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Introduction

Let MSp denote the Thom spectrum of the symplectic group, so that
MSp,=n,(MSp) is the symplectic cobordism ring. In this note we study some
relations among KO-characteristic numbers of a class of MSp, by considering
the stable Adams operation ¢® : KO*(MSp) — KO*(MSp)[1/2].

In (2.6) we obtain the following commutative diagram;

MSp Txo KO
3(x/8)'S™4(KO) ¢
Kor1/2],

where tx, is the Thom map, x is the generator of KO, and S*1(KO) is an
element of KO**(MSp). Using (2.6), if acMSp,,, then we have

2.7 (Tro)x (S#~ 1BV (MSp)S*(MSP))(a)=0 mod.8,
Sfor any R=(r,, 7, --*) such that r; is a non-negative integer and |R|=3ir;<k,
where SE(MSp) is a certain Landweber-Novikov operation in MSp-theory.

(2.6) and (2.7) are some generalization of the result of Floyd [1].
We consider the map ¢ : KO« (MSp) — KO« (MSp)[1/2], which is the dual
of ¢®. Let h%%: MSp.— KO (MSp) be the KO-Hurewicz homomorphism. For

aEMSp,r, set hKo(a):,;eV‘_,ZR(a)bR(KO). Then we have

2.12) ¢(hK0(a))___§4k—|R|2R(a)bR(K0)’
(2.13) 4R 1RIQR (g)= |T|§R| AT (a)[p (b7 (K 0))Ip(x/8) T~ 1R,

where [¢(bT(KO))Jr is the integral coefficient of (x/8)'7'""'®*E(K(Q) in the
expansion of ¢ (bT (KO)).
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We consider in MSpyx @ Q the subalgebra WE° all KO-characteristic numbers
of which are integral. In (3.1) we prove that an element ,B=;2’"b"(KO) of
KO,,(MSp) satisfies the relation (2.12), i.e, ¢(‘B)=%)4”"R‘l"b’"(KO), if and
only if 3 is a h%°@Q® Q-image of an element of WX°. In a sense this implies
that W4° is characterized by the relation (2.12). As an extension of the
forgetful map MSp,, — MO,, we can consider a map W§{°— MO,,. In con-
nection with (3.1) we have in (3.3) that Image (W% — MO,)=P4%, where Py is
a subalgebra of MO, defined by E.E. Floyd [1], who proved that Image
(MSpyx — MO4)S Pyt

From (2.13) we have the following.

(2.14) |T|2=k AT (a)[p (BT (K0))1r=0 mod.8,
for all R such that |R|<Fk.
Applying this relation and (2.7), we obtain the following.
4.5) For acWko,
mod.8 if n=2"—1,
2U41+dn-i(q)=0( mod. 4 if n=2" or 2m-—I1,
mod.2 if n=2m,

for 0=i=n.

(4.5) is some generalization of the result of R. Okita [2]. Applying (2.14) we
also have

4.7) For as WK,
24 Jidi+idz+ k43 (q)=(0 mod. 8,

for 1+2j+3k=n.

This paper is organized as follows.

In §1 we prepare some preliminary properties on cohomologies and homo-
logies of HP* and MSp and on the complex stable Adams operation ¢?. In §2
we show the diagram (2. 6) obtained by applying ¢* on the Thom class. We
also define ¢ in this section and obtain some relations on characteristic
numbers of MSp,.. In §3 we prove that the relation in §2 also satisfied by
classes of W% and vice versa. In §4 by using the relations in §2 and §3, we
consider some divisibility conditions on some characteristic numbers of WO,

§1. Preliminaries

Let E=MSp, KO, K or HZ which is the representative spectrum of the
symplectic cobordism theory, real K-theory, complex K-theory or ordinary
cohomology theory with integral coefficients. E4 denote its coefficient ring.
Then symplectic vector bundles are E*( )-orientable. We denote the Thom



Characteristic numbers of MSpy 21

map by zgz:.MSp— E. Notice that rx=crgo, where ¢: KO— K is a com-
plexification. The following proposition is well known. Our notations are usual
ones.

(1.1) Proposition.

(1) E*(HP®)=E.[[e(E)]], where e(E) is the Euler class of the canonical
symplectic line bundle over HP>, i.e., the first Pontrjagin class.

(2) Ex(HP*)=E{B.(E), B:(E), -}, where B;(E) is the dual of ¢*(E).
Let i : HP*=MSp(1) — MSp be the inclusion and set ix(Bi+1(E))=b;(E).

(3) Ex(MSp)=E«[b,(E), b,(E), ---], where dim. b;(E)=41.

(4) E*(MSp) is the dual of E4«(MSp) over Eyx. We denote the dual of
bE(E)=b,(EYy1b,(E) -+ by S®(E), where R=(ry, ry, ---) is an exponent sequence
of non-negative and almost zero integers.

(5) The coproduct AE:E*(MSp)—»E*(MSp)(b@E*(MSp) is given by the

following formula;

dp(S(E)=, 3 SM(E)®S™(E).

(6) MSp*(MSp) and MSp«(MSp) are Hopf algebras over MSpyx. In
MSp.(MSp), the coproduct p* is given by

1 (b (MSp))= 2 (b(MSP))%s @ b;(MSP),

where b(MSpP)y=1-+0b,(MSp)+b,(MSp)+ -+ and (b(MSp)ty is the 4(n—j)-dimen-
stonal homogeneous part of (b(MSp))*'.
(7) (ze)x(e(MSp))=e(E),
(ee)+ (B: (MSp))=pB:(E),
(ze)x (b; (MSP))=0b(E),
(&) (SF(MSp))=S*(E).

Let ¢2: K*( )— K*( )[1/2] be the stable Adams operation.

(1.2) Lemma.
In K*(HP>),
di(e(K))=e(K)+(*/4)(e(K))?,

where te K, is the Bott-periodicity element.

Proof. It is known that e(K)=t"%(c’(§)—2), where & is the canonical
symplectic line bundle over HP> and ¢/(§) is the complexification of & Let 3
be a canonical complex line bundle over CP>, and = : CP® — HP*® be a canonical
projection. Then n*(c¢’(£))=%n+17, where 7 is a complex conjugate of 7. From
the properties of ¢?, we have
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Gem* (72 (c"(§)—=2))=(t"*/) i (n+7—2)=0"*/4) (n*+7°—2)
=@ /H(+7-2"+1*(n+7-2)
=(2/4) m* (e (J))*+n*(e(K)).

Since n* . K*(HP>) — K*(CP*) is monomorphic, we have the required result.
Q.E.D.

§2. Relations on K and KO-characteristic numbers of MSp,.

In this section we first consider the complex stable Adams operation ¢ on
K*(MSp). In order to compute ¢ on K*(MSp), consider the following
operation ¢, : Ky (MSp) — Ky (MSp)[1/2], which is the dual of the stable Adams
operation ¢? : K*(MSp) — K*(MSp)[1/2].

(2.1) Definition. For ac K.(MSp), put
¢c(a):§ ar, P2(SE(K))> bR (K)e Ky (MSp)[1/2],

where {, > denote the Kronecker pairing.

(2.2) Lemma.
& is a morphism of Ky-algebra.

Proof. The linearity is clear. Let a, f€ Ky (MSp). Then
¢c(a[3)=§ Ca B, PE(SE(K))> bR (K)
=§ a@ B, 4k i (SF(K))> bR (K)

=20 2 < G (SP(K)) > LB, e (SF2(K))»)bR(K)

R R

=d(a)$.(B),
where 4x (SE(K))= " +§_‘,2=R SEK)Q S*(K). Q.E.D.

(2.3) Proposition.

41
A (GRS

Bl (KN=2 ()

Proof.
¢c(bn(K))=§ Cx(Bas1(K)), P:(SE(K))>bR(K)

=2 (Bnn (K), gE1*(SH(K)) bR(KD).
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Recall that
e*Y(K) if R=d,,
i*(s* (k)=
otherwise,

where 4; is an exponent sequence of which j-th part is 1 and others are zero,
ie, 4,=(0,0,--,1,0, ---). Using (1.2), we have

¢c(bn(K)):§‘_, {Bas1(K), ¢e(e?*(K))> b;(K)
s (TN e pgyn-s
_;(n_j)(t /4% b,(K). Q.E.D.
(2.4) Theorem. The following diagram commutes.

Tk

MSp K
(t2/4)'S™(K) &@
K[1/2]

Proof. Let gb%(rK):%‘,ZRSR(K). Then

AB=0R(K), ¢i(rk) >=<p.(b"(K)), T&>.
From (2.2) and (2.3), we have

ZR:{ <¢c(b1 (K))]: TK>:(t2/4)j if R:jA17

0 otherwise.

Q.E.D.
(2.5) Corollary (E. E. Floyd [1]).

PHSH(K))= Z (1/4) (z:x)x (S (MSD) SE(MSp)).

Now, we consider KO-characteristic numbers. Recall that KO,=Z[x, y]/x*®
=4y, where x€ KO, and y= KO,, and that the complexification homomorphism

¢:KOyx— Ky carries x, y to 2%, 1, respectively. Let ¢* be the stable KO-
Adams operation. It is well-known that c¢?=¢ic. So we have

(2.6) Theorem. The following diagram commutes;
TKO C

MSp KO K

T (x/8)'S™4(KO) g gt

KO[1/2] < K[1/2].
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Let |R|=Xir; for R=(r,, s, --+).

(2.7) Theorem. Let asMSp,,. Then for each R such that |R|<k,
(txo)x (S FON (MSp) S®(MSp))(a)=0 mod.8,
(Thz)x (SE1E(MSP)SE(MSP))(a)=0 mod.8.

Proof. From (2.6), we get the following commutative diagram ;

MSpM (‘l' xo)* - KO,
2 (x/8)(zxo)x(S I HMS p)+ ¢*
KO, [1/2].

Recall ¢*: KO,, — KO,,[1/2] is the multiplication by 4*. So we have the
equation ;

4* (i) (A)=2 (x/8)" (7x0)x (S™1 (MSp)(a)).

Hence we have (txo)x S¥1(MSp)(a)=0 mod.8. It is obvious that

(txo)x S*1(MSp)(a)=(zuz)« S*1(MSp)(a). So we get the results for R=(0,0, ---).
The general case is easily obtained replacing a by SE(MSp)(a) for R such that
|R|<k. Q.E.D.

(2.8) Remark. E.E. Floyd proved the following in [1];
mod. 4,

0
Eaghe SEBMSHS MSD@={
mod. 1 1S even,

for each R such that |R|<k.

In order to obtain more explicite relations of characteristic numbers of
sympectic manifolds, we consider the KO-analogy of (2.1).

(2.9) Definition. Let a= KO (MS)p), set
@ (a)= 2 4a, ¢*(S*(KO))> b*(KO).

Then we have the analogous properties with (2.2) and (2. 3).

(2.10) Lemma. ¢ is a morphism of KOx-algebra.
(2.11) Proposition.

VS A
6 (0n(K0)=2 (1) (/8" b,(KO).

Let h%%: MSpy — KO« (MSp) be the KO-Hurewicz homomorphism.
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(2.12) Theorem. Let a=MSp,,. Let h"o(a)=% A8 (a)bR(KO). Then we

have the following relation ;

gz&(h"o(a)):‘éél“""' 2%(a)bR(KO).

Proof. If we put ¢(h’“’(a))=%}m”b“(l{0), it holds
mB=<{¢(h¥%(a)), S*(KO)>=<h¥°(a), $*(SF(KO))>
:4k—|R|<hKO(a)’ SR(KO)>=4I¢—|R| XR((I),
by using the fact that ¢*: KO,; — KO,;[1/2] is the multiplication by 4.

Let [¢(bT(KO)1r be the integral coefficient of (x/8)'T'"'® pE(KO) in the
expansion of ¢ (bT(K0)). We can restate (2.12) as follows.

(2.13) Corollary. Uuder the notations of (2.12), we have
PR @)= B AT (@)L (67 (KO)) Ta(x/B)T .
The proof of (2.13) is clear from (2.10) and (2.11). From (2.13) and (2.11),
we also have
(2.14) Corollary. Under the above notations,
ITIZL: AT (a)[p(bT(KO)1p=0 mod.8  for any R such that |R|<k.

(2.15) Remark. Compairing (6) in (1.1) with (2.11), it is easily obtained
that

S (MSP)SFMSp)= | B [#(7(KO)1aST (MSp).

So (2.14) is only the restatement of (2.7).

§3. A subalgebra W4° of MSp.® Q.

In KOx(MSp)R®Q, we consider all elements that satisfy the relation (2. 12)
and (2.13). Set

Vi={a= lmgk AR (a) bR (KO)e KO, (MSDp)|¢p (a)= %}4"""" 2% (a) bR (KO)}.

From (2.12) V,Dh¥°(MSp,,) holds. Now consider h¥°®Q : MSp,, RQ —
KO,,(MSp)Q @, and define

Wo=(r"° Q@ Q)" (KO (MSp)).

WEO consists of elements all KO-characteristic numbers of which are integral.
It holds MSp,,/Tor C W¥°, We have the following, which implies that the
KO-Hurewicz image of W¥° is characterized by the relation (2.12).
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(8.1) Theorem. (A¥°Q Q)(WE%)=V,.

Proof. For ve W§°, we take an integer m such that mveMSp,,. Since
h%9(MSp,,) CV,, we have the equation ¢(hK°(mv))=§4”"R'ZR(hKO(mv))bR(KO).
It holds ¢ (RX°(mv))=m¢((h¥°®Q)(v)) and A% (A¥°(mv))=mA%((h*°@Q))).
Since KO,,(MSp) is a free module, (h¥°® Q)(v) satisfies the relation ¢ ((h*°®
Q)w))= ;;4’?'”" AB((h¥°R Q) (v))b®(KO), and so, belongs to V,.

Conversely, let azﬁV‘_,ZR(a)bR(KO) be an element of V,. We remark that

any element of V, also satisfies the relation (2.13). So the following relation
is satisfied ;

(1) PR (@)= @)+ 3 2T (@) (x/8) TR (07 (KO)) T

If |R|=k—1, this relation implies that 3A%(a)= mz=lk AT (a)(x/8) [P (b (KO)) a.
By induction on |R|, we have from (1) that A®(a) for any R can be represented
as a Q[x]-linear combination of AT (a) such that |T|=Fk. Let ﬁ:mé)k AE(a)bR(HZ)
be an element of H,,(MSp), where we identify the coefficients A%(a) with
integers. Then there exists some element a of MSp,, ® Q such that (h¥ Q@ Q) («)

=a. If we take an integer m such that maeMSp,,, then h%°(ma)eV,.
Hence in KO-z, ® Q, it holds that

(2)  AFR2R((RR R Q) (@)
=A@t B AT ((RF @ Q)(@)(x/8)" g (T (KO0))1r

for any R such that |R|<k. When |R|=k, A%(a)=2F((h¥°QQ)(a)) from the
definition of «. Therefore, A%(a)=2%((h¥°® Q)(a)) holds for any R, because
from (1) and (2) both A%(a) and A®F((A¥°Q@Q)(a)) can be written as the same
Q[x]-linear combination of 2A7(a) and AT((A¥°®Q)(a)) such that |T|=k
respectively. Hence a=%)ZR((hK"@Q)(a))bR(KO)z(hK"@Q)(a), and so, a is
an element of (h%¥°Q Q)(Wk?). Q.E.D.

By (3.1), an element of W4° also satisfies the relation (2.14). Especially,
we have

(3.2) Corollary. Let o be an element of W0, and set (hX°® Q)(a)=
SR (@)bB(KO). Then it holds 2*41(«)=0 mod. 8.
R

Proof. From (2.11) ¢(b,(KO)) that has b,(KO) with non-zero coefficient in
its expansion is only ¢ (b,(KO)) which equals to (x/8)+b,(KO). So by (2.10)
we obtain [¢(bT(KO))Je=1 if T=td,, and 0 if otherwise, where 0 is the zero
sequence (0, 0, ---). Therefore (2.14) in the case 0 implies 2*41(a)=0 mod. 8.

Q.E.D.
We remark that (2.7) also holds for an element of W4° by (3.2).

The homomorphism MSpyx — MUy induced by the inclusion Sp — U can be
extended to the homomorphism WZ%° — MU, by the Hattori-Stong theorem.
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We denote by r : WE° — MOy the composition of W — MUy and MUy — MOx.
E.E. Floyd [1] has considered a subalgebra Py of MO, and proved Image (MSp,
— MOy) is contained in P4®. On the other hand following F.W. Roush [3],
Image (MSp. — MO,) contains MO.'. By selecting a polynomial base x;,
i#2%—1, of MO, Py« can be represented as the polynomial algebra Z,[(x,:)?
(x4j.1)% x.;] for any i and j such that j#2* for any %, and so it holds
P.2MO,%. We remark the following.

(3.3) Corollary. Image(r : WE° — MO,)=P,".

Proof. Considering the method of E.E. Floyd’s in [1], Image(r : W0 —
MO,)C P,® holds from (3.2). Following D.M. Segal [4], there exists some
Sp-manifold for each dimension 8j, j#2*% and its symplectic cobordism class y,;
satisfies S¥2(MSp)(y,;)=2 mod.4. Such a Sp-manifold was defined by R.E.
Stong [5], and by [5, Th. 4] all K-characteristic numbers of y,; are multiples
of 2. Therefore, the K-Hurewicz image of (1/2)y,; is integral and so (1/4) y.2
is an element of W%9. We can select x,;, j#2* as satisfying r((1/4) y,,5)=1x,.
Hence {r((1/4)y.»)|j#2% and MO4'® generate P,* and this is the required
result. Q.E.D.

(8.4) Remark. In fact the above (3.3) can be proved without using (3.2)
by considering merely the structure of WE5° and W¥X°, if we use the essential
part of Floyd's method. WZX° is precisely studied by R. Okita [2] for 1Sk<T.

§4. Applications.

In this section, we investigate some divisivility conditions on characteristic
numbers of WX°, We denote in this section 2¥°® Q merely by hXO,

(4.1) Theorem (R. Okita [2, Prop. 4.2]). Let a be an element of WES |
and let hKo(a)zg}lR(a)bR(KO). Then 242*-1(a)=0 mod. 8.

Proof. In the case n=1, it is clear from (3.2). Now inductively supposing
that 242"~1-1(8)=0 mod. 8 holds for any e WX?_, , we prove 24"-1(a)=0 mod. 8.
For any integer k such that 0=<k=<2""! it holds

(1) st Msp)stm-raMsp) = 3 (4R siasran-ica sy,

By using (2.7) and (1), we have the following;

e on
2\

(2) )aidrtden-i-i(@)=0 mod.8  if kzl.

From (2) for each k=1, 2, ---, 2*~', we have

(3) Akdreden—i—1 (g)=m , 292"-1(a) mod. 8 for 1=kp=2~-1,



28 M. Imaoka and K. Morisugi

where m, is some integer. Next we consider the equation

(4) SH2m-1-1 (MS p) S 41 (MSp)
=2'S(Zn—l"])‘h*",zn_’(NISP)-I—SZR_U”JZ"_‘—l(/\//Sj)).

Since it holds 42"~ 1-1(S*" "1 (MSp)(a))=0 mod.8 by our inductive hypothesis,
it holds from (4) that

( 5) 22”—1J1+J2n—1_1 (a/)E _2.2(2"“-1)J1+J2n-1(a) mod. 8.

Considering the equation (2) in the case k=2""! and using (3) and (5), we obtain

2n-1-1

+ 3 z.n—l Mmi—2Myn-1-,)A%2"-1(«)=0 mod. 8.
( i=1 (l

n-1
Since (3 )EO mod. 2 for 1<i<2"*"'—1, we have 192" !(«)=0 mod. 8.

Q.E.D.

(4.2) Corollary (Segal [4] or Okita [2, Prop. 4.1]). Let «, and «a, be
classes of WE? and WXL, respectively. Then, we have 2%:"(a;)=0 mod.4 and
S2n-1(a,)=0 mod. 4.

Proof. We consider the following equation;
S (MSp) SH2m-1(MS p)—S42n-1(MSp) S41 (MS p)=(2"—2) S92 (MSp)
for n>1, and
(S41(MSp))*=2-S42(MSp).

From these equations, (2.7) and (4.1), we have A1”2"(a,)=0 mod.4 for n=l.
We also consider the following relation;

S42(MSp) Sden-1(MSp)—S42n-1(MSp) S*2(MSp)=(2n—3) S42n+1(MSp)

for n=1. By using this equation and A”2(a;)=0 mod.4, we have inductively
Ad2n-1(@,)=0 mod. 4. Q.E.D.

(4.3) Proposition (R. Okita [2, Prop. 4.11). For any ac W50, A4n(a)=0
mod. 2.

Proof. This is clear from Image(r : Wi% — MO4) C MO4® by (3.3).
Q.E.D.

We apply (2.14) in the case R=4,. For this, we first consider the follow-
ing lemma.

(4.4) Lemma.

(“L.l) if T=idi+d,.,,
Lo (" (KO))1s,= J

0 otherwise.
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Proof. From (2.11), all ¢(b;(KO)) that have b,(KO) with non-zero coef-
ficients in their expansions are only ¢(b,;(KO)) for 0=j<r+1, and all
¢ (b;(KO)) that have b,(KO) with non-zero coefficients are only ¢(b,(K0)).
By this and (2.10), we have that all ¢ (b7 (KO)) that have b,(KO) with non-zero
coefficients in their expansions are only ¢(b"(KO)) such that T=id,+4,.; for
0<j=<r+1, and we can easily deduce the required relation from (2.10) and
(2.11). Q.E.D.

(4.5) Theorem. Let a be an element of W° and set h"o(a):ZR)lR(a) bE(KO).
For any i such that 0Si<n, we have A*¥1*4n-i(a)=0 mod. 8, 4,4 or 2 if n=2m—1,
2™, 2m—1 or 2m for some m, respectively.

Proof. In the case i=0, this is just (4.1), (4.2) and (4.3). By using (4.4),
we have the following relation from (2.14) for R=4,;

T+1

(*) Z(HT1)1‘"""')"1+"T+1(a)50 mod. 8
SN g

for 0=j=<r+1=n. Inductively supposing that the result holds in the case
0<i<k<n, we can prove the result in the case i=k+1 by using the relation
(*) for r=n—(k+1). Q.E.D.

Next we consider (2.14) in the case R=r4,.

(4.6) Lemma.

)2 i Teidijderd,
[¢(bT(K0))],AI={ (llTu—r) if T=id+j
0

otherwise,

where |T||=i+j+k for T=id,+jd,+k4,.

Proof. From (2.11), ¢(b;(KO)) that has b,(KO) with non-zero coefficient
in its expansion is only ¢(b;(KO)), ¢(b.(KO)) or ¢(b;(KO)). Therefore, by
using (2.10) and (2.11), we have that all ¢ (b” (KO)) which have (b,(K0))" with
non-zero coefficients in their expansions are only ¢ (b"(KO)) such that T=id,+
jd,+kd,, and we can easily obtain the required relation by using (2.11).

Q.E.D.

(4.7) Theorem. Let a be an element of WK and set h "O(a)———%‘lk(a) bE(KO).
It holds

27.2td1+idet ka3 (0)=0 mod. 8
if i+2j43k=n.
Proof. We may suppose j=0,1 or 2. The following relation holds from
(2.14) for R=rd, by using (4.6);
i

1
() i+2j§k=n(i+j+k—7‘

)y.pdmdwh(a)zo mod. 8,
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are zero unless the

for any a= W4, The binomial coefficients (i+j—|ik—r>

following cases;
(2) n—r=j+2k and r=j+=k

For fixed n, we prove the theorem by induction on j4k. In the case j+k~=0,
it holds from (2.7). Now inductively we suppose that it holds 27.2:41+ide+kds ()
=0 mod.8 if 0=j4-k<t for any acWX° and for i+2j+3k=n. We prove the
theorem in the case j,+k,=t.
Case (1) j,=2. In this case we consider the relation (1) for r=n—2¢t+2.
If there exist j and & which satisfy that j4k=¢ and that the binomial coefficient
1 . . P .
(i+j—|—k—(n—2t+2) is non-zero, then it must be j=2=j, and k=k, from (2).
So using the inductive hypothesis, we have from (1) for r=n—2¢+2

4,2(n-3t+2)d,+242+(t—2)43 (a)EO mod. 8

for any ac W¥%°, Hence the required result holds in this case.
Case (ii) j,=1. We consider (1) for r=n—2t4+1. If there exist j and &
hich f = L.
which satisfy that j4+%=t and that the binomial coefficient (z+]+k—(n—2t+l))
is non-zero, it must be j=1=j, and k=t—1=k, or j=2 and k=t—2. So using
the inductive hypothesis, we have from (1) for r=n—2t+1

4(n——31—[—2)-]("‘31‘*2)41*’242*'(“2)43 (a)+2-l("_““)‘!’“’z“‘_l”" (a)EO mod. 8

for any a= W%, The former term is 0 mod.8 by the case (i), where we
consider the former term is zere when t=1. Hence we have the required result
in this case.

Case (iii) j,=0. We consider (1) for r=t. If there exist j and 2 which

satisfy j+k=¢ and that the binomial coefficient ( t) is non zero, then it

1
i+j+k—
must be j+k={. So using the inductive hypothesis, we have from (1) for r=t¢

4,2(n—3t+2)d1+2.12+(t-2)d3(a)+2,l(n—3t+1)Jl+Jz+(t-1)J3 (0()
-I—Z("'“)Jl*“h(a)zo mod. 8
for any a= W¥%°, The former two terms are 0 mod.8 by cases (i) and (ii),

where we consider the first term is zero when ¢=1. Hence we have the
required result in this case and it completes the proof. Q.E.D.
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