Integral cohomology ring of the symmetricspace *EII*

By

Kiminao Ishitoya

(Received July 7, 1976)

§1. Introduction

The simply connected Riemannian symmetric spaces have been classified. For classical cases, their cohomology rings are well known. For exceptional cases, those of **FII**, **EIII**, **EIV** and **EVII** are known [1], [14], [15], and in these cases they are torsion free. The remaining spaces **G**, **FI**, **EI**, **EII**, **EV**, **EVI**, **EVIII** and **EIX** have 2-torsions, and the cohomology rings of the first two are known [5], [12].

The purpose of this paper is to determine the integral cohomology ring of the compact Riemannian symmetric space EII. As a homogeneous space, EII is expressed by $E_6/S^3 \cdot SU(6)$, where E_6 is the compact 1-connected exceptional Lie group of rank 6 and $S^3 \cap SU(6) = \mathbb{Z}_2$ [12].

In order to determine $H^*(EII)$, we first consider a homogeneous space E_6/C , where $C = T^1 \cdot SU(6)$ is the centralizer of a one-dimensional torus.

Our first result is

Theorem 3.2.
$$H^*(E_6/C) = \mathbb{Z}[t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24}),$$

where $\deg t = 2$, $\deg u = 6$, $\deg v = 8$, $\deg w = 12$, and

(2.6)
$$r_{12} = u^2 + 2w - 3vt^2 - ut^3 + 2t^6, \quad r_{16} = t^8 + 3wt^2 - 3v^2.$$

 $r_{18} = 2wu - wt^3 \quad and \quad r_{24} = w^2 + 26v^3 - 15v^2t^4 - 21wvt^2 + 9wut^3.$

Using the Gysin exact sequence for the S1-bundle: $E_6/SU(6) \rightarrow E_6/C$ we have

Corollary 3.5. $H^{i}(E_{6}/SU(6)) \cong \mathbb{Z}$ for $i = 0, 6, 8, 12, 14, 20, 23, 29, 31, 35, 37, 43; <math>\cong \mathbb{Z}_{2}$ for i = 18, 26; $\cong \mathbb{Z}_{3}$ for i = 16, 28 and = 0 for the other i.

Next applying the Gysin exact sequence for the fibering $S^2 \rightarrow E_6/C \rightarrow EII$, we have the following theorems.

Theorem 5.2.
$$H^*(EII; \mathbb{Z}_2) = \mathbb{Z}_2 < y_2^{i+3}, \ y_{12}' y_2^i; \ 0 \le i \le 11 >$$

 $+ \mathbb{Z}_2 < 1, \ y_2, \ y_3, \ y_2^2, \ y_3 y_2, \ y_3^2, \ y_3^2 y_2 > \otimes \Delta(y_{12}, \ y_{20}),$

where $\deg y_i = i$, $\deg y'_{12} = 12$.

The relations are given in Theorem 5.3.

Theorem 6.1.
$$H^*(EII; Z[1/2]) = Z[1/2][a, b, c, d]/(q_{12}, q_{16}, q_{18}, q_{24}),$$

where $\deg a = 4$, $\deg b = 6$, $\deg c = 8$, $\deg d = 12$, and

(2.8)
$$q_{12} = b^2 + 8d - 6ca + a^3, \quad q_{16} = a^4 + 12da - 6ca^2 - 3c^2$$
$$q_{18} = db \quad and \quad q_{24} = d^2 + c^3 - \frac{3}{2}dca.$$

Here we use the following notations. Z[1/2] indicates the subalgebra of Q generated by 1/2 over Z. $A < x_1, ..., x_n >$ denotes the A-module spanned by linearly independent elements x_i 's and $\Delta(x_1, ..., x_n) = A < x_1^{a_1} \cdots x_n^{a_n} (a_i = 0, 1) >$, where $A = Z_2$, Z[1/2] or Z.

Remark that the elements a, b, c, d in Theorem 6.1 are integral cohomology classes, and they are uniquely determined by

$$p^*(a) = t^2$$
, $p^*(b) = 2u - t^3$, $p^*(c) = 2v - t^4$,
 $p^*(d) = w$ and $\rho_2(b) = y_2^3 + y_3^2$,

where p^* is induced by the projection $p: E_6/C \rightarrow EII$, and ρ_2 is the mod 2 reduction. There exist more integral cohomology classes χ , d', e and f such that

$$2\chi = 0$$
, $\rho_2(\chi) = y_3$, $d' = \frac{1}{2}(ca + a^3)$, $e = \frac{1}{2}(cb + ba^2)$ and $f = \frac{1}{2}dc$.

Using Theorems 5.2 and 6.1 we obtain the structure of $H^*(EII)$.

Theorem 6.3. Tors. $H^*(EII) = \mathbb{Z}_2 < \chi, \ \chi^2 > \otimes \Delta(d, f)$ and the Poincaré polynomial is $P(EII, t) = (1 + t^4 + t^8 + t^{12})(1 + t^6 + t^{12})(1 + t^8 + t^{16})$.

The ring structure will be given in Theorem 6.4 with the generators

$$\chi$$
, a , b , c , d , d' , e and f

and various relations.

The paper is organized as follows. In §2 we calculate the invariant subalgebras of the Weyl groups in order to determine the rational cohomology of E_6/C and EII, and in §3 $H^*(E_6/C)$ is determined. In §4 we discuss $H^*(EII)$ and $H^*(EII; \mathbb{Z}_2)$ in low dimensions, and $H^*(EII; \mathbb{Z}_2)$ is determined in §5. With these data the final section §6 completes the determination of the ring structures of $H^*(EII; \mathbb{Z}_2[1/2])$ and $H^*(EII)$.

I would like to take this opportunity to thank Professor H. Toda for his invaluable and ceaseless help in writing this paper. I also thank Professor A. Kono for his various advices.

§2. Rational cohomology of $E_6/T^1 \cdot SU(6)$ and EII

Let T be a maximal torus of E_6 . The Dynkin diagram of E_6 is

where α_i ($1 \le i \le 6$) are the simple roots and $\tilde{\alpha} = \alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6$ is the highest root ($\tilde{\alpha} = w_2$).

Let C and U be the identity components of the centralizers of $T^1 = \{x \in T | \alpha_i(x) = 0 \ (i \neq 2)\}$ and of the element $x_2 \in T^1$ such that $\alpha_2(x_2) = \frac{1}{2}$, respectively. Then the Weyl groups $\Phi(\)$ of E_6 , C and U are generated by the following elements:

$$\Phi(E_6) = \langle R_i; i = 1, 2, 3, 4, 5, 6 \rangle,$$

$$\Phi(C) = \langle R_i; i \neq 2 \rangle,$$

$$\Phi(U) = \langle R_i, \tilde{R}; i \neq 2 \rangle$$

where R_i (resp. \tilde{R}) denotes the reflection in the plane $\alpha_i = 0$ (resp. $\tilde{\alpha} = 0$) in the universal covering of T.

Recall from [12; Theorem 2.1]

(2.2)
$$U = S^3 \cdot SU(6), C = T^1 \cdot SU(6) \text{ and } S^3 \cap SU(6) = T^1 \cap SU(6) \cong \mathbb{Z}_2.$$

According to [5] we may consider that each weight is an element of $H^2(BT)$

= $H^1(T)$, then the fundamental weights w_i ; i=1,2,...,6 form a basis of $H^2(BT)$, and $H^*(BT)=Z[w_1, w_2,..., w_6]$.

The reflections R_i 's and \tilde{R} act on $H^*(BT)$ as follows:

$$\begin{split} R_i(w_i) &= w_i - \sum_j (2 < \alpha_i, \ \alpha_j > / < \alpha_j, \ \alpha_j >) w_j, \qquad R_i(w_k) = w_k \quad \text{for} \quad k \neq i, \\ \widetilde{R}(w_i) &= w_i - m_i w_2 \quad \text{for} \quad \widetilde{\alpha} = \sum_i m_i \alpha_i. \end{split}$$

As in [14] we have the following isomorphism (2.3) and the table (2.4) of the action by taking following generators:

$$t_6 = w_6$$
, $t_i = R_{i+1}(t_{i+1})$ (i = 5, 4, 3, 2), $t_1 = R_1(t_2)$ and $t = w_2$.

(2.3)
$$H^*(BT) = \mathbb{Z}[t, t_1, t_2, ..., t_6]/(3t - c_1)$$
 for $c_1 = t_1 + t_2 + \cdots + t_6$,

-		R ₁	R_2	R ₈	R_4	R_5	R_6	Ř
2.4)	<i>t</i> ₁	t ₂	$t-t_2-t_3$		<u> </u>			t_1-t
	<i>t</i> ₂	<i>t</i> ₁	$t-t_1-t_3$	<i>t</i> ₈				t_2-t
	<i>t</i> ₃		$t-t_1-t_2$	<i>t</i> ₂	<i>t</i> ₄			t_3-t
	<i>t</i> ₄				t ₃	t ₅		t_4-t
	t ₅					t ₄	<i>t</i> ₆	t_5-t
	<i>t</i> ₆						<i>t</i> ₅	t_6-t
	t		$t_4 + t_5 + t_6 - t$					-t

where the blanks indicate the trivial action. Denote by

$$c_i = \sigma_i(t_1, t_2, ..., t_6)$$

the *i*-th elementary symmetric function on the variables t_i 's $(c_0 = 1)$, then we have the following

Lemma 2.1. (i) $H^*(BT)^{\Phi(C)} = [t, c_1, c_2, ..., c_6]/(3t - c_1)$.

(ii)
$$H^*(BT; \mathbf{Q})^{\Phi(U)} = \mathbf{Q}[t^2, c_2, c_3 - 2c_2t + 5t^3, 2c_4 - 3c_3t, c_5 - c_4t + c_2t^3 - 3t^5, 4c_6 - 2c_5t + c_3t^3].$$

Proof. (i) follows easily from (2.1), (2.3) and (2.4). This and (2.1) imply that $H^*(BT; \mathbf{Q})^{\Phi(U)}$ consists of all \tilde{R} -invariant polynomials in $H^*(BT; \mathbf{Q})^{\Phi(C)} = \mathbf{Q}[t, c_2, ..., c_6]$. Applying \tilde{R} to the equality $\sum c_i = \prod (1+t_j)$, we have $\sum \tilde{R}(c_i) = \prod (1-t+t_j) = \sum (1-t)^{6-i} c_i$,

and $\tilde{R}(c_2) = c_2$, $\tilde{R}(c_3) = c_3 - 4c_2t + 10t^3$, $\tilde{R}(c_4) = c_4 - 3c_3t + 6c_2t^2 - 15t^4$,

$$\tilde{R}(c_5) = c_5 - 2c_4t + 3c_3t^2 - 4c_2t^3 + 9t^5, \quad \tilde{R}(c_6) = c_6 - c_5t + c_4t^2 - c_3t^3 + c_2t^4 - 2t^6.$$

Since $\tilde{R}(t) = -t$ and $\tilde{R}^2 = \text{identity}$, t^2 and $c_i + \tilde{R}(c_i)$ (i = 2, 3, 4, 5, 6) are \tilde{R} -invariant. It is easy to see that every polynomial f of $Q[t, c_2, ..., c_6]$ is written uniquely in the form g + th for polynomials g and h in t^2 and $c_i + \tilde{R}(c_i)$. If f is \tilde{R} -invariant, then $g + th = f = \tilde{R}(f) = \tilde{R}(g) + \tilde{R}(t)\tilde{R}(h) = g - th$. It follows that f is \tilde{R} -invariant if and only if it is a polynomial in t^2 and $c_i + \tilde{R}(c_i)$. This proves (ii).

Putting

$$x_i = 2t_i - t$$
 (i = 1, 2,..., 6)

we have the following $\Phi(E_6)$ -invariant set

$$S = \{x_i + x_j, t - x_k, -t - x_k; i, j, k = 1, ..., 6; i < j\}.$$

Thus we have invariant forms

$$I_n = \sum_{x \in S} x^n \in H^{2n}(BT; \mathbf{Q})^{\Phi(E_6)}.$$

Consider the following elements $(r_i \in H^i, u \in H^6, v \in H^8, w \in H^{12})$:

$$\begin{split} r_4 &= c_2 - 4t^2, \\ u &= \frac{1}{2}c_3 - t^3, \quad v = \frac{1}{3}(c_4 + 2t^4) - ut, \quad w = c_6, \\ r_{10} &= c_5 - 3vt - ut^2 + 2t^5, \\ r_{12} &= u^2 + 2w - 3vt^2 - ut^3 + 2t^6, \\ r_{16} &= t^8 + 3wt^2 - 3v^2, \\ r_{18} &= 2wu - wt^3 \\ r_{24} &= w^2 + 26v^3 - 15v^2t^4 - 21wvt^2 + 9wut^3. \end{split}$$

Then we have the following

and

Lemma 2.2. $H^*(BT; \mathbf{Q})^{\Phi(E_6)} = \mathbf{Q}[I_2, I_5, I_6, I_8, I_9, I_{12}]$ and as ideals $(I_2, I_5, I_6, I_8, I_9, I_{12}]$

$$I_6, I_8, I_9, I_{12}$$
 = $(r_4, r_{10}, r_{12}, r_{16}, r_{18}, r_{24}).$

Proof. The first half is proved in Lemma 5.2, (i) of [14]. For the second half we shall show

$$(2.5) I_n \equiv k_n r_{2n} \bmod a_n (k_n \neq 0) for n = 2, 5, 6, 8, 9, 12,$$

where a_n is the ideal generated by I_j 's of j < n.

In §5 of [14], I_n is computed by the formula

$$I_n = \frac{1}{2} \sum_{i+j=n} {n \choose i} s_i s_j - 2^{n-1} s_n + 2 \sum_{i+2,j=n} {(-1)^i {n \choose i} s_i t^{2j}}$$

where $s_i = x_1^i + \dots + x_6^i$, and it is described with t and $d_i = \sigma_i(x_1, \dots, x_6)$ by use of Newton formula. Then the first four of the following relations are already given in (5.10) of [14]:

$$I_{2} = -12I'_{2} \qquad \text{for} \quad I'_{2} = d_{2} - t^{2},$$

$$I_{5} \equiv -60I'_{5} \mod \mathfrak{a}_{5} \qquad \text{for} \quad I'_{5} = d_{5} + d_{3}t^{2},$$

$$I_{6} \equiv 144I'_{6} \mod \mathfrak{a}_{6} \qquad \text{for} \quad I'_{6} = d_{6} - d_{4}t^{2} + \frac{1}{8}d_{3}^{2},$$

$$I_{8} \equiv 80I'_{8} \mod \mathfrak{a}_{8} \qquad \text{for} \quad I'_{8} = d_{4}^{2} - 36d_{6}t^{2} + 22d_{4}t^{4} + t^{8},$$

$$I_{9} \equiv 756I'_{9} \mod \mathfrak{a}_{9} \qquad \text{for} \quad I'_{9} = (d_{6} + d_{4}t^{2} + 2t^{6})d_{3}$$

$$I_{12} \equiv 720I'_{12} \mod \mathfrak{a}_{12} \qquad \text{for} \quad I'_{12} = 39d_{6}d_{4}t^{2} - 741d_{6}t^{6} + 403d_{4}t^{8} + 23t^{12}.$$

and

Next, as on p. 275 of [14], we rewrite I_n in terms of t and c_i 's by use of the formula

$$d_n = \sum_{i=0}^{n} (-1)^{n-i} 2^{i} \binom{6-i}{n-i} c_i t^{n-i}, \qquad c_1 = 3t.$$

From $d_2 = 4c_2 - 15t^2$ it follows that

$$I_2' = d_2 - t^2 = 4r_4$$
.

Modulo $\mathfrak{a}_5 = (I_2) = (r_4)$ we have

$$d_3 \equiv 8c_3 - 24t^3 = 8(2u - t^3)$$

$$d_4 = 16c_4 - 24c_3t + 51t^4 = 48v - 29t^4,$$

$$d_5 = 32c_5 - 32c_4t + 24c_3t^2 - 40t^5 = 8(4c_5 - 12vt - 6ut^2 + 9t^5)$$

$$d_6 - d_4t^2 = 64c_6 - 32c_4t^2 - 2t^6 = 8(8w - 12vt^2 + 7t^4),$$

and

and then by direct computations

$$I_{5}' \equiv 32r_{10}$$
, $I_{6}' \equiv 32r_{12}$, $I_{8}' \equiv -768r_{16}$, $I_{9}' \equiv 512r_{18}$

and

$$I'_{12} \equiv 768I''_{12}$$
 for $I''_{12} = 156wvt^2 - 273wt^6 + 208vt^8 - 120t^{12}$.

Moreover we have

$$24r_{24} = I_{12}'' - 3r_{18}(2u + 11t^3) + 8r_{16}(v - 6t^4) + 12r_{12}w.$$

Consequently (2.5) has been proved for $k_2 = -48$, $k_5 = -2^7 \cdot 3 \cdot 5$, $k_6 = 2^9 \cdot 3^2$, $k_8 = -2^{12} \cdot 3 \cdot 5$, $k_9 = 2^{11} \cdot 3^3 \cdot 7$ and $k_{12} = 2^{15} \cdot 3^4 \cdot 5$.

According to [2] we have $H^*(E_6/C; \mathbf{Q}) \cong H^*(BT; \mathbf{Q})^{\Phi(C)}/(H^+(BT; \mathbf{Q})^{\Phi(E_6)})$, $H^*(\mathbf{EH}; \mathbf{Q}) \cong H^*(BT; \mathbf{Q})^{\Phi(U)}/(H^+(BT; \mathbf{Q})^{\Phi(E_6)})$ and the homomorphism p^* : $H^*(\mathbf{EH}; \mathbf{Q}) \to H^*(E_6/C; \mathbf{Q})$ induced by the fibering $p: E_6/C \to \mathbf{EH} = E_6/U$ is equivalent to the natural map induced by the inclusion of $H^*(BT; \mathbf{Q})^{\Phi(U)}$ into $H^*(BT; \mathbf{Q})^{\Phi(C)}$. Then we have from Lemmas 2.1 and 2.2, by cancelling c_2, c_5 by c_4, c_6 with c_4, c_6 with c_5, c_6 with c_6, c_6 with $c_6,$

Proposition 2.3. $H^*(E_6/C; \mathbf{Q}) = \mathbf{Q}[t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24})$ where the relations are given by

(2.6)
$$r_{12} = u^2 + 2w - 3vt^2 - ut^3 + 2t^6, \quad r_{16} = t^8 + 3wt^2 - 3v^2,$$

 $r_{18} = 2wu - wt^3 \quad and \quad r_{24} = w^2 + 26v^3 - 15v^2t^4 - 21wvt^2 + 9wut^3.$

Similarly, from Lemma 2.1, (ii) we have

$$p*H*(EII; Q) = Q[t^2, 2u - t^3, v, w]/(r_{12}, r_{16}, r_{18}, r_{24}).$$

Define elements a, b, c, d of $H^*(EII; Q)$ by

(2.7)
$$p^*(a) = t^2$$
, $p^*(b) = 2u - t^3$, $p^*(c) = 2v - t^4$ and $p^*(d) = w$.

Then we have

Proposition 2.4. $H^*(EII; Q) = Q[a, b, c, d]/(q_{12}, q_{16}, q_{18}, q_{24})$ where the re-

lations are given by

(2.8)
$$q_{12} = b^2 + 8d - 6ca + a^3, \quad q_{16} = a^4 + 12da - 6ca^2 - 3c^2,$$
$$q_{18} = db \quad and \quad q_{24} = d^2 + c^3 - \frac{3}{2}dca.$$

We shall see that Propositions 2.3 and 2.4 are valid for the coefficients Z and Z[1/2] respectively.

§3. Integral cohomology of $E_6/T^1 \cdot SU(6)$ and $E_6/SU(6)$

Lemma 3.1. The subgroup $C = T^1 \cdot SU(6)$ of E_6 has torsion free cohomology and the canonical projection $\rho \colon BT \to BC$ induces an isomorphism

$$\rho^*: H^*(BC) \cong \mathbb{Z}[t, c_2, c_3, c_4, c_5, c_6] = H^*(BT)^{\Phi(C)} \subset H^*(BT).$$

Proof. As is seen is the proof of Proposition 3.5 of [12], we have a homeomorphism $C \cong SU(6) \times S^1$. Therefore $H^*(C) \cong H^*(SU(6)) \otimes H^*(S^1) \cong \Lambda(s_1, s_3, s_5, s_7, s_9, s_{11})$, deg $s_i = i$. Then the lemma follows from Lemma 2.1, (i) by the general method of Borel [2].

We identify $H^*(BC)$ with its image under ρ^* , then

$$H^*(BC) = \mathbb{Z}[t, c_2, c_3, c_4, c_5, c_6], \quad \rho^*t = t, \rho^*c_i = c_i.$$

We also use the same symbols $t, c_i \in H^*(E_6/C)$ for the images under the induced homomorphism

$$i^*: H^*(BC) \longrightarrow H^*(E_6/C)$$
,

where $i: E_6/C \rightarrow BC$ is a map classifying the bundle $E_6 \rightarrow E_6/C$.

A main result in this section is the following

Theorem 3.2. There exist elements u and v of $H^*(E_6/C)$ satisfying

$$2u = c_3 - 2t^3$$
 and $3v = c_4 + 2t^4 - 3ut$.

We have $H^*(E_6/C) = Z[t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24})$

for $w = c_6$ and the relations (2.6) in Proposition 2.3.

The proof of this theorem is analogous to that of Theorem 4.4 of [12]. The mod p cohomology of E_6 for each prime p is given as follows (see

e.g. [13]):

(3.1)
$$H^*(E_6; \mathbf{Z}_2) = \Lambda(x_5, x_9, x_{15}, x_{17}, x_{23}) \otimes \mathbf{Z}_2[x_3]/(x_3^4)$$

$$= \Delta(x_3, x_5, x_9, x_{15}, x_{17}, x_{23}) \otimes \mathbf{Z}_2[x_6]/(x_6^2),$$

$$where \ x_5 = \operatorname{Sq}^2 x_3 \ and \ x_6 = x_3^2 = \operatorname{Sq}^1 x_5 = \beta x_5;$$

$$H^*(E_6; \mathbf{Z}_3) = \Lambda(x_3, x_7, x_9, x_{11}, x_{15}, x_{17}) \otimes \mathbf{Z}_3[x_8]/(x_8^3)$$

$$where \ x_7 = \mathcal{P}^1 x_3 \ and \ x_8 = \beta x_7;$$

and for $p \ge 5$,

$$H^*(E_6; \mathbf{Z}_p) = \Lambda(x_3, x_9, x_{11}, x_{15}, x_{17}, x_{23}).$$

By direct computations we have

Lemma 3.3. For
$$r_4 = c_2 - 4t^2 \in H^4(BC)$$
,
$$Sq^2r_2 = c_3 + c_2c_1 = c_3 + c_2t \qquad in \quad H^*(BC; \mathbf{Z}_2)$$
 and
$$\mathcal{P}^1r_2 = c_4 + c_2^2 - 2t^4 \qquad in \quad H^*(BC; \mathbf{Z}_3).$$

We need also

Lemma 3.4. Up to degree 24, $\mathbf{Z}[t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24})$ is torsion free.

Proof. Obviously, $\mathbf{Z}[t, u, v, w]/(r_{12}, r_{16})$ is free and has an additive base $\{w^iv^ju^kt^l\ (i, j \ge 0; k=0, 1; 8 > l \ge 0)\}$. We add relations $-r_{18}t^i = wt^{i+3} - 2wut^i$ $(i=0, 1, 2, 3), r_{24} = w^2 + 26v^3 - 15v^2t^4 - 21wvt^2 + 9wut^3$ and $-r_{18}u = wut^3 - 2wu^2$. By cancelling wt^{i+3} and w^2 with $r_{18}t^i$ and r_{24} , we have that, up to degree 24, $\mathbf{Z}[t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24})$ has a system of generators $\{w^iv^ju^kt^l\ (i=0, 1; j\ge 0; k=0, 1; 8 > l+5i\ge 0; 6i+4j+3k+l\le 12), wut^3\}$ with a single relation

$$104v^3 - 60v^2t^4 - 78wvt^2 + 29wut^3 \ (= r_{18}u - 4r_{18}t^3 - 2r_{12}w + 4r_{24}) = 0$$

whose coefficients are relatively prime. So the lemma follows. q.e.d.

Proof of Theorem 3.2. We can apply Theorem 2.1 of [13] to the homogeneous space $E_6/C = E_6/T^1 \cdot SU(6)$, and we have the following description of the integral cohomology of E_6/C :

$$H^*(E_6/C) = \mathbf{Z}[t, c_2, c_3, ..., c_6, \gamma_6, \gamma_8]/(\rho_2, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{12}, \rho_6', \rho_8'),$$

$$\rho_6' = 2\gamma_6 + \delta_6 \qquad \text{for} \quad \delta_6 \mod 2 = \tau(x_5) = \operatorname{Sq}^2(\tau(x_3)),$$

$$\rho_8' = 3\gamma_8 + \delta_8 \qquad \text{for} \quad \delta_8 \mod 3 = \tau(x_7) = \mathcal{P}^1(\tau(x_3)),$$

where τ indicates the transgression mod p (=2 or 3) with respect to the fibering

$$(3.2) E_6 \longrightarrow E_6/C \xrightarrow{i} BC$$

and the relation ρ_j is determined, up to sign, by the maximality of the integer n in

(3.3)
$$n \cdot \rho_i \equiv I_i \mod(\rho'_6, \rho'_8, \rho_i \ (i < j)).$$

At first consider the relation ρ_2 . Since $I_2 = -48(c_2 - 4t^2)$ and since $r_4 = c_2 - 4t^2$ cannot be divisible by any integer > 1, we may take $\rho_2 = r_4 = c_2 - 4t^2$. By Serre's exact sequence

$$0 = H^3(E_6/C) \longrightarrow H^3(E_6) \xrightarrow{t} H^4(BC) \xrightarrow{i*} H^4(E_6/C)$$

 $H^3(E_6) \cong \mathbb{Z}$ and it is generated by an element x_3 such that $\tau(x_3) = r_4$. Obviously, the elements x_3 's in (3.1) are the mod p reductions of this x_3 up to sign. Applying Lemma 3.3 we have

$$\delta_6 \pmod{2} = \operatorname{Sq}^2(r_4) = c_3 + c_2 t = c_3$$
 in $H^*(BC; \mathbf{Z}_2)/(r_4)$,
 $\delta_8 \pmod{3} = \mathcal{P}^1(r_4) = c_4 + c_2^2 - 2t^4 = c_4 - t^4$ in $H^*(BC; \mathbf{Z}_3)/(r_4)$

and relations $\rho'_6 = 2\gamma_6 + c_3$ and $\rho'_8 = 3\gamma_8 + c_4 - t^4$.

These relations and ρ_2 are cancelled with the generators c_3 , c_4 and c_2 respectively, and $(w=c_6)$

$$H^*(E_6/C) = \mathbf{Z}[t, c_5, w, \gamma_6, \gamma_8]/(\rho_5, \rho_6, \rho_8, \rho_9, \rho_{12}).$$

Here we replace γ_6 and γ_8 by $u=-\gamma_6-t^3=\frac{1}{2}c_3-t^3$ and $v=-\gamma_8-ut+t^4=\frac{1}{3}(c_4+2t^4)-ut$, then we may take $\rho_5=r_{10}=c_5-3vt-ut^2+2t^5$ (Lemma 2.2) since the coefficient of c_5 is 1. Then c_5 is cancelled with ρ_5 :

$$H^*(E_6/C) = \mathbf{Z}[t, u, v, w]/(\rho_6, \rho_8, \rho_9, \rho_{12}).$$

Since $H^*(E_6/C)$ is torsion free r_{12} , r_{16} , r_{18} , $r_{24} \in \mathbb{Z}[t, u, v, w]$ are relations in $H^*(E_6/C)$ by Lemma 2.2. Thus there is a natural ring homomorphism $\mathbb{Z}[t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24}) \rightarrow H^*(E_6/C)$. So we have a natural homomorphism

phism $\eta: \mathbf{Z}[t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24}) \to H^*(E_6/C)$ which is surjective. By Lemma 2.2, Ker η is finite. Then it follows from Lemma 3.4 that η is isomorphic for degree ≤ 24 . This shows that we can replace the relations ρ_j 's by r_{2j} 's, and this completes the proof of the theorem.

Corollary 3.5. (i) The projection $p: E_6/SU(6) \rightarrow E_6/T^1 \cdot SU(6)$ induces an isomorphism $H^{\text{even}}(E_6/SU(6)) \cong \mathbb{Z}[u, v, w]/(2w+u^2, 3v^2, 2wu, w^2-v^3)$ (ii) $H^i(E_6/SU(6)) \cong \mathbb{Z}$ for $i=0, 6, 8, 12, 14, 20, 23, 29, 31, 35, 37, 43; <math>\cong \mathbb{Z}_2$ for i=18, 26; $\cong \mathbb{Z}_3$ for i=16, 28 and =0 for other i.

Proof. Since the fibre C/SU(6) of the fibering p is a circle, we have a Gysin exact sequence which splits into the short exact sequences

$$0 \longrightarrow H^{2i-1}(E_6/SU(6)) \longrightarrow H^{2i-2}(E_6/C)$$

$$\xrightarrow{h} H^{2i}(E_6/C) \xrightarrow{p*} H^{2i}(E_6/SU(6)) \longrightarrow 0,$$

where $h(x) = x \cdot \Omega$, and $\Omega = \pm t$ since $E_6/SU(6)$ is 2-connected. From the exactness of the sequence follows that $H^{\text{even}}(E_6/SU(6)) \cong \text{Coker } h$, and the first assertion holds as Im h = (t). So the second assertion holds for i even. Note that the odd dimensional part is torsion free by the above exactness. Then (ii) holds for i odd by Poincaré duality (and the universal coefficient theorem).

§4. Low dimensional cohomology of the symmetric space $EII = E_6/S^3 \cdot SU(6)$

According to [12, Theorem 2.1], we have $EII = E_6/U$, $U = S^3 \cdot SU(6)$. Consider the fibering

$$U/C \longrightarrow E_6/C \longrightarrow E_6/U = EII.$$

Since $U/C \cong S^3/T^1$ is a 2-sphere, we have a Gysin exact sequence which is reduced to exact sequences

$$(4.1)_{i}: 0 \longrightarrow H^{2i-3}(\mathbf{EII}; A) \xrightarrow{h} H^{2i}(\mathbf{EII}; A) \xrightarrow{p^{*}} H^{2i}(E_{6}/C; A)$$

$$\xrightarrow{\theta} H^{2i-2}(\mathbf{EII}; A) \xrightarrow{h} H^{2i+1}(\mathbf{EII}; A) \longrightarrow 0,$$

where $A = \mathbf{Z}, \mathbf{Z}[1/2]$ or \mathbf{Z}_2 , the homomorphisms θ and h satisfy

(4.2)
$$\theta(p^*(x)y) = x\theta(y) \quad and \quad h(x) = x \cdot \chi$$

for some $\chi \in H^3(EII; A)$ such that $2\chi = 0$. The sequences commute with the

mod 2 reduction ρ_2 .

Since $H^{2i}(E_6/C)$ is free, it follows from (4.1) that

(4.3)
$$H^{\text{odd}}(EII) = \chi \cdot H^{\text{even}}(EII) \subset \text{Im } h = \text{Tors. } H^*(EII) \cong \mathbb{Z}_2 + \dots + \mathbb{Z}_2$$
 (finite sum) and $\rho_2 \colon H^{\text{odd}}(EII) \to H^{\text{odd}}(EII; \mathbb{Z}_2)$ is injective.

In particular $H^3(EII) \cong \mathbb{Z}_2$ or 0 according to $\chi \neq 0$ or $\chi = 0$. On the other hand, since E_6 is 2-connected, $\pi_1(EII) \cong \pi_0(U) = 0$ and $H_2(EII) \cong \pi_2(EII) \cong \pi_1(U) \cong \mathbb{Z}_2$. This and $(4.1)_1$ show that

(4.4)
$$H^{3}(EII) = \mathbb{Z}_{2} < \chi >$$
, $H^{2}(EII) = H^{1}(EII) = 0$ and $\theta(t) = 2$.

Here we change θ to $-\theta$ if it is necessary. First we consider low dimensional cases.

Lemma 4.1. There exist unique elements $a, b, c \in H^*(EII)$ and $y_i \in H^i(EII; \mathbb{Z}_2)$, (i=2, 3), $\deg a=4$, $\deg b=6$, $\deg c=8$, such that

$$p^*(a) = t^2$$
, $p^*(b) = 2u - t^3$, $p^*(c) = 2v - t^4$,
 $p^*(y_2) = \rho_2(t)$, $\rho_2(\chi) = y_3$ and $\rho_2(b) = y_2^3 + y_3^2$.

Then, up to degree 9, we have

$$H^*(EII) = Z[a, b, c] + Z_2 < \chi, \chi^2 >, \quad a\chi = b\chi = \chi^3 = 0,$$

 $H^*(EII; Z_2) = Z_2[y_2, y_3]/(y_3y_2^2, y_3^3), \quad \rho_2(a) = y_2^2, \quad \rho_2(c) = y_2^4 + y_3^2y_2,$
 $Sq^1y_2 = y_3 \quad and \quad Sq^2y_3 = y_3y_2.$

Proof. From (4.4) and (4.1)₂ it follows that $H^5(EII) = 0$ and $p^*: H^4(EII) = \mathbb{Z} < a > \to H^4(E_6/C) = \mathbb{Z} < t^2 >$ is an isomorphism for $a = p^{*-1}(t^2)$. Next consider (4.1)₃:

$$0 \longrightarrow \mathbb{Z}_2 < \chi > \stackrel{h}{\longrightarrow} H^6(\mathbf{EII}) \stackrel{p*}{\longrightarrow} \mathbb{Z} < u, \ t^3 > \stackrel{\theta}{\longrightarrow} \mathbb{Z} < a > \stackrel{h}{\longrightarrow} H^7(\mathbf{EII}) \longrightarrow 0.$$

By Proposition 2.4 the image of p^* contains $m(2u-t^3)$ for some non-zero integer m. Then $m\theta(2u-t^3)=0$. By (4.2), $\theta(t^3)=\theta(p^*(a)t)=2a$. Since $H^4(EII)=Z < a >$ is torsion free we have

(4.5)
$$\theta(2u-t^3)=0 \quad and \quad \theta(u)=a.$$

From the exactness of the above sequence

$$H^{7}(EII) = 0$$
, $a\chi = 0$ and $H^{6}(EII) = \mathbb{Z}_{2} < \chi^{2} > + \mathbb{Z} < b >$

for some element b satisfying $p^*(b) = 2u - t^3$.

Next applying the universal coefficient theorem, we have

$$H^{i}(EII; Z_{2}) = Z_{2} < y_{i} > (i = 2, 3, 4, 5)$$

and

$$H^6(EII; \mathbf{Z}_2) = \mathbf{Z}_2 < \rho_2(\chi^2), \, \rho_2(b) > ,$$

where $\operatorname{Sq}^1 y_2 = y_3 = \rho_2(\chi)$, $y_4 = \rho_2(a)$ and $\operatorname{Sq}^1 y_5 = \rho_2(\chi^2) = y_3^2$. By $(4.1)_1$, $p^*(y_2) \neq 0$, and $p^*(y_2) = \rho_2(t)$. Then $p^*(y_2^2) = \rho_2(t^2) \neq 0$, and $y_2^2 = y_4$. Since $\operatorname{Sq}^1(y_3 y_2) = y_3 \operatorname{Sq}^1 y_2 = y_3^2$, $y_5 = y_3 y_2$.

From $p^*(\rho_2(b)) = \rho_2(2u - t^3) = \rho_2(t^3) = p^*(y_2^3)$ it follows $\rho_2(b) = y_2^3 + n \cdot y_3^2$ for some $n \in \mathbb{Z}_2$. We replace b by $b + (n+1) \cdot \chi^2$. Then the relations $\rho_2(b) = y_2^3 + y_3^2$ and $p^*(b) = 2u - t^3$ hold, and such b is unique.

By $(4.1)_3$, $H^7(EII; \mathbb{Z}_2)$ is generated by $h(\rho_2(a)) = h(y_2^2) = y_3 y_2^2$. On the other hand, from (4.5) reduced mod 2, $h(\rho_2(a)) = h(\theta(\rho_2(u))) = 0$. Thus

$$H^7(EII; Z_2) = 0$$
 and $y_3y_2^2 = 0$.

Since $\operatorname{Sq^1(Sq^2y_3)} = \operatorname{Sq^3y_3} = y_3^2 \neq 0$, $\operatorname{Sq^2y_3}$ does not vanish and $\operatorname{Sq^2y_3} = y_3y_2$. Moreover $0 = \operatorname{Sq^2(y_3y_2^2)} = (\operatorname{Sq^2y_3})y_2^2 + y_3(\operatorname{Sq^1y_2})^2 = y_3y_2^3 + y_3^3 = y_3^3$.

Consider $(4.1)_4$ for $A = \mathbb{Z}_2$:

$$0 \longrightarrow Z_2 < y_3 y_2 > \xrightarrow{h} H^8(\mathbf{EII}; \mathbf{Z}_2) \xrightarrow{p*} \mathbf{Z}_2 < v, ut, t^4 >$$
$$\xrightarrow{\theta} \mathbf{Z}_2 < y_3^2, y_3^2 > \xrightarrow{h} H^9(\mathbf{EII}; \mathbf{Z}_2) \longrightarrow 0,$$

in which $p^*(y_2^4) = \rho_2(t^4)$, $\theta(\rho_2(ut)) = \theta(p^*(y_2)\rho_2(u)) = y_3^3$ and $h(y_3^2) = y_3^3 = 0$. By the exactness of the sequence we have $H^9(EII; Z_2) = 0$, dim. $H^8(EII; Z_2) = 2$ and hence $H^8(EII; Z_2) = Z_2 < y_3^2 y_2$, $y_2^4 >$. We have determined the ring $H^*(EII; Z_2)$ up to degree 9.

(4.3) and $H^9(EII; \mathbb{Z}_2) = 0$ imply $H^9(EII) = 0$ and $b\chi = \chi^3 = 0$. Then (4.1)₄ is reduced to

$$0 \longrightarrow H^{8}(EII) \xrightarrow{p^{*}} \mathbf{Z} < v, ut, t^{4} > \xrightarrow{\theta} \mathbf{Z} < b > + \mathbf{Z}_{2} < \gamma^{2} > \longrightarrow 0.$$

From $2\theta(ut) = \theta(2ut - t^4) = \theta(p^*(b)t) = 2b$, we have $\theta(ut) = b + m \cdot \chi^2$ for some $m \in \mathbb{Z}_2$. Applying ρ_2 we have $\rho_2\theta(ut) = y_2^3 + (m+1) \cdot y_3^2$ and this equals to $\theta(\rho_2(ut)) = y_2^3$ as above. Thus m = 1 and

$$\theta(ut) = b + \chi^2.$$

By Proposition 2.4, v is a p*-image in rational coefficient, and we have $\theta(v)$

 $= n \cdot \chi^2$ $(n \in \mathbb{Z}_2)$. Then (4.6) and $\theta(t^4) = \theta(p^*(a^2)) = 0$ show that n = 1. Thus

$$\theta(v) = \chi^2.$$

By the exactness of the above sequence we have $H^8(EII) = \mathbb{Z} < c$, $a^2 >$ for an element c which is uniquely determined by $p^*(c) = 2v - t^4$.

Finally $p^*\rho_2(c) = \rho_2(t^4)$ implies $\rho_2(c) = y_2^4 + m \cdot y_3^2 y_2$ $(m \in \mathbb{Z}_2)$. But $\rho_2(a^2) = y_2^4$, and ρ_2 induces an isomorphism: $H^8(EII) \otimes \mathbb{Z}_2 \to H^8(EII; \mathbb{Z}_2)$. So we have $\rho_2(c) = y_2^4 + y_3^2 y_2$.

Since $H^8(EII)$ is free and $2\theta(vt) = \theta(p^*(c+a^2)t) = 2(c+a^2)$ we have

$$\theta(vt) = c + a^2.$$

From (4.2), $p^*(a) = t^2$, (4.5), (4.6), (4.7) and (4.8) we have $(i \ge 0)$

(4.9)
$$\theta(t^{2i}) = 0$$
, $\theta(t^{2i+1}) = 2a^i$, $\theta(ut^{2i}) = a^{i+1}$, $\theta(ut^{2i+1}) = (b+\chi^2)a^i$, $\theta(vt^{2i}) = a^i\chi^2$ (=0 if i>0) and $\theta(vt^{2i+1}) = (c+a^2)a^i$.

We continue the computation up to degree 13.

Lemma 4.2. (i) We have $H^{10}(EII) = Z < ba>$, $H^{11}(EII) = H^{13}(EII) = 0$ and $H^{12}(EII) = Z < d$, d', $a^3 >$ where d and d' are uniquely determined by the relations

$$p^*(d) = w$$
 and $p^*(d') = vt^2$.

The following relations hold:

$$c\chi = 0$$
, $2d' = ca + a^3$ and $8d = 6ca - b^2 - a^3$.

- (ii) Putting $y_{12} = \rho_2(d)$ and $y'_{12} = \rho_2(d')$ we have $H^{10}(EII; \mathbf{Z}_2) = \mathbf{Z}_2 < y_2^5 >$, $H^{11}(EII; \mathbf{Z}_2) = H^{13}(EII; \mathbf{Z}_2) = 0$ and $H^{12}(EII; \mathbf{Z}_2) = \mathbf{Z}_2 < y_{12}$, y'_{12} , $y'_{2} >$.
 - (iii) $\theta(vu) = d'$ and $d'\chi = 0$.

Proof. (i) From $(4.1)_5$ and $H^7(EII) = 0$ we have an exact sequence

$$0 \longrightarrow H^{10}(EII) \xrightarrow{p^*} \mathbf{Z} < vt, \ ut^2, \ t^5 > \xrightarrow{\theta} \mathbf{Z} < c, \ a^2 > \xrightarrow{h} H^{11}(EII) \longrightarrow 0.$$

By (4.9), θ is onto and Ker θ is generated by $2ut^2-t^5=p^*(ba)$. So, we have $H^{10}(EII)=Z < ba>$, $H^{11}(EII)=0$ and $c\chi=0$. Similarly from $H^9(EII)=0$ and $h(ba)=ba\chi=0$ we have $H^{13}(EII)=0$ and an exact sequence

$$0 \longrightarrow H^{12}(EII) \xrightarrow{p^*} \mathbf{Z} < w, vt^2, ut^3, t^6 > \xrightarrow{\theta} \mathbf{Z} < ba > \longrightarrow 0.$$

Obviously $p^*(a^3)=t^6$. By Proposition 2.4, $m \cdot w \in \text{Im } p^*$ for an integer $m \neq 0$. Then $m\theta(w)=0$ in $\mathbb{Z} < ba>$, and $\theta(w)=0$. Thus there exists $d=p^{*-1}(w)$. Similarly $d'=p^{*-1}(vt^2)$ exists. By (4.9), $\theta(ut^3)=ba$. By the exactness of the above sequence $H^{12}(EII)=\mathbb{Z} < d$, d', $a^3>$. By use of the relation $r_{12}=0$ in Theorem 3.2, $p^*(ca)=2vt^2-t^6=p^*(2d'-a^3)$ and $p^*(b^2)=(2u-t^3)^2=-8w+12vt^2-7t^6=p^*(-8d+6ca-a^3)$. Since p^* is injective, the last two relations in (i) follow.

- (ii) Recall that $\rho_2(a) = y_2^2$, $\rho_2(b) = y_2^3 + y_3^2$ and use the universal coefficient theorem. Then we have the assertion of (ii) provided that Tors. $H^{14}(EII) = h(H^{11}(EII)) = 0$, which follows from (4.3).
- (iii) $2\theta(vu) = \theta(p^*(c+a^2)u) = (c+a^2)\theta(u) = (c+a^2)a = 2d'$ by Lemma 4.1, (4.2) and (4.5). Since $H^{12}(EII)$ is torsion free, $\theta(vu) = d'$ and $d'\chi = h(d') = h\theta(vu) = 0$ by exactness.

q.e.d.

§5. Mod 2 cohomology of the symmetric space EII

We shall discuss the mod 2 cohomology of **EII**. First about mod 2 cohomology of E_6/C , we have

Lemma 5.1. (i) $H^*(E_6/C; \mathbb{Z}_2) = \Delta(u, v) \otimes \mathbb{Z}_2 < 1, t, t^2, ..., t^{14}, w, wt, wt^2 > and the following relations hold:$

(5.1)
$$u^2 = vt^2 + ut^3$$
, $v^2 = wt^2 + t^8$, $wt^3 = 0$ and $w^2 = wvt^2 + t^{12}$.

(ii)
$$\operatorname{Sq}^{2}(v+ut) = 0$$
, $\operatorname{Sq}^{4}(v+ut) = w$, $\operatorname{Sq}^{6}(v+ut) = wt$;
 $\operatorname{Sq}^{2}w = wt$, $\operatorname{Sq}^{4}w = \operatorname{Sq}^{6}w = 0$, $\operatorname{Sq}^{8}w = w(v+ut)$, $\operatorname{Sq}^{10}w = w(v+ut)t$.

Proof. (i) follows from Theorem 3.2. Recall that, in $H^*(E_6/C; \mathbb{Z}_2)$, $c_1 = t$, $c_2 = c_3 = 0$, $c_4 = v + ut$, $c_5 = (v + ut)t$ and $c_6 = w$. Then (ii) follows from Wu formulas: $\operatorname{Sq}^2 c_4 = c_4 c_1 + c_5$, $\operatorname{Sq}^4 c_4 = c_4 c_2 + c_6$, $\operatorname{Sq}^6 c_4 = c_4 c_3 + c_5 c_2 + c_6 c_1$ and $\operatorname{Sq}^{2i} c_6 = c_6 c_i$ (i = 1, 2, ..., 6).

The following relations follow from (5.1).

(5.2) (i)
$$t^{15} = 0$$
, $w^2v = vt^{12}$, $w^2ut = ut^{13}$;

(ii)
$$wvu = w(v+ut)u$$
, $wvut + t^{14} = w(v+ut)v$, $vt^{12} + ut^{13} = w^2(v+ut)$, $vut^{12} = w^2(v+ut)u$, $vut^{13} = w^2(v+ut)v$.

Define an element y_{20} of $H^{20}(EII; \mathbb{Z}_2)$ by

$$y_{20} = \text{Sq}^8 y_{12}$$
.

Then from Lemmas 4.1, 4.2 and 5.1, (ii) and from (4.5), (4.7)

(5.3) we have elements $y_i \in H^1(EII; \mathbb{Z}_2)$ (i = 2, 3, 12, 20) and $y'_{12} \in H^{12}(EII; \mathbb{Z}_2)$ such that

(i)
$$p^*(v_2) = t$$
, $p^*(v_3) = 0$, $p^*(v_{12}) = w$, $p^*(v_{12}) = vt^2$, $p^*(v_{20}) = w(v + ut)$;

(ii)
$$\theta(1) = 0$$
, $\theta(u) = v_3^2$, $\theta(v) = v_3^2$, $\theta(vu) = v_{12}^2$;

(iii)
$$h(\alpha) = y_3 \alpha$$
 $(\alpha \in H^*(EII; \mathbb{Z}_2));$

(iv)
$$y_3y_2^2 = 0$$
, $y_3^3 = 0$, $y_{12}y_3 = 0$;

(v)
$$\operatorname{Sq}^{1} y_{2} = y_{3}$$
, $\operatorname{Sq}^{1} y_{3} = \operatorname{Sq}^{1} y_{12} = \operatorname{Sq}^{1} y_{12}' = 0$,

where the homomorphisms p^* , θ and h are those in $(4.1)_*$ for $A = \mathbb{Z}_2$.

The main purpose of this section is to prove the following theorems.

Theorem 5.2. The additive base of $H^*(EII; \mathbb{Z}_2)$ is given by

$$H^*(EII; \mathbf{Z}_2) = \mathbf{Z}_2 < y_2^{i+3}, \ y_{12}' y_2^{i}; \ 0 \le i \le 11 >$$

$$+ \mathbf{Z}_2 < 1, \ y_2, \ y_3, \ y_2^{2}, \ y_3 y_2, \ y_3^{2}, \ y_3^{2} y_2 > \otimes \Delta(y_{12}, y_{20}).$$

Theorem 5.3. $H^*(EII; \mathbb{Z}_2) = \mathbb{Z}_2[y_2, y_3, y_{12}, y'_{12}, y_{20}]/J$ for the ideal J generated by the following elements:

$$y_3y_2^2$$
, y_3^3 , $y_{12}^{\prime}y_3$, $y_{12}^{\prime}(y_2^3+y_3^2)$, $y_{12}^2+y_{20}y_2^2+y_{12}^{\prime 2}$, $y_{12}y_{12}^{\prime}+y_{20}y_{22}^2$, $(y_{12}^{\prime})^2+y_{12}^{\prime 2}$, $y_{20}^{\prime}(y_2^3+y_3^2)$, $y_{12}^{\prime 5}$, $y_{20}y_{12}^{\prime}$, $y_{20}^2+y_{20}y_{12}^2y_{32}^2$.

We consider the following graded \mathbb{Z}_2 -modules:

$$B_0^* = \mathbf{Z}_2 < y_2^{i+3}, \ y_{12}' y_2^{i}; \ 0 \le i \le 11 > + \mathbf{Z}_2 < y_2^2 > \otimes \Delta(y_{12}, y_{20}),$$

$$B_1^* = \mathbf{Z}_2 < 1, \ y_2 > \otimes \Delta(y_{12}, y_{20}), \ B_2^* = \mathbf{Z}_2 < y_3^2, \ y_3^2 y_2 > \otimes \Delta(y_{12}, y_{20}),$$

$$B^* = B_0^* + B_1^* + B_2^* \quad \text{and} \quad C^* = \mathbf{Z}_2 < y_3, \ y_3 y_2 > \otimes \Delta(y_{12}, y_{20}).$$

Lemma 5.4. The following sequence is exact:

$$0 \longrightarrow C^{2n-3} \xrightarrow{h} B^{2n} \xrightarrow{p^*} H^{2n}(E_6/C; \mathbb{Z}_2) \xrightarrow{\theta} B^{2n-2} \xrightarrow{h} C^{2n+1} \longrightarrow 0,$$

where, for each basic monomial of Theorem 5.2, h is defined by (iii), (iv) of (5.3), p^* is defined by (i) of (5.3) and the multiplicativity $p^*(\alpha\beta) = p^*(\alpha)p^*(\beta)$, and θ is defined by $(0 \le i \le 14, 0 \le j \le 2, 0 \le k \le 1)$

(5.4), (i)
$$\theta(t^{i}) = \theta(wt^{j}) = 0$$
,
 $\theta(ut^{i}) = y_{2}^{i+2} \quad \text{for} \quad i \le 12$, $\theta(vut^{i}) = y_{12}^{i} y_{2}^{i} \quad \text{for} \quad i \le 11$,
 $\theta(vt^{i}) = y_{3}^{2} y_{2}^{i} \quad (=0 \quad \text{if} \quad i \ge 2)$, $\theta(wvt^{j}) = y_{12} y_{3}^{2} y_{2}^{j} \quad (=0 \quad \text{if} \quad j = 2)$,
 $\theta(wu) = y_{12} y_{2}^{2}$, $\theta(wut^{k+1}) = y_{12} y_{3}^{2} y_{2}^{k}$;

(ii)
$$\theta(wvu) = y_{20}y_2^2$$
, $\theta(wvut^{k+1}) = y_{20}y_3^2y_2^k$, $\theta(ut^{k+13}) = 0$,
 $\theta(vut^{12}) = y_{20}y_{12}y_2^2$ and $\theta(vut^{k+13}) = y_{20}y_{12}y_3^2y_2^k$.

Proof. For $h: B^* \to C^*$, h is surjective and $\operatorname{Ker} h = B_0^* + B_2^*$ by (5.3), (iv). By (5.4), $\operatorname{Im} \theta = \operatorname{Ker} h$ and $\operatorname{Ker} \theta$ has a base

$$t^{l}$$
 $(0 \le l \le 14)$, wt^{j} $(0 \le j \le 2)$, vt^{i+2} $(0 \le i \le 11)$,
 ut^{13} , ut^{14} , vt^{14} , $w(v+ut)$, $w(v+ut)t$ and wvt^{2} .

Obviously $h: C^* \to B^*$ is injective and $h(C^*) = B_2^*$. Under p^* , the base of $B_0^* + B_1^*$ is mapped as follows:

$$p^*(y_2^l) = t^l (0 \le l \le 14), \ p^*(y_{12}^i y_2^i) = vt^{i+2} (0 \le i \le 11),$$

$$p^*(y_{12}^i y_2^j) = wt^j, \ p^*(y_{20}^i y_2^j) = w(v+ut)t^j \text{ and } p^*(y_{20}^i y_{12}^i y_2^j) = w^2(v+ut)t^j.$$

Using (5.1) and (5.2), (i) we see that p^* is an isomorphism of $B_0^* + B_1^*$ onto $\text{Ker } \theta$. Thus the exactness of the sequence is proved.

Proof of Theorem 5.2. We prove that the natural maps $B^{2n} \to H^{2n}(EII; \mathbb{Z}_2)$ and $C^{2n+1} \to H^{2n+1}(EII; \mathbb{Z}_2)$ are isomorphisms by induction on n. To do so, by virtue of Lemma 5.4 and the exactness of $(4.1)_n$, it is sufficient to prove that the formulas (5.4) hold for $\theta: H^{2n}(E_6/C; \mathbb{Z}_2) \to H^{2n-2}(EII; \mathbb{Z}_2)$ provided the inductive assumption on $H^{2n-2}(EII; \mathbb{Z}_2)$. (5.4), (i) is proved by (i), (ii), (iv) of (5.3) and the property (4.2) $\theta(p^*(x)y) = x\theta(y)$. Moreover the relations of

(5.4), (ii) are proved by applying the relations of (5.2), (ii), respectively, to $\theta(w(v+ut)y) = y_{20}\theta(y)$.

As a corollary of Theorem 5.2,

(5.5) the kernel of $p^*: H^*(EII; \mathbb{Z}_2) \to H^*(E_6/C; \mathbb{Z}_2)$ coincides with $C^* + B_2^* = \mathbb{Z}_2 < y_3$, $y_3 y_2$, y_3^2 , $y_3^2 y_2 > \otimes \Delta(y_{12}, y_{20})$, in particular p^* is injective at degrees 14, 24, 30, 32, 34 and 36.

Proof of Theorem 5.3. The first three relations are already given in (5.3), (iv). By use of (5.4)

$$y_{12}(y_2^3 + y_3^2) = \theta(wv) + y_{12}\theta(ut) = \theta(w(v+ut)) = \theta p^*(y_{20}) = 0$$

and $y_{20}(y_2^3 + y_3^2) = \theta(wvu)y_2 + \theta(wvut) = \theta(wvut) + \theta(wvut) = 0.$

By (5.1),

$$p*(y_{12}^2 + y_{20}y_2^2 + y_2^{12}) = w^2 + w(v+ut)t^2 + t^{12} = 0.$$

Then it follows from (5.5) that $y_{12}^2 + y_{20}y_2^2 + y_2^{12} = 0$. Similarly the elements $y_{12}y'_{12} + y_{20}y_2^2$, $(y'_{12})^2 + y_2^{12}$, y_2^{15} and $y_{20}y'_{12}$ vanish.

In order to prove the triviality of the last element we prepare

(5.6)
$$\operatorname{Sq}^{12} y_{20} = \operatorname{Sq}^{14} y_{20} = 0 \quad and \quad \operatorname{Sq}^{16} y_{20} = y_{20} y_{12} y_{22}^{2}.$$

By (5.5), (5.6) follows from $\operatorname{Sq}^{12}(w(v+ut)) = \operatorname{Sq}^{14}(w(v+ut)) = 0$ and $\operatorname{Sq}^{16}(w(v+ut)) = w^2(v+ut)t^2$ which are computed directly by Lemma 5.1 and by Cartan formula. Now, by use of Cartan formula and (5.6),

$$y_{20}^2 = (Sq^8y_{12})^2 = Sq^{16}(y_{12}^2) = Sq^{16}(y_{20}y_{2}^2 + y_{2}^{12}) = Sq^{16}(y_{20})y_{2}^2$$

= $y_{20}y_{12}y_{2}^4 = y_{20}y_{12}y_{3}^2y_{2}$,

These relations show that J vanishes in $H^*(EII; \mathbb{Z}_2)$. By use of these relations in J, we see that every monomial in $y_2, y_3, ..., y_{20}$ is a linear combination of the base in Theorem 5.2. Thus Theorem 5.3 is established.

q. e. d.

Since $H^{21}(EII; \mathbb{Z}_2) = 0$, we have

(5.7)
$$Sq^{1}y_{20} = 0.$$

By the derivativity of Sq¹, the following (5.8) is computed from Theorem

5.2, (5.7) and (iv), (v) of (5.3).

(5.8)
$$\operatorname{Im} \operatorname{Sq}^{1} = \mathbb{Z}_{2} \langle y_{3}, y_{3}^{2} \rangle \otimes \Delta(y_{12}, y_{20})$$

and
$$\operatorname{Ker} \operatorname{Sq}^{1} = \operatorname{Im} \operatorname{Sq}^{1} + \mathbb{Z}_{2} < 1, \ y_{3}^{2} y_{2} > \otimes A(y_{12}, y_{20}) + B_{0}^{*}.$$

Since Sq¹ is the mod 2 Bockstein homomorphism, (5.8) and (4.3) yield

Proposition 5.4. The mod 2 reduction $\rho_2: H^*(EII) \to H^*(EII; \mathbb{Z}_2)$ induces isomorphisms

Tors.
$$H^*(EII) \cong \mathbb{Z}_2 < y_3, \ y_3^2 > \otimes \Delta(y_{12}, \ y_{20})$$

and
$$(H^*(EII)/\text{Tors. } H^*(EII)) \otimes \mathbb{Z}_2 \cong \mathbb{Z}_2 < y_2^{i+3}, \ y_{12}' y_2^{i}; \ 0 \le i \le 11 >$$

 $+ \mathbb{Z}_2 < 1, \ y_2^2, \ y_3^2 y_2 > \otimes \Delta(y_{12}, y_{20}).$

This and (4.3) determine the additive structure of $H^*(EII)$.

§6. Integral cohomology of the symmetric space EII

Consider the exact sequence (4.1) for $A = \mathbb{Z}[1/2]$. Since $\chi = \frac{1}{2}(2 \cdot \chi) = 0$ in $H^3(EH; \mathbb{Z}[1/2])$, (4.1) is reduced to the short exact sequence

(6.1)
$$0 \longrightarrow H^*(\mathbf{EH}; \mathbf{Z}[1/2]) \xrightarrow{p^*} H^*(E_6/C; \mathbf{Z}[1/2])$$
$$\xrightarrow{\theta} H^*(\mathbf{EH}; \mathbf{Z}[1/2]) \longrightarrow 0.$$

Theorem 6.1. For the integral classes a, b, c, d of $H^*(EII)$,

$$H^*(EII; Z[1/2]) = Z[1/2][a, b, c, d]/(q_{12}, q_{16}, q_{18}, q_{24}),$$

where the relations q_i 's are given in (2.8).

Proof. By Theorem 3.2, $H^*(E_6/C; \mathbf{Z}[1/2]) = \mathbf{Z}[1/2][t, u, v, w]/(r_{12}, r_{16}, r_{18}, r_{24})$. By Lemmas 4.1 and 4.2,

(6.2)
$$p^*(a) = t^2$$
, $p^*(b) = 2u - t^3$, $p^*(c) = 2v - t^4$ and $p^*(d) = w$.

Hence an arbitrary element x of $H^*(E_6/C; \mathbb{Z}[1/2])$ is written in the from $x = p^*(f) + p^*(g)t$ for some polynomials f and g in a, b, c, d. By (4.2), $\theta(x) = \theta(p^*(f)) + g\theta(t) = 2g$. Since θ is surjective, this shows that $H^*(EII; \mathbb{Z}[1/2])$ is multiplicatively generated by a, b, c, d. The coefficient homomorphism $H^*(EII; \mathbb{Z}[1/2]) \to H^*(EII; \mathbb{Q})$ is injective since $H^*(EII)$ is odd torsion free by (4.3). Then the

theorem follows easily from Proposition 2.4.

q.e.d.

Recall from Lemmas 4.1 and 4.2

(6.3)
$$\rho_2(a) = y_2^2, \ \rho_2(b) = y_2^3 + y_3^2, \ \rho_2(c) = y_3^2 y_2 + y_2^4, \ \rho_2(d) = y_{12}$$
 and $\rho_2(d') = y_{12}', \ p^*(d') = vt^2, \ 2d' = ca + a^3$ for $d' \in H^{12}(EII)$.

Lemma 6.2. There exist elements $e \in H^{14}(EII)$ and $f \in H^{20}(EII)$ satisfying

(6.4)
$$\rho_2(e) = y'_{12}y_2, \quad p^*(e) = v(2u - t^3), \quad 2e = cb + ba^2,$$

$$\rho_2(f) = y_{20} + \varepsilon y_{12}y_2^4 (\varepsilon \in \mathbb{Z}_2), \quad p^*(f) = w(v - ut) \quad and \quad 2f = dc.$$

Proof. By (6.3) and Theorem 5.3, $\rho_2(cb+ba^2)=y_3^2y_2^4=0$ and $\rho_2(dc)=y_{12}(y_2^3+y_3^2)y_2=0$. Thus there exist $e, f\in H^*(EII)$ such that $2e=cb+ba^2$ and 2f=dc. Then, $p^*(e)=\frac{1}{2}p^*(c+a^2)p^*(b)=v(2u-t^3)$ and $p^*(f)=\frac{1}{2}p^*(d)p^*(c)=\frac{1}{2}w(2v-t^4)=w(v-ut)$ as $H^*(E_6/C)$ is torsion free. Next, by (i) of (5.3), $p^*(\rho_2(e))=\rho_2(p^*(e))=vt^3=p^*(y_{12}'y_2)$ and $p^*(\rho_2(f))=\rho_2(p^*(f))=w(v+ut)=p^*(y_{20})$. Then it follows from (5.5) that $\rho_2(e)=y_{12}'y_2$ and $\rho_2(f)=y_{20}$ or $\rho_2(f)=y_{20}+y_{12}y_3^2y_2=y_{20}+y_{12}y_4^2$. q. e. d.

The structure of $H^*(EII)$ is determined by the following theorems.

Theorem 6.3. Tors. $H^*(EII) = \mathbb{Z}_2 < \chi$, $\chi^2 > \otimes \Delta(d, f)$ and the Poincaré polynomial is $P(EII, t) = (1 + t^4 + t^8 + t^{12})(1 + t^6 + t^{12})(1 + t^8 + t^{16})$.

This follows directly from Proposition 5.4.

Theorem 6.4. $H^*(EII)$ is multiplicatively generated by the elements

$$(6.5) \chi, a, b, c, d, d', e and f,$$

and $H^*(EII) = \mathbb{Z}[\chi, a, b, c, d, d', e, f]/I$ for the ideal I generated by the following elements:

(6.6)
$$2\chi$$
, $a\chi$, χ^3 , $b\chi$, $c\chi$, $q_{12} = b^2 + 8d - 6ca + a^3$, $2d' - ca - a^3$, $2e - cb - ba^2$, $d'\chi$, $q_{16} = a^4 + 12da - 6ca^2 - 3c^2$, $e\chi$, $q_{18} = db$, $ea - d'b$, $dc - 2f$, $3d'c + 3d'a^2 - 6da^2 - 2a^5$,

$$eb + 7d'a^2 + 8f - 8da^2 - 4a^5$$
, $3ec + 3d'ba - 2ba^4$,
 $q_{24} = d^2 + c^3 - 3fa$, $dd' + 5fa - 4c^3$, $3d'^2 - 24c^3 + 36fa - a^6$,
 $3ed' - ba^5$, fb , $ed + f\chi^2$, $3fc - 2d^2a$, $3e^2 + 8da^4 - 12d'a^4 + 7a^7$,
 $3fd' + 12fd - 7d^2a^2$, fe , $9f^2 - fda^2$.

We denote the ρ_2 -image of the elements of (6.5) by the same letters.

Lemma 6.5. Im $(\rho_2: H^*(EII) \rightarrow H^*(EII; Z_2)) = Z_2[\chi, a, b, c, d, d', e, f]/I_2$ where I_2 is the ideal generated by the following elements:

(6.7)
$$a\chi$$
, χ^3 , $b\chi$, $c\chi$, $b^2 + a^3$, $ca + a^3$, $cb + ba^2$, $d'\chi$, $c^2 + a^4$, $e\chi$, db , $ea + d'b$, dc , $d'c + d'a^2$, $eb + d'a^2$, $ec + d'ba$, $d^2 + fa + a^6$, $dd' + fa$, $d'^2 + a^6$, $ed' + ba^5$, fb , $ed + f\chi^2$, fc , $e^2 + a^7$, fd' , fe , $f^2 + fda^2$.

Proof. Im $\rho_2 = \text{Ker Sq}^1 = B_0^* + Z_2 < 1$, y_3 , y_3^2 , $y_3^2y_2 > \otimes \Delta(y_{12}, y_{20})$ by (5.8). Rewrite this by the present notation, then

(6.8)
$$\operatorname{Im} \rho_{2} = \Delta(d') \otimes \mathbf{Z}_{2} < 1, \ a, \ b, \ a^{2}, \ ba, ..., \ a^{5}, \ ba^{4} >$$

$$+ \mathbf{Z}_{2} < \chi, \ \chi^{2}, \ c, \ e, \ a^{6}, \ ba^{5}, \ a^{7} >$$

$$+ \mathbf{Z}_{2} < d, \ f, \ fd > \otimes \mathbf{Z}_{2} < 1, \ \chi, \ a, \ \chi^{2}, \ a^{2} > ,$$

where $\chi = y_3$, $a = y_2^2$, $b = y_2^3 + y_3^2$, $c = y_3^2 y_2 + y_2^4$, $d = y_{12}$, $d' = y'_{12}$, $e = y'_{12} y_2$ and $f = y_{20} + \varepsilon y_{12} y_2^4$. Then it is directly verified by Theorem 5.3 that the elements in (6.7) vanish in $H^*(EII; \mathbb{Z}_2)$. Moreover we see that the following elements are in I_2 :

(6.9)
$$da^3$$
, dba , fa^3 , fba , ba^6 , a^8 , $d'a^6 + fda$, $d'ba^5 + fd\chi^2$.

For example, $a^8 = ca^6 = d^2c + fca = fa^3$ and $fa^3 = fb^2 = 0$.

By use of the triviality of the elements in (6.7) and (6.9), we see that every element of $\mathbb{Z}_2[\chi, a, b, ..., f]$ is congruent modulo I_2 to an element of Im ρ_2 . This proves Lemma 6.5.

Proof of Theorem 6.4. Put $P = \mathbf{Z}[\chi, a, b, c, d, d', e, f]$. Since $\chi = 0, d' = \frac{1}{2}(ca+a^3)$, $e = \frac{1}{2}(cb+ba^2)$ and $f = \frac{1}{2}dc$ in $H^*(EII; \mathbf{Z}[1/2])$, direct computations show that each element of (6.6) vanishes in $H^*(EII; \mathbf{Z}[1/2])$. Moreover,

the basic relations q_{2j} 's are covered by some of (6.6). Thus we have a natural isomorphism

$$(6.10) (P/I) \otimes \mathbf{Z} \lceil 1/2 \rceil \xrightarrow{\cong} H^*(\mathbf{EII}; \mathbf{Z} \lceil 1/2 \rceil) = H^*(\mathbf{EII}) \otimes \mathbf{Z} \lceil 1/2 \rceil.$$

We see also mod 2 reductions of the elements of (6.6), except the first one, coincide with those of (6.7) modulo (6.9). Thus

$$(6.11) \qquad (P/I) \otimes \mathbf{Z}_2 \cong \operatorname{Im}(\rho_2 : H^*(\mathbf{EII}) \longrightarrow H^*(\mathbf{EII}; \mathbf{Z}_2)) \cong H^*(\mathbf{EII}) \otimes \mathbf{Z}_2.$$

Consider the natural ring homomorphism

$$g: P/I \longrightarrow H^*(EII)$$
.

By tensoring the identity of Z[1/2] and Z_2 with g we obtain the isomorphisms (6.10) and (6.11). So, by a simple algebraic consideration, together with that P/I is of finite type, we have that g is surjective and

(6.12) Ker g is contained in Tors.(P/I), which is a finite 2-group and $g \otimes 1$ maps Tors.(P/I) $\otimes \mathbb{Z}_2$ isomorphically onto Tors. $H^*(EII) \otimes \mathbb{Z}_2$.

The subgroup T of Tors.(P/I) generated by $\{\chi^{i+1}d^jf^k; i, j, k=0, 1\}$ is mapped, under g, isomorphically onto $Tors.H^*(EII) = \mathbb{Z}_2 < \chi, \chi^2 > \otimes \Delta(d, f)$. Thus T is a direct summand of Tors.(P/I) and $(g \otimes 1:)T \otimes \mathbb{Z}_2 \cong Tors.H^*(EII) \otimes \mathbb{Z}_2$. This and (6.12) show that $(Tors.(P/I)/T) \otimes \mathbb{Z}_2 = 0$, T = Tors.(P/I) and Tor

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

References

- [1] S. Araki, Cohomology modulo 2 of the compact exceptional groups E_6 and E_7 , J. Math. Osaka City Univ., 12 (1961), 43-65.
- [2] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
- [3] A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J., 13 (1961), 216-240.
- [4] A. Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc., 61 (1955), 397-432.
- [5] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, Amer. J. Math., 80 (1958), 458-538.
- [6] A. Borel and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., 23 (1949), 200-221.

- [7] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-282.
- [8] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964-1029.
- [9] N. Bourbaki, Groupes et algèbres de Lie IV-VI, Paris 1968.
- [10] E. Cartan, Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple, Ann. Sci. Ecole Norm. Sup., 44 (1927), 345-467.
- [11] S. Helgason, Differential geometry and symmetric spaces, Academic press, 1962.
- [12] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, (to appear).
- [13] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ., 15 (1975), 185-199.
- [14] H. Toda and T. Watanabe, The integral cohomology ring of F_4/T and E_6/T , J. Math. Kyoto Univ., 14 (1974), 257–286.
- [15] T. Watanabe, The integral cohomology ring of the symmetric space EVII, J. Math. Kyoto., 15 (1975), 363-385.