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§1. Introduction

We consider the reflection of the singularities at the boundary for hyper-
bolic equations with constant coefficients. In [5] and [6], we studied this
problem in a very general framework, and determined the singular supports
of the fundamental solutions by using the localization theorem. The wave
which attracts our attension extremely is the lateral wave. Moreover there
exists the case where it does not appear. The aim of this paper is to deter-
mine the case where the lateral wave arises.

In this paper we treat the following equation in the domain 2= {#>0,

x>0’ .y=<y1y Yo "',J’n—1)ERn_l} .
P(DYu=(D2—D,2— D) (a®?D3Z—D,2—Dy*u=0 in Q2

1.D (u, Dy, Di2u, D3u)=(0,0,0, 84_;,4) on o2 {#=0},
Bf(Dt: Dy, D?/)u:O on 02N {xZO},]:l, 2,

where 1) @>>1 and />0, ii) D;=—179/d¢, Dy=—1i9[dx, Dy,=—13[dy; and D,2=

Y 121Dy2  B; (7=1, 2) are homogeneous differential operators of degree z;
(m,<mmy) with constant coefficients. The waves governed by P»=0 propagate
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by the speed 1 or 1/a. Hence, when an incident wave front surface impinges
on the boundary, the number of the sheets of the reflected wave front surfaces
is generally two. As showed in §8 of [2] and §2.6 of [6], the lateral wave
appears when the wave of speed 1/z impinges on the boundary. We show
this phenomena by the following figures in the case where the boundary waves
don’t appear: Figure 1 and Figure 2 show the phenomena in a2//Va®2—1>¢t=a/
and #>>a2/[Va®—1 respectively where the dotted lines show the incident wave
front surface of speed 1/a and the continuous lines show the reflected wave
front surfaces. The outer semi-sheet in the figures is the reflected wave front
surface of speed 1 and the inner one is of speed 1/a. The lines AB and A'B’
are called as the lateral waves.

As Shirota showed in [4], in the case B,=1 and B,=2D,2 the lateral wave
does not appear, i.e., sing supp #D{AB, A'B’}. The reason is that in this
case, although the reflected wave front surface of speed 1l/a appears, the
reflected wave of speed 1 does not arise. But, even if two sheets of the
reflected wave front surfaces appear, there exists the case where the lateral
wave does not arise, for epample B,=1 and B,=(D2—D,2—D,>D,.
However, in this case, when the incident wave front of speed 1 hits on the
boundary, the number of the reflected wave front surfaces is one, i.e., the
reflected wave front of speed 1/a does not appear. Taking care of the above
facts, we get the following

Theorem 1. 7he necessary and sufficient condition that the lateral
wave appears is that, whenever the incident wave front surface of speed 1
or 1]a impinges on the boundary, two sheets of the reflected wave front surfaces
always appear.

We say this condition in other various ways, which are given in §2 and
§4. In the following discussions we limit ourselves to give the sketch of the
proofs, because the method of them is essentially given in [6].

§2. Notations and Lemmas.

We write the dual coordinates of (¢, x, ¥) by (o, & n)ER™!, and put
r=o—iy (y>0). We write P.(r, n; &= (—&7(r, m)({—&*(7, m)) where
&7, M="Vr2—q2 and &*(r, n)="Va¥2—n? (Im & >0, i=1, 2). We
define the matrix L(r, n) by

_[L £ B &gt
L( n>_[2ﬂi§r+ Pi(r,m; €) dg]lswsz

where I'y is a simple closed path containing &% (r,m) /=1, 2). We put R(r, n)
=det L(r, 7) and Ryr, n)=(J, ©)-cofactor of L(r,n). We assume
(A) The mixed problem (1.1) is E-well posed.

Then, as R(r, 7)0 for r=0—7y (y>>0) and n& R™"!, the solution = of
(1.1) is given by u=E(¢, x, y; [)+E (¢, %, y; /) where
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. . 1 n+1 ei(t"+($-l)§+y"7)
@.1) Eot, %, y; O)— (2_17) [ Py dodEd,

PN O B s Rif(r, mE1By(r, L, m)
(22) El(f, X, Y, /)_ t§=l< 217,) fR'HZ R(T, 7])P+(‘r, n; f)P(T, C’ 77)

X eI Jo g dndl .

Our aim is to determine the singular support of £}, following the method
given in Chapter 2 of [6]. We proved there that sing supp £1 generally
consists of the ordinary reflected wave front surfaces, the lateral waves and
the boundary waves, and that it has no other singularity. The boundary
waves are the singularity contributed by real zeros of R(r, n). But, as we are
concerned with only the lateral wave, we shall have no discussion about the
boundary waves. By the simple calculation we have

N 2 i n+2 Ht(T» g’ n)ei(t7+xf+zm-z§) .
@9 Eeri0=E (o[ e b iy, € o

2
=X EY¢ x5 1)
i=1

where, by putting B(€)=By(r, £, m), R'(r, n)=B1(£11) Ba(€at) — B1(€:1) Ba(61D),
Hilr, £, m)= BDBol&s") — Bu&sHBoD) and Hilr, &, )= By(DBolerH—
By BaD).

We consider the behavior of the reflected wave front surfaces when the
incident wave of speed 1/a touches the boundary. For this we localize £, at
Py=(0" &% 7° L9=(1, &° 7°, {°) (=1, 2) where (n°)2-+({")2=a?, {°>>0, {,°=
HW1—(1°)2=—V1—(%°)? and £&,0="Va?— (1°)2=—Va2—(°)2. We put

= L\ - Hy(r, =&, metirtatyn—io .
(24‘) Kj<t; xy J/: Z) (277-) fRnn R'(T, "))’(f_ff(f, n))'P(T, C, n)d dfdndc

for j=1 and 2. As (Hyr, L, n)— Hir, —&*, 1)/ P(r,{, ) is analytic at
(r, {, m)=(1, {°% n°) with respect to {, we get the following

Lemma 2. For any p >0 and the above Py, it follows
(25) P WU (F D1, 5, y; )— KA1, 2,93 D) —> 0, j=1, 2,
in D'(QX RY) when s—oo.

Therefore we study the singularity of K, (7=1, 2). At first we determine
the singular support of X; by using the localization theorem given as Theorem

2.1 and 2.2 in [6]. We define
Rego(m m)=lim "o R((@®, 1) 45717, ;) 0,

then R,9,,0(7,1)70 for r=0—7y (y>0) and nE R" 1. Assume H (v, —&;",m)#
0. We expand exp(—zs(¢+x€,°+yn°—/{°)) K, asymptotically with respect to s:

e—is(t+x§1°+yn0-—z£”>[(l~z 7;=0Fk(1)<t, x, 9 Z) (l/s)ek

where ¢q<le;<leg:-<lez—>oo. Then, sing supp K10 U 5—osupp #x?, and
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1 n+2 ;l (T )ei(t"‘i'xf‘l']/"]—l{)
F mzconst(—») f (7, 7 dodtdnd,
0 S ) J oo Reao o) r— £ 0 — 0@ — DLy 2% L

where 4, is polynomial of = and 7.

Lemma 3. Letz Q(Dy, Dy, Dy) be a differential operator and

_ -1 ei(t"+x§+?]’7)
T (277) fR”“ T—d«f—é'f]

If supp QT ssupp 7, then Q(at+bn, £, 7)=0.

In this case, as 9540, £,(£,%6+71%),7)#0. Hence supp Fy'V'D{(¢,%,,7);
>0, x>0, />0, (x, y+1°/{%)=—(t—a?[{") (£, 1)}, which means that the
reflected wave of speed 1 appears. By the same discussions for K,, we see

that, if Hy(r, —&;, ) #0, the reflected wave of speed 1/a arises.
Next we consider K, at |[9°|=1. We represent as

dodédn=iH(£)8 4 1at,y+bt> -

Hy(r, =&, m) _ as(r, 1) _|_(l4(7'» ”I)f +(r
Ry amm a7
where (7, n) are analytic at (1, 7%). Assume a4(r, n)/a3(r, 1)#0. We expand
exp{—is(t+x€°+yn°—7/{%)} K, asymptotically with respect to s, then there
exists the term such that

1 \n+2 ) (T )+JT_ 0 LAGT+TE+Y—1D)
F(z):( ) f 2\, 1 nn dodédnd
7\ 2 &7 g(r, )@ — €06 — o) (@b — Ll —n) " Sandl

where 4(t, n) (=2, 3) are polynomial of  and 7.

Lemma 4. Let Q(Dy, Dy) be any differential operator with respect to t
and y, and put

(1™ Vrt-an i zeHym
o R ST dodsdn

where 654<0. Then supp Q7 =supp 7.

Proof. We change the transformation of the variables (z, x, ¥)—(p, ¢, 7)
as

(¢, %, y)=phot+gni+ X iarity, 7=(73, =+, ),
where 7,=(1,0, &)V1+a?, 7,=(1, b, )N1+862+c2 and {#}i=0,1,.n is the
orthogonal basis of R”*!. Then, using Lemma 2.12 in [6], we get
T—const p,"Y2H (p, )8,

where S={(p, ¢9); >0, ¢>0} and
L #9eS
0, (p,9)eS.

We define @ by O(Dp, Dq, Dy)=Q(D;, Dy). As Q does not contain D,,
Q contains the term DptDJ, i.e., Q is not represented as Q0=Q*(D)D,. Since

Hy(p, )=
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T contains the fractional power of p, supp Q7=supp 7. Q.E.D.

Therefore, if a4/az#0, supp F;2D{(¢, x, v, 1); >0, />0, (x, y+21%/{%)=
—(t—a2|L%) {2(0, n9) 41 —2)(£:0, 7%)/e%}, 0<<v<1}, which means the existence
of the lateral wave. We see easily that a4/ag#0 is equivalent to the condition
that i) Hy(r, — &7 (7, 1), n)#0 (¢=1, 2) and ii) By(¢;1)/B1(€,F) is not meromor-
phic. Hence, if the lateral wave appears, two sheets of the reflected wave front
surfaces arise. Combining the above results, we get the following

Theorem 5. 7he necessary and sufficient condition for (1.1) to have the
lateral waves is that i) Hy(t, —&y7 (1, 1), 0)ZO0 (=1, 2) and i7) By(é,1)|B1(€,7)
is not mevomorphic.

§3. Proof of Theorem 1.

The necessary and sufficient condition for By(€;M)/B(€:;1) to be meromor-
phic is that B; (=1, 2) are represented as follows:

{BI(T’ £ M=q1(7, & N(TE—E—nD+c1(7, ) do(r, N)é+-di(7, M),
By(r, €, m)=q2(7, & m)(72—E2—n?)+co(r, M)(do(r, N)é+d1(7, 7))

where i) ¢; are polynomial of (7, ¢, %) and ii) ¢; (=1, 2) and &, (7=0, 1) are
polynomial of (7, ). By the same discussions as in §2, we get

3.1

Lemma 6. Assume that, when the incident wave front surface of speed
1 impinges on the boundary, two reflected wave front surfaces appear. Then

3.2) Hyr, —&1(r, ), n)#0, 7=1, 2.
Moreover the convers is true.

If B;(7=1,2) are represented as (3.1), Hy(r, —&,"(r, ), 7)=0, which
means that the reflected wave of speed 1/a does not appear. Therefore, if two
sheets of the reflected wave front surfaces appear in this case, By(€;7)/B.(&;1)
is not meromorphic. We see easily that the converse is true. From these
facts, we get Theorem 1 stated in §1.

§4. Remarks on the condition (ii) of Theorem 5.

Let By(€,7)/B1(£17) be meromorphic, that is to say, (3.1) be satisfied. £,
defined by (2.2) is the solution of the following equation:

4.1) {P(D)E1=0 in D={(¢, y)€ R", x>0},
' B{D)E,=g; ondD={(t,y)ER", x=0}, j=1,2,
where
= — _1_ s By(r, & m) 1tT—1e+ym
(4'2) gf(t, Y Z)'_ (217_ ) e WQ dodfdn

We put v=(D;2— D,2— D, E,, then
{(azD,Z—DZZ—Df)v:O in D,

4.3)
By'(Dy, Dg, Dy)v=g,'(t, y;/) on D,
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where By'=¢,(Dy, Dy)ga(Dt, Doy Dy)—co( Dy, Dy)g1(Dys, Dy, Dy) and gy'=c1(Dy,
Dy)go(t,y; I)—ca(Dy, Dy)g(2, v; 7). Taking care of (3.1), we see
' N e By'(1, &, m) LT 16+Ym)
ety )= (27) f P = e dodédn.
E (2, x,y; ) satisfies the following equation:
{(th—Dzz—Dyz)Elzv in D,
By (Dy, Dy, DYE=g,'(¢,y; /) ondD,
where By’ =dy( Dy, Dy)Dy+d\(D;, Dy) and gy’ is expressed as
¢ =1\ By'(1, €,m) jucer—1e4ym
(4'5) &2 (t)y’ Z>_ (277) R"“We do-dfdn

— i n+1 92(7',§2+,77>91(Ty§:"))_91(7',52“‘,17)92(1,5,17) 1T—1E+ym
(277 ) fRﬂ'H Bll<7', §2+<T’ 77)! 77) N (021'2—52—1;2) e daa’fa’n

In this case Lopatinski’s determinant is

R(r, m)=("— &) A —a®)r2 By (7, &1 (7, m), )+ By (7, &7 (7, ), ).

As (1.1) is E-well posed, R(r,n) must be hyperbolic, i.e., R(1,0)70 and
R(r, 7)5=0 for r=0—iy (y>0) and n& R™!, which means the hyperbolicity of
B (r, &%(r,m), ) and By'(r, £&,(r, 1), m). Hence (4.3) and (4.4) are E-well
posed and (4.5) is well defined. From the above results we have the following

(4.4)

Theorem 7. If the condition (ii) in Theorem 5 is not satisfied, the
mixed problem (1.1) is decomposed into the iteration of two mixed problems
(4.3) and (4.4) which are E-well posed.

Example. Let 72;<1 and m, be any positive integer in the above case.
Then By(Dy, Dyy Dy)=By(Dyy Dy, Dy) and g5'(¢, v; {)=ga(t, v; £) defined by
(4.2). Hence (4.3) and (4.4) are very simple.

In the mixed problem for wave equation, the lateral wave does not appear.
Therefore, it is reasonable that, if the lateral wave appears, (1.1) can not be
decomposed into two mixed problems as (4.3) and (4.4).
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