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§ 1 .  Introduction
We consider the reflection of the singularities at the boundary for hyper-

bolic equations with constant coefficients. In [5] and [6], we studied this
problem in a very general framework, and determined the singular supports
of the fundamental solutions by using the localization theorem. The wave
which attracts our attension extremely is the lateral wave. Moreover there
exists the case where it does not appear. The aim of this paper is to deter-
mine the case where the lateral wave arises.

In  this paper we treat the following equation in the domain Q =  it> 0 ,
z > 0 , Y=(Yi., Y 2 ,  •  •  • ,  Y E  R n - 1 1

P (D)u= (D t
2  — D x 2  D 2 ) (a2  D t 2  — D x

2  — D y
2 )u -= 0 in Q

(1.1) (u, Dtu,Dt2u,Dt3u)=(0, 0, 0, 1 8 c x - / a ) )  o n  aQ n { t=0} ,
A KA , D x , D y ) u = 0  on 3s2 n x =o)- , j=i, 2,

where i)  a> 1  and 1> 0 , ii)  D t = D x= D 1= —ialay and D 2 =
11.Dy1

2 . B5 ( j= 1 , 2 )  are homogeneous differential operators o f degree mi

(m i < m 2) with constant coefficients. The waves governed by Pu=0  propagate

Figure 1 Figure 2
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by the speed 1 or 1/a. Hence, when an incident wave front surface impinges
on the boundary, the number of the sheets of the reflected wave front surfaces
is generally two. As showed in §8 o f [2] and §2.6 o f  [6], the lateral wave
appears when the wave of speed 1/a impinges on the boundary. We show
this phenomena by the following figures in the case where the boundary waves
don't appear: Figure 1 and Figure 2 show the phenomena in a2 l1,1
and t>az lli a 2 - 1  respectively where the dotted lines show the incident wave
front surface of speed 1/a and the continuous lines show the reflected wave
front surfaces. The outer semi-sheet in the figures is the reflected wave front
surface of speed 1 and the inner one is of speed 1/a. The lines A B  and A ' B '
are called as the lateral waves.

As Shirota showed in [4], in the case 8 1 = 1  and B 2 = D x
2  the lateral wave

does not appear, i.e., sing supp u l){ A B , A ' B '}  . The reason is that in this
case, although the reflected wave front surface of speed 1 /a  appears, the
reflected wave o f speed 1  does not arise. B u t ,  even i f  two sheets of the
reflected wave front surfaces appear, there exists the case where the lateral
wave does not arise, for epam ple B 1 = 1  and B 2 =( D t

2 —D 2 — D y
2 )D x .

However, in this case, when the incident wave front of speed 1 hits on the
boundary, the number of the reflected wave front surfaces is one, i.e., the
reflected wave front of speed 1/a does not appear. Taking care of the above
facts, we get the following

Theorem  1. The necessary  and suf f icient condition t h a t  the  lateral
w av e appears is that, w henev er the incident w ave front surface of speed 1
or 1Ia im pinges on the boundary, two sheets of the reflected wave front surfaces
alw ays appear.

We say this condition in other various ways, which are given in §2 and
§4. In the following discussions we limit ourselves to give the sketch of the
proofs, because the method of them is essentially given in [6].

§ 2 .  Notations and Lemmas.

We write the dual coordinates o f (t, x , y )  by (a, 77)E R"'-1-, and put
T  =  a— iy  ( y > 0 ) .  W e  w r it e  P + (r, n; e) = 71))(6-62+ (r, 7 ) ) )  where

61+( T ,  n)= -EVr 2 —n2 a n d  e2 +
( T

,  7,) = -Ev a 2 , 2 _ , 2  (T . >0,  i = 1 ,  2 ) .  We
define the matrix L (r, n)  by

L
1B . 0 , ,6,

(T , 7) — [ de71)6i - 1  

7 t\
r, P+E r; 71;s)

where r+ is a simple closed path containing ei + ( i=1 , 2 ) .  We put R (r, n)

=det L (r, n )  and R i i (r, 71)= .(j, i)-cofactor o f L(r, n). W e assume
(A )  The m ixed problem  (1.1) is &w ell posed.

Then, as R (r, 7?) 0  for -r=a— iy  (y > 0 ) and 7.1 R 4 - 1 -, the solution u  of
(1.1) is given by u = E 0 (t, x , y ; /) + E i (t, x, y; 1) where
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e ict, +(x-ved-yn)
1(2.1) E 0(t, x , y ; l)= (

\ n + 1  r  do-cledn,
277 ) R'+' P(T, n)

(2.2) E i(t, y 1)= ( r + 2c ,  7 ))  

ti=1 Rn+2 r , 77).13 +0 7 1 ; O P ( r, , n)

X ei(r+xe-Eyn-iodadedndc.

Our aim is to determine the singular support of E1, following the method
given in  Chapter 2  o f  [6]. We proved there that sing s u p p  E i  generally
consists of the ordinary reflected wave front surfaces, the lateral waves and
the boundary waves, and that it has no other singularity. T h e  boundary
waves are the singularity contributed by real zeros of R (r, -9). But, as we are
concerned with only the lateral wave, we shall have no discussion about the
boundary waves. By the simple calculation we have

2 1 n+2
( 2 .3 )  E i (t, x, y ; l ) =

27r
, n ) d u c l e c h y gR  T H, ,  (),-( ,e  C-0 7 6):  i(  crt: +71x)e)+p y n(77.
) j  R n+2

E i ( i ) (t, 5 /  /)
i=1

where, by putting B i (e)= B ,(7 , e , R ' (r, n) =- Bi(ei+)B2(62±)—B1(62+)B2(ei+),
n ) =  B  i( ) B a  2+ ) B 1 (6 2 + )B 2 ()  a n d  H 2 ( r, 7/) = B 1(C)B 2(e1± ) —

B a i + )B2(C).
We consider the behavior of the reflected wave front surfaces when the

incident wave of speed 1 /a  touches the boundary. For this we localize E 1 at
p

0
_ ( 0.o, O ,  ,  v ) = (1 , ei o, no, co) ,2 ,  C O > O ,  ° =1  h) where (7)°)2 + ( 0 ) 2 = a

+ ,/1 —( 0 ) _  —  _(7)0)2 and 2 0= a 2_  0 ) 2_  ,./a 2_ 0 7
0, 2.) W e put

( 2 .4 )  K i (t, x, y ; 1)—
(  i \n +2  —6+ ,,) ei(v+ze+y, , )

27r ) n) • (6- 6± 0-, n)).P(T, n)
d a d e d n e g

for j = 1  and 2. A s  (1-1J(7-, n )  —  1-15(7, —62+ ,71))1P(r, n)  is analytic at
71)=(1,  0 , 7)°) with respect to we get the following

Lemma 2. F or an y  p ) 0  and  th e above Po , it follow s

( 2 .5 )  sPe- is(trr°+xe+v" - i0 ) (E i
(i)(t, x , y ; /)— K j (t, x, y; 0 , j=1 , 2 ,

in  .0' (S2 X 141)  w hen s—)-00.

Therefore we study the singularity of K  ( j = 1, 2). At first we determine
the singular support of K 1 by using the localization theorem given as Theorem
2.1 and 2.2 in [6]. We define

iim sPoR((cr°, 7) ° ) - s - 1 (7 , 77)) % 0 ,

then R ( ,o,,,a) (7-,n) /0  for T = g — iy  (y> 0) and n E Rn- 1 .  Assume H 1(7-, —62+,7))
0 .  We expand ex p(— is(t+x e 1

0 +y e — g . )>K 1 asymptotically with respect to s:

e- is(t+xeio+vo- to K 1 ,---,E ci= o F k u)(t, x, y: 1)(1Is)ek
where eo<e1<e2 • • • <e n ---> . Then, sing suppK 1 D U i= 0 supp F k

(1 ) , and
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P ow =  constt  1
\ h i ( T ,  'q)ei ( t T - E X e l l p 1 - 1 0

r
2 )

 f  R n +2 R  ( 1 ,  n o) (r 7?)(7. —  6. 0  _ 0 , ) (a 2 ,  _ ducledidC

where h1 is polynomial of T  and 7).

Lemma 3. Let Q ( D  D x , D )  b e  a dif ferential operator and

T =  (277.)-71-1
f T bn

e gv-d-xe-Eyn)
daded7)=--iH(t )8 (x+at,Y+bt) •R4 +1 

I f  supp Q T  s u p p T  ,  then Q(ae+b7i, e,
In this case, as e,0 0, h1 (e10e+n°77 ,7 i) 0 .  Hence supp F0

( 1 ) ID {(t, x,y, 1) ;

t>0, x >0, 1>0, (x , y -Hp110)=— (t— a2/10)(e i o, no)}, which means that the
reflected wave of speed 1  appears. B y  the same discussions for K 2, we see
that, if H 2(7, —62+, 71)00, the reflected wave of speed 1/a arises.

Next we consider K 2  at 17)°1= 1 .  We represent as

H 2 ( T ,  --e2+, 7?) _ a2(T, _Fa4( 7 , 
R(T, n) a i(r , 7)) a3(7 , 7?)

where a/7 , n) are analytic at (1, 7)0 ). Assume a 4 (7- , ) / a 3 ( T, 7)) O. We expand
exp{— is(t+ 4 2

0 ±)/7)°—/0)}K2 asymptotically with respect to s , then there
exists the term such that

—
F  / 2 )  

2
(  1 \n+2 

J 2 h3(
r do-cl6d774

7r) + 7-, ) ( a 2 0 )_7) n x an
h772 (7-, 7.71)+e21-0_6  n ol e i(r+2x6-1-yr0 n)

where h i er, 7)) ( i=2 , 3) are polynomial of T  and 7).

Lemma 4. Let Q ( D  D ) be any  dif f erential operator w ith respect to t
and y , and put

( 1 \ n1-1 r v " - a n  ei ( r+x+Y n )derdedri27r )  J R — i  TH-b6-Pcq

where b / 0 .  T hen  supp QT=supp  T .

Proof . W e  change the transformation of the variables (t, x, y)— )-(p, q, r)
as

(t, x , fyi 0 + q  1 + r=(r2, •••,

where -710=(1, 0, a ) / 1 + a 2 , b, c)/N/1±b2 +c 2 an d ..,n  is the
orthogonal basis of Rn+1 . Then, using Lemma 2.12 in [6], we get

T =constp +
- 3 /2H ,(p , q)08,.

where S = {(p, q); p>0, q> 0} and

f 1 ,  (fi, q) S
H  8 ( P ' q )  1 0 ,  ( p ,  q )  Er s

We define b y  -0(D y , D q , D r )= Q ( D  D u). A s  Q  does not contain D x ,
-0  contains the term D pID ", i.e., -0  is not represented as a= Q* (D)D q . Since
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T contains the fractional power of p ,  supp Q T = supp  T. Q.E.D.

Therefore, if a4 /a3 0 , s u p p F j
( 2 ) D {(t, x, y , l) ;  t > 0 ,  /> 0 , (x,

a  24 V) { v ( 0  71o)+(1—v)( 20, °)/a 2 }, 0< v< 1}, which means the existence
of the lateral wave. We see easily that a 4 /a3 0  is equivalent to the condition
that i) H i (r, _e 2 -1-( i -, 71), 71) 0 (i=1, 2) and ii) B2 (61 +)/B1 (e1 +) is not meromor-
p h ic .  Hence, if the lateral wave appears, two sheets of the reflected wave front
surfaces arise. Combining the above results, we get the following

Theorem 5. The n eces sa ry  and su ffic ien t condition for (1.1) to  have the
la tera l w a ves is  th a t i) H o -, _ e 2+0  0  ( i = 1 ,  2 )  and i i )  B2 (e1 +)/B1 (e1 -F)
is n o t m erom orph ic.

§3. Proof o f Theorem 1.
The necessary and sufficient condition for B 2 (61+)/B1 (e

1
+) to be meromor-

phic is that B i  (1=1, 2) are represented as follows:

{B i Er, e, n >=q1(7., e, nx,r2—e2-712)+clo- 07)(d0(7-, n)e+ d n)),
B 2(r e, 71)= q 2 er, e, 7,x , 2 —e 2 -71 2)-Fe 2 (7., 77)(d 0 (1- , n)ed d r , 77))

M oreover the convers i s  true.

I f  B i  ( i= 1 , 2 ) are represented as (3 .1 ), H2 0 -, which
means that the reflected wave of speed 1/a does not appear. Therefore, if two
sheets of the reflected wave front surfaces appear in this case, B2 (61 +)/B1 (e1 +)
is not m erom orphic. We see easily that the converse is true. From these
facts, we get Theorem 1 stated in §1.

§4. Remarks on the condition ( i i)  of Theorem 5.
Let B2 ( 1 ±)/B1 (e1 +) be meromorphic, that is to say, (3.1) be satisfied.

defined by (2.2) is the solution of the following equation:

SP(D)E 1 = 0  in D= {(t , y) Rn , x>0} ,
iB i (D)E i = g i  o n {(t, y ) . le n ,  x=0} , j=1, 2,

where

(4.2) g i ( t  ' ;  ) = ( 2 1
1  r -I B ier

'  

e
'  

71)  ei ( tr- le+Y')dadedq .
R n + ' P (T ,  6, 71)

We put v=(D i
2 —D 2 —Dy

2 )E 1 , then
f(a 2 D t

 2 — Dx
2 — Dy2)V= 0  in D ,

(4.3)
iB i'(D i, D x , D y ) v = g i V , y ; 1 )  on aD,

(3.1)

where i) q i  are polynom ial of (r, 71) and ii) ci  (i= 1, 2 ) and d i (1=0, 1) are
polynomial of (r, -,7) .  By the same discussions as in §2, we get

Lemma 6. Assume th a t, w h en  the incident w a v e  fr o n t surface of sp eed
1  im pinges on the b ou n da ry , tw o  r e fle c ted  w a v e fron t surfaces a p p ea r .  T h en

(3.2) H o-, _ e i +(r, n), 71) o ,  i= 1 , 2.

E1

(4.1)
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where B 1'=c1(D t, D y )q2(D i,D z ,D y )— c2(D t,D y )q1(D t,D x ,D y ) and g1 1 =c1(D t,
D y )g -2(t, y ; /)—c2 (D t , D y )g i (t, y; /). Taking care of (3.1), we see1r  r n)  egt—ie+y , )dadedn .

R n - F t  a2,2_ e2 _ ,72

E i (t, x , y; l )  satisfies the following equation:

f(D t
2 —D, 2 —D y

2)E 1 = v  in D,
(4.4)

(D t , D z , y ;  l )  on a D
where B 2 ' =do(D t, D y )D x - E- cli(Dt, Dy ) and g 2 ' is expressed as

(

1 rlf B2' c, , e, 71) e,(,—,,+y,)d a d e d ,,,,
27r Rn+i p(T , e, 17)
q 2 (1 ' .77) q 1 (1 '6 in)

1 -( 7 ' 7 1 ) q2 ( 7  'e '71) el ( t' - U+Y '»dadedri.B  ( 7 , e,  , 7) , 71) (a2T2

In this case Lopatinski's determinant is

R(7 , 7)) (el — e2±) - 1(1— a2) , - 2  B  (7. , 62+ (r , .71), n) • B2'(T, 1 +( T, '7 ) , '7).
As (1.1) is &well posed, R(T, 77) must be hyperbolic, i.e., R(1, 0)  /  0 and
n ) 0 for T=Cf — i y  (y>0) and '7 E R 1 ,  which means the hyperbolicity of

B , e 2 /r,n )  and B 2 '(T, e 1 +(T, n ), 7)). Hence (4.3) and (4.4) are e-well
posed and (4.5) is well defined. From the above results we have the following

Theorem 7. I f  t h e  c o n d i t i o n  ( i i)  in  T h e o r em  5  i s  n o t  s a t i s f i e d ,  th e
m ix ed  p ro b lem  (1 .1) i s  d e c o m p o s e d  in to  t h e  i t e r a t io n  o f  tw o  m ix ed  p r o b lem s
(4.3) a n d  (4.4) w h ich  a r e  e-w ell p o sed .

Exam ple. Let m 1 < 1  and m2 be any positive integer in the above case.
Then B 2 '(D t , D x , D y ) =B  i (D t , D z , D y )  and g2V , Y ; /)=8 -1(t, Y; 1 ) defined by
(4.2). Hence (4.3) and (4.4) are very simple.

In the mixed problem for wave equation, the lateral wave does not appear.
Therefore, it is reasonable that, if the lateral wave appears, (1.1) can not be
decomposed into two mixed problems as (4.3) and (4.4).

DEPARTM ENT O F  M ATHEM ATICS
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(4 .5 )  g 2 V, y ; l)=—

( 2177r + 1 1 R
,,
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