Formal fibers and openness of loci

By
Paolo Valabrega
(Communicated by Prof. M. Nagata, April 30, 1977)

Introduction

Many loci are Zariski open for a large class of rings (algebro-geometric, analytic, complete, excellent) and such openness of loci is variously related to the good properties of formal fibers. To quote the well known examples, the geometric regularity of formal fibers implies, for a noetherian local ring A, the openness of regular locus for $\operatorname{Spec}\left(A^{\prime}\right)$, where A^{\prime} is any A-algebra of finite type, while the geometric reduceness of fibers carries the openness of normal locus.

The converse arrow is also true for some class of rings: for instance, if A is complete for some \mathfrak{m}-adic topology and excellent modulo \mathfrak{m}, then the openness of regular locus implies the geometric regularity of formal fibers (see [12], theorem 4).

In the present paper we investigate fibers and loci for a property \boldsymbol{P} meaningful in any noetherian ring, submitted to the following conditions: 1 -every field has \boldsymbol{P};
$2-\boldsymbol{P}$ is local;
3 -if A is a complete local ring, then the \boldsymbol{P}-locus of A is Zariski open ;
4-if $(A, \mathfrak{m}) \rightarrow(B, \mathfrak{n})$ is a faithfully flat local homomorphism, then \boldsymbol{P}
descends from B to A; if moreover $B / \mathfrak{m} B$ has \boldsymbol{P}, then \boldsymbol{P} ascends; 5-if A is regular, then A has \boldsymbol{P}.

In n. 1. after a short recall on the main properties we need in the paper (Cohen-Macaulay, Gorenstein, complete intersection), we discuss the openness of \boldsymbol{P}-locus on a ring A and on finite A-algebras, giving a list of examples.

In n. 2 we discuss the so called "Nagata's criterion for the openness of loci", formally the same as the criterion for the openness of regular locus, but concerning a property \boldsymbol{P} of the type considered above.

We discuss also the following condition, closely related to Nagata's criterion: if a ring A has \boldsymbol{P}, then every domain which is a quotient of A contains a non empty open set having \boldsymbol{P}.

Using Nagata's criterion and the condition on quotients we can prove the permanence of the openness of \boldsymbol{P}-loci under morphisms with good fibers, like completions or henselizations.

In n. 3 we prove the following lifting result, which generalizes [12], theorem 4: if A is separated and complete for some \mathfrak{m}-topology and the formal fibers of A / \mathfrak{m} are geometrically \boldsymbol{P} (where \boldsymbol{P} satisfies just 1-5), then the openness of \boldsymbol{P}-loci for every A-algebra of finite type implies that the formal fibers of A are also geometrically \boldsymbol{P}.

When \boldsymbol{P} satisfies Nagata's criterion and the quotient condition (e.g. when $\boldsymbol{P}=$ Cohen-Macaulay, Gorenstein or complete intersection) the preceding theorem implies that the good properties of fibers and loci pass to \mathfrak{m}-adic completion.

I wish to thank prof. Markus Brodman and prof. Hideyuki Matsumura for some useful conversations on the subject of this paper.

n. 1

All the rings are assumed to be commutative with 1 and noetherian; our terminology will freely follow [10].

We now shortly recall a few facts and definitions:
$1-A$ local ring A is Cohen-Macaulay (CM) iff $\operatorname{depth}(A)=\operatorname{dim}(A)$; a ring A is CM iff A_{0} is CM for every $\Omega \in \operatorname{Spec}(A)$;
$2-A$ local ring A is Gorenstein (Gor) iff A is CM and there is a system of parameters which generates an irreducible ideal; a ring A is Gor iff A_{0} is Gor for every $\mathfrak{Q} \in \operatorname{Spec}(A)$;
$3-A$ local ring is called (absolute) complete intersection (CI) iff $\hat{A}=$ completion of A is a homomorphic image of a regular local ring modulo a regular sequence (we follow [6], (19.3.1); so we do not assume that A is a homomorphic image of a regular local ring) ; a ring A is CI iff A_{0} is CI for every $\mathfrak{Q} \in \operatorname{Spec}(A)$;
4 -Let $(A, \mathfrak{m}) \rightarrow(B, \mathfrak{n})$ be a faithfully flat local homomorphism; then, if B is regular (CI, Gor, CM) also A is regular (CI, Gor, CM) ; if A and $B / \mathrm{m} B$ are regular (CI , Gor, CM) also B is (see: [10], theorem 51 and (21. C), corollary 1; [1], theorem 2; [7], proposition 9.6); 5-The formal fibers of a local ring A are the rings $\hat{A} \otimes_{A} k(\mathfrak{p})$, where $\hat{A}=$ completion of $A, k(\mathfrak{p})=\mathrm{fraction}$ field of $A / \mathfrak{p}, \mathfrak{p} \in \operatorname{Spec}(A)$; the formal fibers of A are the formal fibers of all localizations, if A is any ring;

6-If \boldsymbol{P} is any property meaningful for a ring A (like regularity, CI, Gor, CM,...), we say that the formal fibers of A are geometrically \boldsymbol{P} (shortly: A is a \boldsymbol{P}-ring) iff, for every $\mathfrak{Q} \in \operatorname{Spec}(A)$ and every $\mathfrak{p} \in \operatorname{Spec}\left(A_{0}\right)$, the ring $\hat{A}_{0} \bigotimes_{A_{0}} k(\mathfrak{p}) \bigotimes_{k(\mathfrak{p})} L$ has \boldsymbol{P}, L being any finite extension of $k(\mathfrak{p})$;
7- A ring A is quasi excellent (q. excellent) iff the formal fibers of A are geometrically regular and the regular locus of $\operatorname{Spec}\left(A^{\prime}\right)$ is Zariski open, whenever A^{\prime} is any A-algebra of finite type ;
8 -We say that a morphism $f: A \rightarrow B$ is a \boldsymbol{P}-morphism (\boldsymbol{P} being as in $6-$) iff it is flat and its fibers are geometrically \boldsymbol{P};
$9-$ Convention : if A is any ring, $\boldsymbol{P}(A)=\boldsymbol{P}$-locus of $A=\left\{\Omega \in \operatorname{Spec}(A) \mid A_{\circ}\right.$ has the property $\boldsymbol{P}\}$;
10 -If A is a complete semilocal ring, then $\boldsymbol{P}(A)$ is Zariski open, whenever $\boldsymbol{P}=$ (i) regularity ([10], theorem 74) ; (ii) CI ([6], (19.3.3)) ; (iii) Gor ([11], theorem 3.1 or [9], theorem 8) ; (iv) CM ([6], 6. 11. 2)).

We shall from now on consider a property \boldsymbol{P} meaningful for a noetherian ring A and satisfying the following

AXIOMS of \boldsymbol{P} :
1-every field has \boldsymbol{P};
$2-\boldsymbol{P}$ is local;
3 -if A is a complete local ring, then $\boldsymbol{P}(A)$ is Zariski open;
4 -if $(A, \mathfrak{m}) \rightarrow(B, \mathfrak{n})$ is a faithfully flat local homomorphism, then \boldsymbol{P} descends from B to A; if both A and $B / \mathfrak{m} B$ have \boldsymbol{P}, then \boldsymbol{P} ascends from A to B;
5-if A is regular, then A has \boldsymbol{P}.
Remark 1: Axioms 1-5 are fulfilled whenever $\boldsymbol{P}=$ any of the following properties:
1-regularity; 2- CI; 3- Gor; 4- CM.
On the other hand, properties like normality, reduceness, $\left(R_{k}\right),\left(S_{h}\right)$ are forbidden because of axiom 4, since the property on the fiber over the closed point is not enough to make them ascend.

Remark 2: A property \boldsymbol{P} of the type considerd above passes to polynomial rings ($A \rightarrow A[X]$ is a morphism with regular fibers).

Remark 3: Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two morphisms; if both f ang g are \boldsymbol{P}-morphisms, then also their product $g \circ f$ is a \boldsymbol{P}-morphism; if $g \circ f$ is a \boldsymbol{P}-morphism and g is faithfully flat, then f is a \boldsymbol{P}-morphism.

Remark 4: If A is any \boldsymbol{P}-ring then the morphism $A \rightarrow B$ is a \boldsymbol{P}_{-}
morphism whenever B is any \mathfrak{m}-adic completion or henselization, with respect to $\mathfrak{m} \subseteq \operatorname{Rad}(A)$ ([6], (7.4.6) and [5], lemma 5. 1; really the morphism into the henselization is even regular, i. e., with geometrically regular fibers).

Remark 5: A is a \boldsymbol{P}-ring iff $A_{\mathfrak{m}}$ is a \boldsymbol{P}-ring for every maximal ideal \mathfrak{M} ([6], (7. 4. 5)).

Now we introduce and discuss some conditions of openness of loci on a ring A and on finitely generated algebras.

Definition 1: A ring A is $\boldsymbol{P}-0$ (where \boldsymbol{P} satisfies 1-5) iff $\boldsymbol{P}(A)$ contains a non empty open set.
A is $\boldsymbol{P}-1$ iff $\boldsymbol{P}(A)$ is Zariski open (maybe empty).
A is $\boldsymbol{P}-2$ iff every A-algebra of finite type is $\boldsymbol{P}-1$.

Remarks and Examples:

1-Property $\boldsymbol{P}-2$ passes to homomorphic images and localizations, as well as to algebras of finite type ;
2-If A is q. excellent and $\boldsymbol{P}=$ regularity, then A is $\boldsymbol{P}-2$ ([10], (34. A)) ;

3-If A is a homomorphic image of a regular ring, then A is $\boldsymbol{P}-2$, with $\boldsymbol{P}=\mathrm{CI}$ ([6], (19.3.3));
4-If A is a homomorphic image of a Gorenstein ring of finite Krull dimension, then A is $\boldsymbol{P}-2$, with $\boldsymbol{P}=$ Gor ([9], theorem 8 or [11], theorem 3. 1) ;
5-In [6] (6. 11.8) it is introduced the following condition: (CMU): Let A be a noetherian ring; for every $\mathfrak{B} \in \operatorname{Spec}(A), \operatorname{Spec}(A / \Re)$ contains a non empty open set being CM.
(CMU) implies: a) $\mathrm{CM}(A)$ is Zariski open ([6], (6. 11. 8) ; b) if (CMU) is true for A, it is automatically true also for any $A^{\prime}=$ A-algebra of finite type; c) finally, if a ring A has (CMU), then it is $\boldsymbol{P}-2$, with $\boldsymbol{P}=\mathrm{CM}$.
6 -In [6] it is proved that (CMU) is true for a ring A such that $A=$ $=B / \mathfrak{F}$, where B is regular ([6], (6.11.2)); moreover there is the implicit conjecture that (CMU) be valid for any noetherian ring. On the contrary in [8] Hochster gives counterexamples to the openness of CM-locus, hence to (CMU) even in dimension 3 and for rings which are locally geometric; other counterxamples can be found in [3].

On the other hand in [9] it is shown that (CMU) is always true for homomorphic images of CM rings ([9], theorem 3).

n. 2

In the present section we want to discuss the consequences on openness of loci produced by Nagata's criterion, when it is assumed to be valid for a property \boldsymbol{P} satisfying axioms $1-5, \boldsymbol{P}$ being eventually different from regularity.

Therefore we introduce the following
Definition 2: A property \boldsymbol{P} satisfying axioms 1-5 has Nagata's criterion (shortly: NC) iff the following theorem is true for \boldsymbol{P} :

Let $X=\operatorname{Spec}(A)$, where A is any noetherian ring; then $\boldsymbol{P}(A)$ is open if, for every $\mathfrak{Q} \in \operatorname{Spec}(A)$, there is a non empty open set \mathfrak{H} of $\operatorname{Spec}(A / \mathfrak{Q})$ contained in $\boldsymbol{P}(A / \mathfrak{Q})$.

Remark 1: $\boldsymbol{N C}$ is valid and well known when $\boldsymbol{P}=$ regularity (see for instance [10], (32. A)) ; it is a key result to construct the theory of excellent rings.

Recently proofs of $\boldsymbol{N C}$ have been given also for other properties like: 1-CM ([9], theorem 4);
2-Gor ([4]) ;
3-CI ([4]).
Remark 2: There are many properties with $\boldsymbol{N C}$, but not fulfilling axioms $1-5$, like $\left(R_{k}\right)$ ([9], theorem 1) or $\left(S_{k}\right)$ ([9], theorem 6); the results of the present section are generally not valid for them.
$\boldsymbol{N C}$ allows us to state equivalent conditions for $\boldsymbol{P}-2$ quite similar to the well known equivalences for regular loci (the so called property $J-2$ of [10], theorem 73). In fact we have:

Proposition 1: Let \boldsymbol{P} be any property satisfying axioms $1-5$ and $\boldsymbol{N C}$. Then the following conditions on a noetherian ring A are equivalent:
$1-A$ has $\boldsymbol{P}-2$;
2-every finite algehra is $\boldsymbol{P}-1$;
3 -for every $\mathfrak{\Omega} \in \operatorname{Spec}(A)$ and for every $L=$ finite extension of the fraction field $k(\Omega)$ of A / \mathfrak{Q} there is a finite A-algebra B, containing A / Ω and having L as fraction field, such that B is $\boldsymbol{P}-0$.

Proof: Enough to show that $3 \Longrightarrow$. Choose $\mathfrak{Q} \in \operatorname{Spec}(A), L=$ finite extension of $k(\mathfrak{Q})$ and B as in 3. Then B contains a linear basis of L over $k(\mathfrak{Q})$, say $\mathrm{b}_{1}, \ldots, b_{n}$, and there is an $f \neq 0$ in A / \mathfrak{Q} such that $B_{f}=$ $\sum_{i=1}^{n}(A / \mathfrak{Q})_{f} b_{i}=$ finite free module. Hence, by axiom 4 on $\boldsymbol{P}, A / \mathfrak{Q}$ is $\boldsymbol{P}-0$. Therefore, by $\boldsymbol{N} \boldsymbol{C}, A$ is $\boldsymbol{P}-1$, together with every quotient A / \mathfrak{P},
with $\mathfrak{B} \in \operatorname{Spec}(A)$.
Now we pass to consider finitely generated A-algebras; by $\boldsymbol{N C}$ it is enough to show that, if C is any domain finitely generated as an A-algebra, then C is $\boldsymbol{P}-0$. If $\mathfrak{Q}=\operatorname{ker}(A \rightarrow C)$, we can replace A by A / \mathfrak{Q} and assume that A is contained in C. Passing to a suitable open set of $\operatorname{Spec}(A)$, we can assume also that A has \boldsymbol{P}. Let now K and L be the fraction fields of A and C respectively. There are two alternatives:

Case $1-L / K$ is separable, hence L has a separating transcendence base over K, say $\left(t_{1}, \ldots, t_{n}\right)$, which can be chosen in C. Put: $A_{1}=$ $A\left[t_{1}, \ldots, t_{n}\right], K_{1}=K\left(t_{1}, \ldots, t_{n}\right)$. Then A_{1} has \boldsymbol{P} since it is a polynomial ring over a ring having \boldsymbol{P}. Replacing A by A_{1}, we can assume that L / K is separable algebraic; moreover we can choose a linear base of L over K, say e_{1}, \ldots, e_{n}, contained in C and select $f \in A$ such that $C_{f}=$ $\sum_{i=1}^{n} A_{f} e_{i}=$ finite free A_{f}-module. Now replace A by A_{f} and C by C_{f}. Since L / K is separable algebraic we have: $d=\operatorname{det}\left(\operatorname{tr}_{L / K}\left(e_{i} e_{j}\right)\right) \neq 0$. We claim that C_{d} has \boldsymbol{P}. In fact if $d \notin \mathfrak{p}^{\prime} \in \operatorname{Spec}(C)$ and $\mathfrak{p}=\mathfrak{p}^{\prime} \cap A$, then the canonical image of d in $C \otimes k(\mathfrak{p})$ is non zero in $k(\mathfrak{p})$, which means that $C \otimes k(\mathfrak{p})$ is a product of fields ; hence $C_{\mathfrak{p}^{\prime}} / \mathfrak{p} C_{\mathfrak{p}^{\prime}}$ is a field. But $A_{\mathfrak{p}} \rightarrow C_{\mathfrak{p}^{\prime}}$ is faithfully flat and both $A_{\mathfrak{\xi}}$ and $C_{\mathfrak{b}^{\prime}} / \mathfrak{p} C_{\mathfrak{\xi}^{\prime}}$ have \boldsymbol{P}; so that also $C_{\mathfrak{\xi}^{\prime}}$ has \boldsymbol{P}, as we had to show.

Case $2-\operatorname{char}(L)=p>0$; then there exists a finite radical extension K_{1} of K such that $L_{1}=L\left(K_{1}\right)$ is separable over K_{1}. We can choose $A_{1} \subseteq K_{1}$ as in 3 , so that A_{1} is $\boldsymbol{P}-0$ and also $A_{1}[C]$ is $\boldsymbol{P}-0$ by case 1 .

Since $A_{1}[C]$ is finite over C, C itself is $\boldsymbol{P}-0$ (use axiom 4 on \boldsymbol{P}).
Remark 1: Our result is very close to property $J-2$ not only in the formulation, but also in the technique of proof (see [10], theorem 73).

Such a proof is based essentially on the following facts, valid both for regularity and for \boldsymbol{P} :
$1-\boldsymbol{P}$ ascends by faithful flatness if the fiber over the closed point has
\boldsymbol{P} (hence properties like normality, $\left(S_{k}\right), \ldots$ are excluded; on the other hand we remark that for $\left(R_{k}\right)$ there is a proof of $R_{k}-2$ based on Nagata's criterion: [9], theorem 2) ;
$2-\boldsymbol{P}$ descends by faithful flatness;
$3-\boldsymbol{P}$ passes to polynomials;
$4-\boldsymbol{P}$ has $\boldsymbol{N C}$: this property allows us to restrict our investigation to domains.

Remark 2: In [11] Sharp introduces the class of acceptable rings, quite parallel to excellent rings, but with regularity replaced everywhere by Gorenstein; our proposition 1, using $\boldsymbol{N C}$ for Gor proved in [4],
gives for acceptable rings the until now missing equivalent of property $J-2$.

Now we consider another condition on \boldsymbol{P} concerning quotients and strictly related to Nagata's criterion:

Definition 3: A property \boldsymbol{P} satisfying axioms 1-5 has the quotient condition (shortly: QC) if the following theorem is true:

Let A be a noetherian ring having \boldsymbol{P} and $\mathfrak{P} \in \operatorname{Spec}(A)$; then A / \mathfrak{P} is $\boldsymbol{P}-0$.

Examples:

$1-\boldsymbol{P}=\mathrm{CM}$ ([9], theorem 3);
$2-\boldsymbol{P}=$ Gor ([4]) ;
$3-\boldsymbol{P}=\mathrm{CI}$ ([4]).
On the other hand we do not know whether regularity has $\boldsymbol{Q C}$ or not, at least in char. 0 .

Using $\boldsymbol{N C}$ and $\boldsymbol{Q C}$ we can give the following permanence theorem for $\boldsymbol{P}-2$.

Theorem 2: Let A be a noetherian ring, \boldsymbol{P} a property satisfying axioms $1-5, \boldsymbol{N C}$ and $\boldsymbol{Q C}$, and let $f: \mathrm{A} \rightarrow \mathrm{B}$ be a \boldsymbol{P}-morphism.

Then, if A is a ring with $\boldsymbol{P}-2$, also B has $\boldsymbol{P}-2$.
Proof: By $\boldsymbol{N C}$ it is enough to show that, if C is any polynomial ring over B and $\mathfrak{Q} \in \operatorname{Spec}(C)$, then C / Ω is $\boldsymbol{P}-0$. Let $\mathfrak{q}=\mathfrak{Q} \cap B$ and $\mathfrak{p}=$ $=\Omega \cap A$. Replacing A by $A / \mathfrak{p}, B$ by $B / \mathfrak{p} B, C$ by $C / \mathfrak{p} C$, we may assume that $\mathfrak{p}=(0)$. By hypothesis there is an $f \neq 0$ in A such that A_{f} has \boldsymbol{P}; therefore also B_{f} and hence C_{f} has \boldsymbol{P}. But $f \notin \Omega$, since $\Omega \cap A=(0)$; therefore we can conclude, using $\boldsymbol{Q C}$, that C_{f} / \mathfrak{Q} is $\boldsymbol{P}-0$.

Remark: Theorem 2 can be applied when $\boldsymbol{P}=\mathrm{CM}$, Gor or CI; moreover B can be chosen to be any \mathfrak{m}-adic completion or henselization of A, with $\mathfrak{m} \subseteq \operatorname{Rad}(A)$ ([6], (7.4.6); [5], lemma 5.1). When A is local, B can be chosen to be the strict henselization ${ }^{\text {hs }} A$ ([6], (18. 8. 12), (ii)).

n. 3

In the present section we state a lifting result for the property of being a \boldsymbol{P}-ring, i. e. we lift it from A / \mathfrak{m} to A when A is \mathfrak{m}-adically complete; the result can be refined when \boldsymbol{P} is supposed to have $\boldsymbol{N C}$ and $\boldsymbol{Q C}$.

First we need a lemma:

Lemma: A noetherian local ring A is a \boldsymbol{P}-ring iff, for every finite A-algebra B which is a domain, and for every $\mathfrak{Q} \in \operatorname{Spec}(\hat{B})$ (where $\hat{B}=$ $=$ completion of B) with $\mathfrak{Q} \cap B=(0)$, the local ring \hat{B}_{Ω} has \boldsymbol{P}.

Proof: Quite the same as the well known proof valid for $\boldsymbol{P}=$ regularity (see, for instance, [10], (33. E), lemma 3).

Now we can prove the following
Theorem 3: Let A be a noetherian ring, \mathfrak{m} an ideal and \boldsymbol{P} a property satisfying axioms $1-5$. Assume that:
$1-A$ is \mathfrak{m}-adically separated and complete;
$2-A / \mathfrak{m}$ is a \boldsymbol{P}-ring;
$3-A$ is $\boldsymbol{P}-2$.
Then also A is a \boldsymbol{P}-ring.
Proof: By [6], (7. 4. 5), we can restrict our attention to the formal fibers of $A_{\mathfrak{n}}$, where \mathfrak{M} is an arbitrary maximal ideal. By the lemma, it is enough to show that, if D is a domain finite as an $A_{\mathfrak{m}}$-module and $\mathfrak{\imath}$ is a prime ideal of $\operatorname{Spec}(\hat{D})$ lying over $(0) \in \operatorname{Spec}(D)$, then \hat{D}_{0} has P.

If $\mathfrak{m} D=(0), D$ is a finite $A_{\mathfrak{m}} / \mathfrak{m} A_{\mathfrak{m}}$-module ; so, by hypothesis $2, \hat{D}_{0}$ has \boldsymbol{P}. Therefore we can assume that $\mathfrak{m} D \neq(0)$.

Let us now consider the canonical map $f: \operatorname{Spec}(\hat{D}) \rightarrow \operatorname{Spec}(D)$ and the set $Y=f^{-1}(\boldsymbol{P}(D)) \cap \operatorname{Non} \boldsymbol{P}(\hat{D})$, where $\operatorname{Non} \boldsymbol{P}(\hat{D})=\operatorname{Spec}(\hat{D})-\boldsymbol{P}(\hat{D})$. We want to show that $Y=\phi$, which will prove our claim.

Assume $Y \neq \phi$. Since A is $\boldsymbol{P}-2$, then $A_{\mathfrak{r}}$ is also $\boldsymbol{P}-2$ and D is $\boldsymbol{P}-1$; so, using axiom 3 on \boldsymbol{P}, we see that Y is locally closed and, by [10], (33. F), lemma 5, it contains a prime ideal $\mathfrak{B}^{\prime} \in \operatorname{Spec}(\hat{D})$ such that $\operatorname{dim}\left(\hat{D} / \Re^{\prime}\right) \leqq 1$. If $\operatorname{dim}\left(\hat{D} / \mathfrak{\Re}^{\prime}\right)=0$, then \mathfrak{B}^{\prime} is maximal as well as $\mathfrak{B}=\mathfrak{B}^{\prime} \cap D$. But $D_{\mathbb{B}} \rightarrow \hat{D}_{\mathbb{K}^{\prime}}$ is faithfully flat and the fiber over the closed point is a field. Therefore, by axiom 4 on $\boldsymbol{P}, \hat{D}_{\boldsymbol{F}}$, should have \boldsymbol{P}, which contradicts the choice of \mathfrak{P}^{\prime}. Hence $\operatorname{dim}\left(\hat{D} / \mathfrak{B}^{\prime}\right)=1$.

We now consider $\mathfrak{m}^{\prime}=\mathfrak{m} E$, where $E=\hat{D} / \mathfrak{B}^{\prime}$. There are two alternatives:
$1-\mathfrak{m}^{\prime}=(0)$; then $\mathfrak{m} \hat{D} \subseteq \mathfrak{B}^{\prime}$, so that $\mathfrak{m} D \subseteq \mathfrak{B}=\mathfrak{B}^{\prime} \cap D$. Therefore D / \mathfrak{B} is
a finite module over $A_{\mathfrak{m}} / \mathfrak{m} A_{\mathfrak{m}}$ and has formal fibers with property
\boldsymbol{P}, by hypothesis 2. In particular $\hat{D}_{\mathfrak{w}} / \mathfrak{P}_{\mathfrak{W}} \hat{\mathbb{}}^{\prime}$ must have \boldsymbol{P}, so that also $\hat{D}_{\neq \prime}$ has \boldsymbol{P} by axiom 4 on \boldsymbol{P}; but this is absurd and, finally, \mathfrak{m}^{\prime} cannot be (0).
$2-\mathfrak{m}^{\prime} \neq(0)$; since E is a local domain of dimension 1 , \mathfrak{m}^{\prime} contains a suitable power of $\mathfrak{m}_{E}=\operatorname{Rad}(E)$, say \mathfrak{m}_{E}^{r}. Hence we have: $E / \mathfrak{m}^{\prime}=$ homomorphic image of $\hat{D} / \mathfrak{m}_{\hat{D}}^{r}=D / \mathfrak{m}_{D}^{r}=$ finite $A_{\mathfrak{n}} / \mathfrak{M}^{r} A_{\mathfrak{m}}$-module $=$ finite
A / \mathfrak{M}^{r}-module. So $E / \mathfrak{m} E$ is finite over A, which is \mathfrak{m}-separated and complete; this means that E is a finite A-module ([10], (28. P), lemma). We have now the following finite inclusions:
$A /(\mathfrak{P} \cap A) \longrightarrow D / \mathfrak{\Re} \longrightarrow E$.
Since $A /(\mathfrak{P} \cap A)$ is \mathfrak{m}-complete and separated, the same is true for D / \Re; but D / \Re is a local domain of dimension 1 , so that it is complete as a local ring, i.e. $D / \Re=\hat{D} / \Re \hat{D}$; finally we see that $\mathfrak{B} \hat{D}=\mathfrak{B}^{\prime}$ and $\hat{D}_{\mathbb{\beta}} / \not{ }_{\Re} \hat{D}_{\mathbb{\beta}}$ is a field. Therefore $\hat{D}_{\mathbb{\beta}}$, must have \boldsymbol{P} by axiom 4 on \boldsymbol{P}.

We get again an absurd and the unique possibility is $Y=\phi$, which proves our claim.

Remark: The theorem is true when $\boldsymbol{P}=$ regularity, CI, Gor, CM. In particular, in the case of regularity, we find exactly the result of [12], theorem 4.

Corollary 1: Let A be a normal local ring of dimension 3, \mathfrak{m}-complete and separated for some ideal m . If A / m is a \boldsymbol{P}-ring, with $\boldsymbol{P}=C M$, then the same is true for A.

Proof: A has (CMU), hence it is $\boldsymbol{P}-2$, with $\boldsymbol{P}=\mathrm{CM}$. In fact, if $f \neq 0, f \in \operatorname{Rad}(A)$, then A_{f} is a normal domain of dimension 2 and, if $\mathfrak{B} \in \operatorname{Spec}(A), \mathfrak{B} \neq(0)$, then there is $f \in \operatorname{Rad}(A / \Re)$ such that $(A / \Re)_{f}$ is a domain of dimension not greater than 1 ; in any case we get a CM ring localizing at some suitable f.

When \boldsymbol{P} has $\boldsymbol{N C}$ and $\boldsymbol{Q C}$ we can deduce the following
Corollary 2: Let A be a noetherian ring and let \boldsymbol{P} satisfy axioms $1-5, \boldsymbol{N C}$ and $\boldsymbol{Q C}$, Assume moreover that:
1-A has $\boldsymbol{P}-2$;
$2-A$ is \boldsymbol{P}-ring.
Then if $\mathfrak{m} \subseteq \operatorname{Rad}(A)$ and $B=(A, \mathfrak{m})^{\wedge}$, also B satisfies 1 and 2.
Proof: By proposition $1, \boldsymbol{P}-2$ passes to B, since $A \rightarrow B$ is a \boldsymbol{P}-morphism. Now apply theorem 3.

Remark: Corollary 2 states in particular the following facts:
1 -If A is acceptable ([11]), then also ($A, \mathrm{~m})^{\wedge}$ is acceptable;
2-If A is q. excellent then $(A, \mathfrak{m})^{\wedge}$ has $\boldsymbol{P}-2$ with $\boldsymbol{P}=\mathrm{CI}$, Gor, CM
(the claim on fibers in this case is well known: it is easy to see
that the fibers of $(A, \mathfrak{m})^{\wedge}$ are even CI without the machinery of the theorem).

Unfortunately the corollary cannot be employed when $\boldsymbol{P}=$ regularity since $\boldsymbol{Q C}$ is not known in this case (and $\boldsymbol{N C}$ is not enough).

We remark explicitly that, if $\boldsymbol{Q C}$ is valid for some class of regular rings, like, for instance, regular local rings containing a field of characteristic 0 , then it gives automatically the passage to completion of the excellent property, within the class considered, by corollary 2.

Politecnico di Torino Istituto Matematico Torino (Italy)

References

[1] L. Avramov Flat morphisms of complete intersections, Dokl. Akad. SSSR., 225 (1975) (Soviet Math. Dokl., 16 (1975))
[2] N. Bourbaki Algèbre Commutative, Hermann, Paris (1962,...)
[3] D. Ferrand Fibres formelles d'un anneau local noetherien, Ann. Sc. Ec. Norm. M. Raynaud Sup., t. 3 (1970)
[4] S. Greco Nagata's criterion and openness of loci for Gorenstein and complete M. Marinari intersections (to appear)
[5] S. Greco Sugli omomorfismi quasi étale e gli anelli eccellenti, Annali di Matemativa pura e applicata, vol. XC, Bologna (1971)
[6] A. Grothendieck Eléments de Géometrie Algébrique, chap. IV, Publ. I. H.E.S. (1964...)
[7] R. Hartshorne Residues and duality, Lecture notes n° 20, Springer Verlag Berlin (1966)
[8] M. Hochster Non openness of loci in noetherian rings, Duke Math. J. 40 (1973)
[9] C. Massaza Sull' apertura di luoghi in uno schema localmente noetheriano Boll. P. Valabrega U.M.I., XIV-A (1977)
[10] H. Matsumura Commutative Algebra, Benjamin, New York, (1970)
[11] R. Sharp Acceptable rings and homomorphic images of Gorenstein rings, J. of Algebra, vol. 44 (1977)
[12] P. Valabrega A few theorems on completions of excellent rings Nagoya Math. J., vol. 61 (1976).

