On submodules of a Verma module The case of $\mathfrak{gl}(4, \mathbb{C})$

By

Shunsuke MIKAMI

(Received May 27, 1976)

Introduction

Let g be a complex semisimple Lie algebra, and h a Cartan subalgebra of g and Δ the root system of (g, h). Denote by g^{α} the root space corresponding to a root α , then $g = h + \sum_{\alpha \in \Delta} g^{\alpha}$. We fix a positive system of roots Δ_+ and denote by Δ_0 the set of simple roots. Put

$$\mathfrak{n}^+ = \sum_{\alpha \in \mathcal{A}_+} \mathfrak{g}^{\alpha}, \ \mathfrak{n} = \sum_{\alpha \in -\mathcal{A}_+} \mathfrak{g}^{\alpha}, \ \rho = \frac{1}{2} \sum_{\alpha \in \mathcal{A}_+} \alpha.$$

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} . For any $\chi \in \mathfrak{h}^* = \operatorname{Hom}(\mathfrak{h}, \mathbb{C})$, we consider the factor space $M(\chi) = U(\mathfrak{g})/I_{\chi}$, where I_{χ} is the left ideal of $U(\mathfrak{g})$ generated by \mathfrak{n}^+ and $\{H - \chi(H) + \rho(H); H \in \mathfrak{h}\}$. Then $M(\chi)$ has the natural structure of $U(\mathfrak{g})$ -module and is called the Verma module induced by χ . A nonzero element of a $U(\mathfrak{g})$ -module is called extreme if it is annihilated by \mathfrak{n}^+ .

D.-N. Verma proved in [1] that a submodule of $M(\chi)$ generated by its extreme vector is isomorphic to another Verma module $M(\chi')$. The submodules of this type are called here Verma submodules. He also got a sufficient condition on a pair (χ, χ') for $M(\chi)$ to contain a Verma submodule isomorphic to $M(\chi')$.

After that, I. N. Bernstein and others proved that this condition is also necessary [2]. So all the Verma submodules are already known.

In that work [2], they also constructed an example of submodules which are not generated by their extreme vectors. They treat there the case $g=\mathfrak{sl}(4,\mathbb{C})$ and χ is a certain weight ω (see §2). J. Dixmier and N. Conze gave a fundamental necessary condition for the existence of submodules which are not of Verma's type.

It is an interesting problem to determine the structure of the Verma module $M(\chi)$, and especially to find the submodules of $M(\chi)$, not of Verma's type.

But even for algebras of lower ranks, the complete solution is yet unknown.

In this note, we construct the submodules of non-Verma's type when $g = \mathfrak{sl}(4, \mathbb{C})$ and $\gamma = n\omega$ for any positive integer n by a certain general method.

The author expresses his hearty thanks to Professors T. Hirai and N. Tatsuuma for their kind advices.

§1. Preliminaries

Let X_{α} , $X_{-\alpha}$ ($\alpha \in \Delta_{+}$), $H_{\alpha_{i}}$ ($\alpha_{i} \in \Delta_{0}$) be a Weyl basis normalized as follows:

- 1) $\alpha([X_{\alpha}, X_{-\alpha}]) = 2$,
- 2) $\alpha_i(H_{\alpha_j}) = 2 < \alpha_i$, $\alpha_j > / < \alpha_j$, $\alpha_j >$, where <, > is the inner product of \mathfrak{h}^* induced by the Killing form of \mathfrak{g} .

Denote by s_{α} the reflection corresponding to a root α and by W the Weyl group of $(\mathfrak{g}, \mathfrak{h})$. In the following we denote by $U(\mathfrak{p})$ the universal enveloping algebra of a Lie algebra \mathfrak{p} . For $\mu \in \mathfrak{h}^*$ (=Hom $(\mathfrak{h}, \mathbb{C})$), we put

$$M(\gamma|\mu) = \{v \in M(\gamma); Hv = \mu(H)v (H \in \mathfrak{h})\},$$

$$U(\mathfrak{n}|\mu) = \{v \in U(\mathfrak{n}); \text{ ad } (H)v = \mu(H)v \ (H \in \mathfrak{h})\}.$$

They are called weight subspaces corresponding to a weight μ .

Then $M(\chi)$ (resp. $U(\mathfrak{n})$) is expressed as a direct sum of weight subspaces as

$$M(\chi) = \sum_{\mu \in \chi - \Gamma_+} M(\chi | \mu - \rho)$$
(resp. $U(\mathfrak{n}) = \sum_{\mu \in \Gamma_+} U(\mathfrak{n} | - \mu)$),

where Γ_+ is the set of all non-negative integral linear combinations of Δ_0 . Further $M(\chi)$ is isomorphic to $U(\mathfrak{n})$ as a vector space, and as a $U(\mathfrak{h})$ -module $M(\chi|\mu-\rho)$ is isomorphic to $U(\mathfrak{n}|-\chi+\mu)$.

For our later use, we quote here the following known facts in the form of two theorems (see [1], [2], [3] and [4]).

Theorem A ([1], [2], [4]). Let χ and ψ be two elements of \mathfrak{h}^* , then the following properties hold.

- 1) $\dim_{\mathbf{C}} \operatorname{Hom}_{\mathfrak{g}}(M(\chi), M(\psi)) = 0$ or 1.
- 2) Every non-zero element of $\operatorname{Hom}_{\mathfrak{g}}(M(\chi), M(\psi))$ is an embedding.
- 3) $\dim_{\mathbf{C}} \operatorname{Hom}_{\mathfrak{g}}(M(\chi), M(\psi)) = 1$ if and only if there exists a sequence $\gamma_1, \ldots, \gamma_k$ of positive roots satisfying the following conditions: put $\psi^{(0)} = \psi$ and $\psi^{(j)} = s_{\gamma_1} \cdots s_{\gamma_1} \psi$ $(1 \le j \le k)$, then

- a) $\chi = \psi^{(k)}$, b) $\psi^{(i-1)}(H_{\nu_i})$ is a positive integer for any i.
- 4) Each irreducible sub-quotient module of $M(\chi)$ has a highest weight $\mu \rho$ with $\mu \in W\chi \cap \chi \Gamma_+$.

Theorem B [3]. If $M(\chi)$ possesses a submodule which is not generated by its Verma submodules, then there exists three different elements ξ , η , ζ of W_{χ} such that

- 1) $M(\chi) \supseteq M(\xi) \supseteq M(\zeta)$, $M(\chi) \supseteq M(\eta) \supseteq M(\zeta)$.
- 2) $\eta \xi \in \Gamma_+ \setminus \{0\}$

(Let M be such a submodule and N be the submodule generated by all its Verma submodules. Then the element ξ in the above theorem was chosen in [3] in such a way that putting $\Xi = \{\mu \in \mathfrak{h}^*; M(\chi|\mu-\rho) \cap M \supseteq M(\chi|\mu-\rho) \cap N\}$, we have $\xi \in \Xi$ and $\mu-\xi \notin \Gamma_+$ for any $\mu \in \Xi$.)

§2. The Verma module $M(\chi_n)$ of $\mathfrak{sl}(4, \mathbb{C})$

Put $g = \mathfrak{sl}(4, \mathbb{C})$ and denote by \mathfrak{h} the Cartan subalgebra of \mathfrak{g} consisting of all diagonal matrices. Then the set Δ_0 consists of three roots $\alpha_1, \alpha_2, \alpha_3$, and with suitable numbering $\Delta_+ = \{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$ and its Dynkin diagram is given by

$$\alpha_1$$
 α_2 α_3

Define a weight ω by

$$\omega(H_{\alpha_1}) = \omega(H_{\alpha_2}) = 0$$
, $\omega(H_{\alpha_2}) = 1$

and put $\chi_n = n\omega$ (n = 1, 2,...). We study the Verma module $M(\chi_n)$. By Theorem A, all the Verma submodules are given as follows:

$$\begin{split} &M(s_{\alpha_{2}}\chi_{n}) = M(\chi_{n} - n\alpha_{2}) = U(g)X_{-\alpha_{2}}^{n}, \\ &M(s_{\alpha_{1}}s_{\alpha_{2}}\chi_{n}) = M(\chi_{n} - n\alpha_{1} - n\alpha_{2}) = U(g)X_{-\alpha_{1}}^{n}X_{-\alpha_{2}}^{n}, \\ &M(s_{\alpha_{3}}s_{\alpha_{2}}\chi_{n}) = M(\chi_{n} - n\alpha_{3} - n\alpha_{2}) = U(g)X_{-\alpha_{3}}^{n}X_{-\alpha_{2}}^{n}, \\ &M(s_{\alpha_{1}}s_{\alpha_{3}}s_{\alpha_{2}}\chi_{n}) = M(\chi_{n} - n\alpha_{1} - n\alpha_{2} - n\alpha_{3}) \\ &= U(g)X_{-\alpha_{1}}^{n}X_{-\alpha_{3}}^{n}X_{-\alpha_{3}}^{n}, \end{split}$$

$$M(s_{\alpha_2}s_{\alpha_1}s_{\alpha_3}s_{\alpha_2}\chi_n) = M(\chi_n - n\alpha_1 - 2n\alpha_2 - n\alpha_3)$$

= $U(\mathfrak{g})X_{-\alpha_1}^n, X_{-\alpha_1}^n, X_{-\alpha_3}^n, X_{-\alpha_3}^n$,

- I. N. Bernstein and others constructed a submodule of $M(\chi_1)$ which is not generated by its Verma submodules [2]. In this note we construct such a submodule of $M(\chi_n)$.
- **Lemma 1.** In $M(\chi_n)$, if the situation in Theorem B occurs, the element ξ must be equal to $\chi_n n\alpha_1 n\alpha_2 n\alpha_3$.
- **Proof.** Let M be such a submodule of $M(\chi_n)$ and N be the submodule generated by all its Verma submodules. We see easily that ξ is one of the following three elements:

$$\chi_n - n\alpha_1 - n\alpha_2$$
, $\chi_n - n\alpha_2 - n\alpha_3$, $\chi_n - n\alpha_1 - n\alpha_2 - n\alpha_3$.

Choose a weight vector x of weight $\xi - \rho$ in M which does not belong to N.

Suppose $\xi = \chi_n - n\alpha_1 - n\alpha_2$. Let g' be a subalgebra of g generated by $X_{\pm \alpha_1}$, $X_{\pm \alpha_2}$, and W' a subgroup of W generated by s_{α_1} and s_{α_2} . Then g' is isomorphic to $\mathfrak{sl}(3, \mathbb{C})$ and W' is the Weyl group of g'. Since $X_{\alpha_3}X_{-\alpha_i} = X_{-\alpha_i}X_{\alpha_3}$ (i=1, 2), $X_{\alpha_3}x = 0$ and $U(g')X_{-\alpha_2}^n \subseteq U(g')x \subseteq U(g')1$. This fact means that $\mathfrak{sl}(3, \mathbb{C})$ has a submodule which is not of Verma's type. But the number of the elements $W'\chi_n$ is three. This contradicts the assertion of Theorem B. Similarly we have $\xi \neq \chi_n - n\alpha_2 - n\alpha_3$. So we get our assertion.

Put $\widetilde{M} = M(\chi_n)/M(s_{\alpha_2}\chi_n)$, and denote by \widetilde{x} the image of $x \in M(\chi_n)$ under the canonical map.

- **Lemma 2.** Let $\xi = \chi_n n\alpha_1 n\alpha_2 n\alpha_3 \rho$. For any $x \in M(\chi_n | \xi)$, $\notin M(s_{\alpha_2}\chi_n)$, there exist only the following two possibilities:
 - 1) \tilde{x} is an extreme vector,
- 2) there exists a sequence of simple roots $\beta_1, ..., \beta_{3n}$ such that $X_{\beta_{3n}} ... X_{\beta_1} \tilde{x} = \text{const. } \tilde{1}$.
- **Proof.** Assume that \tilde{x} is not an extreme vector in \tilde{M} . Then there exists a sequence β_1, \ldots, β_k of simple roots such that $X_{\beta_k} \cdots X_{\beta_1} \tilde{x}$ is an extreme one. By Theorem A, $\beta_1 + \cdots + \beta_k$ must be equal to one of the followings:

$$n\alpha_1$$
, $n\alpha_3$, $n\alpha_1 + n\alpha_3$, $n\alpha_1 + n\alpha_2 + n\alpha_3$.

First suppose $\beta_1 + \dots + \beta_k = n\alpha_3$. Put $y = X_{\alpha_3}^n x$. Then both $X_{\alpha_1} y$ and $X_{\alpha_2} y$ belong to $M(s_{\alpha_2} \chi_n)$. By the same way as in the proof of Lemma 1, the $U(\mathfrak{g}')$ -

module generated by $X_{-\alpha_2}^n$ and y cannot be generated by its Verma submodules. This contradicts Theorem B. Therefore $\beta_1 + \dots + \beta_k \neq n\alpha_3$. Similarly $\beta_1 + \dots + \beta_k \neq n\alpha_1$.

Next suppose $\beta_1 + \dots + \beta_k = n\alpha_1 + n\alpha_3$. Put $y = X_{\beta_k} \dots X_{\beta_1} x = X_{\alpha_1}^n X_{\alpha_3}^n x$. Then $y \in M(\chi_n | \chi_n - n\alpha_2 - \rho)$, $\notin M(s_{\alpha_2} \chi_n)$. But $M(\chi_n | \chi_n - n\alpha_2 - \rho) = \mathbb{C} X_{-\alpha_2}^n \subset M(s_{\alpha_2} \chi_n)$. This is a contradiction. Q. E. D.

As a result of this lemma, our problem is reduced to finding an element x such that \tilde{x} is extreme.

§3. Basic relations in an enveloping algebra

In this section, we prepare two lemmas. We consider the mapping of g given by $\iota(X_{\pm\alpha}) = X_{\mp w\alpha}$, $\iota(H_{\alpha}) = w(H_{\alpha})$ ($\alpha \in \Delta$), where $w = s_{\alpha_1} s_{\alpha_2} s_{\alpha_1}$. Then ι can be uniquely extended to an anti-automorphism of $U(\mathfrak{g})$ which is denoted by ι again. Note that ι maps $\sum_{n_1,n_2 \in \mathbb{N}} U(\mathfrak{n}|-n_1\alpha_1-n_2\alpha_2)$ into itself.

Lemma 3. The map ι is an identity on $U(\mathfrak{n}|-n\alpha_1-n\alpha_2)$ for any positive integer n.

Proof. This is proved by induction on n. The assertion holds for n=1, because a basis of $U(\mathfrak{n}|-\alpha_1-\alpha_2)$ is given by $X_{-\alpha_1}X_{-\alpha_2}$, $X_{-\alpha_2}X_{-\alpha_1}$ and $\iota(X_{-\alpha_1})=X_{-\alpha_2}$, $\iota(X_{-\alpha_2})=X_{-\alpha_1}$.

Suppose n>1. Let $x=X_{-\beta_1}\cdots X_{-\beta_{2n}}$ where β_i 's are simple roots and $\sum \beta_i = n(\alpha_1+\alpha_2)$. If $\beta_1 \neq \beta_{2n}$, then

$$\ell(X_{-\beta_1}X_{-\beta_2}\cdots X_{-\beta_{2n-1}}X_{-\beta_{2n}}) = \ell(X_{-\beta_{2n}})\ell(X_{-\beta_2}\cdots X_{-\beta_{2n-1}})\ell(X_{-\beta_1})$$

$$= X_{-\beta_1}(X_{-\beta_2}\cdots X_{-\beta_{2n-1}})X_{-\beta_{2n}}$$

$$= x$$

When $\beta_1 = \beta_{2n} = \alpha_1$, x can be written as a linear combination of $X_{-\alpha_1}yX_{-\alpha_2}^2X_{-\alpha_1}$'s, where $y \in U(\mathfrak{n}|-(n-2)(\alpha_1+\alpha_2))$. In fact, let P be a Kostant's partition function (see [1]), then

$$\dim U(\mathfrak{n}| - (n-2)\alpha_1 - n\alpha_2) = P((n-2)\alpha_1 + n\alpha_2)$$

$$= n-1$$

$$= P((n-2)(\alpha_1 + \alpha_2))$$

$$= \dim U(\mathfrak{n}| - (n-2)(\alpha_1 + \alpha_2)).$$

Therefore, let $y_1, y_2, ..., y_{n-1}$ be a basis of $U(\mathfrak{n}|-(n-2)(\alpha_1+\alpha_2))$, then $y_1X_{\alpha_2}^2$, $y_2X_{\alpha_2}^2, ..., y_{n-1}X_{\alpha_2}^2$ are mutually linearly independent. Hence they form a basis of $U(\mathfrak{n}|-(n-2)\alpha_1-n\alpha_2)$. On the other hand, we have the following equality in $U(\mathfrak{n})$:

$$X_{-\alpha_2}^2 X_{-\alpha_1} = -X_{-\alpha_1} X_{-\alpha_2}^2 + 2X_{-\alpha_2} X_{-\alpha_1} X_{-\alpha_2}.$$

Therefore this case can be reduced to the previous one.

Q. E. D.

Let us consider the right ideal I'_{χ} generated by $\iota(\mathfrak{n}^+)$ and $\{H - w\chi(H) + w\rho(H); H \in \mathfrak{h}\}$. Then $I'_{\chi} = \iota(I_{\chi})$ and $U(\mathfrak{n}) \oplus I_{\chi} = U(\mathfrak{g}) = I'_{\chi} \oplus U(\iota(\mathfrak{n}))$. Denote by P_l (resp. P_r) the projection of $U(\mathfrak{g})$ onto $U(\mathfrak{n})$ (resp. onto $U(\iota(n))$) according to the above direct sum decomposition. Then

$$P_l(X_{\alpha_2}x) = \iota(P_r(\iota(x)X_{\alpha_1}) \qquad (x \in U(\mathfrak{g})).$$

Moreover there holds the following useful equality.

Lemma 4. Let x be an element of $U(\mathfrak{n}|-n\alpha_1-n\alpha_2)$, then

$$P_{l}(X_{\sigma_{l}}x) = -\iota(P_{l}(X_{\sigma_{l}}x)).$$

Proof. Let $x = X_{-\beta_1} \cdots X_{-\beta_{2n}} (\beta_k = \alpha_1 \text{ or } \alpha_2)$, then

$$\begin{split} P_{l}(X_{\alpha_{1}}x) &= P_{l}(\sum_{\beta_{k}=\alpha_{1}}X_{-\beta_{1}}\cdots[X_{\alpha_{1}}, X_{-\beta_{k}}]\cdots X_{-\beta_{2n}}) \\ &= P_{l}(\sum_{\beta_{k}=\alpha_{1}}X_{-\beta_{1}}\cdots\check{X}_{-\beta_{k}}\cdots X_{-\beta_{2n}}(H_{\alpha_{1}}-(\beta_{k+1}+\cdots+\beta_{2n})(H_{\alpha_{1}})) \\ &= \sum_{\beta_{k}=\beta_{1}}X_{-\beta_{1}}\cdots\check{X}_{-\beta_{k}}\cdots X_{-\beta_{2n}}(-1-(\beta_{k+1}+\cdots+\beta_{2n})(H_{\alpha_{1}})) \,. \end{split}$$

Here \check{X} means that X is absent. On the other hand,

$$\begin{split} P_{l}(X_{\alpha_{2}}x) &= \iota(P_{r}(\iota(x)X_{\alpha_{1}})) = \iota(P_{r}(xX_{\alpha_{1}})) \\ &= \iota(P_{r}(\sum_{\beta_{k}=\alpha_{1}}X_{-\beta_{1}}\cdots[X_{-\beta_{k}},\ X_{\alpha_{1}}]\cdots X_{-\beta_{2n}}) \\ &= \iota(P_{r}(\sum(-H_{\alpha_{1}} + (\beta_{1} + \cdots + \beta_{k-1})(-H_{\alpha_{1}})X_{-\beta_{1}}\cdots\check{X}_{-\beta_{k}}\cdots X_{-\beta_{2n}})) \\ &= \sum(n-1 - (n(\alpha_{1} + \alpha_{2}) - \beta_{k+1} - \cdots - \beta_{2n} - \alpha_{1})(H_{\alpha_{1}})) \\ &\times \iota(X_{-\beta_{1}}\cdots\check{X}_{-\beta_{k}}\cdots X_{-\beta_{2n}}) \\ &= \sum(1 + (\beta_{k+1} + \cdots + \beta_{2n})(H_{\alpha_{1}}))\iota(X_{-\beta_{1}}\cdots\check{X}_{-\beta_{k}}\cdots X_{-\beta_{2n}}) \end{split}$$

$$= -\iota(P_l(X_{\alpha_1}x)).$$

Every element of $U(\mathfrak{n}|-n\alpha_1-n\alpha_2)$ is a linear combination of the above monomials. Therefore we get our assertion. Q.E.D.

§4. The construction of extreme vector in $ilde{M}$

Let $x \in M(\chi_n | \chi_n - n\alpha_1 - n\alpha_2 - \rho)$ ($\cong U(\mathfrak{n}| - n\alpha_1 - n\alpha_2)$). By Lemma 4 we see that $X_{\alpha_1}x = 0 \Leftrightarrow X_{\alpha_2}x = 0$. Therefore if $X_{\alpha_1}x = 0$, x is an extreme vector. We see in § 2 that $X_{-\alpha_1}^n X_{-\alpha_2}^n$ is a unique extreme vector in $M(\chi_n | \chi_n - n\alpha_1 - n\alpha_2 - \rho)$. On the other hand,

$$\dim U(\mathfrak{n}|-n\alpha_1-n\alpha_2)-1=(n+1)-1$$

$$=\dim U(\mathfrak{n}|-(n-1)\alpha_1-n\alpha_2)$$

$$=\dim M(\chi_n|\chi_n-(n-1)\alpha_1-n\alpha_2-\rho).$$

We can choose x_1 from $M(\chi_n|\chi_n - n\alpha_1 - n\alpha_2 - \rho)$ in such a way that $X_{\alpha_1}x_1 = X_{-\alpha_1}^{n-1}X_{-\alpha_2}^n$. Then by Lemma 4,

$$X_{\alpha_2} x_1 = -\iota (X_{-\alpha_1}^{n-1} X_{-\alpha_2}^n) = -X_{-\alpha_1}^n X_{-\alpha_2}^{n-1}.$$

Replacing α_1 with α_3 , we can take from $M(\chi_n|\chi_n - n\alpha_2 - n\alpha_3 - \rho)$ an element x_3 such that

$$X_{\alpha_3} x_3 = X_{-\alpha_3}^{n-1} X_{-\alpha_2}^n, \quad X_{\alpha_2} x_3 = -X_{-\alpha_3}^n X_{-\alpha_2}^{n-1}.$$

For any positive integer n, we define a submodule \overline{M} of $M(\chi_n)$ as follows:

put
$$z = X_{-\alpha_1}^n x_3 - X_{-\alpha_3}^n x_1$$
 and $\overline{M} = M(s_{\alpha_2} \chi_n) + U(\mathfrak{g})z$.

Theorem. For any positive integer n, the submodule \overline{M} of $M(\chi_n)$ is not generated by its Verma submodules.

Proof. We see that,

$$\begin{split} X_{\alpha_1} z &= X_{\alpha_1} X_{-\alpha_1}^n x_3 - X_{-\alpha_3}^n X_{\alpha_1} x_1 \\ &= n X_{-\alpha_1}^{n-1} (H_{\alpha_1} - (n-1)) x_3 - X_{-\alpha_3}^n X_{-\alpha_1}^{n-1} X_{-\alpha_2}^n \\ &= n X_{-\alpha_1}^{n-1} x_3 (H_{\alpha_1} - n(\alpha_2 + \alpha_3) (H_{\alpha_1}) - (n-1)) - X_{-\alpha_3}^n X_{-\alpha_1}^{n-1} X_{-\alpha_2}^n \\ &= - X_{-\alpha_3}^n X_{-\alpha_1}^{n-1} X_{-\alpha_2}^n \in M(s_{\alpha_1} \chi_n) \,. \end{split}$$

Similarly,

$$X_{\alpha,3}z = X_{-\alpha,1}^n X_{-\alpha,3}^{n-1} X_{-\alpha,2}^n \in M(s_{\alpha,2}\chi_n)$$
.

Further we get

$$\begin{split} X_{\alpha_2} z &= X_{-\alpha_1}^n X_{\alpha_2} x_3 - X_{-\alpha_3}^n X_{\alpha_2} x_1 \\ &= -X_{-\alpha_1}^n X_{-\alpha_3}^n X_{-\alpha_2}^{n-1} + X_{-\alpha_3}^n X_{-\alpha_1}^n X_{-\alpha_2}^{n-1} \\ &= 0 \qquad (: X_{-\alpha_1} X_{-\alpha_3} = X_{-\alpha_3} X_{-\alpha_1}). \end{split}$$

So z is not an extreme vector in $M(\chi_n)$. Since

$$\dim M(s_{\alpha_2}\chi_n|\chi_n - n\alpha_1 - n\alpha_2 - n\alpha_3 - \rho)$$

$$= P(n\alpha_1 + n\alpha_3) = 1,$$

and $X_{-\alpha_1}^n X_{-\alpha_3}^n X_{-\alpha_2}^n$ is an extreme vector in $M(s_{\alpha_2}\chi_n)$, z does not belong to $M(s_{\alpha_2}\chi_n)$.

Note that \overline{M} is a proper submodule of $M(\chi_n)$ and contains $M(s_{\alpha_2}\chi_n)$ as its proper submodule. This submodule cannot be generated by its Verma submodules, because every proper Verma submodule is contained in $M(s_{\alpha_2}\chi_n)$. Thus we get our results.

Q. E. D.

Remark 1. The existence of such a submodule means that the generalized Verma modules considered by M. Duflo and N. Conze in [5] are reducible in some cases.

Remark 2. In the case of n=1 or 2, z is written explicitly as follows (modulo $X_{-\alpha_1}^n X_{-\alpha_3}^n X_{-\alpha_2}^n$):

for
$$n = 1$$
, $X_{-\alpha_1} X_{-\alpha_2} X_{-\alpha_3} - X_{-\alpha_3} X_{-\alpha_2} X_{-\alpha_1}$,
for $n = 2$, $X_{-\alpha_1}^2 (X_{-\alpha_2} X_{-\alpha_3} X_{-\alpha_2} X_{-\alpha_3} - 5 X_{-\alpha_3} X_{-\alpha_2} X_{-\alpha_3} X_{-\alpha_2})$
 $-X_{-\alpha_3}^2 (X_{-\alpha_2} X_{-\alpha_1} X_{-\alpha_2} X_{-\alpha_1} - 5 X_{-\alpha_1} X_{-\alpha_2} X_{-\alpha_1} X_{-\alpha_2})$.

In these two cases, we can prove by an explicit calculation that \overline{M} and the known Verma submodules give essentially a complete Jordan-Hörder sequence of $M(\chi_n)$.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] D.-N. Verma, Structure of certain induced representation of complex semisimple Lie algebras, Dissertation, Yale Univ., 1966.
- [2] I. N. Bernstein, I. M. Gel'fand and S. I. Gel'fand, Structure of representation of generated by vectors of highest weights, Functional analysis and its application, 5 (1971), 1-9.
- [3] N. Conze and J. Dixmier, Idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semisimple, Bull. Soc. Math., 96 (1972), 339-351.
- [4] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, 1974.
- [5] N. Conze and M. Duflo, Sur les représentation induites des groupes semi-simples complexes (preprint).