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Good and bad field generators
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Peter RUSSELL

(Communicated by Prof. M. Nagata, June 7, 1976)

Let k be a field. A field generator in two variables over k is a poly-
nomial fek[x, y] such that k(x, y)=k(f, g) for some rational function g e k(x,
y). We continue the investigation of field generators begun in [1] and [2].
Using methods of [2], we first study in detail properties of the multiplicity tree
at infinity of f once coordinate functions x, y have been chosen that are natural
for f (see [2, 4.7]). Our original motivation for this had been an attempt to
show that all field generators are good in the sense that a complementary gener-
ator g can be found in k[x, y]. However, a quite astonishing example of a
bad field generator has been constructed by C. Jan in [1], and we instead use
the numerical information obtained to determine, with the help of a computer,
all bad field generators of degree <25, the degree of Jan's example. We find
that field generators are good for degrees d<20 and d=22, 23,24, and that
there is exactly one ‘‘type” of bad field generator for d=21 and d=25 (see
2.6 for a more precise statement). R. Ganong helped materially with the rather
claborate calculations needed to establish this and with the writing of an ap-
pendix in which some of the details are explained.

A good field generator f appears as part of a birational morphism ¢:
AZ2—>A}? with (o, B)=(f(a, B), g(a, B)) for a, fek. We show that this is
almost true in general. Namely, if f is a field generator, a complementary
generator g=a/b can always be found with a, bek[x, y] such that (a, b)k[x, y]
=k[x, y]. This means that the pencil of curves {g—pu|uek} has no base points
at finite distance and that ¢@: A2 P2, o(x, f)=(1, f(a, p), g(a, B)), is a biration-
al morphism.

1. We assume that k is algebraically closed in the sequel. This is done
mainly to simplify arguments and could be avoided in most places. We use
systematically the notation of [2]. Also, if S is a non-singular surfacc and
peS, n,: §'>S will denote the locally quadratic transformation (l.qg.t.)) with
centre p and E,=mn,'(p) its exceptional fibrc. E, will stand for the line at
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infinity of k[x, y] i.e, Ey,=V(X,) where (X, X,, X,) are homogencous co-
ordinates of P? such that x=X,/X,, y=X,/X,.

Let f be a field generator, d=degf and A=A(f) the pencil of curves
{(V(f—A)lrek} (see [2, 1.2]). By [2, 4.5] we may assume that x, y have been
chosen so that either f is linear or f has exactly two points on E,. We rule
out the first possibility and may then choose py=(0,0,1) and ¢,=(0, 1, 0)
as the points at infinity of f. Let u,=u(py, A) and u,=u(qq, A) (see [2, 2.5]).
Then (A, Eg)=u,+u, by [2, 3.7] and hence

(H Byt pa=d.

Put E,=E, and D, =E,. lLet S be a non-singular surface dominating P?
and D an irreducible divisor on S. We recall that m(D)=2Zpu(q, A), the sum
extended over base points of A infinitely near (i.n.) to D (see [2, 2.7]). Let
A® denote the proper transform of 4 on S and A’ its member at infinity.
We recall that e(D) is the multiplicity of D as a component of A (see [2,
3.4]). We have ¢(Ey)=d and hence by [2, 3.5.4]

0] e(Ey)=d—p, =,
eD)=d—p,=pu,.

Now m(Ey)=3d—2 (see [2, 3.3]) and in view of (1) we obtain

3) m(E)+m(D,)<2d-2.

Let h, and I, be the number of i.n. base points of 4 on E,; and D, respec-
tively. Since &(E,)>0, &(D;)>0, we have h;>1 and [;>1 by [2, 3.5.6]. By
[2, 3.5.8] and (2)

4) m(E)=hyp,,
m(D)>1, ;.

By (1), (3) and (4)

(5) (1= Dpty +(hy = Dy <d —2<d.

It follows that h,=1 or I,=1. Say h,=1. Then there is a unique base
point, p, say, of A on E,. Let i>!. We define inductively E;,,=E, as long
as there is a unique base point p; of A4 on E;, and we find (uniquely) an inte-
ger s such that on E,, there are either zero base points of A or at least
two. We have shown s>1. Note u(p;, A)=(E;, A)=u(p;-, A) for i=1,..,s
and hence
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(6) wp, A)=p,  for i=0,..,s.
We let v=¢(E,,,) and obtain
7) v=p,—s>u, >0.

If h is the number of i.n. base points of A on E ., and [=I[,, then hv+Iu,
=h(u, —sp,)+1lu, <2d—2—su, by (3), (6), (7) and [2, 3.5.8]. Hence

(®) (h=2)(ua —sp)+(—s=2)p, < -2.

Recall that either h=0 or h>2. In the first case, v=0 and p,=su; by
[2, 3.5.6]. In either case |—s—2<0 by (7) and (8) and hence [<s+1. Let
q1,15---» 4y, be the base points of A on D, and p,;=pu(q,; A). If S is ob-
tained from P? by 1l.q.t. at p, and g, and, say, g, €S, then D, is the only
component of AS) containing ¢,, and pu,,<e&D,)=p, by [2, 3.5.3 and
3.5.4]. Since any g, ; is i.n. to some ¢, ; €S, we have

C)) Mo i <1y for i=1,..., L

On the other hand ]S%lyz,ﬁ(A, D,)=p, and hence

(10) Iy >pp= lggﬂz,izsﬂl-

It follows that

(1) s<I<s+1 and O<v=p,—su, <u,.

We consider three cases for future reference:

I.1 Suppose s=I. Then p,=su, and p,;=p, for i=1,...,1 (by (10)). Hence
&Eg)=0 and &E, )=p,—p,;=0 for i=1,..,[ It follows that p,,...,p,
dos q1,15---» 91, account for all base points of A and that equality holds in (8).
Hence u,=1.

1.2 Suppose v=p;. Then I=s+1, uyy=(s+1)u; and p,;=p, for i=1,.,1
(by (10)).

1.3 Suppose O<v<y,. Then h>2 and I=s+1. Let p,,,..., p,, be the base
points of A on E ., and p, ;=p(p,; A), i=1,..., h. Then

(12) i <v=8(Eg, ), i=1l,..,h and
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(13) > % py=n,.

1<7<h
(We repeat the argument made for the ¢, ; above.) Finally, by (8) and (13)
(14) (h=2pv+2<pu, <hv.

If p,;=p, for some i, then f can be simplified by a suitable birational
endomorphism of k[x, y] as we will show now. Let t: A?—>A? be the bira-
tional morphism defined by A=k[u, v]3k[xy, ylck[x, y1=B (i.e., t(a, B)
=(aff, p) for o, fek), and let %:S,=P2->P2=S, be the induced birational
map. The following facts are easily checked: The fundamental points of %
are pg=(0,0, 1), qo=(0, 1,0) and the point gq,,€E, corresponding to the
direction of L=V(X,) at qo,. Let S be the surface obtained from P} by
l.q.t. at po, qo, q,,;, let p: S—»S, be the birational morphism induced by %
and let a prime denote taking proper transform on S. Then p(L)=(l, 0, 0),
p(Ep)=p(Ey,)=(0, 1, 0), no other curve on S contracts to a point on S, and
p(Ep,)=line at infinity of S,. Now let f be as above and suppose ¢,, is a
base point of A with u, ,=ulq,,, A)=u,. Then (L', A)=(L, A)—pu;—p, =0,
that is, a general member of A does not meet L. As we have seen above,
L’ is the only curve on S that contracts to a point at finite distance on S,
and hence the transform of A on S, has no base points at finite distance. It
follows that t ' (¢(V(f—=A)=V(f—4), or (f—ABnA)B=(f—2A)B, for almost
all Aek. Since (f—A)BnA is principal, f—Ae A and f(x, y)=f(xy, y) with
fek[u, v]. We have degf=d—pu,=pu,. In fact, if x is chosen so that V(X))
is tangent to A at p,, the degree form of f is u#ip#27#1, (Note that the degree
form of f is x*ty#2)) By an obvious induction argument we find:

1.4 Suppose A has r fundamental points of multiplicity x, on D,. Then there

exists p(y)ek[y] of degree r such that f(x, y)=Ff(xp(y), y)€k[xp(y), y]. We
have degf=d—ru,, f is a field generator and if f is good so is f.

If we apply the argument given above to the birational morphism induced
by k[x, xy]J=k[x, y], we find:

1.5 Suppose p;=p,. Then s=1 and v=0. If x is chosen so that V(X,) is
tangent to A at po, then f(x, y)=5(x, xy) € k[x, xy].

The preceeding results are summarized in

1.6 Theorem: Let fek[x, y] be a field generator, d=degf and A=A(f).
Assume py=(0,0, 1) and q,=(0, 1,0) are the points at infinity of f with pu,
=1(po, A)Lu(qo. A)=p,. Then:
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() py+py=d.
(2) There is a unique integer s>1 such that
(i) there are s+ base points po,.... ps of A i.n. to py with u(p;, A)=
u, for i=0,...s,
(iiy if h is the number of base points of A on E;.,=E,, then h=0
or h>2,
(3) Let v=p,—sp,. Then 0<v<u,. If v=p,, then f(x, Y =Ff(xp(»), y)
e k[xp(y), y1, where p(y)ek[y] is of degree s+1 and f is a field generator of
degree ;.
(4) Suppose h#0. Then (h—2v+2<p,<hv. If p,,,.... py, are the base
points of A on Eg,y, then p,;=p(p,,; A)<v for i=1,...,h and 1925;.#1"':#1'
(5) Let qy,,...,4,, be the base points of A on D;=E,. Then s<I<s+1,
=gy, DA<, for i=1,..,1 and Z ﬂzz—#z If s=I1, then p,;=p, for
1=l,..., I If py;=p, for r values of 1 then f(x, )=F(xp(y), y)ekixp(y), ¥1,
where p(y)ek[y] is of degree r and f is a field generator of degree d—ru,.
6) If uy=p, and x is chosen so that V(x) is tangent to f at p,, then
f(x, Y=f(x. xy)e k[x, xy], where f is a field generator of degree .

2. Let fek[x, y] be a field generator, K=k(f) and C, the complete regular
curve over K with function field k(x, y). Note that f is a good field generator
if and only if k(x, y)=K(g) for some geK[x, y]. Since C,~P}, this is the
case if and only if there is a place rational over K (the place given by the
degree function on K[g]) among the places at infinity of C, (see [2, section 1]).
The places at infinity of C, may be found by resolving via 1.q.t. the non-
regular points (all at infinity) of the plane curve V(f(x, y)—t) with t transcen-
dental over k, or, which is the same, the non-regular points of the generic
member A, of A=A(f) (see [2, 2.8]). As was pointed out in [2, 2.9], the
non-regular points of A, are among the base points of A. Hence

2.1 C, has a rational place at infinity if and only if there is a base point
q of A at which A has a simple branch with variable tangent, i.e., the leading
form of a local equation for A at q has a variable linear factor (see [2, 2.6]).

Clearly, the above condition is satisfied if there exists a base point q' of
A such that pu(q’, A)=1, and we find:

22 If fis a bad field generator, then u(q, A)>1 for all base points g of A.

Let Hysenes By ((s+1)-times), Has Hytsees Heps ﬂz,l*“'uuz,l’ #3,1""’#3," be the
multiplicities of the base points of A, with s, I, h, u;, p, and the p,,, p,; as

in 1.6 while puj,,..., u3, represent the remaining multiplicities. When searching
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for all bad field generators f of degree d, omitting those obtained from field
generators f(u, v) of smaller degree by substitutions of the form u=xp(y), v=y
with p(y)e k[v], we may assume, appealing to 1.6, 2.2 and [2, 3.1 and 3.3]:

23 (1) py, pp and all y;; are integers >2.

(2) (s+Dpi+pd+2Zut;=d,
(s+ Dy +pp+Zp; j=3d-2.

3) p,<df2, py=d—p, and p,=su,+v, where v is an integer and 0<v
<U.

(4) v=0and h=0 or (h—=2)v+2<pu, <hv, pu; ;<v for j=1,...,h and Zpu, ;
=.

(5) l=s+1, pyj<p, for j=1,..,1 and Zu, ;=p,.

(6) wu3,;<u; for j=1,...,r. (An upper bound for r is easily determined.)

A computer programmed to find all sequences satisfying 2.3 for d<25
came up with about 80 solutions. All but two, however, are ruled out as the
multiplicity sequence of a field generator by fairly straightforward arguments.
(An example is given in the appendix.) The remaining ones are:

24 =9, =12, py = 2= 3=3, 11 =8, =4, u3, =4, H32=H33=HU3,4
=2.

25 py=9, 1=16, iy 1 =6, 1y 2 =3, fty ;=M 2 =8, 3 1 =3, =3, 3 3=""= 3 6=2.

flx, y) = p3(xy+ 1)° + 4x7y° + 25x6y8 + 66x5y7 + 6x5y® 4+ 95x4y® 4+ 23x4y3
+80x3y5 +34x3y4 +4x3y3 +39x2y* —6x2y3 + Tx2y2 + 10xy3 —52xy? +3xy +x + y?
—29y is an example of a bad field generator with 2.4 as multiplicities at in-
finity. (If ¢ is transcendental over k, V(f—t) is a curve of genus O over
k(t). Also, x=t, y=0 is a rational point of V(f—t). Hence f is a field gener-
ator over the prime field of k.) C, has exactly two places at infinity, one of
degree 2 and one of degree 3 over k(f). Jan’s example has 2.5 as multiplici-
ties at infinity. (See [I, chapter III]. We would like to point out that the
assumption char k=0 made there is unnecessary.)

A field generator f with two points at infinity of multiplicities p, and u,
is of the form f(x, y)=x*1y*2+4+g(x, y), where degg<u,~+pu,, deg,g<pu, and
deg,g <p,. (This follows easily from [2, 3.7].) One sees immediately that any
nonlinear substitution x=a(u, v), y=>b(u, v) increases the degree of f by at least
min {y,, u,}. We therefore conclude

2.6 A bad field generator of degree <25 has 2.4 or 2.5 as sequence of multi-
plicities at infinity. Field generators of degree d<20 and d=22, 23,24 are
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good.

It is shown in the appendix that there is a unique irreducible family of
bad field generators f of degree 21. The main point is that 2.4 almost com-
pletely determines the positions of the multiple points of f, the only difficulty
arising from p,,, py2, P13 on E, with multiplicities g, ,=p; ,=p,3=3 (the
notation is as in section 1). These points can be chosen distinct or infinitely
near in various combinations (more precisely, one has the choice of a divisor
of degree 3 on E,), and it is not clear a priori whether the f corresponding to
a generic choice of three distinct points specializes correctly when two or more
points are made to coincide. Jan’s example exhibits a very similar behaviour
and most likely is again a member of a unique irreducible family of bad field
generators of degree 25.

3. Let f,gek(x,y). We call (f,g) a generating pair if k(f, g)=k(x, y).
Associated with any generating pair (f, g) there are birational maps

U=A} —%5 A}=V
(D n n
P? _%, P}

(with o(a, B)=(f(a, p), g(a, B)) for a, fek, and $|AZ=¢). From (1) we deduce
commutative diagrams

r
@ v/ N\
A2 2 A

and
Z
3) V &z
P; _¢ P}

where I' is the graph of ¢ and n; (resp. m,) is the composite of the 1.q.t.
with centres at the fundamental points of @ (resp. ¢=1).

Now suppose fek[x, y]. Then the coordinate ring of I' is A=k[x, y, g]
and ¢,, ¢, are given by the inclusions

k[x, yle A>k[f, g].

Write g=a/b with a, bek[x,y] and GCD(a, b)=1. Then the fundamental
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points of ¢ on A? are precisely the common zeros of a and b, or, which is
the same, the base points at finite distance of the pencil {V(a+Ab)|Aek}. The
fact that A4 is a simple extension of k[x, y] has the following nice consequence
for the structure of ¢. T am indebted to W. Heinzer for pointing this out to
me.

3.1 Propositon: Let fek[x, y] be a field generator and (f, g) a generat-
ing pair. Write g=alb with a,bek[x, y] and GCD(a, b)=1. Suppose M
ck[x, y]l is a maximal ideal such that a,beM. Then there is a unique
height one prime J<A=k[x, y,g] such that Jnk[x, y]=M. If feM (note
f—24€eM for some Aek), then A;=k[f, g])

Proof: One sees easily that A/MA=k[g] (where g is the residue class of
gmod M A) is isomorphic to a polynomial ring in one variable over k. Hence
J=MA is prime, and the only height one prime of A contracting to M. Let
(R, M) be a valuation subring of k(x, y) (Mg=maximal ideal of R) such that
MgnA=J. Put M'=Mgnk[f, g]. Note that R/Mg>A/J=k[g], i.e., g is
residually transcendental for R. This shows that M’ is not maximal, for other-
wise g—ueM' cMy for some puek. Hence fe McMy implies M'=fk[f, g]
and k[f, g],y=A,. Since k[f, g] ) is a valuation ring, equality holds.

3.1.1 Corollary: A=Kk[x, y, g] is integrally closed.

Proof: Since A,~k[x, y],, the proposition implies that A, is a valuation
ring for all height one primes P of A. Also,

A~k[X, Y, W]/b(X, Y)W—a(X, Y)
is a complete intersection. Hence A is normal by [3, III, Prop. 9].

3.1.2 Corollary: Suppose Mck[x, y] is maximal and a, b, feM. Then
M is the only maximal ideal with this property. Also, fé M? and a+Ab
¢M?2 for almost all Lek.

Proof: By the proposition, M=fk[f, gl Nk[x, y]l. Since JA,=fA,,
féM?, Let N=(a, b, g+2)A with Aek. By 3.1.1, Ay is regular and hence
a+AbgM? for almost all Aek.

3.2 Theorem: Let fek[x, y] be a field generator. Then there exist
a, be k[x, y] such that k(f, alb)=k(x, y) and (a, b)k[x, yl=k[x, y].

Proof: We may assume that f is a bad field generator. Let g=a/b be a



Good and bad field generators 327

complementary generator with GCD(a, b)=1. We proceed by induction on
j(a, b)=dim, (k[x, y1/(a, b)k[x, y]). Suppose j(a, b)>1. Let M be a maximal
ideal such that a, be M. We may assume fe M. Also, replacing b by a+A1b
with suitable Aek if necessary, we may assume that b is irreducible. Let
fi€k[x, y] be irreducible such that f,|f and f,eM. Put V, =k[x, y],,, and
V;=k[f, g1 Both V, and V, are principal valuation subrings of k(x, y)
and V,#V, (since fV,nk[x, y]=M#f k[x, y]=fiV; nk[x, y]). Hence either
V; pkLf, g] (i.e., V, has no centre on k[f, g]) or M'=fV, nk[f g] is a
maximal ideal. The first possibility we can rule out. It implies f;|b, so b|f
(since b is irreducible) and f is a good field generator (since (f, fa/b) is a
generating pair). Hence V; ok[f, g] and M’ is maximal, which implies g—pu
e M’ for some uek. Then f|la—ub, and replacing a by a—ub we may assume
fila. Let h=GCD(f, a) and write a=ha’, f=hf’. We claim that (a’, f)k[x, y]
=k[x, y], and this proves the theorem. For then (f, a’/f'b) is a generating
pair and j(a’, f'b)=j(a’, b)< j(a, b)=j(a’, b)+j(h, b).

To establish the claim, consider a maximal ideal Nc<k[x, y] such that
a’,feN. (If none exist, we are done.) If N=M, then f'¢ N by 3.1.2. Also,
f,a’, f'be N, and applying 3.1.2 to the generating pair (f, a’/f'b) we find that
N is the only maximal ideal of k[x, y] such that a’, fe N. Hence (a’, f)k[x,
y]l=k[x, y]. So suppose N#¥M. Then b¢N (otherwise a, b, fe N and N=M
by 3.1.2) and k[x, yly2k[f, 9] (i.e.. the rational map ¢ of (1) is defined at
N). Let f, be an irreducible factor of f such that f,e N and put V, =k[x,
Y1, Again foV, nk[f, g] is a maximal ideal (we repeat the argument made
for f, above). Hence f,V,, Nk[f, g1=Nk[x, ylynk[f, g] and gef,V,, that is
fila. Now f, a’, ff'be N, and applying 3.1.2 to the generating pair (f, a'/ff'b)
we find that again N is the only maximal ideal with a’, fe N and that f=f,f"
with f"¢ N. Since f,|a, L4 f" and (f’, a')k[x, y]=k[x, y] as before.

3.21 Corollary: Let fek[x,y] be a field generator. Then any ir-
reducible component of V(f)c=A} is a non-singular rational curve, any two
components either do not meet or meet normally in exactly one point, and no
three components have a point in common.

Proof: Choose a complementary generator g=a/b such that (a, b)k[x, y]
=k[x, y]. Then the birational map ¢ of (1) has no fundamental point at
finite distance, that is 7, induces an isomorphism of an open subset of Z with
U. Let F be the closure of V(f) in P?. Then =n7Y(F)=n3!(L), where L
is a line in PZ, and the irreducible components of n;!(L) clearly have the
properties claimed for those of V().

We conclude by strengthening 3.1.2.
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3.3 Proposition: Let fek[x, y] be a field generator and g=alb a com-
plementary generator with a, bek[x, y] and GCD(a, b)y=1. Let Mck[x, y]
be a maximal ideal such that a, b, fe M. Then M=(a, b, f)k[x, y] and Mk[x,
ylm=(a+Aib, NHk[x, yly fer almost all Aek.

Proof: Let f,,a’,f" be as in the proof of 3.2 (we assume f,|a). Let
nz1 be such that ae M"—M"*'. We show by induction on n that (f,, b)k[x,
¥l =Mk[x, y]ly. Since we are free to replace b by a+ b for almost all ek,
this proves the proposition in view of 3.1.2. Suppose first n>1 and consider
the generating pair (f, a’/f’'b). We have a’'eM""'—M" and f'¢M, so (f,,
b)k[x, y1u=(f1, f'b)k[x, y],y and we are done by induction. If n=1, consider
the generating pair (f, f'b/a’). Let again @ denote the associated birational
map and let F’ denote the closure in PZ of V(ff'b). Then n7!(F)=n3!1(L,
UL,), where L, L, are lines in P?. Now a’¢ M. Hence @ is defined at
M and we conclude that f; and b meet normally at M (components of n3'(L,
U L,) meet normally).

Appendix: The technique of determining a plane curve from its multi-
plicity tree is, of course, well known in principle. In practice, the calculations
can assume imposing proportions, and it may be worth-while to illustrate the
technique at work in a non-trivial example, here in the determination of the
family of all bad field generators of degree 21.

As has been mentioned, all but two of the computer solutions of 2.3
can be ruled out as the multiplicity sequence of a field generator. Here is an
example: 1, =10, p,=13, p, ;1 =p, =3, 1 3=p114=2, 11,,1=8, 13,=5, 113,,=35,
Uz 2=4, 13 3=2. We find &E,, )=eE,)—8=2 by [2, 3.54]. By [2, 3.5.6] all
points of A on E, , are base points of A. There are two possibilities: (i) q,,,
is not i.n. to ¢q,,. Then the multiplicities of all base points of A4 on E,
are among the p;; and their sum is p,,=8, which is impossible. (ii) q, ,
is i.n. to gy, i.e., q,,€E, NE,  (here and in the sequel a prime will denote
taking proper transform). Now the multiplicities of all remaining base points
of A on E, , are among the p;; and their sum is p, ,—p,,=3, again an
impossibility.

Let us next indicate how the sequence 2.4 determines the tree of singulari-
ties of a bad field generator f of degree 21. We first consider g,€ E, with
u(qo, A)=12. By arguments like those above we find that gq,=¢,, is i.n.
to ¢,,=¢, on E,. After blowing up q,, the support of the total transform of
E, looks as follows:

Ey E, E,

Ey,
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By [2, 3.54], &E,)=9—-8=1 and &E,;)=9+1-4=6. Since u;;>1=¢(E,)
for all i, A has no base point on E; —E, by [2, 3.5.3 and 3.5.4]. Since
(A, Eq,)=8-4>0, there is a base point q;e€E; NE,, and we claim that
(g3, A)=p3,=4. In fact, if q,,..., q. are the base points of A on E,,, then

> g, N=p, ,=4. The pu(g; A) are among the y;; and if u(q;, A)#4,
3dize
then c=4 and (g3, A)=p(qs, A)=2. 1If q is the base point of A with u(q, A)

=3, =4, then g is not i.n. to p,, as follows from 1.6 (4), and hence g is i.n.
to g3 or q4, which is impossible since u(q, A)>2. This proves our claim. Now
&(E;))=6+1—4=3, the base points of A on E,, are not on Ej UEj,, the
sum of their multiplicities is 4, and hence there are two, g, and g5 say, of
multiplicity 2 each. We have &(E,)=1, and we argue as above that gs5eE,,
nEg, is i.n. to g4 We find &(E,)=2, and there is a unique base point g,
€Eq,, qe¢E;, U E;,. Now u(qe. A)=2=¢(E,,), and gq¢ is a terminal base
point (see [2, 2.5]). The support of the total transform of E, at this stage has
the following configuration:

Ej Ey, Eg, Ey, Eq,
. ) ° ’ °

E,, T 9e
[ ]

7
E,,

Above p, we first find a unique base point p, e E, and then three base points,
P2> P3» P4 say, of multiplicity 3 each on E, —Ej, . We note &E,)=3 and (4,
E,)=9. There are three cases to consider:

(1) p,, ps. ps are distinct. They are then all terminal base points. We
obtain the diagram

El’l E;’o E:)
X X—X— @ — -
P2 P3 Pa

(2) p,. p; are distinct, p, is i.n. to p;. Then p,, p, are terminal. The
diagram is

Ep, 5 Ep, Ep, E,
— e —X—e——————
Pa P2

(3) pyisi.n. to p, and p, is i.n. to p;. Then p, is terminal. The dia-
gram is
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E;72 EP3 . E;’n E’Po E;)
[ [ ] [ J [ ]
Pa

Let f(x, y)=2a,;x'y/. We choose p,=(0,0,1) and go,=(0, 1, 0) as points
at infinity of f. F(Xo, X, X,)=X3'f(X,/X,, X,/X,) has unique tangents at
Po and g,. We choose these as X,; and X, respectively. Then f(x, y)=x%y!2
+terms of lower degree in both x and y. At g, F has local equation F(z, 1,
y)=2a;;yiz?'7i7i. Blow up g,. The proper transform F() of F has a
local equation of the form fU)(y,z)=F(z, 1, yz)/z'2=y'24 SZ a; ;yiz°7¢,
and z is a local equation for E,. We require that F(1 h:':lsvedsql,l=(0, 0) as
zero of multiplicity 8 with E, as unique tangent. This is so if and only if
a;;=0 for i>j, except that a,,#0. Blow up g,. F( has a local equation
of the form f((y, yz)/y8=y*+Za,;y/~i*12°7!, We require that gq,=(0, 0)
be a fourfold point of F(2) with unique tangent E;, which implies the vanish-
ing of six more of the a;;. On blowing up g, one obtains a local equation of
the form f(3)=y44Xq,yi~i*12i-2i%*6 and F3 is to have ¢g3=(0,0) as four-
fold point with unique tangent, meeting E; and E,, normally. Hence the
leading form of f(* is (y+az)* for some aek*. Consequently, three more a;,
vanish, and four more are determined as functions of «.

One proceeds in this fashion. There is a choice of tangent direction at
qs, amounting to a choice of yek*. Writing down all conditions at g, g4, gs,
ge one finds: all but 29 of the a;; vanish, the leading coefficient is 1, four more
are determined by oe€k* and three more are rational functions, defined for
a#0, in ag,y, @ 9. The remaining coefficients are a;;,3 (0<i<8),a,, and
eleven others. In each of the cases (1), (2), (3), the a;;,; are determined as
symmetric polynomials with integer coefficients in f,, 8,, ;3 corresponding to
a choice of (p,, ps, pa)€(Ep,—{p})*~A}, where {p}=E, nE,. In addition
nine more equations result that are linear in the eleven coefficients mentioned
above. In each case aq, is arbitrary. Together with two equations left from
the analysis at the g;, these give matrix equations M; A=W, 1<i<3 (one for
each of the cases (1), (2), (3)), where A is the column with entries a;;,, (0<i
<5), as4, G1,1 Ao,1, 4,2, dz,3. We exhibit M, and W,.

(L B: BE - B?
i=1,2,3
0 1 2 - 5B

M, = —o? o -1
32y =20y v
L B? 0 1 ﬂi Blz}i=l’ 2’3_
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[ —ae,sB? —dap]

—6ag,sf7 —282F

i=12,3

W,= )’2_07.100‘3
)’(06,874'4‘17,10“3 —dag 12y)

-04,5ﬁ?—6a2ﬂ15}i= 1, 2, 3

.

The factors of detM, are a,y and I_Ij(ﬁ,-—-ﬂj)s, those of detM, are a,y
i<

and (B,—p)'° (in case f,#p;=p;) and ldetM3=ocy. For general (a7, B, B2,
B3) e Af (with detM,#0) there is a unique corresponding pencil A(f), the in-
verse image A(f) being determined up to permutation of the ;. Elementary
row operations and extraction of five factors f;—f; from appropriate rows allow
one to transform M,A=W, into M¥A=W?%, where the factors of det M% are
o« 9, (By—B)° and (B,—p;)°, and M7, W% specialize to M,, W, when B;=p,;.
By further operations of the same type one obtains M**4=W** where det M**
=ay and M7Y*, Wi* specialize to M;, W; when B,=f;=p, It follows easily
that there is a one-to-one correspondence between the points of V,=(Al—{0})2
x A3 (AL =symmetric threefold product of A}) and pencils A(f) satisfying our
initial choice of p,, g, and tangents at these points. These choices amount to
picking a point in V,=(P!xP}—-A)xA? (4 stands for diagonal). Taking
into account the free choice of aq,, we find that bad field generators of degree
21 are parametrized by V, x V, x A{.
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