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§1. Introduction and the result.

Let 2 be an open domain CR"™(n=1) exterior to a smooth bounded closed
surface 92. We shall consider the exterior initial-boundary value problem of
the following type:

1.1) Llul=u,(x, )+alx, Hu,(x, t)—Aulx, t)=0,
2y ou n 0%u
> — e —_ — - —
where =0, x=(x,, x5, *, X2 )E82, uy, o W= 5y , Au= kZ;l ax and a(x, t)

is non-negative ;
(1.2) u(x, 0)=f(x) and wu(x, 0)=g(x),

where f(x) and g(x) are real-valued continuous functions with compact support
contained in the ball of radius p centered at the origin and f(x) belongs to
class C!;

(1.3) u(x, £)=0 on 32 or %%(x, £)=0 on 92,

0 .
where e denotes the outward normal derivative on 09.

The assumptions on the dissipative term a(x, t) of (1.1) will be stated pre-
cisely afterwards.

Let u=u(x, t) be a real-valued smooth solution of (1.1), (1.2) and (1.3). We
define the total enegy E(t) and E(0) for u as follows.

E(¢)=SQ{| u(x, DI*+[Vulx, )* dx

and

E(0)=SQ{| w(x, Q2+ |Vulx, 0)1*} dx

=SQ{Ig(X)IZ+lVf(X)I2} dx=llgl*+IVrI?,
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where |Vu|*= Zn]

k=1

2

ou
Axy

In this paper we shall study the order of decay of E(t) as t—oco. Because
of the dissipative term a(x, t) E(t) is expected to decay to 0 as t—oco.

Mochizuki [3] and Matsumura [2] obtained the following results for solu-
tions of the initial value problem for the equation (1.1) in the entire R™ and
(1.2).

Mochizuki’s result: If 0=Za(x, 1)SC(1+|x|)"'"% with positive constants C
and J, then E(¢) does not decay to 0 as t—oo.

Matsumura’s result: If a(x, t)=0 and

min a(x, H)=(K+et)™?! for all =0
I

1ZIst+
and
I-‘;g?fp a,(x, t)=e*@r*+4-6r+3)2+r) '(K4et)® for all =0,

where K, ¢ and p are positive constants and 7=(3¢—2++/9e°—4¢+4)/2, and if
the initial data are supported in the ball {x;|x|<p}, then the total energy
decays to 0 as t—co with the order (-%/2%7,

Now we state our assumptions on a(x, t).

Assumption on a(x, t): (1) a(x, t) is real, non-negative and differentiable
in t (>0).

(2) For some 6>0 a(x, t) and a,(x, t) are bounded in 2X[§, ), and ta(x, t)
and t?a,(x, t) are also bounded in 2X%[0, §].

) a(x, t) and a,(x, t) are continuous in £2X(0, o).

(4) There exist positive consiants t, and a (0<a=2) such that the following
inequalities hold:

i) ta(x, H)za,
ii) (a—1))a—2)—(a—1)ta(x, t)—t?a,(x, t)=0
for any (x, t) such that t>t, and |x|<t-+p.

Under these assumptions we shall investigate the order of decay of FE(#),
and in §3 we shall prove the following result.

Theorem. Let a(x, t) satisfy the above assumptions, and let u be a real-valued
smooth solution of (1.1), (1.2) and (1.3). Then for any t>t,,

OESA
where C depends only on the initial data.

The author wishes to express his hearty thanks to Professor Ikebe and Pro-
fessor Tayoshi who kindly gave him many valuable comments and suggestions
and pointed out a number of ambiguous points.
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§2 Some auxiliary results.

Note that o has been chosen such that the ball with radius p centered at
the origin contains R™-£2 and the support of f(x) and g(x).

Lemma 2.1. Let u be a solution of (1.1), (1.2) and (1.3). Then u is identically
zero for |x|>+tp (t>0).

The proof is simillar to the one in the case of the wave equation (see, e. g.,
[1], pp. 642-647), and is omitted.

We note that in the case of the Dirichlet boundary condition u,(x, t) as well
as u(x, t) is equal to 0 on 0f.

Lemma 2.2. Let u be a solution of (1.1), (1.2) and (1.3). Then
2.1 E(t)<E(0).
Proof. From 2u,L[u]=0, we have

SS 2a(x, t)(u,)dedtzgg Nwbu—1uguy)dxdt
2x¢0, ] 2

2xc
=00 2B e = 3 uei—i}dar.

Noting that u=0 for |x|>¢+4p as asserted by Lemma 2.1, and the boundary
condition (1.3), and applying integration by parts, we have

SS 2a(x, w)dxdt
2x¢0,t3

==, (T, DI+ lue, D% dat | (1 Tutx, 0+ ulx, 0)]%dx

=—E()+E(0).
Thus (2.1) follows from a(x, t)=0.

Lemma 2.3. Let u be a solution of (1.1), (1.2) and (1.3). Then for any t>0

22) | w0x dxs2B@ 42111
Proof. Applying Schwarz’ inequality to the equation

ux, O={ w(x, Dde+1(x),
we have

2.3) u¥(x, t)={S:u,(x, Dde+f (0}

<2f{{[} i, e 1 G| s2{t [l uitz, Daetr ).
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If we integrate the both sides of (2.3) over 2, then we have

Sguz(x, t)dxéZ{tSdeS: ui(x, z')dz'—I-SQf(x)zd_x}

:Z{tgidrggu‘;’(x, Ddx+If17

From Lemma 2.2 we have

Sgu%(x, Ndx<E()< EQ).
Hence we obtain
[,z nax=2pOe+2171,

which proves the [emma.
Let @ and t, be the constants in Assumption (4) on a(x, t). Let ¢(t) be a
C?-function depending only on ¢ and be defined in [0, o) such that

Lia1 for t=t,

¢<t):{ 2
t* for 0Zt<t,/2.

Now we shall show an energy identity of the following form.

Lemma 2.4. Let u be a solution of (1.1), (1.2) and (1.3), and ¢(t) as above.
Then for any T>t,

L @ & ra-y
(24) S TEM+5 T uCx, Thulx, Tydx
_ & .
+SS.Q><[0'[0](¢ 2 t l)(lvuiz—*_[utl )dxdt
+Sgax[o Tl(ata—2¢)[utlzdxdt

+%T~—2SQ {a(x, T)—(a—1} ulx, T)dx

+%SSM,N {po—(Pa)} utdxdt=0.

Proof. We note that the following identities hold.

@5 trwlli=— 3 (e )e,+ S5 00w,),
g T ) — ) e
@6 HOuLlul=— 3 (Guns)ey g Tul+Guud— 3G

1
+%¢uu2—¢(ut)2+(%¢au2)t— §(¢a)tu2 .
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Let B={x; le<p’+T}mQ_, where p’ (>p) and T(>t,) are any fixed con-
stants, and let 0B[0, T] denote the surface of the cylinder B[0, T]=BX[0, T]
in 2x[0, c0). Let dB, be the lateral surface of B[0, T, and 6By and 0B, be
the upper and the lower bases of B[0, T, respectively. Let n=(§,, &, -+, &4, ©)

be the outward unit normal to 0B[0, 7] and —aa; be the outward directional

derivative to 0B[0, T]. Then 0B[0, T]1=0B,\J0B,\JoB; and n=(&,, &, -+, &, 0),
0,0, ---,0,—1) and (0, 0, ---, 0, 1) on 0B, 0B,, and 0B, respectively.
Now we have by integrating by parts

@7 (5, ot & sty = 35 Gutea oy fdxd
Z_Saa,(é Gt 35 guue,éi)dS

o o

where we have used the boundary condition (1.3) and u,=0 on 0%, and we
should note in view of Lemma 2.1 that u(x, ¢t) and all its derivatives vanish in
{(x, ); lx|=p’+T and 0=¢<T}. Also we have

@8 |, [2{5 1)} 5 o it Guude— 5 Gt pav’) |axds

:(SaBT—SaBO){—;— teVul 2“‘% t(u)*+uu,— %¢tu2+%¢au2}d5

=2 o[ (19utx, DI e, DY dx+g ulx, Thudx, Thdzx

— 56D witx, Ddxt 44 atx, Tiuttx, Trdx
:%T“E(T)+¢(T)Sgu(x, Tu,(x, T)dx———;—ng,(T)SQ u¥(x, T)dx

+%¢(T)S9a(x, T)u*(x, T)dx

1
=7TaE(T)+-gT«-ISQu(x, TYux, T)dx

—I—%T“‘ZSQ (Ta(x, T)—(a—1)} u¥(x, T)dx.

In the above integrals dS denotes the surface element of dB[0, 7], and we
have used the relations ¢(0)=¢,(0)=0 and ltirgl SBng(t)a(x, Hu*(x, t)d x=0, which
follow from the definition of ¢.

Integrating (¢*u,+¢@u)L[u]=0 over £x[0, T] and taking accout of (2.5),
(2.6), (2.7) and (2.8), we have
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1

O—-:2

T“E(T)-I—%T"'ngu(x, TYuux, T)dx

+SS.@>¢[0, 5ol<¢~— % "‘“">(qu 124w, |®)dxdt

[0 mlate—2wdxdt+ T (Ta(x, T)—(@—D}utx, T)dx

+%ngw, - {po—(pa)}w?dxdt,

where we should note ¢(t):%t“'1 for t=¢,. Thus we have completed the proof.

Lemma 2.5. Let u be a solution of (1.1), (1.2) and (1.3). Then for any t=t,
(2.9) t"E(t)-}—at““S u(x, Hu,(x, t)dx—l—ﬁt“'"zg u¥(x, Hdx=ZC,
2 2 2
where C depends only on E0) and |fIl.

Proof. We put

1;25&)“, LOJ(QS—% t )Vl | dxdt

Jzzzggm, (@ t“—2¢)<ut)2dxdt:2559m g -%ZSSMO. .
=Jit+Jz,
I= %T“'ZSQ {Ta—(a—D)} udx,
and
L e | P |
=K+ K,.

Let us compute [, (k=1, 2, 3, 4). We have from Lemma 2.2

t
1o e ae] JATuis
§E<0)S:° p— g 17| dt=C.EO),

and

= lare—2g | wyrdx= PO 10t —2¢1 dt=C.EO),
where the positive constants C, and C, are independedt of u. We have from
Lemma 2.3

| K, | ggz‘) |G ()] dtSQude
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<2[" (BOE+1/1)| gu—(@a)} dtSCLEO+IFI7),

where the positive constant C, depends only on %, bounds of |a| and |a,|, and
¢. By Assumtion (4) we see that

= — a-1 2
]Z_zgggmo,mmt a)t* N (u)dxdt=0
and
]3;%ta_2gguz(x, t)dx.
Since ¢tl_(¢a)¢=£2¥‘{(a—1)(a—2)—(a—1)ta_t2at} for 1=t by Assumption

(4) we have
K,=0.

Thus it follows from Lemma 2.4 that
t”E(t)—i—at"“lggu(x, Duy(x, t)dx+g—t“‘zggu2(x, Hdx<C
=C,E0)+C.E0)+C(EO)+111%),
which prove the lemma.

Lemma 2.6. Let u be a solution of (1.1), (1.2) and (1.3). Then for any t=t,
and for appropriate positive constants A and B

(2.10) | [, w2 Dax=luC, Pz ar-<+5.

Proof. Noting that t*E(¢)=0 and Sgu(x, Hu,(x, t)dx=%~-jt lu(-, t)|% from

Lemma 2.5 we obtain

d 2 7 2 <z 2-a
t o, DG, D=5 G, D1s=c
for any t>t,. Integrating both sides from ¢ to t,, we have
- 2C
. 2__ . 3-a__ —a
Thus we have
2C 1 2C
. 2 . 2-a ) . 2__ 2-a
. OIS g g ok {lluCe, 1ol 7 i)
Here we put
_— ,,£ 2-a p— 2 2 2C 2-a
A= aBG—a) t and B=2E0)t3+2|f)*+ aB—a) 13-,
Then from Lemma 2.3 we can easily show
1 2C o
B> {tlut, 1= g~ s )
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Thus we completed the proof.

§3. Proof of the Theorem.

Now applying Lemma 2.5 and Lemma 2.6, we can give the proof of the
Theorem.

Proof of the Theorem. Applying Lemma 2.6 and |u,(-, )|S+E(t) to

[ ux, Dude, Ddx| I, Dl DI,

we get
[, ux e, Ddx| S VAP Bl < VAFFBED.
Therefore from Lemma 2.5 we have
teE(H)<at* W(At* “+B)E() +C

<av/(At“+Bi**?)E(t) +C<av/(A+B)I“E(t) +C.
So we have
< aZ(A4—[—B) i

a«/m)2< c

al 172
(t LE(1)Y )

and

" av/ A+B a*(A+B) 2
En=(* +\/ 4 +C),
which was to be proved. Thus we have concluded the proof of the Theorem.

§4. Remarks and examples.

Our a(x, t) is admitted to have a singularity like 7% (0<§=<1) at ¢+=0 and
behave like #° (—1<d<1) as ¢{—oco under our Assumptions on a(x, ). The
typical form of a(x, t) is that of A(x)/t¢ for all ¢>t, where #, is a suitable non-
negative constant and A(x) is a bounded positive valued function of x. Hence
the equation L[u]=0 includes the Euler-Poisson-Darboux equation as a special
case. We remark the following. If Izlélgl A(x)=2, then we can put azgleig A(x)

and get the energy decay with the order of =« for 0<a=<2. But if rréié1 Ax)>2,
z
then we cannot put a:mi!gl A(x), but at most «=2. The author obtained more
ZE.

detailed results on the decay problem concerning the Euler-Poisson-Darboux
equation. These results will be given in a forthcoming paper.

Here we shall give several examples of a(x, t). In the following examples
we assume that A(x) is a smooth, bounded and positive-valued function of x.

Example 1. Let a(x, t)=A(x)/t* with 0<e<1. Then for any a<l+e¢

E(h)< tc .
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Example 2. Let a(x, t)=2(x). Then we can take a=1, and
En=S-.
t
Example 3. Let a(x, t)=A(x)i* with 0<e<1. Then for a=1—e¢

E(hs-,

Example 4. Let a(x, t)=14|x|)*(14+¢)"'** with 0=<e¢<1. Then for any
a<l

C
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