Subrings of a polynomial ring of one variable

By

Masayoshi NAGATA

(Received, Oct. 8, 1976)

The following problem was communicated to the writer by Dr. A. Zaks of the University of Oregon:

We consider the polynomial ring A[X] of one variable X over a normal domain A. Give a criterion for a ring R to coincide with $A[X] \cap K$ with a suitable field K containing A.

In this article, we give an answer as follows:

Theorem 1. Such an R is characterized by the property that there is a polynomial f which belongs to XA[X] (i.e., the constant term of f is zero) such that R is generated by $S_i = \{g \in A[X] | \exists a, b \in A, a \neq 0, ag = bf^i\}$ (i=1, 2, ...).

As for the proof, if R=A, then f is zero, and we assume that $R\neq A$. On the other hand, let k and L be the fields of quotients of A and R, respectively. Then we may assume that K=L. First we prove a lemma:

Lemma. 2 Assume that A is a valuation ring of k and that $f=c_1X^n+c_2X^{n-1}+\cdots+c_nX$ is a polynomial over A such that some of the coefficients c_i are units in A. Then a polynomial $h=e_0+e_1f+\cdots+e_sf^s$, in f with coefficients e_i in k, is in A[X] if and only if all e_i are in A.

Proof. The if part is obvious, and we want to prove the only if part. Assume that $h \in A[X]$. $e_0 = h(0)$, and therefore $e_0 \in A$. Then $f(e_1 + \dots + e_s f^{s-1}) \in A[X]$. Since f is a primitive polynomial, we see that $e_1 + \dots + e_s f^{s-1} \in A[X]$. Thus we prove the assertion by induction on s. QED

The if part of Theorem 1 follows from the following result:

Proposition 3. Under the assumption at the beginning, if $f \in XA[X]$, then $A[X] \cap k(f)$ is the ring generated by S_i ($i=1,2,\cdots$) over A.

Proof. It is obvious that all the S_i are contained in $A[X] \cap k(f)$. Conversely, let h be an arbitrary element of $A[X] \cap k(f)$. We may assume that $f = c_1 X^n + c_2 X^{n-1} + \dots + c_n X$, $c_i \in A$, $c_1 \neq 0$. Then X is integral over $A[f, c_1^{-1}]$ and therefore $A[X] \cap k(f) \subseteq A[f, c_1^{-1}]$. This shows that $h = e_0 + e_1 f + \dots + e_s f^s$ with e_i in $A[c_1^{-1}] \subseteq k$. Since A is normal, A is the intersection of valu-

ation rings A_{λ} of k containing A. For each A_{λ} , the expression of k is modified: $k=e_{\lambda 0}+e_{\lambda 1}f_{\lambda}+\dots+e_{\lambda 8}f_{\lambda}^{8}$ with $f_{\lambda} \in S_{1}$ such that f_{λ} is a primitive polynomial over A_{λ} . Obviously $e_{\lambda i}f^{i}=e_{i}f^{i}$ for each i. Now Lemma 2 shows that $e_{\lambda i}f^{i}$ is in $A_{\lambda}[X]$. Namely, $e_{i}f^{i}$ is in $A_{\lambda}[X]$ for any i, λ . Thus each $e_{i}f^{i}$ is in A[X] and $e_{i}f^{i} \in S_{i}$.

Next we prove another lemma:

Lemma 4. Let f and g be polynomials in X over k such that (i) f and g are coprime and (ii) $\deg f > \deg g \ge 1$. Then we have $k(f|g) \cap k[X] = k$. and $k(f|g) \cap A[X] = A$.

Proof. Assume that $h=e_0+e_1X+\cdots+e_sX^s$ $(e_i\in k,\ e_s\neq 0,\ s\geq 1)$ is in k(f|g). Then we can write

$$h = \frac{b_0(f/g)^n + b_1(f/g)^{n-1} + \dots + b_n}{(f/g)^m + c_1(f/g)^{m-1} + \dots + c_m} \quad (b_i, c_i \in k; \ b_0 \neq 0).$$

Since $s \ge 1$ and $\deg f > \deg g$, we see that n > m. Then we have

$$b_0 f^n + b_1 f^{n-1} g + \dots + b_n g^n = h(f^m + c_1 f^{m-1} g + \dots + c_m g^m) g^{n-m}$$

and we see that f^n is devisible by g, contradicting our assumption. Therefore s=0 and $k(f|g) \cap k[X] = k$. Consequently, $k(f|g) \cap A[X] = A$. QED

Now we come to the proof of the converse part of Theorem 1. By the theorem of Lüroth, L is a simple transcendental extension of k, and L=k(f|g) with $f,g\in k[X]$ (f and g coprime). We may assume that $\deg f\ge \deg g$. If $\deg f=\deg g$, then subtracting a suitable element of k from f|g and taking inverse, we may assume that $\deg f>\deg g$. Then Lemma 4 shows that $g\in k$ because of our assumption that $R\ne A$. Thus we may assume that g=1 and $f\in XA[X]$. This f is the required polynomial by virtue of Proposition 3. Thus we complete the proof of Theorem 1.

In closing this article, we add two remarks:

- (1) In case A is a field, somewhat related results were given by A. Zaks [Israel J. Math. 9 (1971), pp. 285–289] and by P. M. Cohn [Proc. London Math. Soc. (3) 14 (1964), pp. 618–632].
- (2) In general, under the notation of Theorem 1, assuming that $f\neq 0$, we see that the ring generated by all the S_i over A is generated by S_1 if and only if $(I^{-1})^n = I^{-n}$; where I is the ideal generated by the coefficients of f and $I^{-n} = \{x \in k \mid xI^n \subseteq A\}$ $(n=1, 2, \cdots)$.

(The proof is easy.)

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY
KYOTO 606