Since M, is an open subscheme of M,,, M, . can be regarded an
open subscheme of M, through ¢ ... Taking the inductive limit of {},,}, an
S-scheme My, s(H) is obtained. Since each M,, is quasi-projective over S,

M y,s(H) is locally of finite type and separated over S.

Theorem 5.6. The functor 3% has a coarse moduli scheme M ,,s(H)
in (Sch/S). Moreover, M y(H) is separated and locally of finite type
over S.

Proof. For all geometric points s of S, U, X %s(Spec(k(s))= 2 %s(Spec
(k(s))) by virtue of Corollary 1. 2.1 of [8]. Thus Proposition 5. 5 implies that
M y,s(H) enjoys the property (i) of coarse moduli schemes for };%s. To show
the property (ii), take a 7 in (Sch/S) and an E in »%4(T). By virtue of
Lemma 3. 5, there exists an ascending sequence of open sets {7} .2, of T such
that U, T.=T and that a geometric point ¢ is in T, if and only if ERgk(t) is
e-stable. Set E,=FE|xxsr,. Let us consider a pair of T.C T, (¢/<e). Proposi-
tion 5.5 provides us with morphisma (%" :T.,—>M, . and f%:T,—>M.,,
such that ¢f .« f%" = f%. By the construction of f%/,, we see that je«f4 =
S &xiy+ (&, for the open immersions ¢:7T,—T, and j:M,,—>M,, Thus we get
Jods e [ = f4°+1, whence a morphism f;:T—>M 4,5(H) is obtained. For the
morphism ¢:7"—T in (Sch/S), ¢g(T.) is contained in T,, where T, for T" is
the same as T, for T. Thus the functoriality of f is an immediate consequence
of that of f%%. Finally let us show the property (iii). Assume that {M’, £/, 6./}
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has the property (ii). Then it enjoys the property (ii) for }.%% Thus we get
a morphism ¢.:M,,—>M’'. 1f ¢=e, then (¢o|an..)* f%°=f5, and hence the
uniqueness of ¢, implies that ¢,=¢. | se.. We have therefore a unique mor-

phism ¢: M ys(H)—>M’ such that ¢ fy= f/ g.e.d.

We shall close this article by the following remark.

Remark 5.7. 1) Let S’>S be a morphism of algebraic k-schemes and
let X'=X XsS’. Then M ys(H)XsS'"=M y,s(H). If the characteristic of & is
zero, then this is easy because the geometric quotient in Theorem 4.17 is a
universal one (see [107]). In general case, this is a corollary to the fact that
R.. is a principal fibre bundle over M, by the group G (see the forthcoming

paper [9]).

2) Is My (H) of finite type over S? This is equivalent to the following
question: Is the family of classes of stable sheaves with a fixed Hilbert
polynomial on the fibres of X over S bounded? This is true if the relative
dimension of X over S is 1 or 2 (see [1], [7] and [3]) or if »=2 (see [9]).
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