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§1. Introduction

In this note we shall study an equivariant version of the transfer homomorphism
for fibre bundles defined by Becker and Gottlieb [4].

Let G be a compact Lie group. Let £=(p: E—X) be a fibre bundle with G-
action in the sense of [6]; and let hg be an RO(G)-graded generalized G-cohomology
theory [9], where RO(G) denotes the real representation ring of G. Then the transfer
homomorphism

p.: h§(E) — h&(X)

will be defined. The existence of the transfer seems to be an advantage of RO(G)-
graded theories compairing to Z-graded theories. Regarding h§(X) as a graded
module over the stable G-cohomotopy theory n§(X), we shall prove (Theorem 4.6)
that

p.p¥*(x)=w(&)x € h¥(X)

for x € h(X), where w(é)=p,(1) e n@(X) and | € nd(E) denotes the unit.

For each closed subgroup H of G, usually we have also a generalized H-cohomo-
logy theory h} such that h¥(G/H)=h}(point), for xe€Z. In this case the transfer
homomorphism for the bundle p: G/H — point gives an ‘‘induction” homomor-
phism

p.: h}(point) — h¥(point).

In particular let K4 (X)=K%(X) be the equivariant K-group [13], then we obtain
a homomorphism

p.: R(H) — R(G)

where R(G) denotes the complex representation ring of G. It will be proved (Theo-
rem 5.2) that this homomorphism coincides with the induction homomorphism
defined by Segal [12].
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Finally we shall give a proof of the Adams conjecture for complex vector bundles.
It is a modification of that of Becker and Gottlieb [4]. The idea is just to use the
fact that every element of R(G) is a linear combination of representations induced
from one dimensional representations [12], and to reduce the problem to line bundles
using the naturality of the transfer homomorphism.

§2. Fibre bundles with group action

Let G and I be compact Lie groups. Suppose that there is given an action of
G on I' as smooth automorphisms, i.e., a homomorphism «: G—Aut " such that the
adjoint of «, &: GXI'->T is smooth. Let I x,G denote the semidirect product,
that is the direct product I' x G as a set and the multiplication is given by (y, g)-
&', g)=( -g)(®"). gg'). It is obvious that ' x,G is a Lie group. According to
tom Dieck [6], we now introduce the notion of fibre bundle with group action.

Definition 2.1. A principal I'-bundle &=(p: E-»X) (I' acts on E from the
right) is called a principal (I', «, G)-bundle if

i) E and X are left G-spaces and p: E— X is a G-map,

ii) actions of G and I are related as g(x-y)=g(x)-a(g)(y) forany xe E, geG
and yel.

Note that we changed the notation of G and I in [6].

Let F be a I'x,G-space. Then regarding F as a I' (I x,G)-space, one can
associate for € a fibre bundle ¢

F—SE-2,X

with fibre F, which we call a (I', 2, G)-bundle. It is obvious that the diagonal action
of I'x,G on E x F induces a G-action on E=FE x ,F and that p: E»X is a G-map.

Now let F—E -2, X be a (I, «, G)-bundle, associated with a principal (T, «,
G)-bundle &. Suppose that F is a closed smooth I' x , G-manifold and X is compact.
We shall then associate a stable G-map X , - E, as follows.

It is known [5] that there is a I’ x,G-equivariant embedding i: F>W of F
into a Euclidian I x ,G-space W. Let 5 denote the vector bundle with fibre W
associated with €. This turns out to be a G-vector bundle in the sense of [13], and
since the base space X is compact, there are a G-vector bundle n* and a G-vector
bundle isomorphism

fin®nt=BxV

where V is a Euclidian G-space.
Let w(F) denote the normal bundle of the embedding F= W. Then we obtain
I' x , G-maps

k:vWF)— W

and



The transfer homomorphism 437
Ji W(F) — UF)@F)=Fx W

where j(v)=v®0 and ©(F) is the tangent bundle of F. Clearly k is an embedding
onto an open subspace of W, and j is a proper map of locally compact spaces. Con-
sider G-maps

idxpk: Ex WF)— Ex W
and
idxrj: Ex WF)— Ex(FxW).

These maps are clearly fibrewise regarding as fibre bundles over X.
For fibre bundles p;; E,;—»X, i=1, 2, we define the ‘‘Whitney sum” E,®E,
by the pull back diagram

E1®E2 —_— El XEZ

l lpl"pz

X— XxX

where d: X —»X x X denotes the diagonal map. If f;: E,—~E; (i=1, 2) are fibrewise
maps covering the identity map of X, then one can naturally construct a fibrewise
map

f1®f,: E\®E, — E\@E).

We apply this construction to fibrewise maps above and the identity of nt. Then
we obtain G-maps

(idxrk)@id: (Ex rW(F)@nt — (Ex W)@ nt
and
(dxr))@id: (Ex v(F)@®nt — (Ex (Fx W)@ n*.

It is obvious from construction that (id x r k)®id is an embedding onto open subspace
and (id x rj)@id is a proper map. By the definition, (Ex  W)@nt~X x V and we
have

Lemma 2.2. (E x (Fx W))@n* is homomorphic to E x Vp*(ndnt).

Proof. An element of (Ex (Fx W))®n* can be written as [8, (x, w)]®v'
where e E, xe F, we Wand v’ ent. Define

u: (Ex (Fx W)@nt — p*(n®n+)

by u([, (x, w)]®v)=([2, x], [¢, w]@v’). Clearly u is a continuous G-map and the
inverse of u is similarly defined. q.e.d.

For a locally compact space Y, let Y denote the one point compactification.
Let U be an open subspace of Y, then by shrinking Y— U to a one point, we obtain
amap Y-Uec. If f: Y->Z is a proper map, then we obtain fc¢: Yc—Z¢c, Then
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from G-maps (id x k)@ id and (id x ;j)®id, we obtain G-maps
(X x V) — (Ex p(F)@nt)s — (Ex V)°
and as the composite we have a G-map
(X xV)e — (ExV)e.

We call ¢ a trace of the (I, «, G)-bundle ¢{=(p: E— X).

We note that when the structure group I' of a (I', a, G)-bundle ¢ is reducible
to a subgroup I'" which is closed under G-action, then ¢ is regarded as a (I'’, a, G)-
bundle. In such a case, a trace t: (X x V)c—>(Ex V)¢ of the (I', , G)-bundle ¢
can be considered as a trace of the (I'', «, G)-bundle ¢, i.e., a trace does not depend
on a reduction of structure group. So in the following, a (I', @, G)-bundle with a
closed smooth fibre and a compact base is called simply an admissible G-bundle.

Consider now a special case. Let M be a closed G-manifold. Then the unique
map p: M—-point is an admissible G-bundle (with '=e). Let i: M—>W be a G-
equivariant embedding. In this case, n=point x W and we may take V=W. Then
a trace of p: M—point is given by the composition

Ve —, (M) L2 (M@ T(M)) = (M x V)¢

where ¢ is the Pontrjagin-Thom construction.

§3. G-cohomology theories

Let us first recall the definition of RO(G)-graded equivariant generalized
cohomology theories ([14], for details also see [9]). Here RO(G) denotes the real
representation ring of a compact Lie group G.

A reduced generalized G-cohomology theory h consists of

i) a family A%, «e RO(G), of contravariant functors from the category of
compact based G-spaces to the category of abelian groups and

ii) a family %" (x€ RO(G) and V an irreducible representation of G) of
natural transformations

o%V: ha(X) — h&tY(Ven X)
which is subject to the usual axioms. From a reduced theory, one can define an
unreduced theory by
h&(X)=hg(X ,)
where + means the disjoint base point.
Let h¥ and k¥ be generalized G-cohomology theories. A family ¢ = {¢*}
@*; hg(X) — kEH(X)

of natural transformations is called stable if ¢* commute with the suspension iso-
morphisms.
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Some examples of G-cohomology theories are

Ex. 1. (Stable cohomotopy). Let a=V—We RO(G) where V and W are real
representations of G. Define the stable G-cohomotopy group by

X)) =lim (USW) A X, (UBV)]°

where [ , ]¢ denotes the set of G-homotopy classes of G-maps, and the direct limit
is taken over all real representations of G. It is shown (see e.g. [9]) that n¥ is a
generalized G-cohomology theory. Moreover we see that =% is multiplicative.
That is, by the smash product of stable G-maps, we have an associative and (anti-)
commutative pairing

RE(X)QAL(Y) — REP(XAY)

Hence as non equivariant case, the unreduced group ng(X) is a RO(G)-graded ring
with unit.

Let hE be a generalized G-cohomology theory. Let a=V—We RO(G) and
B=V'—W’'eRO(G). Let xe hi(Y) and u e nf(X), and let

frU@W)AX,)— (UV)

be a representative of u. Put
u@x=(c*hUO)1(fAidy)*a:V'® (x).

Then we obtain a welldefined bilinear pairing

®: hg(YE)®n(X) — hgP (XX Y).
If X =Y, then by use of the diagonal map X—X x X, we obtain a homomorphism

hE(X)®@ng(X) — hgH(X),

and we can check easily the following

Proposition 3.1. Any generalized G-cohomology theory h¥(X) has a natu-
ral n§(X)-module structure.

Let n: X >pt. be the unique map. Then via the ring homomorphism 7n*:
ng(pt.)—»nE(X), we may consider hg(X) as a n¥(pt.)-module.

Ex. 2. (K-cohomology). Let a=V—We RO(G) as before. Put
ReX)=R(V@® W) A X)

where K denotes the reduced equivariant K-group of Atiyah-Segal (see [13]). By
the Bott periodicity B: Kg(X)=Kg(X A(V®C)<), one can define the suspension
isomorphism

o: Ry(X) — Rg*V(Uc A X).
by
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B: R(VOW) A X) — Ro(VOW) A X A(URC))
=R (VOW@2U) A X).

As non equivariant K-theory, one can easily see that K% is a generalized
G-cohomology theory.

§4. The transfer homomorphism

Let h& be a generalized G-cohomology theory. Let é=(p: E— X) be an admis-
sible G-bundle with fibre F.

Definition 4.1. The transfer homomorphism for ¢
p.: h3(E) — hE(X)
is defined by
p(x)=(a*")"'1*e*¥(x)

where t: (X x V) =X, AVc>(Ex V) =E, AV¢is a trace of the bundle ¢.

This definition is well-defined, because of

Lemma 4.2. The suspension image of t in {X,, E+}G=l_i‘_£g [XiAVe E,
AV<]S is uniquely determined by E=(p: E~X).

Proof. The definition of ¢ depends on a choice of an embedding i: F— W and
a choice of nt. It is known [18] that if Wis large enough (contains each irreducible
representation enough many times), then any embedding F— W are G-isotopic each
other. On the other hand, for a given embedding F— W, the stable class of nt is
unique. Then one can easily verify that the equivariant stable class of t is inde-
pendent on choices above. g.e.d.

If G=e, one can see easily that our definition of the transfer coincides with that
of Becker and Gottlieb [4].

Proposition 4.3. Let {=(p: E-X) be an admissible G-bundle and let h¥
and k¥ be generalized G-cohomology theories. Then we have the following.

i) The transfer p,: h¥(E)->h¥(X) is a n¥(pt.) module homomorphism

ii) If@: hE—k¢ is a stable natural transformation then the following diagram
is commutative

S(E) —2> kE(E)

bl

§(X) =5 kE(X) .

Proof. Let xe h$(E) and u eng(pt.), and let f: We— U< be a representative
ofu. Lett: X, AVc—E,_ AVcbeatrace of £. Note that
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tAidy: Xy AVEAWES —> E.AVEAWS
is also a trace of £. Then
piux)=(a*YO¥) Lt Nidy)*(idg aye A f)*o*VOU(x)
=(a*V®Y) l(idy pve A S)*E A idy)*a*VOU(x)
=up,(x).
This proves i), and ii) is clear from the definition. q.e.d.

Now we consider the naturality of the transfer. Let E=(E, p, X) be a princi-
pal (I', o, G)-bundle and let f: Y=X be a G-map. Then the induced principal
I-bundle f*& clearly has a principal (I, «, G)-bundle structure induced from E.
Let ¢=(p: E-X) be the (I, a, G)-bundle with fibre F associated with & and let
f*E=(p': f*E-Y) be associated with f*. Then we obtain a pull-back diagram of
(I, a, G)-bundles

f*E 4L, E

7| |7

Y—F/X

f

Proposition 4.4. Let ¢ be an.admissible G-bundle. Given a pull-back dia-
gram as above, we have the following commutative diagram

hE(E) L hE(f*E)

S

hE(X) —= h&(Y)

Proof. Let i: F>W be a I x,G-embedding in a Euclidian I x ,G-space W
and let n=E x - W be the G-vector bundle over X. Note that

0 =f*Ex (W f*(n)

where f*(n) is the induced G-vector bundle over Y. Hence for the construction
of a trace of f*E, one may choose

()t =(f*Ex p W)t=f*(nh).
Then by an easy diagram chasing, we have the commutative diagram

fHE AV LN L E AV

Y AVe —ra> XonVe
This shows the proposition. : g.e.d.

Now let £=(p: E—>X) be an admissible G-bundle and let t: X, AVSE, A V®
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be a trace. The stable class of the composition map
X, AVe L, E,AVE 2, e

will be denoted by w(£)en@(X), where n denotes the canonical projection. If
&=(p: M—point), then w(£) e nd(pt.) is denoted by w(M). The class w(&) is natu-
ral, i.e., for a G-map f: Y->X and for an admissible G-bundle ¢=(p: E-X), we
have

Srw(&)=w(f*%)
by Proposition 4.4.
Lemma 4.5. w(&)=p,p*(1), where 1 € nd(X) denotes the unit.
This is clear by definition.

Theorem 4.6. Let ¢{=(p: E-X) be an admissible G-bundle. Let h¥ be
a generalized G-cohomology theory and let x € h¥(X). Then we have

p.p*(x)=w(&)x.

Proof. Let d: X—>X x X be the diagonal map and let A=pxid: E-»X xE.
Note that

idxp: XxE— XxX
is an admissible G-bundle and we have the following pull-back diagram

E-4, XxXE

| [1axs

X— XxX
From the definition, we see that a trace of idx p: X x E-»X x X is given by
t=idyAt: X xX), AVE— (X XE), AV®

where t: X, AVe>E, AV is a trace of £=(p: E-»X). Then for x e h¥(X) and
y e nE(E), we have

(id x p),(y®x)=p,(y)x.

Now by Proposition 4.4 and by the naturality of n¥ action on h§, we have a
commutative diagram

RE(E) = hYE)——— hE(X)

.,.I I & L,.

hz(EX E) W hE(XX E) —aam, hg(XX X)

I I I

hE(E)®E(E) —gia® h&(X)®nE(E) —agp,> hE(X) @nE(X)
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Then by a simple diagram chasing starting from x®1 € h§(X) @n&(E), the theorem is
proved. g.e.d.

As an application of the theorem, we consider an admissible G-bundle with a
base space with trivial G-action. Let é=(p: E—~X) be such a bundle. Let xo€ X
and F=p~!(x,). Then the inclusion i: xo— X is a G-map and F is a G-manifold.
Moreover we see that

i*w(&)=w(F) e nd(x,) .

For a n§(pt.)-module M and for y e n¥(pt.), let M[x~'] denotes the localization
of M by the multiplicative set {x"},-;,,... Then we have

.....

Theorem 4.7. Let ¢=(p: E-»X) be an admissible G-bundle with fibre F.
Suppose that X is a connected finite CW-complex with trivial G-action. Then
the composition of n§(pt.) [w(F)~']-module homomorphisms

pp*: hE(X)[W(F)™'] — hE(X)[w(F)™']
is an isomorphism.

Proof. Let x, be a vertex of X. Let n: X—>x, be the unique map and let
i: X®>X be the inclusion of O-skeleton. Since X is connected and trivial as
G-space, we see that

*(w(&) — m*w(F))=0.

Hence we can write w(§)=n*w(F)+z, zekeri*. Therefore in #ng(X)[w(F)~1],
we can write '

w(§)=m*w(F)(1+2'),

where z'eker [i*: n§(X) [W(F)~']-n¥&(pt.)[W(F)~']]. Since X is a finite CW
complex, the element 1+z' is invertible as usual. Hence the multiplication with
w(¢) is an isomorphism in h§(X)[w(F)~!], and the theorem follows from Theorem
4.6. q.e.d.

Remark. If G is a finite group, Segal [14] has shown that #(pt.) is isomorphic
to the Burnside ring A(G). For a compact Lie group G, the structure of nd(pt.) is
determined by Rubinsztein [11].

§5. The transfer in KG-theory

Let Kg(X)=KZ(X) be the equivariant K-group. Recall that the suspension
isomorphism in K%-theory o: K&(E,)—KY(E, A V<) is given by the Bott periodicity,
or in other word the Thom isomorphism (see e.g. [3])

D: KG(E) =5 KG(Ex V)=Kg(E x (2V))

where VC denotes the complexification of V.
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Let £=(p: E-»X) be an admissible G-bundle. Then in the construction of a
trace t: X, AVe—E, A V¢, one may suppose that V is a complex G-vector space.
Then it is easy to see that the transfer for & is given by the composition

Ko(E) =5 Kg(Ex V) = Kg(X x V) 5=p Kg(X).

Now let M be a closed G-manifold and let tM be the tangent bundle of M.
Let

t-ind: Ko(tM) — K(pt.)=R(G)

be the topological index [3], where R(G) denotes the complex representation ring
of G. Let

. tM — M

be the bundle projection and let A*(tM) denote the exterior algebra of the vector
bundle t™. Then n*(A*(tM)) is a complex of real vector bundles over tM exact
outside the O-section. Hence its complexification defines an element of Kg(tM),
so put

u(M)=r*(A*(tM))®Ce K;(tM).
Then by the multiplication with u(M), we obtain a homomorphism
V: K¢(M) — Ks(tM).
Now we have

Theorem 5.1. Let M be a closed G-manifold and let ¢=(p: M—point) be
the admissible G-bundle. Then

p,=t-indy: Kz(M) — Kg(pt.).

Proof. Let i: M—V be a G-embedding of M into a real G-vector space. For
a real vector bundle ¢, its complexification is denoted by &c. Let ng: tcM—M be
the projection and let

k: tM — M

be the inclusion onto the real part of tM.. Denote by vM the normal bundle of
McV. Then tMc®vM =M x V. Clearly nck=n:TM—-M and we have a
pull-back diagram of G-vector bundles

n*(VM¢) — M x Ve — vM¢

l L

™ > ™M > M

Tc

As shown in [3], N=n*(vM.) may be considered as the normal bundle of T™ in
V=V, Weembed M in tM by the O-section. Consider the embedding
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i"" MctMctV=V.

The total space of the normal bundle of M in V¢ is clearly N.
Now define the transfer p,: K;(M)—Kg(pt.) using the embedding i’. Then
p, is given by the composite

Ke(M) 25 Kog(MxVe) - Kg(N) ey Ko(Ve) 25 Kg(pt.)

where 11 N=v(M, Ve)=v(M, V)®tM=Mx V. and j: N>V are natural in-
clusions, and j, is the homomorphism induced from the map Vg—-Ve/(Ve—Im j)©
~Ne,

Let 1€ K(tM¢) be the canonical Thom class of the bundle tM . Then clearly
we see that

k*L=u(M)e K4;(tM).

Then by the naturality of the Thom homomorphism in the pull back diagram above,
we have

p(x) =P *P(x) = D7 T PY(x) = t-ind Y(x)
where @ denotes the Thom isomorphism for appropreate bundles. g.e.d.

As a corollary, we shall show that the induction homomorphism of representa-
tions of compact Lie groups defined by Segal [12] can be also defined by the transfer.

Let H be a closed subgroup of a compact Lie group G. The homogeneous
space G/H has a usual left G-action. Recall that K4(G/H)=R(H). Then the
transfer for (p: G/H —point) gives a homomorphism

p.: R(H) — R(G).
Now we recall [12] the definition of the induced representation
iy: R(H) — R(G).
Let M be a complex representation of H. Let &,, denote the G-vector bundle
GxyM — G/H.

By this correspondence, we see that R(H)=~ K (G/H). Let T*—>G/H be the co-
tangent bundle of G/H. For a complex G-vector bundle &, D(¢) denotes the G-space
of smooth sections. Then by use of a linear connection

Vi D(Ey) — D(Ey®TY),

Segal defined an elliptic operator

PtV L DEy®LTE — L1 DEn®ATY

izeven

where A! denotes the exterior power and V¥ is the adjoint of /,,. Then the analytic
index
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a-ind(F , +F %) e R(G)
and by linearity, this defines a homomorphism
ix: R(H) — R(G).
Now consider the symbol o(F ,,+ V) e Kg(T*). Since
Vu: DEy@ATE) — Dy ®AHITYE)

is given by the covariant exterior derivative, for v e T* we see that

0(dm)o: THEM@ATE), — n*(Ey®AH'TY),
is given by the product with v. Thus

0P+ Vi) =@ (X (—DIn*AiTE) =, @u(G/H) .

where we have identified T* with 1(G/H) by use of a G-invariant metric. Now by
the index theorem [3]

a—ind(F p+F %) =t—ind(c(F y+ V%))
and by Theorem 5.1, we obtain
Theorem 5.2. p,=i,: R(H)->R(G).

Remark. If G/H is not merely a G-manifold but has another structure, there
may exist a finer induction homomorphism. For example, if G/H is a complex
manifold (e.g. U(n)/T"), then by using the Thom class 1€ K4(t(G/H)) instead of
u(G/H), we obtain another homomorphism R(H)— R(G).

Now we recall that K;(pt.)=K%(pt.) is a n2(pt.)-module. We define the degree
homomorphism

d: ng(pt.) — Kg(pt.)=R(G)

by d(u)=u-1 where 1 e K4(pt.) denotes the unit.
Let M be a compact G-manifold, then the equivariant Euler characteristic is
defined by

1e(M)=3(—1)'H'(M: C)e R(G) .
We have defined w(M) e n(pt.) in §4. Then we have
Theorem 5.3. Let M be a closed G-manifold. Then
d(w(M)) = y6(M).

Proof. Let Q* be the complex valued de Rham complex of M. Then ys(M)
is given by the Euler characteristic of Q*, y(2*), and by the index theorem we see

Q%) =t —ind (6(Q%)).
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On the other hand, the symbol a(Q*) is the complex of the exterior algebra of T*M.
Hence

a(Q*)=u(M) e Ks(tM)
and by Theorem 5.1 and by the definition of w, we see
x(@2*)=t-indY(1)=p()=w(M) - 1 =d(w(M)).
q.e.d.

Remark. If G is a finite group, then one can identify n2(pt.) with the Burnside
ring of G (Segal [14]). Let I: A(G)—>R(G) be defined by I(S)=G-vector space
generated by S for a finite G set S. Then one can prove that I=d: n(pt.)—R(G).

Finally we relate the equivariant transfer with the non equivariant one. Let
E be a compact free G-space and let H be a closed subgroup of G. Let

p,: K(E/[H)— K(E[G)
be the transfer in K-theory for the fibre bundle
G/H — E/H 2, E|G.

For a G-vector space M, correspond the vector bundle E x ; M—E/G. Such a homo-
morphism is denoted by

o: R(G) — K(E|G).
We denote here the transfer R(H)— R(G) for £ =(G/H—point) by 7. Ten we have
Proposition 5.4. The following diagram is commutative

R(H) = K(E/H)

‘| |

R(G) — K(E[G)

Proof. We can identify R(H)=K(G/H), K(E/[H)=KG/H x E) and K(E/G)
=K4(E). Then the homomorphisms

a: R(H) — K(E/H)
«: R(G) —> K(E/G)

may be defined by the projections G/H x E-G/H and E—point, respectively. Con-
sider the pull-back diagram '

G/H xE — G[H

SO

E——pt.

where all maps are appropriate projections. Then by Proposition 4.4, we have a
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commutative diagram

K(G/H) —2» Ko(G/H x E)

l ln,

Kg(pt.) —— KG(E).

Note that if £ is a complex G-vector bundle over E, then there exists &L such that
E@E=ExCN where CV is a trivial G-space. For using the isomorphism K (E)
~K(E/G), we can choose a complementary bundle of ¢ in K(E/G). Noting this
observation, we consider the transfer for n: G/HxE—E. Let G/HcV be a G-
embedding into a complex G-vector space V. Let y=(Ex V—E) and choose n+
such that n®n+~Ex CY. Then a trace of n is induced from

ExXCVN=n@n*to(Exv(GIH))@ntcp*(n®nt)~E xG/H x CV.
Taking the G quotient spaces above, we obtain
EIGXCNo(Exv(GIH))®nt/Ge(Ex ;G/H)x CVN=E/HxCV,
and the induced map of one point compactification
(E/G x CN)¢ — (EJH x CM)¢

may be considered as a trace of the fibre bundle G/H—E/H—E/G.
Note that the isomorphism K (E)=~ K(E/G) holds when E is a locally compact
free G-space and the diagram '

K{(E) -2 Ko(ExCV)

2| B

K(E/G) =~ K(E|GxCM)

is commutative where @ denotes the Thom isomorphism. Then we have a commuta-
tive diagram

Ko(G|H x E) —=» K(E|H )

n,l lp,

KG(E) = —— K(E[G)

This completes the proof. q.e.d.

§6. The Adams conjecture

In this section we prove the Adams conjecture for complex vector bundles. Our
method is reducing the vector bundle problem to representation theory by using the
transfer. So if we know a similar result on RO(G) as mentioned in introduction,
then our method can apply immediately to real vector bundles.

We formulate the Adams conjecture as follows. - -
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Let F, denote the monoid of proper homotopy equivalences of R". Let BF,
be the classifying space of F,, and let BF=lim BF,. For a finite CW-complex X,
put

Sph(X)=[X,, BFxZ].

According to Stasheff [16], the homotopy set [X ,, BF] is isomorphic to the group
of stable fibre homotopy equivalence classes of spherical fibre spaces. Let

J: K(X) — Sph(X)
be the J-homomorphism defined by
J(§)=([£], dim &)

for a complex vector bundle ¢ where [£] denotes the class of the associated sphere
bundle.

Let p be a prime number. For an abelian group A4, A®Z[ ] is denoted by

€
p
A[—l—].
P
Then

Theorem 6.1. (Quillen [10], Sallivan [17], Friedlander [7], Becker-Gottlieb
[4]). Let X be a finite CW-complex and let y? be the Adams operation. Then

JWr—1)=0: K(X)[—H — . Sph(X) [ﬂ

Adams [1] has proved this for line bundles. So we shall prove the theorem
by saying that we can reduce the problem to line bundles. In the proof, the following
facts are crucial.

i) Segal [15] has shown that the monoid [[BF, is a I'-space and hence its
group completion BF x Z is an infinite loop space. Furthermore the natural map

LIBU,—> I1IBF,
is a morphism of I'-spaces. Thus we obtain an infinite loop map
J: BUXZ — BF XZ

which induces the J-homomorphism j*=J: K(X)—Sph(X). From this we see that
Sph(X) is a 0-th group of a generalized cohomology theory and J is a stable natural
transformation. Then one can think of the transfer in Sph(X), and we see that the
J-homomorphism commutes with the transfers by Proposition 4.3.

ii) The second fact is that the Adams operation * is a stable operation*on

K(X)[;l)—:l. This is well-known. Therefore P also commutes with transfers in

ke 5

iii) Finally if G is a compact Lie group, Segal [12] has shown that any com-
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plex representation of G is a linear combination of monomial representations, i.e.,
induced from one dimensional representations of appropriate subgroups.

Now we prove the theorem. Let H be a closed subgroup of G and let E be a
compact free G-space. Then by the fact i) and by the localized version of Proposi-
tion 5.4, we have a commutative diagram

RUH)| | == k(e[ ) |~ spbrn] L]

tl lpl lp!
RG) ) | k(EI6)] ] sph(E/6) L]
pl - v p Lp
where p, is the transfer for the bundle G/H—-E/H—E/G.

From the fact ii), we have y?p,=p P, and clearly ay?=yP2. Hence we see
that

(ar)Y? =yP(at).

Now let & be an n-dim. complex vector bundle over X. Let E—X be the
associated principal U(n)-bundle. Let ¢, € R(U(n)) be the identity representation,
then clearly £ =a(,,). We apply the fact iii) to ¢, € R(U(n)). Then

= Ziﬂ.(lﬂ)
H

for some one dimensional representations Ay of subgroups H of U(n). Here we
can identify ig. with the transfer 7 by Theorem 5.2. Then we have

JWr—1) (&) =J(YP—1)(s,)
= % Jr—Dat(Ay)

= ; Joat(y?—1)(4g)
= % PlJa(lﬁ"’ l)(AH)
= % pJ(YP —1)(ady)=0.

This completes the proof.
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