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1. Let G be a unimodular locally compact group, and w={9, U}
be a unitary representation of G. Here © is the space of representation
w and U,’s are its representation operators.

We call @ L*-representation if and only if ® is irreducible and
there exists a non-zero vector v in § such that <U,v, v> is a square
integrable function of g in G with respect to the right Haar measure
dg on G.

For an L*-representation o, the following properties are known (cf.
[1D.

1) For any vectors #, w in O, <U,u, w> is square integrable.

2) For a fixed non-zero vector v in O, the map

Hosu—<Uu, v>€L*(G)

is an Intertwining operator from @ to the right regular representation
R={L*(G), R,} of G.

3) For any representation v={®, V,} which is disjoint to @, and
any vectors ¥, v in 9, any vectors z, ¥ in & for which <V,z, y> is
square integrable,

S<va><KZ}>@=&
G

4) There exists a positive number d(w), depending only on o,
such that

[ <t v><Tma>de=d@) <y, w><z, o>

for any %, v, w, z in .
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We call the number d(w), the formal degree of w.

On the other hand, consider two unitary representations o= {9, U},
t={®, V,} and an irreducible one 6= {¢, W,}. Take normalized vectors
4, v, w in their representation spaces 9, &, ¢ respectively.

Assume that o®r contains ¢ as a discrete component. Denote <
the maximal subspace of D@8 on which the restriction of w@r operates
as a multiple of o. It is evident that & is uniquely determined
invariant subspace, and the space of vectors

O(w)={Aw; A is any intertwining operator from ¢ to w®r}
is a closed subspace of & Put P, and P, the projection of Y& to
and (w) respectively.

We call the following non-negative real number the Clebsch-Gordan
coefficient of u@v with respect to w:

a(u, v; w)= | P,(u@v)|.

The purpose of this paper is to show a close relation between
formal degrees and Clebsch-Gordan coefficients,and using this relation,
to calculate the formal degree of the discrete series of SL(2, R).

Hereafter we denote the conjugate representation of @ in the sense
of G. W. Mackey by o*, and the image of v in © by the natural
conjugation map into the representation space $* of o* by v*. For
instance, <U *v*, u*>=<U,v, u>. Obviously, if o is an L*-represen-
tation, w* is too and d(w)=d(w*) (cf. [2]).

2. Lemma 1. For any normalized vectors u in 9, v in & w in L,
<(URQXV)P,(u®v), P,(u@v) >=a(u, v; w)’<W,w, w>.

Proof. From the definition of §(w), there exists an intertwining
isometric operator A from £ into $XK such that

P,(u®@v) =a(u, v; w)Aw.
This leads us to the above equality directly.

Lemma 2. The component of w@r restricted to the space (HR&) oL

is disjoint to a.
Proof. Obvious from the assumption of maximality on <.

3. Main Theorem. Let 0o=1{9, U,} be a unitary representation of
G, and t={R, V,}, 6=1{, W,} be two L*-representations of G.

Assume w@t contains o* as a discrete component. Then for any nor-
malized vectors u; in 9, v; in & w; in ¥(j=1, 2),

1) o®o contains ™ as a discrete component,



Formal degree and Clebsch-Gordan coefficient 133

2) a(uu (28] wl*)Za(ul*’ vl*; wl):
3) d(f*)a(uu U w,*)’:d(a*)a(u,, w 7}1*)2’

4) a(ul, vl; wl*)a(uZ, wz; vZ*)=a(ul’ wl; vl*)a(uz’ vZ; wz*)'

Proof. At first the equality 2) is a direct conclusion of the defini-
tions of @ and the conjugation map.
For normalized vectors u in §, v in & w in ¥, put

L={ <Up, u><Vp, v>< W, w>dg
={ <U.@v) agw), v@u><WTwT w >ds.

Now we put 2,=P,, (u®v), 2,= (P —P,*) (u®v) and z,={—-P,,)
(v®uv), then =zs are mutually orthogonal and u®v==2,4+2,+2,. By
lemma 1,

<(U¢®Vg)zn zl>=a(u, v; w*)2<W1*w*’ w*>'

The vectors 2, and 2z, are of the o*-component in ®7, therefore
the functions <(U,®V,)z;, 2,> (, k=1, 2) are square integrable.
And since &* is an invariant subspace, \

<(U1®Vl)z39 zi>=<(U:®V¢)zi9 23>=0 (-7:1) 2)'
Combining these results, we obtain the following,

U, u><Vw, v>=(U,QV,) u@v), uQv>=
= 3 <(U,@V)z, 2>+ < (U,QV,)z, 2,>.

jok=1,2

Because the left hand side and the first sum part of the right hand
side are square integrable, the last term is too.
Thus by the orthogonality relations 3) and 4) in 1.,

SG<(U.®V.>zj,z,><W,*w*, w*>dg=0 (if j or k=2).
| <U@Voz, 2><WFws wm>dg=0.
Consequently we get
L={ <W@V)ze><Wwrw >dg=a(u, v; wh)d(e*) ™
Changing the roll of (s, w) to (s, v), we get analogously

L=a(u, w; v*)d(c*)".

The rest of Main theorem are deduced from this equality immedia-
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tely.

4. Now we shall consider the case of G=SL(2, R). Its L*-represen-
tations D}, D7 (n=1, 3/2, 2, 5/2, ...) are so-called of the discrete
series. In the space of the representation D} (resp. D;), there exists
a complete orthonormal system {u}; j=n, n+1, ... (resp. ui_y j=-—n,
—n—1,...)} consisting of K-finite vectors.

For such vectors, the step-up (-down) operators are given by

F+(DH)ul,=V(G+n) G—n+1) uit,
F-(DH)uj,=—V({—n)G+n—1) uir

The vector u; (resp. #Z7) in the space of D} (resp. D;) is charac-
terized as the normalized vector of weight n (resp. —n) such that
F-(Df)ur=0 (resp. F*(D;)uz:=0) up to constant factor (cf. [3]).

In the space of Dj,®D;, the vector u}i®u? is the only normalized
vector of weight p+ (1/2) and F~(D},QD;) (u/2Qut) =0. This means
that D}, QD;} contains D,,t,, with multiplicity one and #}/ZXu? just

corresponds to the vector u218/8. That is,

a(uify, uhs wbilR) =a (i, ut; (uIiZE)*) =1.
While in the space of D},&D_, =, =D}& D, t)* vectors v of
weight —p are given by
v:;‘; a,(u““{ﬁ’@u_, (1/3/2)
Thus AF+v=Z a,((I+1)u+SPQuitizo/m 4
VLT 2P) W @uzhy™)

=,§ (@, (I+1) +a, V(I+1) I+ 2+ 1)) (u+SPQubzium),

The equality F*v=0 gives a,,,= —a,y({+1)/({+2p+1). Therefore a,=
(=D NTT@p)1/(I+2p)! a,(I=0). By the additional condition |v| =1,
we get

a,=a(wf, w3z uzh) = ((20—1)/20)"".

Substitute this to the formula 3) of the Main theorem, then we
obtain

d(D;)/d(D, &) =d(D7) /d(D,40m) =
=a (Ui s uIh)/a(wf, ubs wiii) = (2p—1)/2p

@®=1, 3/2, 2, 5/2, ....).
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Summarizing these results, if we put b,=d (D),
d(Dy) =d(D;) = (2p—1)b, (p=1, 3/2, 2,5/2, ...).

The determination of b, depends of the normalization of the Haar
measure on G. For instance, for the normalization as

SG| <Uut, w>F dg(=d(DH) =1, we get
d(D}) =d(D;)=(2p-1).
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