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Subrings of a polynomial ring of one variable
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Masayoshi NAGATA

(Received, Oct. 8, 1976)

The following problem was communicated to the writer by Dr. A. Zaks of
the University of Oregon:

We consider the polynomial ring A[X] of one variable X over a normal
domain 4. Give a criterion for a ring R to coincide with A[X]N K with a
suitable field X containing 4.

In this article, we give an answer as follows:

Theorem 1. Swuch an R is characterized by the property that there is a
polynomial f which belongs to XA[X] (i.e., the constant term of f is zero) such
that R is generated by S;={g=A[X]|3a, b€ A, a5~0, ag=4f"} (=1, 2, ---).

As for the proof, if R=A4, then fis zero, and we assume that R%~4. On
the other hand, let £ and L be the fields of quotients of 4 and R, respectively.
Then we may assume that K=/L. First we prove a lemma:

Lemma. 2 Assume that A is a valuation rving of k and that f=c, X"+
o X"t eoodc, X is a polvnomial over A such that some of the coefficients ¢,
are units in A. Then a polynomial h=ey+e f+ - +esf5, in f with coefficients
egin kb, is in A[X] if and only if all ey are in 4.

Proof. The if part is obvious, and we want to prove the only if part.
Assume that 2 4A[X]. ¢,=4(0), and therefore g A. Then f(e;+ -+ +esf571)
eA[X]. Since fis a primitive polynomial, we see that ¢;+4---4-¢, /"1 A[ X].
Thus we prove the assertion by induction on s. QED

The if part of Theorem 1 follows from the following result:

Proposition 3. Under the assumption at the beginning, if fe XA[X],
then A[ XN AS) is the ving generated by S; (=1, 2, --+) over A.

Proof. It is obvious that all the S; are contained in A[X]NA(f).
Conversely, let % be an arbitrary element of A[X]N A(f). We may assume that
J=c1 X X" 14 oo, X, o= A, ¢,50. Then X is integral over A[f,
¢;7Y] and therefore A[X|NA(f)SA[f, ¢;7t]. This shows that A=ey+e,f+ -+
+e, /s with ¢; in A[¢c;71]S4. Since A4 is normal, 4 is the intersection of valu-
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ation rings A4, of £ containing 4. For each A4,, the expression of % is modified:
h=e\gte 1 fit - +ensfo® with /€8 such that £, is a primitive polynomial
over A,. Obviously ¢,;f!=e¢,;f* for each z. Now Lemma 2 shows that ¢);f% is
in A,[X]. Namely, ¢;ftis in A,[X] for any 7z, A. Thus each ¢;f% is in A[X]
and ¢, fte S, QED

Next we prove another lemma:

Lemma 4. Let f and g be polynomials in X over k such that (i) f and
g are coprime and (ii) degf>degg>1. Then we have k(flg)NA[X]=£.
and k(flg)NA[X]=4.

Proof. Assume that /s=eyt+e, X+ e, X8 (e;&k, ¢,5-0, s2>1) is in
A(flg). Then we can write

4 b1+ (fle 1+ by
(fle)™+c(fle)™ 1+ +cm

Since s>>1 and degf>degg, we see that #>m. Then we have
bof "L gt b= M1 TN g™

and we see that /" is devisible by g, contradicting our assupmtion. Therefore

s=0 and &(f|g) N £[X]=4. Consequently, £(f[g)NA[X]=A. QED

(by, c;E 43 by0).

Now we come to the proof of the converse part of Theorem 1. By the
theorem of Liuroth, Z is a simple transcendental extension of £, and LZ=~£4(f/g)
with f, g€4[X] (f and g coprime). We may assume that deg f>degg. If
deg f=degg, then subtracting a suitable element of £ from f/g and taking
inverse, we may assume that deg f>degg. Then Lemma 4 shows that g4
because of our assumption that R==4. Thus we may assume that g=1 and
fEXA[X]. This f is the required polynomial by virtue of Proposition 3.
Thus we complete the proof of Theorem 1.

In closing this article, we add two remarks:

(1) Incase 4 is a field, somewhat related results were given by 4. Zaks
[Israel J. Math. 9 (1971), pp. 285-289] and by P. M. Cohn [Proc. London Math.
Soc. (3) 14 (1964), pp. 618-632].

(2) In general, under the notation of Theorem 1, assuming that /-0, we
see that the ring generated by all the S; over 4 is generated by S, if and
only if (/~Y)*=/-"; where / is the ideal generated by the coefficients of f and
IT"={xek|xI"S A} (n=1,2,--).

(The proof is easy.)
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