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§ 1. Introduction and the result.

Let Q be an open domain c l i n ( n _ l )  exterior to a  smooth bounded closed
surface Q .  W e shall consider the exterior initial-boundary value problem of
the following type :

(1.1) L[u ]=utt(x, t)+a (x, t)u i (x, t)—Au(x, t)=- 0 ,

where t_ . 0, X
=

(X i ,  x 2 ,  '• •  ,  X 7 1 )
,
Q ,  LILL — ut= Au=- 2 j  and a(x, t)

is non-negative ;

a2 u au _IL a2 u
atz ' at ' k = 1  a X 2

k

(1.2) u (x, 0 )= f (x ) a n d  ut (x, 0)= g(x) ,

where f (x ) and g(x) are real-valued continuous functions with compact support
contained in the ball of radius p centered at th e  origin and f  (x )  belongs to
class C1 ;

au (1.3) u(x, t)-=0 on a Q  or ( x  t)=0  on aQ ,an

where —a
an 

denotes the outward normal derivative on Q .
The assumptions on the dissipative term a(x, t) of (1.1) will be stated pre-

cisely afterwards.
Let u=u(x, t) be a  real-valued smooth solution of (1.1), (1.2) and (1.3). We

define the total enegy E (t) and E(0) for u as follows.

E (t )=  s2 {1U t(X , t)1 2 + 1 7 u (x ,  01 2 } dx

and

E(0)=-
.ÇQ IIu t (x, 0)1 2 + 17u(x, 0)11 dx

=L{Igoolz+1 (x)1 2} dx=d1g112+117f112
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w h e re  17u 1 2 = au
ax k

2

In th is  paper w e  sha ll s tudy  the order of decay of E (t ) a s  t .-0 0 . Because
of the dissipative  term  a (x , t) E (t) is  expec ted  to  decay  to  0 as  t—>00.

Mochizuki [3] and Matsumura [2] obtained the fo llow ing results fo r solu-
t io n s  o f th e  in itia l va lue  problem for the equation (1.1) in the en tire  Rn and
(1.2).

Mochizuki's result : If 0  a(x , t) C(1-1- x 1) ' w ith  positive constants C
and 3, th e n  E (t) does no t decay  to  0 as  t—co.

Matsumura's result : If a (x , t)_0  and

m in a(x, t) (K ±s t) - 1 f o r  a l l  t. - 0IxIgt+p
and

m a x  at (x , t) . .s2 (272 4-61+3)(2-Fr) - 1 (K-Fst) - 2 f o r  all t 0 ,lxist+p

w here K, s and p  are positive constants and 7=-(36-2-1—V9E2 -46+4 )/2, and if
th e  in it ia l d a ta  a re  supported  in  the b a ll {x ; x i <p } ,  th e n  the total energy
decays to  0 a s  t--, 00 w ith  the order t2/2+r.

N ow  w e sta te  our assum ptions on a(x, t).

Assumption on a (x ,  t ) :  (1 ) a (x ,  t )  is real, non-negative an d  differentiable
in  t  ( >0).

(2) For some 6> 0 a (x, t) and at (x , t ) are  bounded in DX[6, 00), and ta(x, t)
and t'a t (x , t ) are also bounded in  QX[0, a].

(3) a (x, t) and at (x , t ) are  continuous in  S2 x(0, co).
(4) There ex ist positive consiants to and  a ( 0 < a 2 )  such that the following

inequalities hold:

i) t a(x, ,

ii) (a-1))a— '2)— (a-1)ta(x, t)— t 2 a,(x,

f o r any  (x , t ) such that t > t o a n d  xi _ t-Fp.

U nder these assum ptions w e shall investigate the order o f d e c a y  o f  E(t),
and in § 3 w e shall p rove the following result.

Theorem . L et a (x, t) satisfy  the above assumptions, and let u be a real-valued
smooth solution of  (1.1), (1.2) and (1.3). Then f o r any  t > t o ,

E(t)_.< ta

where C depends only on the initial data.

The au thor w ishes to  express his hearty  thanks to  Professor Ikebe and Pro-
fessor Tayoshi w ho kindly  gave him  m any valuable com m ents and suggestions
and pointed out a num ber of ambiguous points.
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§ 2 Some auxiliary results.

Note th at p has been chosen such that the ball w ith  radius p  centered at
the origin contains Ra-Q and the support of f (x )  and g(x).

Lemma 2.1. L et u be a solution of  (1.1), (1.2) and (1.3). Then u is identically
zero f o r I xl>d-tp  (t>0 ).

The proof is simillar to the one in the case of the wave equation (see, e. g.,
[1], pp. 642-647), and is omitted.

We note that in the case of the Dirichlet boundary condition ut (x, t) as well
as u(x, t) is equal to 0 on Q .

Lemma 2.2. L et u be a solution of  (1.1), (1.2) and (1.3). Then

(2.1) E(t) E(0) .

P ro o f .  From 2ut L[u] -=0, w e have

2a(x, t)(u t ) 2 clxdt= 2(utAu—ututt)dxdtQx(o.t] f 2 co, t i

"q i 2 x  (O. ta
{ 2 : t 1 ( titilx )x k — ( U x 0 1 — ( U t ) i} d X d tk=1

Noting that u=0 f o r  x l> t+ p  as asserted by Lemma 2.1, an d  th e  boundary
condition (1.3), and applying integration by parts, w e have

S2 CI 
2a(x, t)(u t )zdxdt

—
,(2 {17u(x, 01 2 + Int(x, t)11 d xd-L2 117u(x, +  u t (x, 0)1 2 1 d x

=— E(t)-E E(0) .

Thus (2.1) follows from a(x, t) 0.

Lemma 2.3. L et u be a solution of  (1.1), (1.2) and (1.3). T hen f o r any  t>0

(2.2) u2(x, t)dx52E(0)t 2 +211.f 112 •

P ro o f .  Applying Schwarz' inequality to the equation

u(x, t)= .f l
o ut (x, z-)c/7-kf (x),

w e have

(2.3) u2(x, t )= I .Vo ut (x , r)d r±f(x )} 2

<2 [I .Yo ut (x , r)dr}2 -Ff(x)21 < 2 {q o ul(.. , 7+ f (x)2}
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If  we integrate th e  both sides o f (2.3) over Q, then we have

f2 u2 (x, t)dx<2{tLdxYo u(x, 7)dz- + Q f (x ) 2 dx}

=2{t r)dx+ 11f112 } •

From Lemma 2.2 w e have

t)dx_E (t)<E (0 ).

Hence we obtain

o  722 (x, t)dx< 2 E(0)1 2 + 2 11f112

which proves th e  lemma.
L e t a  a n d  t, be the  constan ts  in  Assumption (4) o n  a (x , t ). L e t OM b e a

C2-function depending only o n  t  and  be defined in  [0, 0 0 )  such that

f o r  t t o

f o r  0 . __t< t 0 12.

Now we shall show  an  energy identity o f th e  following form.

Lemma 2.4 . L et u be a solution of  (1.1), (1.2) and (1.3), an d  O M  as  above.
Then f o r any T > t,

(2.4) iT a  E (T )+ 5 — Taj u (x, T )u t (x, T)dx
2 2

+ .f2 x co ,to i (0 —  t ' ) (  V u  2 +  utP)dxdt

± q ‘2 0 . 7 ,3 (ata-20)1u11 2 dxdt

+ 1T a - 2
0  {a(x, T)—(a-1)} u(x, T) 2 dx

1
+ — ff {95,1—(0a)t} u 2 dxdt=0 .

2 J.Inx[0.T1

Pro o f . W e no te  that th e  following identities hold.

(2.5) tautL[u ].=—  i i(tautus k )x,,+ {—,) t a (ux01/0=1 G

1 1
- -

a  

t ' - '17u1 2 -1--
2  

It a (ut) 21c- -

2  
a ta-i(ut)2+taa(u02

2

(2.6) g5(t)uL[u]=— ki i (o u u x ) x k + 0 17u12+(çbunt)t— (0022)t

±  O ttn 2 — çb(ut)2 + (4- -  Oa u2)  —  (0 a)tu2
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Let B =  {x  ;  x l  p '+ T }  niZ  where p ' (>  p ) and T (>  t o )  are any fixed con-
stants, and let a B [0 , T ] denote the surface of the cylinder B[0, T ]= B  x[0, T ]
in  fi x [0, co). L e t  aBx  be the lateral surface of B [0 , T ], and aBT  an d  a B o b e
the upper and the lower bases of B[0, T ], respectively. Let n=-- .( 1 , 25  en, r)

abe the outward unit normal to aB[o, T ]  and b e  th e  outward directionalan
derivative to aB[o, T ] .  Then a B[0, T]=aBsuaBouaBT and n = (1 ,  2 , •  •  •  ,  en, 0),
(0, 0, • • • , 0, —1) and (0, 0, •-• , 0, 1) on aBs, aBo, and aBT, respectively.

Now we have by integrating by parts

B[0,TB[OT]I. 1 ( t a l i t(2.7) ilsOzk— (011UxOsk}dXdtk=1

t a UtUxkek+ 95uux k OdS
aBx  k=1 k=1

au au
= (ta u td - ç b u -

a
—
n

)dS-=0 ,dB., an

where we have used the boundary condition (1.3) an d  u1= 0  on  aS2, and  we
should note in view of Lemma 2.1 that u (x, t) and all its derivatives vanish in
{(x, t); I pi -1-T  and 0_/. 7 '}.  Also we have

(2.8) ta(uskr}t± It a (itc) 2 1t+(Ouut)t —  (O tu 2 )td- ( -
2
1  a  u2 )J d xd t

\  1—6 aB, 3—aBoA —9  t -  7/u 2 +
2

1 r (u 1)2+95uut — l i t u2+  1 qbau2 }clS
2 2

7 1 .
13 {17 u (x ,  T)1 2 -klu t (x, T)1 2 1 dx-Eçb(T) u(x, T)u t (x, T)dx

—  0 , (T )L u 2 (x , T )dx-4 0 (T )L a (x ,  T )u 2 (x, T )dx

= - 1
2 -T "E (T )± 0 (T ) s2 u(x, T)u t (x ,  T )d x -- 1

2 151(T)S.
p u2 (x, T)dx

4- -95(T) Q a(x, T)u 2 (x, T)dx

1= -
2

Ta E(T)d- u(x, T)u,(x, T)dx2

a(x, T)—(a-1)} u 2 (x, T)dx .

In the above integrals dS denotes the surface element of aB[o, T ], and we

have used the relations 95(0)=01(0)=0 and l i
m L ( t ) 0 ( x ,

 t)u 2 (x, t)d x=0, which
follow from the definition of çb.

Integrating (tau t + O u )L [u ]= 0  over Q x[0, T ]  and  tak ing accout o f (2.5),
(2.6), (2.7) and (2.8), w e have
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1 a0= y T  E(T )+ —
2

T  - 1 (. 2 u ( x ,  T )u ,(x , T )dx

rs , , , E 0 . 1 0 1 (0- - -  64-  — 1 )(17/11 0 + ut 12)d x dt

I x t o , T 3 ( a r - 20)(ut) 2 d x d t+ c±4', T ' . .  IT a(x, T)—  (a —1)} u2 (x, T )dx

1T
2 .Q.co, Tj {45 tt — (95 o) t } u2 d x d t ,

where we should note 95(t)----- -
a  

t(' - ' for t t o . Thus we have completed the proof.2

Lemma 2 .5 . Let u  be a solution o f (1.1), (1.2) and (1.3). Then fo r  any t t 0

(2.9) taE (t)-1-ata1ou(x , t)u ,(x , t)d  x - 2 ou2(x , t)d ,

where C  depends only on E(0) and 11f11.
P ro o f. We put

ta-')( I 7u 1 2 + I it,1 2 )d  x dt ,

2=- 2f Ç ( a t  —20)(u t )2 d x dt -H2px[0, 7,
3( .2xE0,

— 11+ .12

12=  - 61T a - 2  IT  a  —(a —1)} u2 d x ,

and

14= ff 12 x[0, T] 1.7511 —(¢a) 11u 2d  x d t=-  0xE0,10, L x [to , T]

= K i+ K2

Let us compute ' k  (k  =1, 2, 3, 4). We have from Lemma 2.2

_ dt .(2 (171u 4-12 17,t,1 2)d x

and
95

ta-1 dt ,

I,Ti I .40 ' I a t“ — 201 d 0. (u ,)2 d I a t' — 20! dt _- C2E(0)

where the positive constants C, and C , are independedt of u. We have from
Lemma 2.3

I K11 -.Ço
° 011 — (0a)11 dl).

12 u 2 d x
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2Ç° {(E(0)t 2 + 11f112 ) I 022— (0a)2I1 d t 3 (E (0 )+  11f112)0

where the positive constant C, depends only on t o , bounds of
0 . By Assumtion (4) we see that

fax[ to
,r, (at—a)ta - 1 (u,) 2 d x d t0

and

I r 2
 j u2 (x, t)dx .

Since Ott — (0a)t= c
2  - {(a-1)(a-2) — (a - 1)ta — t2 at)- fo r  t> t o , by Assumption

(4) w e have

Thus it follows from Lemma 2.4 that

taE (t)-Fa ta j o u(x, t)u t (x , t )d x + ita - i o u2 (x, t)dx<C

=C 1E(0)+C2E(0)+C3(E(0)+ VIM
which prove the lemma.

L em m a  2.6. L et u be a solution of  (1.1), (1.2) and (1.3). Then f o r any t to

and f or appropriate positive constants A  and B

(2.10) .(2u2(x, t)dx=llu(•, t)11 2 At 2 - a+B.

1 d
P roo f. Noting that ta E(t)_>:0 a n d  u(x, t)u,(x, 0112, from

Lemma 2.5 we obtain

d 2
t -

d

u ( •
'
 t)I1 2 -1-11u(• , 0112 — - - - (tIlu(•' t)I1 2) Tr Ct 2 - a

dt dt 

for an y  t > t o . Integrating both sides from t  to  t o , w e have

2 C  t)P—t allu(•, t0)112 < ( P-a—tra).a(3—a

I al and I at i, and

Thus we have

lu (, OP<

Here we put

2C 1 2 C  
a ( 3 ---a )  t 2 - a + T {t ollu(•, to)112 —  a ( 3  a ) tg-.}

2C2 C
A = t 2 - '  a n d  B=2E(0)t8+21If Ir+a( a) a(3—a

Then from Lemma 2.3 w e can  easily show

1B >œ
t

It o llu(-, t0)II2
2C

a(3—a)
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Thus we completed the proof.

§ 3. Proof of the Theorem.

Now applying Lemma 2.5 and Lemma 2.6, w e can  g iv e  th e  proof of the
Theorem.

Proof  of the T heorem . Applying Lemma 2,6 and 11 / i t (  • , /E(t) to

we get

u(x, t)u t (x, t)dx t)1111 7 1 0 (• , t ) ,

     

u(x, t)u,(x, t)dx LAt' - a+BIlud-V(At 2 - - "±B )E (t).

Therefore from Lemma 2.5 we have

ta E(t) ata - 1 , ■/ ( A t ' + B)E(t) +C

<cr ,V (A ta±B t 2 2 )E (t )± C < a A / (A ± B )rE (t)± C  .
So we have

(t°12E(t)112
a-VA±B  )2

<  
a2 (A±B )

±C2 — 4
and

aA/A±B a2(A±B) _, c ) 2

taE(t).<( 2 + 4

which was to be proved. Thus we have concluded the proof of the Theorem.

§ 4. Remarks and examples.

Our a(x, t) is admitted to have a singularity like t ' __1) a t  t= 0  and
behave like t '  ( - 1 5< 1) a s  t —>00 under our Assumptions on a (x , t ).  The
typical form of a(x, t) is that of 2(x)/t for a ll t > t o, where t o is  a  suitable non-
negative constant and 2(x) is  a  bounded positive valued function of x .  Hence
the equation L[72]-=0 includes the Euler-Poisson-Darboux equation a s  a  special
c a se . W e rem ark the following. If min 2(x)_2, then we can put a=min 2(x)

xED xeS2

and get the energy decay with the order of t - °  for O < a 2 .  B u t  if  min 2(x)>2,
xe12

then we cannot put a= min 2(x), but at most a = 2 .  The author obtained more
sEQ

detailed results on  the decay problem concerning the Euler-Poisson-Darboux
equation. These results will be given in a forthcoming paper.

Here we shall give several examples o f a (x , t ) .  In the following examples
we assume that 2(x) is  a  smooth, bounded and positive-valued function of x.

Example 1. Let a (x , t )= 2 (x )It  with 0< s<1 . Then for any a < l± s

E(t):5__  t a .



Total energy decay

Example 2 .  L e t  a (x , t)-=2 (x ). T hen  w e can  take a=1, and

C 
E (t )5 . 

t
- .

65

Example 3 .  L e t  a(x, t)=1 (x)t 6 w ith  0 <e<1 . Then for a = 1 -

E ( t )  
ta  '

Example 4 .  L e t  a(x, t)=-(1± I xI) - E(1+ t) - 1 +E w ith  O s l. T h en  f o r  any
a<1

CE(t)_-< 
ta '
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