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Introduction

This is a continuation of the previous papers [7], [8] with the same title.
Let F be a totally real algebraic number field which is a prime cyclic extension
of the rational number field @ and satisfies the conditions 1~3 in §1, o its
maximal order and ¢ a generator of the Galois group Gal(F/Q). In [7], [8],
we defined a subspace S,.(SL,(0)*) of the space S.(GL,(0)*) of Hilbert cusp forms
of weight £ with respect to GL,(0)* by means of an action T, of ¢ and Hecke
operators on S(GL,(0)*), and gave the traces of Hecke operators on this subspace
by using a twisted trace formula on S(GL,(0)*). Moreover we showed the
identity between the twisted trace formula and the ordinary trace formula on
spaces of cusp forms of one variable, and using this identity we proved a gen-
eralization of Doi-Naganuma’s result [1], [6] on lifting of cusp forms. In this
paper, we shall generalize the above result to the case of congruence subgroups
I'(n) with some integral ideal n of F. For an integral ideal with “n=n, we can
define a subspace S.(I"(n)) of S.(I"y(n)) in the similar way, and can calculate the
traces of Hecke operators on this subspace by using a twisted trace formula
(Theorem 4.2). As in the above case, we can show the identity between the
twisted trace formula and the ordinary trace formula for Hecke operators for
spaces of cusp forms of one variable. By virtue of this identity, we can gen-
eralize the above result on lifting of cusp forms in the case of congruence sub-
groups.

Our result has been generalized in adelic and representation-theoretic setting
by Shintani [12] and Langlands [4]. But we think it is not meaningless to give
an explicit result in the classical case.

The author would like to express his hearty thanks to Professor H. Hijikata
for his valuable discussions and suggestions.

Notation

The symbols Z, @, R and C denotes respectively the ring of rational integers,
the rational number field, the real number field and the complex number field.
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The symbol $ denotes the complex upper half plane $={z=C|Im(z)>0}. For an
associative ring S with an identity element, we denote by S* the group of all
invertible elements in S, and by M,(S) the ring of » by » matrices with coefficients
in S, and put GLAS)=M,(S)". For subsets S;; (1=1, j=7) of S, (Si;) (CMLS))
denotes the set {s=(s;;)€ M.(S)|s;;€S:;}.

§1. Preliminaries

In this section, we shall recall some definitions and results in [7], [8] and
consider a generalization of them. Let F be a totally real algebraic number field
which is a cyclic extension of @ with a prime degree [/, and o its maximal
order. We assume the following conditions on F as in [7], [8]:

1) The class number of F is one.

2) o has a unit of any signature distribution.

3) The extension F/Q is tamely ramified.
Let g denote the conductor of the extension F/Q, then ¢ is a prime with ¢=1
mod.[. We choose a generator ¢ of the Galois group Gal(F/Q) and fix it. We
also fix an embedding of F into R and consider F a subfield of R. Then all the
distinct embeddings of F into R are given by ¢% 0<i<[/—1. Using these em-
beddings, we consider GL,(F) a subgroup of the /-fold product of GL,(R) by

g—> (g™, g®, -, g?),

a® o ab .
Yo gw) for g=(0 )EGL(F). Let GL()

(resp. GL.(F)*) be the subgroup of GL,(0) (resp. GL,(F)) consisting of all elements
with totally positive determinants. For an integral ideal n of F, we denote by

Rp(n) the ov-order (101 2) of M,(F) and by I',(n) the subgroup

oi-1

where x’=x°""" for x€ F and g("’:(

rm=(¢ s)e GLA0)*lc=0mod.n}

of GLy(0)*. Since GLJ(R)*={g€GLy(R)|det g>0} acts on § by gz:%

gEGL(R) and z€9, GL,(0)* and its subgroup I'y(n) act on the [-fold product
H' of D through the above embedding of GL,(F) into GL,(R)'.

For an even positive integer £, we denote by S.(I"y(n)) the space of all Hilbert
cusp forms of weight £ with respect to I'y(n), that is, the space of all holomorphic
functions f(z) on ' satisfying

for

) SGD=IIcPztdOyre)  forall r=(! Nelw

and z=(z,, 2., -, Z)EDH'
ii) f(z) vanishes at each cusp of I'y(n).

Let us consider the action of Hecke ring on this space. For a place v of F, we
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denote by F, the completion of F at v. We shall use p to denote finite places.
Let o, be the ring of all p-adic integers in F, and let F, and F be the adele ring
and the idele group of F respectively. For a finite place p which does not divide
n, we denote by U, the subgroup GL;(0,) of GL.(F,), and for a prime ideal p which
divides n, we denote by U, the group of all invertible elements of the ring
Re(m)@.0,. We denote the subgroup ElquIJGLz(FD) by Uz, where p runs through

all finite places and v runs through all infinite places. We denote by 4p the
subgoup of GL,(F,) consisting of all elements satisfying the condition that a,el,
for all p dividing n, where «, denotes the p-component of a. Since Uy and allpa™*
are commensurable with each other for a4y, we can define the Hecke ring
R, 4p) with respect to 1z and 4y as in Shimura [10]. Namely, RUz, 45) is a
free Z-module generated by all double cosets Upally (e =4y) with a structure of
ring as well. We can make Rz 47) act on S.(I,(n)) in the following way.
For a double coset Uzally with a4y, let Upall,\GL(F)*=UI"(n)a, be a disjoint

union. We define the action  of Ry, 4y) by
I(Upallp)f=N(det a)”** 3 fl[a.]: for feS ().

Here N(det«) is the norm of the ideal of F determined by detasFj, and for

“:(? S)EGLKF)*, feS.(Iwn)) we put

fICad=fa2) [T (cOz+d ) “(det a®) .

Then this action T gives a representation of Rz, 4) in the space S.(I"y(n)), and
it is known that there exists a basis consisting of common eigen-functions for
all Z(e), e RU, 4r). Now let us define an action T, of ¢ on $' by permuta-
tion of variables, namely,

To(z1, 2o -, 20)=(2, -+, 21, 21) .
If n satisfies the condition “n=n, we can define an action of ¢ on S,(I"(n)) by

(Taf)(z):f(Taz) .

Here we used the same letter T, to denote the actions of ¢ on $' and on
S(I'ym). Let SYIy(n)) be the space of the new forms in S.(I",(n)) (see T. Miyake
[5]). then SYI ¢(n)) is stable under T, and we define S/ y(n)) by

SUT ()= {fe SUT (W)X Tof=T.Z(e)f  for all ecR(Ug, 4}

Then SYI"y(n)) is stable under the action of R(Up, 4r) and the definition of
S¥I((n)) is independent of the choice of ¢. Let q be a prime ideal of F such
that q'=(g), and 6 be a totally positive element of o such that (d)=q, and put
n=(Ng*) with NeZ, (N, ¢)=1, and a non-negative integer v. For M|N, 1, 0=2=v
and e S(I",(Md%)), f(dd*z2) is contained in S y(n)) for d|N/M, 0= p=v—2, where
dérz=((d6")z,, 2(d6")z,, -+, °'"(dd")z,). We define a subspace S,(I"(n)) of S,(I"y(n))
by
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Sl)= 3 SUT(MH))er.
dIN/M

0spsr-2

If we denote the action of Ry, 45) on S |(n)) by T then by virtue of T.
Miyake’s result ([5]), we can prove the following in the similar way as Proposi-
tion 1.3 of [8].

Proposition 1.1. The notation being as above, then we have

tr Tg(e)=tr T, (e)=tr T(e)T,
for all ee RNy, 4dg).

§2. Selberg’s trace formula

In this section, we shall reduce the calculation of tr Ts(e) to the determina-
tion of some twisted conjugacy classes by means of Selberg’s trace formula.
For z, z/€9}, put

Kz, 2)= ﬁ1<72i/_§1‘> '

b

and for r:(? J

)e GLF)* and ze 9, put

]'(7/, z): liIl(C(i’Zi‘f‘d“’)(det r(i))-l/z .

For I'y(n) we put

£—1

K(z, z’)=( Kz, 2)i(r, 2)°,

)l
4/ rerem mod. 2oy

where Z(I",(n)) denotes the centre of I'y(n). If £=4, this gives the kernel function
of the space S.(I",(n)) ([2], [9]), and by Proposition 1.1, for a double coset Wyallp
in Ry, 45), we obtain

—1 \t . -
o T Uraln)=(-" )| KTz, 2, Ty 1 yidz,

F rENpallpNGLy(Fy+ mod. Z(I"g(n))

where & denotes a fundamental doman of §' with respect to I",(1) and dz denotes
l —_—

the invariant measure I y7%dx;dy; with z;=x;++/—1y;. In [8], we treated only
i=1

the case where n=p hence I'((n)=GL,(0)* has a unique cusp, but we can proceed
in the similar way as in [8]. Before giving the result, we must recall some
definitions and notations. In general, let G be a group on which a cyclic group
generated by o, g'=1, acts, and H be its subgroup such as “H=H. Then we
define o-twisted conjugacy =~ in G with respect to H by

g-;v;g’:)gzh"g"'h for heH.

We define a “norm” of an element g€G by

1

ey Ng=g°g*’g+°'"'g.
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If we denote by ~ the usual conjugacy with respect to H, then we see easily
that Ng:Ng’ if gig’. Hence this norm map N defines a well defined map from
twisted conjugacy classes to usual conjugacy classes. Here we take GL,(F)* and
I'(n) as G and H respéctively. We call geGL,(F)* is of type v, e, p, if as an
element of GL,(R)*, Ng is a scalar, an elliptic element, a parabolic element. If
ZEGL(F)* fixes two cusps of I'y(n) and Ng is a hyperbolic element, we call g
is of type h. If g is of type h, the characteristic polynomial of Ng has distinct
two roots in Q. For geGL,(F), put '

2) Z,(g)={xe MF)|g°x=xg} .
then Z,(g) is a Q-algebra and we put
I'(@)=Zen ().

We denote by C,, C., C,, C, a complete system of representatives of elements of
type v, e, h, p in Upallp,\GL,(F)* with respect torz respectively.
o(n)

Theorem 2.1. The notation being as above, assume xk=4. Then we have
1

tr IS(uFauF): ZIHI(GaI(F/Q) ox)‘<tv+te+th+tp) ’
where
—1

=" B vl(g)\D)det Ngy™**
f=—1t = 1 CNg)y ' —p(Ng) !
2 4&. [I'(g): {£1}]  &(WNg)—n(Ng)
f— (Min. (|&(Ng)|, [ p(Ng)|))"*
ST IE(Ng)—n(Ng)|
t,,=lim >3 Zl(g)"(,?,(g)lz(g))"zm (Rl(g) Zl—x(g))s

§-0 gECH T

X( —_ \/;({gl)m(gN)”“ (det Arg)/.-/z-l A

Here v(I'(g)\D) denotes the volume of a fundamental domain of I'(g) in 9 with
respect to the invariant measure dz=y *dxdy, z=x+~—1y, and {(Ng), 7(Ng)
denote the distinct two roots of the characteristic polynomial of Ng. For g of
type p, choose he GLF)* which transforms the cusp of I'y(n) fixed by Ng to the
infinite point (v/—1loo, /=100 ---, 4/ =1c0). Then hg"h"z(g 3) with a, b, dEF,

o ={(; 1)

Ag)=""Ya/d)  pg)="""'(b/d)
A(@)=2(8)+ 2 (&)p(g)+ =+ +2:(8) -+ A (@pei(g) -

Since we can prove this in the same way as Theorem 1’ of [8], we omit the

nEZ} with m(g)eF, and put
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details. On elements of type p, we note the following. If Ng fixes a cusp x,
then ?Ng fixes the cusp “x and we have gx=x since g°(Ng)g '=Ng. Hence

hg°h™! fixes the infinite point and is of the form (g db)

§ 3. Twisted conjugacy classes

In this section, we shall determine some twisted conjugacy classes. Let & be
a local field of characteristic 0, and r be its maximal order. In this section, we
denote by F the [-fold product of 2, or a cyclic extension of %k of degree [, and
by o the [-fold product of r when F=kPrP --- Pk (I-times), and the maximal
order of F otherwise. In the case where the extension F/k is ramified, we as-
sume it is tamely ramified. We choose a generator ¢ of Gal(F/k) if F is a field
and fix it. If F=kP --- Pk, let g, ¢'=1, act on F by permutation, namly,

a(xly Xay ***y xl):(xzy oty X, xl) .

We denote by p a prime element of 2 and by n a prime element of F when F
is a field. If F is the unramified extension of & we take #=p. For a non-negative
integer v, we denote by Rp(v) (resp. R,(v)) an order of M,(F) (resp. M,(k)) given
by
(p‘:o O) it F=k® - Ok
Rp(v)=

o o0 .
( . ) otherwise
7’0 0

(resp. pil ,,(v)z( p,;r :)) .

Since “R(v)=Rx(v), we can consider twisted conjugacy by taking G=M,y(F)*,
H=%R,(v)*, and for g€ M,(F)* we can define Ng and Z,(g) by (1) and (2). We
note the characteristic polynomial of Ng is contained in k[ X], since g?(Ng)g™'=
Ng.

Let f(X)=X2—sX-+n be a quadratic polynomial in r[X]. In the following,
we assume 7 is contained in Nz ;(0*), where N i(x)=x°x ---''x for x&F. For
g€ My(F), let f/(X) denote the characteristic polynomial of g. I1f Ng is not a
scalar and fy,(X)=/(X), then we have a canonical isomorphism ¢, from k[X]/
(f(X)) to Z,(g) such that & g()? Y=Ng. Here X is the class of X in E[X]/(f(X)).
For an r-order A of F[X1/(f(X)) containing X, we define a number c¢,(f, 4, Rx(1))
as the cardinality of the following twisted conjugacy classes

(EE€R) | fra=F, §lN)=Z,B)NRFV)}/ .
Rp(v)*

By means of the usual conjugacy, we define the number c(f, 4, R,(v)) as the

cardinality of

(g€ R, fe=1, Po(D)=k[gINRO)}/ ~= .
Rpv)
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Here k[g] is the k-algebra generated by g and ¢, is the canonical isomorphism
from k[X1/(f(X)) to k[g] given by ¢,(X)=g. Then this number c(f, 4, Rx(v))
has been well studied by Hijikata ([3], especially Theorem 2.3) and on ¢,(f, 4,
R,(v)) we can prove the following.

Proposition 3.1. The notation and the assumption being as above, suppose
llv and v+#0 if F is a ramified extension of k. Then we have
iy If F is the l-fold product of k, or the unramified extension of k of
degree |,
co(fs A, Re)=c(f, 4, Rp(v)).

ii) If F is a tamely ramified cyclic extension of k of degree |,
colf, 4, )= 3 2B 1 4, 3,001
+(l_l)c(f’ Av mk(v/l+1))} s

where X;, 2=i=1—1, are all characters of (r/pr)* of order | and X, is the identity
character, and «, B are the roots of f(X)=0mod.p in r. If there does not exist
any roots, we put (X(a)+%:(B))/2=0.

Proof. First we treat the case i).

Lemma 3.2. The notation being as above, let F be kD --- Pk (I-times) or the
unramified extension of k of degree I. Let g be an element of Rp(v) with f,=f
and kLgl=k[x]/(f(x)). If there exists Z€Rp(V)* such that Ng=g and J(A)=
Z,(@8)NRe(), then g is conjugate to an element g’ of N,()* by Rpv)*.

Proof. For F=k@ --- Pk, this assertion is obvious, because for g=(gi, -+, g1),
&iER(), Ng=(g.182 -+ 81, 8285+ 8181, *, £181+*, &1-1) and g=hg’h™* with g’'=
£:18: - &1€R(V) and h=(1, g1, 8182, **, 8182 Z1-)ERF(V)*. Now assume F is
the unramified extension, then for an o-order A4 of F[X]/(f(X)) we have by
Lemma 3.12 in [8],

ANkLX]/(f(X)=4 & 4=0[A]

and if [4 :r[)? JJ°=[r: prle with a non-negative integer p, then [4 co[X]]=[o:
rol’. Put

@3) 25(v, N)={€<€0|f(¢)=0 mod. z***}
{n€o0l|f(n)=0 mod. g¥*2+1}
4) 24y, D= if s2—4n=0mod. z?*! and v>0
1) if s*—4nz0 mod. 7**! or v=0.
For £€R24(v, A) and pe Q,(v, 1), put
. o /8 "
5) 289 _( Pf(§) s—¢&
(ST T ()
®) D=7 "7
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Then by Theorem 2.3 of [3], gof()?) and ga'v()?) give a complete system of re-
presentatives of the classes of geRp(v) satisfying ¢, : FLX1/(f(X))=F[g] and
FLgINRp(v)=¢,(A) with respect to R(v)*-conjugacy. Hence we may assume
gzgog(/\N’) or go,,()?) for some £€ Qx(v, A) or nE 25y, /7) by noting A~ gh N(h™'g°h)
for he Rp(v)*. Since g°(Ng)g '=Ng, we have go\(X) W )Xgoaq(X) and go,;(X)
mgp,',.,‘(}() By Lemma 2.5 of [3], we have £=9¢ mod z*** and =77 mod.
n*?.  Hence there exist &, and %, in r which satisfy £=¢&, mod. n*** and 7= 7o
mod. 7z*** respectively. Since go-()f) e )Xq:w(X) gon(X)/'(\Sjgono(X)and ¢50(X)
= (X) go,,o(X) goﬂo(X), we proved our lemma.

Now we return to the proof of Prop. 3.1. By means of the norm map N,
we have a well-defined map
N: {Z2€RW) | fye=F, Zo(B)NRV)=o(A)}/ %
mp v

—> {geR) 1S, =/, kLgINRe(v)= ¢g(/1)}/f'T-)/x

By the above lemma, the classes on the right hand side which are contained in
the image of the norm map have representatives in %,(v)*. For g,, g,€R,.()*
with kg, ]=k[X]/(f(X)), assume h 'gh=g, with heRg(v)*. Then we have
“hh™'g,h*h™'=g,, Hence °hh '€ F[g,JNR(r)*. We note for x€ F[g,],

NxZNF,kx
where Np,kxzﬁ(“"la+“i"bg,) for x=a+bg, with a, beF. Since Ng,,(h°h™*)=

N(heh™Y)=1, and H'Ke)>, (F[g,JNnR#(1))*)=1 by Lemma 3.14 of [8], there exists
us(FLg,JNRz))* such that h?h~'=u°y~', Therefore u'heR,(v)* and (uh) 'g,(uh)

=g,, that is, g,m (y)xgz. From this we see N induces the following map
k
N BN 1=, ZUDORAI=FAN [
:’RF v)*

—> {g€R, () | fo=1, k[gdNR(W)=¢ (M} ~— .
Ry (V)"
We show this map is bijective. The surjectivity of this map easily follows from
Lemma 3.14 of [8]. For ge{geR,.W)|f,=F, k[gINR:)=¢,(A)} and g, &,
Re(v)*, suppose Ng,=Ng,=g. Then by the relation g;°(Ng,)g;'=Ng;, i=1,2, we
see G, Z.€(FLglNRsv))* and Ng,(g,8:)=1. By Lemma 3.14 of [8], there
exists he (FLglNRW))* such that §,87'=h"'?h, hence 3,=h"'g,°h, and we proved
the injectivity of the above map.
Now we proceed to the case ii). First we note N induces the following map
@ N: BERW) | fue=1, ZoB)NR)=F oM} | =
Rpe (v)*
— U{ge R, ()" | fs=F, FLglNRr)=¢ ()} / ~—
i Rr (”)A .

Here A’s are all o-orders of F[X]/(f(X)) which satisfy AE[X]1/(f(X)=A.
We note R[X]/(f(X)) is one of the followings ; a) &Pk, b) the unramified quadratic
extension of k, ¢) a ramified quadratic extension of %, d) k+k4 with 42=0 and
such o-orders A are given by the following lemma.



Automorphic forms and algebraic extensions of number fields 113

Lemma 3.3. The notation being as above, assume F is a tamely ramified
cyclic extension of k of degree l. For an r-order A of k[X]/(f(X)) and an o-
order A of F[X]/(f(X)) containing X, let o and p be a non-negative integer
such that [A:o[)?]]z[r:pr}” and [/T:o[)?]]:[o:n-o]ﬁ respectively. Then we
have

i) Assume A is not the maximal order of R[X1/(f(X)) if k[ X]/(AX)) is of
type a, b, or c, then

ANKIXV(FXN=4 & lp<p<lp+1-1.
iy If E[X]/(f(X)) is of type a, b, or ¢ and A is the maximal order,

lo=p if RLX]/(f(X)) is of type a, or b
lo=p<lp+[1/2] if R[IX]/(f(X)) of type c,

where [1/2] denotes the largest integer which does not exceed /2.

ANELXT/(f(X)=4 & {

This is just the restatement of Lemma 3.21 of [8]. For 4, we define Q(v, 4)
(resp. Q4(v, A)) by (3) (resp. (4)) taking p with [4:0[X])=[0:70]5 as o in
(3) (resp. (4)), and define ¢5()?). E€Qpv, A) (resp. <p47()?), n€ Qu(v, 4)) by (5)
(resp. (6)). Then @:(X), £€ 2p(v, A) mod. z*7, and ¢,(X), y€ Q4(v, 4) mod. 77
give a complete system of the representatives of {geR(v)*|f,=f, FLglNRe()
:S[’g(/f)}/m. If it is contained in the image of the map (7), by the same
argument as in the case i), we have ?¢=¢ mod.z**", or ?y=y mod. z**". Since
F/k is tamely ramified, there exist &,r, p,=r such as §=&, mod. z**?, p=1,
mod. 7**?. Let g be one of ‘Dfo(XN) and go%,,()?), then there exists h,€ Rp(v)* such
that “g=h;'gh,. We note that we can take as h, a diagonal matrix contained
in Rp(v)* with Nhy=1. For x& M,(F), put “ox=h,°xh;' and Nyx=x%0x --- %' 'x.
Then we see Nx=N,(xh;'), and the restriction of N, to F[g] coincides with the
norm map Np,, from F[g] to k[g]. If there exists € Rp(v)* such that Ng=g,
then we see ghy'e F[g] and N,(ghy)=g. Assume A is not the maimal order, then
by Proposition 3.25~-3.27 in [8], it is easy to see that g is contained in the image
of the map (7) if and only if igl Lila)= iEﬂXf(ﬁ):l for the roots a, 8 of f(X)=0

mod. p. Suppose there exist g,, Z,€Rp(v)* such that Ng,=Ng,=g, then we have
giht, g.hi 'E(FLgINRp(v)“ and Np,i(g:hi'(g:hi ) D=1 1If g,=r " "'g.y withy€Rs(v)",
then ye(FLglNR(v)" and ghs'=7""g:hs'°%. Hence we see the inverse image
of g is in one to one correspondence with H'({a), (FLg]NR#())"), and by Lemma
3.22 of [8], this group is isomorphic to the cyclic group of order [. Now let us
count the number of gogo()?) and 50;0()?). As we have seen, this is equal to

SRy, N>/ a2+ B Quly, )<o>/ 747,
a 4

where Qp(v, 4)<*>={£<r|f(§)=0 mod.z***%} (resp. Qp(v, )<>={ner|f(n)=0mod.
722 ) and Qp(y, A)<°>/7*8 (resp. Q24(v, 4)<°>/7**%) denotes a complete system
of representatives of Qp(v, 4)<°>mod. 7**7 (resp 24(v, 1)<°> mod. z**?). For a
non-negative integer g and an r-order A of R[XJ/(f(X)) with [A4:r[X7]=[r:
prl, we define 2,(u, A), 2,(¢, A) in the same way as (3), (4), namely,
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Q.4(p, H)={€r|f(€)=0mod. pr+*}

{per|f()=0mod. p#+2+}}, if v>0
Qilp, H= ~and s*—4n=0mod. p**!
1) if y=0 or s*—4nz=0mod. p>+*.

Define p and g as in Lemma 3.3, thenif [#2, we obtain by direct calculation,

Q.(/1, D/p't+e, p=lp
Qr(y, <e>/p42=1 Q,(w/I+1, 4)/p*' %0, lp+1=p=<lp+[1/2]
Qi/1H+1, )/ p %0, 1o+[1/2]+1=p<lp+1—1

Qw/l, D/prte, p=lp _
Qe (v, N<o>/aP=) Qy/I+1, D/p"'*1*0, lp+1=p=lp+[1/2]
Qu/I+1, D/pterre, lp+[1/2]+H1=p=lp+I-1

From this we have

IQ2p(y, <>/ a4+ 2| 25, A)<0>/7**7|
=12,0/1, )/p"*e |+ 24w/l A)/p1H
+(l_1)(|Qk(V/l+l, A)/pV/l+l+p|+l-Qk(V/l+1, A)/pv/l+1+pl)'

We can check this equality holds also for [=2. Since c(f, 4, R, (/D)=|2,0/
1, A)/p*1re |+ 12,0/, AD/pHe|, and c(f, A, R, (/1+1)=|Q2,(/I+1, A)/p*'t*e|+
|192,(/l14+1, A)/p*'*+1+e|, we proved the assertion ii) in this case. When A is the
maximal order, we must divide the cases according to the type of E[X]/(f(X)).
If R[X]/(f(X))=kPk, we obtain in the similar way as above

M_“)*z"_k'(ﬂlc(f, A, R0/D).

L
Ca(f; Ay sRF‘(’))): iz=:l
But since we have c(f, 4, %,0/D)=c(f, 4, R(v/I+1)) in this case, we obtain our
result. We can treat the other cases in the similar way, and we omit the details.
Thus our proposition has been proved.

We can prove the following proposition in the similar way as above.

Proposition 3.4. The notation being as above, assume F is a tamely ramified
cyclic extension of k of degree | and v=1mod.l. Then we have

colf, A, wo=1 5 HOIXD (5 4, -1+,

Now we treat the elements g€ Rp(v)* such that NgeF*. Let g be such an
element and fy,(X)=(X—a)? be the characteristic polynomial of NZ, then we see
a € Np;(0™) since geRp(v) with v=1. For aer”, it is easy to see that there
exists geRp(v)* such that Ng=a if and only if a€ Ng,,(07). For g with Ng=a,
Z,(g) is isomorphic to M,(k), and for an r-order 4 of we define c,(a, 4, Rp(v))
in the following way,
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cola, A, Rp(W)=1{2€R) INEEF", fy;=(X—a)?,

G A) ~ Z,(B)NRW)} /=
mi‘(”)

where gZTg is an isomorphism from M,(k) to Z,(§) and ~ means ¢ (A)=r"(Z, ()N
Re())r for some yeZ,(g)*. Then we can prove

Proposition 3.5. The notation being as above, assume |y and v=1 if F is a
tamely ramified cyclic extension of k of degree I. Then for a€ Ng;(0*) and an
r-order A of My(k), we have

i) If F is kDED --- Dk (I-times) or the unramified extension of k of degree l

co(a, 4, m(v»:{ 1 if A~R(v)

0 otherwise.

ily If F is a tamely ramified cyclic extension of k of degree |

glxi(a) if A~ R0/

cola, 4, mi‘(”)): l
U‘”E"t‘” if A~ R, (/I+1)

0 otherwise .

Proof. Assume NZeF* and fy;=f. Let @ be an element of o* such that
Np/k&:a. Then we have {Eeﬂ‘ip(v)lNgEFx,fN5=f}={&g]§€$RF(y)’<, Ng‘:l}.
Hence the equivalence classes {Z€Rs(v) | NEEF*, fve=f}/~——— is in one to

Re(v)*
one correspondence with H'Kg), R1)*). On H'({c), SRF(y)*),Fwe have

Lemma 3.6. The notation being as above, we have
i) If Fis k@ - Bk or the unramified extension of k of degree |

|H'Ko), Re(v))|=1.
il If F is a tamely ramified cyclic extension of k of degree |
[ H'(ad, Rp(v)) =12,
and a complete system of representatives of H'({a>, Rp(v)*) is given by the cocycles
{ai, r€<ad}, 154, j=I, defined by a:;-f.:(”_:”iz_?az,).
This is an easy consequence of the fact that H'({(s),0)=1 and H'(Ke),0*)=1 if F
is kP -+ @k or the unramified extension of k, and HY({(s), 0)=1 and H'e>, 0")=

the cyclic group of order [ if F is a tamely ramified extension of %k We
omit the details here. From this lemma, the assertion i) follows easily. Put

gi,j:a(ﬂ Oﬂ n‘g’nf)’ and let us determine Z,(g: )N\Rs(v). If i=j, then we see
Z(gi )NAF(W)=R,(/]). Since we have
a b . )
o . g -it+fo pi-j—
x—(c NEZ8e) & a, dk, “br e nti=)

0C7t_j+io7tj-i=(,‘ ,
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a 7t

we see Za(gi»j):{(n_i_jc d )Ia b, ¢, de k} and Z,(g:. )NRr(v) ~ (R (v/1+1)),
and our assertion has been proved.

In the similar way, we can prove the following.

Proposition 3. 7. The notation being as above, assume F is a tamely ramified
cyclic extension of k of degree | and v=1mod.l. Then for a=r* and an r-order
A of My(k), we have

[ 2 %) if A~RW(—1)/1+]1)
eole, A, Rpo)={

0 otherwise .

§4. Twisted trace formula and main result

In this section we follow the notation of §1 and 2. In particular, F denotes
a totally real algebraic number field which satisfies the conditions 1~3 in §1.
For a prime p and the infinite prime oo of Q, put F,=F®4Q,, 1,=0®Z, and
F.=FQ@qR, then F, and F. are the rings which we treated in §3. For an in-
tegral ideal a with (a, 1)=1, we denote by T(a) the sum of the double cosets
Urally such that the right %Rp(n)-ideal Qauﬁ)‘ip(u),, is an integral ideal with norm q,

then T(a) is an element of Rz, 45). We denote by £(a) the union of the Ug-
double cosets which appear in 7(a), and we put U, ,= HlI Then E(a)= Hu(a),,

XGLy(F.) with some Uy ,-double cosets =(a),, and we put H(a)+—u(a)mGL2(F)+.
For geGL,(F) and a Z-order 4 of Z,(g), put

Cilg, D={x""g°x|x€GL,F), Z,(g)NxRr)x'=h"'Ah
heZ,(g)"} .

For each prime p, we denote Z,(g),=Z,(&)®eQyp, Ap=AR2Z,, Rr(0),=Rr()Q7Z,,
and for g&GL,(F,), put

C(I» (g; 11[))_‘ {X lg J\"XEGLz(‘ p)v Za(g)pmxglp(") X l—ll 111 n,
p P P
”EZu(g);’} .

Then we can reduce the twisted conjugacy with respect to I'y(n) to the local one,
namely, we can prove.

Proposition 4.1. The notation being as above, for g& GLy(F) assume the tvpe
number of A is one if Z,(g) is a quaternion algebra over Q. Then it holds

[Colg, MNE(@)/T ()| =2/LA"; AT |Co, (g, 4)NE W),
=t
Re(n),
where A' denotes the subgroup of A” consisting of all elements with norm 1 and
WZ4(g), A) denotes the class number of A.

We can prove this in the same wasy as in §4 of [8], and we omit the



Automorphic forms and algebraic extensions of number fields 117

details here. In the following, we assume a is divided by at most one prime
factor of p if p decomposes into [ distinct prime ideals in F. Then for such an

integral ideal a, the number |C,. (g, 4,)N\5(a),/7—=——"| has been determined in
Re(n),
§ 3 of [8] for n=(1) and in §3 of this paper for an(N‘S with NeZ or n=(N)q.

Before giving a formula for tr T(7T(a))=tr T(T(a))T,, we introduce some nota-
tion. For a=@Q*, assume there exists g GL,(F) such that Ng=a. Then Z,(g)
is a quaternion algebra over @ and the isomorphism class of Z,(g) does not
depend on the choice of g, and we denote it by D(a). For each prime p and «a
Z ,-order A, of D(a),=D(a)®QeQ,, put

Co,p(a; Ap: E(Q)p)zlca.p(g’ Sb(Ap))ﬂE(a)p/ -~ [
F.p
where ¢ is an isomorphism from D(a), to Z,(g)®eQ,. If there does not exist
such g, we put ¢, ,(a, 4,, 5(),)=0. Then this number ¢, ,(a, 4,, £(a),) does
not depend on the choice of g. For f(X)=X?*—sX+neZ[X], let K(f) denote the
Q-algebra Q[ X]/(f(X)), and for a prime p assume there exists g€ GL(F,) such
that fuy.(X)=f(X) and Nge F*, where fy, denote the characteristic polynomial
of Ng. For a Z,-order of K(f),=K(f)ReQp we put
Ca,p(fr Ap’ E(a)p): Ica,p(g; ¢(Ap))ﬂ5(a)p/ = [,
F.p
where ¢ is the isomorphism from K(f), to Z,(g), defined by gb()?):Ng. Then
this number does not depened on the choice of g. If there does not exists
gEGLL(F,) with fy,=f and Nge&F~, we put ¢, ,(f, 4,, Z(a),)=0 Now we can
give a formula for tr T(T(a)).

Theorem 4.2. Lef a be an integral ideal of F with (a, n)=1, and assume a is
divided by at most one prime factor of (p) if p decomposes into | distinct prime
ideals in F. If k=4, we have

tr ‘IS(T(Q))Zt,,+te+lh+tp ,
where t,, t,, t,, and t, are given as follows.

—1

i) t,=6(Na)- ’an

> 1} ca.p(VNa, 4,, E(a),)[ A5 : 4370 (D(~/ Na))(Nay-/>-*

where Na=|o/a| and 6(Na)=1 or 0 according as Na is a square or not. A runs

through all classes of Z-orders of D(v/Na) with respect to the equivalence relation

A~A" o A=h"A'h he D(s/Na) and A, denotes a maximal order of D(+/Na)p

which contains A,, and v(D(+~/Na)) is the volume of a fundamental domain in

with respect to the group of all units of a maximal order of D(x/Nu) with norm 1.
h(K(f), 4)

.. 1 =
i) te_——Z—l; we(f) ;_I:ml;’[ Ca.p(f; Apv ‘-'(Q)p) ,

where [ runs through all polynomials f(X)=X*—sX+4n in Z[X] such that n=Na

Ei=1___ sK-1
and $$—4n<0. Let &, 5 be the two roots of f=0, then we(f)zge_—v

through all Z-order of K(f) which contains X.

. A runs
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hKLf), 4)

[4:{£1}] 5
where f(X)=X?*—sX+neZ[X], n=Na, and f runs through all polynomials which
have distinct two roots in Q. Let {, p be the two roots of f=0, then w,(f)=

H -1 £-1 , ~
Mm.(llccl_W’l"?| ) and A runs through all Z-orders of K(f) which contain X.

i) f=— 1 D) Co.slf, Ay 5@,

V) ty= 00w’ Tlea. o f, ACVNG/a')y, E@Na™e",

where 6(a) is 1 or 0 according as a is a square or not, and a’ is a positive integer
determined by anZ=(a"?). f=(X—+/Na)*=(X—a)* and A(a/a’) denotes a Z-order
of K(f) such that [A(a/a’): Z[X]]=a/a'.

Proof. The calculation proceeds in the same way as in the proof of Theorem
2 in [8], and we omit the details. On ¢, we note the following. Let g,=

(?’ 3’), 1<i<211 ¢, ,(f, A(a/a’), E(a),), be a complete system of representatives
of C,(g, Ala/a))NE()*/ == for gEGLE(F) with K(f)=Q[g]. For each g,

n 5 _
choose x;=GL,(F)* such tohat gl:x,-“(g 2)"xi with @, beF. Then it is easy to

a —b . .
see gi=ux7 1(0 d)"xi also gives a complete system of representatives of

Co(g, Ala/a")NE()*/ 7~ and we may assume A(g;)=2(g}),|m(g:)|=|m(g)|, and
(n),
Alg)=—A(g)). For a %)ositive integer t, let, A((a/a’)t) be a Z-order of K(f)

such that [A((a/a’)t): Z[)?]]:(a/a’)t, then we have
[Colg, Ala/a"NNE(a)./ =|=1Cs(g, A(a/a"))N 5(0)+/ |

o(m) I'y(n)
since we have ¢, ,(f, Ala/a’),, E()p)=co (f, A(a/a")D),, E(a),). We see gi=
x?‘(g b(;)"xi, 15122 1o, ,(f, Ala/a’),, 5(),), gives a complete system of repre-

sentatives of C,(g, A{(a/a")t)NE(a)+/ 7=, and we may assume A(g)=2ai(g,),

|m(gh)|=1Im(g:)|, and A(ghH=tA(g.). Q%(Igote Im(g:)/ A(g:)|=a’ and ¢, ,(f, A(m),
E(0),)=0if v,(m)<vpy(a/a’) by the result in §3 of [8], where v, is the valuation
of Z given by v,(p)=1 and A(m) is the Z-order of K(f) such that [A(m): Z[X 7]
=m. Hence we obtain

L1 _ .
ip=lslgl—2—[ a’ ;2 sgn A(g:)~/ —1{exp (x/2s sgn A(g)v—1)

—exp (x/2s sgn (—A(g))v/ =1}
1

Pe=st tl+l8

1 -
=—5;0" co.(f, Ala/a’)y, Z)y).
By the definition of 4, we have R(Ur, 45)= ,@ Rp.,, where Ry ,=R(GL.0,),
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GL,(F,)). We put RO-:»@ Rp,,, and R°=u§ Rq.p, where Rg ,=R(GL,(Z,),

GL,Q,). For a positive integer N and a character Xmod. N, we denote by
SA(N), X) the space of cusp forms on 9 satisfying

£rD=Na)y ezt dyg@)  for r=(0 Y)erym.

The we can define an action I of Ry on S.(I'«(N), X) as in [11] if N divides
some power of Nn. Let 2, be a homomorphism from Rp,, to R, , for p|p defined
in §2 of [7] and §5.1 of [8]. Then these homomorphisms 4, define a homomo-
rphism A from R% to R}. Thus we obtain a representation of R} in the space
S{o(N), ). Comparing these representation with the representation %5 we
obtain

Theorem 4.3. The notation being as above, assume n=(N)'* with NEZ,

(N, ¢)=1, and a non-negative integer pu. If £=4, and p>0, we have

trTs(o=—{ £ tr TU@) SN, %)

+(I=1) 2 tr I ST o(Ng"™), 1)}

for eeR%. If pu=0, we have '
tr Ts(e)=tr T(A(e))| S, «(N))
3 2 tr A S o(Na), 2

for e R%. Here X;, 2<i=l, are all characters of order Imod.q, and X, is the
trivial character, and tr T(A(e))|S is the trace of T(A(e)) on S.

This can be proved in the same way as Theorem 5.6 of [8] by using Proposi-
tion 3.1 and 3.5 of this paper instead of Propositions in § 3 of [8] for primes
which divides Nn, and we omit the details. By means of Proposition 3.4 and
3.7, we can prove the following in the same way.

Theorem 4.4. The notation being as above, assume n=(N)q'**' with NeZ,
(N, ¢)=1, and a non-negative integer p. If £=4, we have

tr To(e)= 2 tr TN ST o(Ng™*), 1)

for e R%.

Applying these theorems, we can give a more detailed result. We choose a
totally positive element & of o such that (6)=g, and put n=(Né*) with Ne Z,
(N, ¢)=1, and a non-negative integer v. Let S.(I"y(n)) and S¥I (n)) be as in §1,
and for a positive integer N and a character X mod. N, let SYI"«(N), X) denote
the space of new forms in S.(I'((N)). Then we can prove the following.



120 Hiroshi Saito

Theorem 4.5. The notation being as above, assume nw=(N)” with NEZ,
(N, ¢)=1, and a non-negative integer v. If k=4, we have
i) If [#2, we have as Ri-modules,

a) SUL((INN=SUT(N)NDS
& SUI'(Ng, 1)=SDS

b) ST ((N))=SUT'(Ng)) .
o) SUT((N)=V, SUT(Ng)=VPS.
d) For v=3,

SUI (Ng=~»/t+2)y  if y=2mod. [
0 otherwise .

SN ={
i) If [=2, we have as R}-modules,
a) ST (N =SUL(N)DS
ST (Ng), X)=SPS .
b)  SUL((N)))=SxI"o(Ng)) -
o) SUT((N@HH=V
SUT (NGBS (Ng?), 1)=SHT(N)DBSL (N)BVDV -
d) For v=3,

W if v=0mod. 2
S,‘E(Fo((N)qy))g{ 0 Z;h);rwi:;

SUIo(Ng@ 212+ )BSUT (N 212%2), X)) = WD W .
Proof. By a result of T. Miyake [5], we have
SI'((N)gNH= D @M SUT ((M)gH)) 2o

MIN di
0SASv Osusv—4

as Rb-modules, where SXI'(M)g")*"'={f(dé"2)|f€SUT(M)g)}. For the
Mobius function g and a positive integer m, we define the function § by

Bmy= 3 p(d)pu(m/d) .
For v=0, we see by Theorem 4. 3
tr ()| SK((ND)= 2 BIN/M) tr T(e)| S o(M))
= 3 BOM/N) tr TAE)ISLT (M)

g B BV/M) B tr S ST (M), 70
—tr ()| SUTAN))
L BTSN, 1.
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for ee R}.. From this we obtain the assertions a) of i) and ii). For v=1, we
can prove the following by Theorem 4.4 in the similar way as above.

tr T(e) | S (M) =tr T(A(e)) | SAT"o(Ng)) .

The assertions b) of i) and ii) follows from this equality. Next we consider the
case v=2. First assume [#2, then for X, 2=<:i=/, there exists j, 2=<;=/, such
that XXj=identity character. For v=2, the twisting operator f— fy, fz;=

f} aX(n)e** for f= f}lane*-‘""’, induces a map from S,(I"((Ng*)), %) to S.(I"«(Ng*))
n=1 n=

which commutes with the action of R%. We see easily the twisting operator
gives the following identity between traces of T(A(e)).

tr TA| B SU(Ng), 1)=tr TA) | B ST oNgr)
Now by Theorem 4.3 and the above equality, we see
tr ()| SKL (NN DB2SUT(N B -+ BU—DSUL (V)
BU—DSUL(NMNBU—DSKL (V)
= 3 BIN/M) tr TSI (M)

— 3, BON/M) tr Z(@) [ ST M)
=1, BV/M) 3 tr T | ST (Ma), 1)
+(1=1) 2 tr TS o(Mg), 1)}

— 3 SIV/M) X tr @) ST (M), 1)

=(—1) tr TAE)| SAT o(Ng"NDSKL (NgYDSAI(N)) -

Since each irreducible representation of R} appears in SYI"((N)a?))P2SUL ((N))qt 1)
D PU-DSUT((N)))DU—1)SUTW((N)) with multiplicity at most [—1, we
obtain

S ((N))=0, 3=v=l
Si (N NDSUL ((N)DDBSUL(N)
= SAL (NGBS (Ng)DSAL(N)) -
If we use a), b), we obtain
SAI(Ng®)= Sy (I o((N)a?)DS .

Hence we proved our assertions c¢) and d) for v, 2<y=/. In the similar way as
above, for p¢=2, we can show the following isomorphism as R$%-modules by con-
sidering
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2 BON/M) tr 2@ [ ST (N W) — 3 BN/M) tr 3() | ST (N D) ;

®) S GHDSKTANNNDIC, B SUTL(NW)

As(p-

=[( 056211 Sg(FO(N(V))) e(— l)Sg(Fo(Nq/:+1)) .

For =2, we have 0561951 SYTI” 0((N)q‘))%’osélté2 SAI"(Ng*) by the result proved above.

If follows from this
D (H DSKL AN NN == DSKTNG™?)).

By observing the multiplicities, we see

SAI'(Ng*), i=1-2
0 , otherwise.

ST (N )= {

In the similar way, by using (8) and induction on g, we can show for p#=2,

SULo(Ngr+1)), 1=1-2
0 , otherwise.

SUT (Nt )={

This is nothing but the assertion d) of i). We can proceed similarly in the case
of /=2 by using Theorem 4.3, 4.4, and we omit the details.

Example. We give a numerical example for Theorem 4.5. We take F=
Q75), n=(+/5) and r=4. In this case we have dim S,(/"((+/5))=1 and
dim S,(I"«(5))=1. Hence S(I'{((vB5N=S(I((~/5)). Let f(z) and g(r) be a non-
zero element of S,(I'(((+/5))) and S,(I'«(5)) respectively. We denote by a, (resp.
A(p)) the eigen-value of g(z) (resp. f(2)) for T, (resp. T(p)), then by Theorem 4.5
S{(T((WB))=S,(I'y(5)) as R}-modules, hence it should hold

ap p=py, p#EY

10={ gt (e (=),

By Shimizu’s trace formula [9], we can calculate A(p) for several p using the
class numbers of totally imaginary quadratic extensions of F, and we can check
the above relation. In fact we have

a,=—4  A2)=0
a,=2  AB)=-50
au=32 A@++5)=32 N@+v5)=11

0, =100 z((9+;/§))=100 N((9+5/_5.))=19.
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