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§1. Introduction

The simply connected Riemannian symmetric spaces have been classified.
For classical cases, their cohomology rings are well known. For exceptional
cases, those of FII, EIIl, EIV and EVII are known [1], [14], [15], and in
these cases they are torsion free. The remaining spaces G, FI, EI, EII, EV, EVI,
EVIIT and EIX have 2-torsions, and the cohomology rings of the first two are
known [5], [12].

The purpose of this paper is to determine the integral cohomology ring
of the compact Riemannian symmetric space EIT. As a homogeneous space,
EIT is expressed by E¢/S3.SU(6), where Eg is the compact l-connected excep-
tional Lie group of rank 6 and S3nSU(6)=Z, [12].

In order to determine H*(EIT), we first consider a homogeneous space
Eg/C, where C=T"'.SU(6) is the centralizer of a one-dimensional torus.

Our first result is

Theorem 3.2. H*(E/C)=Z[t, u, v, w]/(rya, Fig, F1g> '24)»
where degt=2, degu=06, degv=8, degw=12, and
(2.6) Fia=u2+2w—30t2 —ut3421%, r c=18+3wt2—3p2,
rig=2wu—wt3 and ryu=w2+2603—15021%—21wvt?+9wut3.

Using the Gysin exact sequence for the S!'-bundle: E4/SU(6)— E¢/C we
have

Corollary 3.5. HY(Eq/SU(6)~Z for i=0,6, 8, 12, 14, 20, 23, 29, 31, 35, 37,
43; =Z, for i=18,26; ~Z, for i=16,28 and =0 for the other i.
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Next applying the Gysin exact sequence for the fibering S2—E¢/C—EII,
we have the following theorems.

Theorem 5.2. H*(EII; Z,)=Z,<y%3, y,,y5; 0<i<11>
+Z,<1, y3, ¥3, ¥3, ¥3V2, ¥3, ¥3y2>®4(¥12, Y20)s
where degy;=i, degy’i, =12.
The relations are given in Theorem 5.3.
Theorem 6.1. H*(EII; Z[1/2])=Z[1/2][a, b, ¢, d]/(412, 916> G185 924)
where dega=4, degb=6, degc=8, degd=12, and

2.8) q,2=b%2+8d—6ca+a3, q¢=a*+12da—6ca?—3c?
q13=db and q24=d2+c3—%dca.

Here we use the following notations. Z[1/2] indicates the subalgebra of
Q generated by 1/2 over Z. A<Xxy,..., x,> denotes the A-module spanned by
linearly independent elements x;s and Ad(xy,..., x,)=A4<x§t---x% (a;=0, 1)>,
where A=Z,, Z[1/2] or Z.

Remark that the elements a, b, ¢, d in Theorem 6.1 are integral cohomology
classes, and they are uniquely determined by

p*(a)=12, p*(b)=2u—13, p*(c)=2v—1t4,
p¥d)=w and py(b)=y3+y3},

where p* is induced by the projection p: Es/C—EII, and p, is the mod2
reduction. There exist more integral cohomology classes yx, d’, e and f such that

2x=0, p,(X) =3, d’=£—(ca+a3), e=%(cb+ba2) and f=-é—dc.
Using Theorems 5.2 and 6.1 we obtain the structure of H*(EIT).

Theorem 6.3. Tors. HXEIl=Z,<y, x>>®4(d, f) and the Poincaré poly-
nomial is P(EIT, )=(1+t*+t8 +112)(1+1°+1'2)(1 + 18 +119).

The ring structure will be given in Theorem 6.4 with the generators
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% a, b,e,d, d,e and f

and various relations.

The paper is organized as follows. In §2 we calculate the invariant sub-
algebras of the Weyl groups in order to determine the rational cohomology
of E¢/C and EII, and in §3 H*(E¢/C) is determined. In §4 we discuss
H*(EIT) and H*(EII; Z,) in low dimensions, and H*(EII; Z,) is determined
in §5. With these data the final section §6 completes the determination of
the ring structures of H*(EII; Z[1/2]) and H*(EII).

I would like to take this opportunity to thank Professor H. Toda for his
invaluable and ceaseless help in writing this paper. 1 also thank Professor A.
Kono for his various advices.

§2. Rational cohomology of E,/T'.SU(6) and EIT

Let T be a maximal torus of E,. The Dynkin diagram of Eg is

o, o3 04 Os Og
©

where «; (1<i<6) are the simple roots and &=a, +2a,+ 203+ 30, + 205+ 0 is
the highest root (G=w,).
Let C and U be the identity components of the centralizers of T!'=

{xe T]a(x)=0(i#2)} and of the element x,eT' such that ocz(xz):%, re-

spectively. Then the Weyl groups @( ) of Es, C and U are generated by
the following elements:

P(Eg)=<R;;i=1,2,3,4,5,6>,
2.1) D(C)=<R;; i#2>,
where R; (resp. R) denotes the refiection in the plane ;=0 (resp. 4=0) in the
universal covering of T.
Recall from [12; Theorem 2.1]

2.2) U=S83.8U(6), C=T'.SU(6) and S3nSU6)=T'nSU6)=Z,.

According to [5] we may consider that each weight is an element of H2(BT)
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=H!(T), then the fundamental weights w;; i=1,2,..., 6 form a basis of H2(BT),
and H¥*(BT)= Z[w,, Wa,..., Wg].
The reflections R;’s and R act on H*(BT) as follows:
R,-(W,-)=W,-—Z(2<O(‘, O(j>/<0(_,, O(J>)Wl, R‘(Wk)=wk fOT k#i,

J ~
and R(w)=w;—mw, for d=3Y mua,.
i

As in [14] we have the following isomorphism (2.3) and the table (2.4)
of the action by taking following generators:

t6=w6’ ti=Ri+ 1(ti+l) (i=5, 4, 3, 2), tl=Rl(t2) al’ld t=W2.

(2.3) HX(BT)=Z[t, ty, ts,..., tc]/3t—cy)  for cy=t;+t,+ -+,

R, R, ‘ R, ] R, | R; Re R
1 Is I—13—1y nLh—t
Iy 1 =t —1, ty to—t
1y t—t,—1, I f ty—t

(2.4)

te ts t5 t—t
15 1, Is ti—1t
to I to—1
' todts+15—1 —t

where the blanks indicate the trivial action. Denote by
C,-=O',~(fl, tz,..., 16)

the i-th elementary symmetric function on the variables t;’s (c,=1), then we have
the following

Lemma 2.1. (i) H*(BT)® O =[t, ¢, ¢3,..., c61/(3t—¢,).
(ii) H*(BT; Q)W =Q[12, c,, c3—2c,t1+ 513, 2¢,—3cst, c5—Ccat + 13 — 3185,

4ce—2cst+c5t3].

Proof. (i) follows easily from (2.1), (2.3) and (2.4). This and (2.1) imply
that H*(BT; Q)®* consists of all R-invariant polynomials in H*(BT; Q)®(©)
=Q[t, ¢35-.., ¢]- Applying R to the equality X ¢,=TI(1+1¢;), we have Y R(c)
=T —t+1)=S(1 -0,
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and  R(c,)=c,, R(c3)=c3—4cyt+ 1013, R(cy)=c,—3c t+ 60,12 — 1514,

R(cs)=cs—2cat+3c3t2—dc,t3+9t5, R(cg)=ce—cst+cat? —cyt3 +c,t%—21.
4 3 2 6—Cs

Since R(t)=-—t and RZ=identity, t> and c¢;+R(c,) (i=2,3,4,5,6) are R-
invariant. It is easy to see that every polynomial f of QI[t, c,,..., cg] is written
uniquely in the form g+th for polynomials g and h in t? and c;+R(c). If
f is R-invariant, then g+th=f=R(f)=R(g)+R()R(h)=g—1th. It follows that f
is R-invariant if and only if it is a polynomial in ¢2 and c;+R(c;). This proves
(ii). q.e.d.

Putting
x;=2t;—1 (i=1, 2,..., 6)
we have the following ®(E,)-invariant set
S={x;+xj, t—x,, —t—=x,3 1, j, k=1,...,6; i< j}.
Thus we have invariant forms

l,= ¥ x"e H2"(BT; Q)
xeS

Consider the following elements (r;e H!, ue H®, ve H®, we H'2):
r4=C2—4t2,

! 3 =1 4 -
u=7c3—t s v—?(c4+2! )—ut, w=c,,
Flo=Cs—3vt—ut?+2t5,
ria=u?+2w—3vt2 —ut3 + 216,

Fie =18+ 3wtz —3p2,
rig=2wu—wt3

and Faa=w2+2603 — 15021* — 21wot? +9wut3.

Then we have the following

Lemma 2.2. HX(BT; Q)*E)=Q[I,, Is, I, Ig, 1y, 1,,] and as ideals (I,, Is,
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Ig, Ig, Ig, 113)=(ra, T10, 125 T16 T1gs T24)-

Proof. The first half is proved in Lemma 5.2, (i) of [14]. For the second
half we shall show

2.5) I,=k,r,, moda, (k,#0) for n=2,5,6,8,9, 12,

where aq, is the ideal generated by I;s of j<n.
In §5 of [14], I, is computed by the formula

-1 n _on-1 _nif » 2j
I"_?.iz <i>sisj 2nls, 42 3 ( l)(l.)sitf

+j=n i+2j=n
where s;=x%{ +---+x%, and it is described with ¢ and d,=0/(x,,..., Xg) by use
of Newton formula. Then the first four of the following relations are already
given in (5.10) of [14]:
I,=—12I, for Iy=d,—12,
Is=—-60Is mod as for I's=ds+dst?,
Io=144I; modag  for Iy=dg—dut? ++-dj,
13=80I3 mod ag for Ty=d}—36dgt?+22d,4%+18,
I3=7561y mod ag for Iy=(dg+d,t?+2t%)d,
and 1,,=72011;, moda,, for [I,=39%¢d t?—T41dqt®+403d,18 +23¢12.

The last two relations are computed by continuing routine computations.
The details are left to the readers.

Next, as on p. 275 of [14], we rewrite I, in terms of t and ¢,s by use of
the formula

d= % (- 1)"-i2f( N 2
From d,=4c,—15¢2 it follows that
Iy=d,—t*=4r,.
Modulo as=(I,)=(r4) we have

d3=8cy—2413=8Q2u—13),
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dy=16c,—24c5t+511* =48v—29¢4,

ds=32cs—32c,t +24c4t? — 4015 =8(4cs — 120t — 6ut? +9t°)
and dg—d 12 =64cg—32c,1% —21° =8(8w— 12012 + Tt4),
and then by direct computations
I's=32ry0, [5=32ry,, I3=—768ri¢, I5=512rg
and I',=7681", for I, =156wot2 —273wt® +208vt% — 120¢12.
Moreover we have
24r,, =11, —3r;5Qu+ 1113)+8r (v —6t*)+ 12r ,w.

Consequently (2.5) has been proved for k,=—48, ks=—27.3.5, k=232,
kg=—212.3.5 kg=2'1.33.7 and k,,=2!3.34.5. g.e.d.
According to [2] we have H*(Eq/C; Q)=H*(BT; Q)®©|(H*(BT; Q)®Es),
H*(EII; Q)= H*(BT; Q)*W[(H*(BT; Q)®*¥¢) and the homomorphism p*:
H*(EII; Q)—»H*(E¢/C; Q) induced by the fibering p: Eq/C—oEIl=E¢/U is
equivalent to the natural map induced by the inclusion of H*(BT; Q)®WY into

H*(BT; Q)®*©. Then we have from Lemmas 2.1 and 2.2, by cancelling c,, cs
by r4, 1o and by replacing cs, ¢4, ¢ With u, v, w, respectively,

Proposition 2.3. H*(E¢/C; Q)=0Qlt, u, v, wl/(rys, rie, 18, r24) Where the re-
lations are given by

(2.6) Fia=u2+2w—30t2 —ut3+2t°, r ¢=1%+3wt2—302,
rig=2wu—wt3 and ry,=w?2+2603—1502t*—21wot? +9wut3.
Similarly, from Lemma 2.1, (ii) we have
P*HX(EIT; Q)=Q[t?, 2u—13, v, wl/(r12, 16, 18> 24) -
Define elements a, b, ¢, d of H*(EII; Q) by
2.7 p*(a)=1t2, p*(b)=2u—13, p*(c)=2v—t* and p*d)=w.
Then we have

Proposition 2.4. H*(EII; Q)=Qla, b, ¢, d1/(412> 916> 918> 924) Where the re-
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lations are given by

(2.8) q12=b*+8d—6ca+a3, qg=a*+12da—6ca?—3c?,
q,3=db and q24=d2+c3—%dca.

We shall see that Propositions 2.3 and 2.4 are valid for the coefficients
Z and Z[1/2] respectively.

§3. Integral cohomology of E /T!.SU(6) and E,/SU(6)

Lemma 3.1. The subgroup C=T'.SU(6) of E¢ has torsion free coho-
mology and the canonical projection p: BT— BC induces an isomorphism

p*: H¥(BC)x2Z[t, c,, ¢35, ¢4, €5, Co1=H*(BT)®*© c H¥(BT).

Proof. As is seen is the proof of Proposition 3.5 of [12], we have a
homeomorphism C=SU(6)xS'. Therefore H*(C)x~H*(SU(6))QH*(S')=~ A(s,,
53, S5, 875 Sg, 811), degs;=i. Then the lemma follows from Lemma 2.1, (i) by
the general method of Borel [2].

We identify H¥(BC) with its image under p*, then
H¥(BC)=Z[1, c,, c3, ¢4, Cs5, Co1,  p¥t=1, p*c;=c;.

We also use the same symbols t, ¢;e H¥(E,/C) for the images under the
induced homomorphism

i*: H*(BC)—> H*(E,/C),

where i: Eq/C—BC is a map classifying the bundle E,—E¢/C.
A main result in this section is the following

Theorem 3.2. There e¢xist elements u and v of H*(E¢/C) satisfying
Qu=c;—2t3 and 3v=c,+2t*—3ut.
We have H*(Eo[C)=Z[t, u, v, wl/(r 2, "6 18> '24)
for w=c, and the relations (2.6) in Proposition 2.3.

The proof of this thcorem is analogous to that of Theorem 4.4 of [12].
The modp cohomology of Eg for each prime p is given as follows (see
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e.g. [13]):

(3.1 H¥(Eg; Z;)=A(Xs, Xg, X5, X17, X23)®Z3[x3]/(x3)
=A(x3, X5, X9, X5, X175 X23)®Z;[x6]/(x3),
where x5=Sq%x; and xg=x3=Sq'xs=pxs;

H*(Eq; Z3)=A(X3, X7, Xg, X11, X135, X17)@Z3[x5]/(x3)
where x;=P'x; and xg=pxq;

and for p=S5,

H*(Eq; Z,)=A(x3, Xo, X1, X155 X175 X23)-
By direct computations we have

Lemma 3.3. For ry=c,—4t>e H*(BC),
Sq?ry=c3+cycy=c3+cyt in H*(BC; Z,)
and Plry=cy+c3—2t* in H%BC;Z,).

We need also

Lemma 34. Up to degree 24, Z[t, u, v, wl/(ry3 Fie> Fig> F24) is torsion
free.

Proof. Obviously, Z[t, u, v, w]/(r 3, F1e) is free and has an additive base
{wiviukt! (i, j>0; k=0, 1; 8>1>0)}). We add relations —rgti=wt'*3—2wutt
(i=0, 1, 2, 3), ryu=w2 42603 — 1502t4 —21wot2+9wut3 and —r gu=wut>—2wu?2,
By cancelling wti*3 and w? with r gt' and r,,, we have that, up to degree 24,
Z[t, u, v, w]/(r,5, 16> F18> F24) has a system of generators {wiviukt' (i=0, |;
j=0; k=0, 1; 8>1+5i>0; 6i+4j+3k+1<12), wut3} with a single relation

10403 — 6002t4 —T8wut2 +29wut3 (=rygu—4r gt —2r ,w+4r,,)=0

whose coefficients are relatively prime. So the lemma follows. q.e.d.

Proof of Theorem 3.2. We can apply Theorem 2.1 of [13] to the homo-
geneous space E,/C=E¢/T'.SU(6), and we have the following description of
the integral cohomology of E¢/C:
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H*(E¢|C)=2[1, c;, ¢3,.-.5 €65 Vo» V8/(P25 P55 Pos Pss Pos P12, Pos P3)5

P =276+ 06 for dgmod2=1(xs)=Sq?(t(x3)),

ps=3ys+Jsg for dgmod3=1(x;)=21(1(x3)),
where 7 indicates the transgression mod p (=2 or 3) with respect to the fibering
(3.2) Es — E¢/C —is BC
and the relation p; is determined, up to sign, by the maximality of the integer
n in
(3.3 n-p;=1; mod(ps, ps, pi (i<)j)).

At first consider the relation p,. Since I,= —48(c,—4t?) and since r,
=c,—4t? cannot be divisible by any integer > 1, we may take p,=r,=c,—412.
By Serre’s exact sequence

0=H3(E4|/C) — H3(Ey) — H*(BC) —i*» H*(E4/C)

H3(E¢)=~Z and it is generated by an element x; such that t(x;)=r,. Ob-
viously, the elements x;’s in (3.1) are the mod p reductions of this x; up to
sign. Applying Lemma 3.3 we have

8¢ (mod2)=Sq2(ry)=c3+cyt=cs in H¥BC; Z,)/(rs),
g (Mod3)=P(r))=c4+c3—2t4=c,—t* in H*(BC;Z5)/(r,)

and relations pg=2y¢+c; and pg=3yg+c,—t*.
These relations and p, are cancelled with the generators c3, ¢, and c,
respectively, and (w=cg)

H*(E6/C)=Z[t3 Cs, W, Y6 YB]/(pS’ Pe> Pgs Pos plZ)'

Here we replace y¢ and yg by u=—y6—t3=%c3—t3 and v=—yg—ut+t*
=—;—(c4+2t“)—ut, then we may take ps=r,o=cs—3vt—ut?+2¢5 (Lemma 2.2)
since the coefficient of ¢5 is 1. Then cs is cancelled with ps:

H*(ES/C)=ZD’ u, v, W]/(p6’ Pss Pos pll)'

Since H*(E4/C) is torsion free ry,, rig, g, 24 € Z[t, u, v, w] are relations
in H*(E4/C) by Lemma 2.2. Thus there is a natural ring homomorphism
Z[t, u, v, W)(ry2, Fie> "1 F24)—=H1*(E¢/C). So we have a natural homomor-
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phism #5: Z[t, u, v, wl/(ri2, 716> "18> ¥24) = H¥(E¢/C) which is surjective. By
Lemma 2.2, Kery is finite. Then it follows from Lemma 3.4 that n is isomor-
phic for degree < 24. This shows that we can replace the relations p;’s by r,;’s,
and this completes the proof of the theorem.

Corollary 3.5. (i) The projection p: E¢/SU(6)— E¢/T'.SU(6) induces an
isomorphism Hever(Eq/SU (6))=Z[u, v, w]/(2w+u?, 3v2, 2wu, w2 —v3)
(i) HU(E¢/SU6)=Z for i=0,6,8, 12, 14,20, 23, 29, 31, 35,37,43; = Z, for
i=18,26; ~Z, for i=16,28 and =0 for other i.

Proof. Since the fibre C/SU(6) of the fibering p is a circle, we have a
Gysin exact sequence which splits into the short exact sequences

0 — H21(E;/SU(6)) —s H?~2(E4/C)
—h, H(E,|C) -2 H?(E,/SU(6)) — O,

where h(x)=x-Q, and Q=+t since E¢/SU(6) is 2-connected. From the exact-
ness of the sequence follows that Heve"(E./SU(6))~Cokerh, and the first
assertion holds as Imh=(t). So the second assertion holds for i even. Note
that the odd dimensional part is torsion free by the above exactness. Then (ii)
holds for i odd by Poincaré duality (and the universal coefficient theorem).

§4. Low dimensional cohomology of the symmetric space EII=E/S3.
SU(6)

According to [12, Theorem 2.1], we have EII=E, /U, U=S3.SU(6).
Consider the fibering

U/C — E,/C —> E¢|U=EII

Since U/C=~S3/T! is a 2-sphere, we have a Gysin exact sequence which is
reduced to exact sequences

4.1);: 0— H?3(EII; A) —&» H?*(EIIl; A) -5 H?*(E4/C; A)

-9, H?"2(EII; A) - H?*\(EII; 4) — 0,
where A=Z,Z[1/2] or Z,, the homomorphisms § and h satisfy
4.2) 0(p*(x)y)=x0(y) and h(x)=x-y

for some ye H3(EII; A) such that 2y=0. The sequences commute with the
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mod 2 reduction p,.
Since H2{(E4/C) is free, it follows from (4.1) that

(4.3) Hed(EI)=y.Heve(EIT)clmh=Tors. HYEII)=Z,+---+Z, (finite sum)
and p,: HYYEIT)—>HYYEII; Z,) is injective.

In particular H3(EIT)~Z, or 0 according to x#0 or yx=0. On the
other hand, since Eg is 2-connected, n,(EIT)~ny(U)=0 and H,(EIl)=n,(EIl)=
n,(U)=Z,. This and (4.1), show that
4.4) H3EIN=Z,<y>, H*EIN=H'(EI[)=0 and 0(t)=2.

Here we change 0 to —0 if it is necessary.
First we consider low dimensional cases.

Lemma 4.1. There exist unique elements a, b, ce H*(EII) and y,e H'(EII,;
Z,), (i=2, 3), dega=4, degb=6, degc=38, such that

p¥a)=1t2, p*(b)=2u—1t3, p*(c)=2v—1t4,
P¥(¥2)=p1), px)=ys and py(b)=y3+y3i.
Then, up to degree 9, we have
HYEID=Z[a, b, 1+ Z,<y, 2>, ay=by=y*=0,
HY(EIL; Z;)=Z,[y,, y31/(y353: ¥3), pa(@)=y3, pac)=yi+y3y,,
Sq'y;=ys and Sq?y;=y;y,.

Proof. From (4.4) and (4.1), it follows that H3(EIT)=0 and p*: H4*(EII)
=Z<a>->H*(E¢/C)=Z<t?> is an isomorphism for a=p* 1(t2). Next
consider (4.1)5:

0—Z,<y>-t>HC(EI X5 Z<u, 3> 8,Z<a>-t, H'(EIl) —0.

By Proposition 2.4 the image of p* contains m(2u—1t3) for some non-zero integer

m. Then m0Q2u—13)=0. By (4.2), 0(¢3)=0(p*(a)t)=2a. Since H*(EIl)=Z<a>
is torsion free we have

4.5) 0Qu—1t3)=0 and Ou)=ua.

From the exactness of the above sequence
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H'(EIT)=0, ay=0 and H®(EI=Z,<y*>+Z<b>

for some element b satisfying p*(b)=2u—13.
Next applying the universal coefficient theorem, we have

H{(EIT; Z)=Z,<y,> (i=2,3,4,95)
and HS(EII; Z,)=2Z,<p,(1?), pa(b)>,

where Sq'y,=y3=py(X), ya=p2(a) and Sq'ys=p,(x*)=y3. By (4.1),, p*(y2)#0,
and  p*(y,)=py(1). Then p*(y3)=p,(1*)#0, and y3=y, Since Sq'(y;y,)
=y38q'y,=y3%, ys=V3)>.

From p*(p,(b))=p,2u—13)=p,(t*)=p*(y3) it follows p,(b)=y3+n-y3 for
some neZ, We replace b by b+(n+1)-x?. Then the relations p,(b)=y3+y3
and p*(b)=2u—1t3 hold, and such b is unique.

By (4.1);, H'(EII; Z,) is generated by h(p,(a))=h(y3)=y;y3. On the other
hand, from (4.5) reduced mod 2, h(p,(a))=h(0(p,(u)))=0. Thus

H'(EIl; Z,)=0 and y,y%=0.

Since Sq'(Sq?y;)=Sq3y;=y%#0, Sq2y; does not vanish and Sq?y;=y;y,.
Moreover 0=Sq2(y3¥3)=(Sq%y3)y3+ys(Sq'y:)*=ysyi+y3=y3.
Consider (4.1), for A=2Z,:

00— Z,<ys3y,> > HYEIIl; Z,) > Z,<v, ut, t*>
9, Z,<y3, y3> —h, HYEIl; Z,) —, 0,
in which p*(y%$)=p,(t*). 0(p(ut)=0(p*(y)p,(u))=y3 and Nh(y3)=y3}=0. By

the exactness of the sequence we have H°(EII; Z,)=0, dim. H¥3(EII; Z,)=2 and

hence H3(EII; Z,)=Z,<y3y,, y4>. We have determined the ring H*(EII; Z,)
up to degree 9.

(4.3) and H°(EII; Z,)=0 imply H°(EII)=0 and by=yx3=0. Then (4.1),
is reduced to

0— H3(EIT) -2 Z<v, ut, t*> 5 Z<b>+Z,<y’> — 0.
From 20(ut)=0Qut—t*)=0(p*(b)t)=2b, we have O(ut)=b+m-y? for some m
€Z,. Applying p, we have p,0(ut)=y3+(m+1)-y} and this equals to 6(p,(ut))
=y3 as above. Thus m=1 and

(4.6) O(ut)=b+x2.

By Proposition 2.4, v is a p*-image in rational coefficient, and we have 6(v)
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=n-y*(neZ,). Then (4.6) and 6(1*)=0(p*(a?))=0 show that n=1. Thus
4.7 0(v)=yx>.

By the exactness of the above sequence we have H3(EII)=Z<c, a?> for
an element ¢ which is uniquely determined by p*(c)=2v—1t*.

Finally p*p,(c)=p,(t*) implies py(c)=y3+m-y3y, (meZ,). But py(a?)=
y3, and p, induces an isomorphism: H¥3(EII®Z,—»H®¥EII; Z,). So we have
p2()=y3+y3y,. g.e.d.

Since H8(EII) is free and 20(vt)=0(p*(c+a?)t)=2(c+a?) we have
4.8 O(vf)=c+a2.

From (4.2), p*(a)=12, (4.5), (4.6), (4.7) and (4.8) we have (i>0)

4.9) 0129 =0, 0(t2*1)=2a’, Out*)=a'*', Out?*)=(b+yx?a’,
Owt2)=aiy? (=0 if i>0) and O@t2*)=(c+a?)da'.

We continue the computation up to degree 13.

Lemma 4.2. (i) We have H'(EIl)=Z <ba>, H''(EII)=H'3(EIT)=0 and
H'2(EIl)=Z<d, d', a®*> where d and d are uniquely determined by the
relations

p¥(d)=w and p*d)=vt2.
The following relations hold:
c¢x=0, 2d'=ca+a® and 8d=6ca—b?*—a3.

(ii) Putting y,,=p,(d) and y\,=p,(d") we have H'®(EII; Z,)=Z,<y3>,
H''(EII; Z,)=H'3(EIl; Z,)=0 and H'*(EIl; Z,)=Z,<y,,, y},, y$>.

(iii) O(vu)=d' and d'y=0.

Proof. (i) From (4.1)s and H7(EII)=0 we have an exact sequence

0— H'OYEINI 2, Z<vt, ut?, 15> 2 Z<c,a?*> 4, H''(EIT) — 0.
By (4.9), 6 is onto and Ker0 is generated by 2ut?—t3=p*(ba). So, we have

H'Y(EIl)=Z <ba>, H''(EII)=0 and cx=0. Similarly from H°(EII)=0 and
h(ba)=bay=0 we have H'3(EII)=0 and an exact sequence
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0— H'2(EIl) 25 Z<w, vt?, ut®, 15> 5 Z<ba> — 0.

Obviously p*(a3)=t°. By Proposition 2.4, m-welmp* for an integer m#
0. Then mfO(w)=0 in Z<ba>, and O(w)=0. Thus there exists d=p* 1(w).
Similarly d'=p* '(vt?) exists. By (4.9), 6(ut3)=ba. By the exactness of the
above sequence H!2(EIl)=Z<d, d, a®>>. By use of the relation r,,=0 in
Theorem 3.2, p*(ca)=20t2—1°=p*(2d'—a3) and p*(b?)=Qu—13)2=—8w+ 12012
—T7t5=p*(—8d+6ca—a3). Since p* is injective, the last two relations in (i)
follow.

(ii) Recall that p,(a)=y3, p,(b)=y3+y% and use the universal coefficient
theorem. Then we have the assertion of (ii) provided that Tors. H'4(EII)
=h(H''(EIl))=0, which follows from (4.3).

(iii) 20(vu)=0(p*(c+a?)u)=(c+a?)0(u)=(c+a?)a=2d' by Lemma 4.1, (4.2)
and (4.5). Since H'2(EII) is torsion free, O(vu)=d' and d'y=h(d')=h0(vu)=0
by exactness.

g.e.d.

§5. Mod 2 cohomology of the symmetric space EIT

We shall discuss the mod2 cohomology of EII. First about mod2 coho-
mology of E¢/C, we have

Lemma 5.1. (i) HX(E4/C; Z,)=4(u, v)Q®Z,< 1, t, t2,...,t'4, w, wt, wt2> and
the following relations hold:

(5.1) u=vt2+utd, v2=wt>+18%, wt3=0 and wi=wot2 4112,
(i) Sq2(v+ut)=0, Sq*(v+ut)=w, Sqé(v+ut)=wt;
Sq2w=wt, Sq*w=Sq°w=0, Sq®w=w(v+ut), Sq'°w=w(v+usnt.

Proof. (i) follows from Theorem 3.2. Recall that, in H¥(E¢/C; Z,), ¢, =t,
¢, =¢3=0, cy,=v+ut, cs=(v+ut)t and cs=w. Then (ii) follows from Wu for-
mulas:  Sq2cs=c4c,+ 5, Sqc,=c4c,+C6, SQOca=cuc3+csc,+cec; and  Sqicg
=cec; (i=1, 2,..., 6). q.e.d.

The following relations follow from (5.1).
(5.2) (i) t'3=0, w2v=0t'2, w2ut=u1'3;

(i) wou=w+ut)u, wout+t'*=w+ut), vt!2+ut'3=w2(v+ut),

vut'2=w2(v+ut)u, vut'3=w2(v+ut)v.
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Define an element y,, of H2°(EII; Z,) by

Y20=5q%y,,.
Then from Lemmas 4.1, 4.2 and 5.1, (ii) and from (4.5), (4.7)

(5.3) we have elements y,e H(EII; Z,) (i=2, 3, 12, 20) and y',, e H'*(EII; Z,)
such that

(i) p*(y)=t p*(y3)=0, p*(y1i2)=w, p*(y12)=0v1%, p*(y20)=w(v+ut);
(ii) 6(1)=0, O(u)=y3, 0(v)=y3, B(vw)=y},:
(i) h(@)=ysx  (xe HXEII; Zy));
(iv) y3y3=0, y3=0, y1,y;=0:
(v) Sq'y,=ys Sq'y3=5q'y;,=5q'y\,=0,
where the homomorphisms p*, 0 and h are those in (4.1)y for A=Z,.

The main purpose of this section is to prove the following theorems.
Theorem 5.2. The additive base of H¥(EII; Z,) is given by
H*(EII; Z,))=Z,<y%3, yi,ph:0<i<11>
+Z,<1,Y2,Y3, 735737273 732> @4y 12, ¥20)-

Theorem 5.3. HXEII; Z,)=2Z,[y,, V3. Y12, Y125 Y201/J for the ideal J
generated by the following elements:

yard v3 Viwvas yio2(r3+r3), yhatyaovitrit yoayiatyaord,
(122 +23% y20(r3+93). ¥85, yao¥iz Yiotyaeyiayiya.
We consider the following graded Z,-modules:
B{=2Z, <43, y12)5; 0<i<11>+Z,<y3>@4A(y12, ¥20)»
B¥=Z,<1, y,>®4(y12, y20)> B5=2Z,<y3}, y3y,>®4(y12, ¥20)>

B*=B%+Bt+B% and C*=Z,<y;, y3¥,>®4(y12, Y20)-
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Lemma 5.4. The following sequence is exact:
0—— C2n=3 _h, gan_r*, [2n(E |C; Z,) —0 B21=2 _h, C2n+1 __, 0,
where, for each basic monomial of Theorem 5.2, I is defined by (iii), (iv) of
(5.3), p* is defined by (i) of (5.3) and the multiplicativity p*(af)=p*(x)p*(f),
and 0 is defined by (0<i<14,0<j<2,0<k<]I)
(5.4), (i) 0()=0(wt))=0,
O(ut)y=yit2  for <12, Ovut’)=y',y4y for <11,
0t)=y3ys (=0 if i22),  O(wot)=y,,p3p5 (=0 if j=2),
Owuw)=yi23,  O(wut**)=yp,,y3y%;
(i) O(wou)=yzop3, O(wout**\)=y,op3yh, O(ut*!3)=0,

O(vut'2)=y,0y,,93 and O(ut**'3)=y,qy,,y3y5.

Proof. For h: B*—>C*, h is surjective and Kerh=B§+B% by (5.3), (iv).
By (5.4), Imf=Kerh and Kerf has a base

1 (0<I<14), wt/ (0<j<2), vt'*2 (0<i<I),
ut'3, ut'4, vi'4, wo+ut), wlo+ut)t and  wot2.

Obviously h: C*—>B* is injective and h(C*)=B%. Under p* the base of B}
+ B* is mapped as follows:

pr(vh) =1(0<I<14), p*(y'20h) =v*2(0<i< 1),
Py 2v5) =wti, p*(ya0v3) =w(v+u)t/ and p*(y oy, .04 ) =w2(v+unt.

Using (5.1) and (5.2), (i) we see that p* is an isomorphism of B¥+B% onto
Kerf. Thus the exactness of the sequence is proved. q.e.d.

Proof of Theorem 5.2. We prove that the natural maps B2"—H2"EII; Z,)
and C2"*'->H2»YEII; Z,) are isomorphisms by induction on n. To do
so, by virtue of Lemma 5.4 and the exactness of (4.1),, it is sufficient to prove
that the formulas (5.4) hold for 0: H2"(E/C; Z,)»H?""2(EII; Z,) provided the
inductive assumption on H2""2(EII; Z,). (5.4), (i) is proved by (i), (i), (iv)
of (5.3) and the property (4.2) O(p*(x)y)=x6(y). Moreover the relations of
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(5.4), (ii) are proved by applying the relations of (5.2), (ii), respectively, to O(w(v
+ut)y)=y,00(»). q.e.d.

As a corollary of Theorem 5.2,

(5.5) the kernel of p*: H¥EII;Z,)->H*(E¢/C;Z,) coincides with C*+ B%
=Z,<Vy3, Y3V2 Y3 V3Y2> ®A(V,3, V20)s in particular p* is injective at degrees
14, 24, 30, 32, 34 and 36.

Proof of Theorem 5.3. The first three relations are already given in (5.3),
(iv). By use of (5.4)

Y12(y3 +y3)=0(wv) + y ,0(ut) = 0(w(v+ut)) = 0p*(y,0) =0
and V20(y3 + ¥3) =0(wou)y, + O(wout) = O(wout) + O(wout) =0.
By (5.1),
(V3 + Y2003+ i) =w2+wo+ut)t?+112=0.

Then it follows from (5.5) that y2,+y,o¥3+yi2=0. Similarly the elements

Vi2Vi2+Y20¥3, (V12)2 + 32, y3° and yyepy, vanish,
In order to prove the triviality of the last element we prepare

(5.6) 8q'2y,0=8q'%y,0=0 and Sq'®y,o=y,0¥12¥3

By (5.5), (5.6) follows from Sq'%(w(v+ut))=Sq'*(w(v+ut))=0 and Sq!¢(w(v
+ut))=w2(v+ut)t? which are computed directly by Lemma 5.1 and by Cartan
formula. Now, by use of Cartan formula and (5.6),

Y30=(89%y,2)2=5q'%(y%,) =Sq'%(y20r3+¥12)=5q'%(y10)y3

=ya0Y12Y5=Y20V12Y5) 2>

These relations show that J vanishes in H*(EII; Z,). By use of these
relations in J, we see that every monomial in y,, ys,..., ¥,0 is a linear com-
bination of the base in Theorem 5.2. Thus Theorem 5.3 is established.

q.e.d.

Since H2'(EII; Z,)=0, we have
5.7 $q'y20=0.

By the derivativity of Sq!, the following (5.8) is computed from Theorem
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5.2, (5.7) and (iv), (v) of (5.3).
(5.8) ImSq'=Z,<y;, y3>®4(),2, ¥20)
and KerSq'=ImSq'+Z,<1, y3y,>®4(y,2, ¥20)+ BE.

Since Sq' is the mod2 Bockstein homomorphism, (5.8) and (4.3) yield

Proposition 54. The mod2 reduction p,: H¥EII)— H*(EII; Z,) induces
isomorphisms

Tors. HHEI)=Z,<y3, y3>®A(y12, ¥20)
and (H*(EIl)|Tors. H*(EIN)®Z,=Z,<yi*3, y,y5;0<i<11>
+Z,<1,y3,y35:>@®4(y 12, ¥20)-
This and (4.3) determine the additive structure of H*(EII).

§6. Integral cohomology of the symmetric space EIT

Consider the exact sequence (4.1) for A=2Z[1/2]. Since x=%(2.1)=0 in
H3(EII; Z[1/2]), (4.1) is reduced to the short exact sequence

6.1 0 — HX(EII; Z[1/2]) -2, H*(E,/C; Z[1/2])
0, H¥(EIT; Z[1/2]) — 0.
Theorem 6.1. For the integral classes a, b, ¢, d of H*(EI),

H*(EII; Z[1/2])=Z[1/2][a, b, ¢, d1/(q12: 916> G138+ 924) >

where the relations q;’s are given in (2.8).

Proof. By Theorem 3.2, H*(E¢/C; Z[1/2])=Z[1]2][t, u, v, w]/(Fi3, F16> Fi8s
r,,). By Lemmas 4.1 and 4.2,

(6.2) p*¥(a)=1t%, p*(b)=2u—13, p*¥(c)=2v—1t* and p*{d)=w.

Hence an arbitrary element x of H¥*(E,/C;Z[1/2]) is written in the from x = p*(f)
+p*(g)t for some polynomials f and g in a, b, c,d. By (4.2), 0(x)=0(p*(f))
+g0(t)=2g. Since 0 is surjective, this shows that H*(EII; Z[1/2]) is multi-
plicatively generated by a, b, c,d. The coefficient homomorphism H*(EII; Z[1/2])
—H*(EII; Q) is injective since H*(EII) is odd torsion free by (4.3). Then the
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theorem follows easily from Proposition 2.4.

Recall from Lemmas 4.1 and 4.2
(6.3)  pa@)=y3, ps(D)=y3+¥3, pa()=y3y2+ )3, pa(d)=y\, and
pa(d)=y",, p¥(d)=vt?, 2d'=ca+a? for d'e H'2(EHN).
Lemma 6.2. There exist elements ec H'4(EII) and fe H2°(EII) satisfying
(6.4) p2(e)=y1,y2 p*¥e)=vQRu—13), 2e=cb+ba?,
P2Af)=Yr0+ey12y3(e€Z,), p*(f)=wv—ut) and 2f=dc.

Proof. By (6.3) and Theorem 5.3, p,(cb+ba?)=y3y4=0 and p,(dc)=
y12(03 +¥3)y,=0. Thus there exist e, fe H*(EII) such that 2e=cb+ba? and

2f=dc. Then, p*(e)=%p*(c+a2)p*(b)=v(2u—t3) and p*(f)=%p*(d)p*(c)=
—é—w(Zv—t4)=w(u—ut) as H*(E4/C) is torsion free. Next, by (i) of (5.3),

P*(p2(€))= p2(P*(e)) = 01> =p*(¥'12y2) and p*(p;(f))=p, (P*(/))=w(v+ut)=p*(y,0)-
Then it follows from (5.5) that p,(e)=y},y, and po(f)=y.0 or p,(f)=y,0
+Y12Y3Y2=Y20+ V12)5 g.e.d.

The structure of H*(EIT) is determined by the following theorems.

Theorem 6.3. Tors. HXEI=Z,<y, y*>®A(d, f) and the Poincaré polyno-
mial is P(EII, t)=(1+t*+t8+t'2)(1 + 10 +1'2) (1 + 18 +119),

This follows directly from Proposition 5.4.
Theorem 6.4. H*(EII) is multiplicatively generated by the elements
(6.5) % a, b,e,d, d,e and f,

and HMEIN=Z[y, a, b, ¢, d, d', e, f]/I for the ideal I generated by the
following elements:

(6.6) 2%, ax, x3, by, ¢t q,,=b%*+8d—6ca+a? 2d'—ca—a3,
2e—cb—ba?, d'y, qi¢=a*+12da—6ca?—3c?, ey, q,5=db,

ea—d'b, dc—2f, 3d'c+3da?—6da?—2a5%,
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eb+7d'a?+8f—8da?—4a%, 3ec+3d'ba—2ba*,

qaa=d?*+c3—3fa, dd'+5fa—4c3, 3d'?—24c3+36fa—ad,
3ed'—ba’, fb, ed+fy? 3fc—2d%a, 3e?+8da*—12d'a*+7a’,
3fd'+12fd—-7d%*a2, fe, 9f2—fda?.

We denote the p,-image of the elements of (6.5) by the same letters.

Lemma 6.5. Im(p,: HEH)->H*EII; Z,))=Z,[y, a, b, ¢, d, d', e, f]/I,
where 1, is the ideal generated by the following elements:

6.7) ay, x3, by, cy, b*+da3 ca+da3 cb+ba?, d'y, c2+a*, ey, db,
ea+d'b, dc, dc+d'a?, eb+da? ec+dba, d?*+fa+a®, dd +fa,
d'?4a®, ed +ba® fb, ed+fy? fe, e*+a’, fd', fe, f2+fda2.

Proof. Imp,=KerSq'=B§+ Z,<1, y3, y3, y3y2> ®4(y12, ¥20) by (5.8).
Rewrite this by the present notation, then

(6.8) Imp,=A4(d")®Z,<|, a, b, a?, ba,..., a®, ba*>
+Z,<y, 2, ¢, e a®, ba®, a’ >
+Z,<d, f, fd>®Z,<]1, y, a, x*, a*>,

where y=y;, a=y3, b=y3+y3, c=yiy,+y3, d=y, d'=yi,, e=y,y, and f=
Vao+ey;2y%. Then it is directly verified by Theorem 5.3 that the elements
in (6.7) vanish in H*(EII; Z,). Moreover we see that the following elements
are in I,:

6.9) da®, dba, fa3, fba, ba®, a®, d'aS+fda, d'ba’+fdy?.

For example, a8 =ca®=d?c+feca=fa® and fa3=fb2=0.

By use of the triviality of the elements in (6.7) and (6.9), we see that
every element of Z,[y, a, b,...,f] is congruent modulo I, to an element of
Imp,. This proves Lemma 6.5.

Proof of Theorem 6.4. Put P=Z[y,a,b,c,d, d,e f]. Since y=0,d
=~%-(ca+a3), e=—5(cb+ba2) and f=%dc in H*(EII; Z[1/2]), direct computa-
tions show that each element of (6.6) vanishes in H*(EII; Z[1/2]). Moreover,
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the basic relations ¢,;’s are covered by some of (6.6). Thus we have a natural
isomorphism

(6.10) (PIN®Z[1/2] = H¥(EII; Z[1]2])=H*(EII)®Z[1/2].

We see also mod2 reductions of the elements of (6.6), except the first one,
coincide with those of (6.7) modulo (6.9). Thus

6.11) (PIDH®Z,=Im(p,: H*(EIl) — H*(EII; Z,))>~H*(EII)®Z,.
Consider the natural ring homomorphism
g: P/l — H*(EII).

By tensoring the identity of Z[1/2] and Z, with g we obtain the isomorphisms
(6.10) and (6.11). So, by a simple algebraic consideration, together with that
P/l is of finite type, we have that g is surjective and

(6.12) Kerg is contained in Tors.(P[I), which is a finite 2-group and g®1 maps
Tors. (P/I)®Z, isomorphically onto Tors. H¥(EIN®Z,.

The subgroup T of Tors.(P/I) generated by {x'*'dif*;i,j, k=0, 1} is
mapped, under g, isomorphically onto Tors. H¥EIl)=Z, < y, x> ® A, f).
Thus T is a direct summand of Tors.(P/I) and (g®1:)T®Z,~Tors. H*(EII)
®Z,. This and (6.12) show that (Tors.(P/I)/T)®Z,=0, T=Tors.(P/I) and
Kerg=0. Consequently we have proved that g is an isomorphism. g.e.d.
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