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1 . Introduction

In  the  previous paper [10 ] we studied a n  interacting system in population
genetics, which is called a  continuous time stepping stone m o d e l. L e t u s  review
our m o d e l. L e t  S  be a  countable s e t .  Each element i o f S is called a  colony.
Assuming that there a re  two alleles A  and  B at each colony, we denote by x i

(1—x 1) th e  gene frequency o f th e  A-allele (resp. the B-allele) fo r  th e  colony iE S.
We consider a  time evolution o f gene frequencies, which is caused by migration
among colonies and random sampling drift.

L e t X -= [0  1 ]' be the space of systems of gene frequencies, which is equipped
with th e  product topology. L et C(X ) be the Banach space o f all continuous func-
tions equipped with the supremum norm and C (X ) be th e  se t o f  all C 2-functions
depending only on finite number o f coordinates o f X.

L et us consider the  following infinite dimensional differential operator A,
a2f af A f(x )=  E  - -x 1 (1  x i) + E ( E

tiES 4N axI Les ies axi

where N> 0 a n d  qo  (i,  je S ) are constants such that q j O  fo r i #  j  a n d  E qi i =0
jE S

fo r  each iE S.
L e t {Ti } be a  strongly continuous semi-group on C(X ) such that

(1.2)T i 1 = 1  a n d  T t f 0 for every f EC (X ) satisfying f .. 0 ,

and

(1.3) T tf— fq T ,A fd s fo r every fEcg(x).

Such a  semi-group IT i l  is uniquely determined under th e  following assumption,

(1.4) sup I qi i I < +co . (cf. [10], [11]).
L E S

Here N  means the effective population size of each colony a n d  qi ;  ( i#  j )  means
the m igration rate from j e S  to i S.

Then {T t } defines a diffusion process on X , which we call a  continuous time
stepping stone model without m utation and selection.

Discrete time stepping stone models were first proposed by M . Kimura and
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they  have been investigated by m any biologists. cf .  [1], [3], [7], [8], [9], etc..
H ow ever t h e  problem s o f  sta tionary  sta tes a n d  ergodic behaviors seems to be
difficult for discrete time models with infinite colonies.

O n the  other hand th e  stepping stone m odels can be regarded a s  interesting
examples of infinitely interacting systems, which have been studied extensively for
th e  last decade. (see e. g . [5]).

In  particular dual processes, which a re  often  used  in  th e  theory o f  infinitely
interacting systems, a re  powerful tools also in  our model.

In  the  previous paper [10] w e introduced th e  following classification b y  the
m igration rates Q={q, 2 }. L e t P e =exp tQ  for any t 0, an d  P r O P, is defined by

(1.5) P t® P t ( i ,  j )= P t ( i i ,  1 1 )P t ( i2 ,  I2 )  fo r each i2)ESxS

-
a n d  j = ( j „  j 2 ) SXS.

W e denote by (X 1 = (X l, XD, th e  continuous time Markov chain on S x S,P' ) )i*E.sx s
associated with P t ® P r . W e assum e that Q =  {q 1} is irreducible.

Case I. P T Tt I 4
2 (X t )dt-=+00]=1

0 
fo r  a ll ie S x S  ,

-
Case II. P T ri I 4„(Xt )dt =d-coi0 - =0 for allS X S ,

Case III. 0< PT
i [ I4

2 (X r )d t=d-00] <1 fo r all i S XS ,0 

w here 42= {(ii, i2)E SXSI and /42 denotes th e  indicator function o f 42.

Since Q is irreducible, C ase I, C ase II, and C ase III exhaust all possibilities.
In  [10], we solved th e  problems o f s ta tio n a ry  s ta te s  a n d  ergodic behaviors

in  Case I  and C a s e  I I .  In  this paper we shall investigate the general case, includ-
ing  C a se  I I I . T h e  dual process o f our m odel is sim ilar to  that in  a  v o te r  model
of Holley & L iggett [2 ] and also th e  stationary states o f  our m odel can be des-
cribed in  th e  same fashion as the voter model.

L e t  u s  introduce th e  space o f  P r-harmonic functions SC an d  a  sub-class SC*
of 5C.

JC=Ih ; defined o n  S, 0 h . _1, and  l ' t h = h  fo r  a ll t >01 ,
and

SC*= fhESC ; lim h(XI)=-1im h(X)=0 o r  1, (PT)-almost surely o n  Q"),t.-00 t-.

fo r each  ie S x SI , w here S2( 1 ) -=[1:/4 2(X t )d t =  Doi .

If w e endow  JC w ith  th e  topology o f  point-wise convergence, JC i s  a com pact
convex s e t .  S o ,  l e t  u s  d e n o te  b y  SCe x  th e  s e t  o f  a ll extremal elements o f SC.
Then, it holds generally  that SCe x çSC*gSC. In  particular sc*-=sC holds in  Case
II , because o f  PT[Q ( 1 )]=0  fo r each iE S x S.

L et .T(X ) be  th e  se t o f  all probability measures on X  equipped with th e  topo-
logy o f w eak convergence. L e t  u s  d e n o te  b y  {TP} th e  a d jo in t  semi-group on
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ga(X) induced by {7',} a n d  S  denotes th e  s e t  o f  all stationary states, i. e. S=
{p E 2 (X ); T tp = tt  fo r a ll  t O }. Since S  i s  a  c o m p a c t convex s e t ,  we shall
investigate the  struc tu re  o f S e x , th e  se t o f a ll extremal elements of S.

Then the  following theorems hold.

Theorem 1.1.
(1) F o r  each h E M , there  ex ists a  v h Ea9 (X )  su c h  th at lim 7-15h =v h , where
Oh  stands for the point mass at  h,

(2) x  h,(d x)= h(i) fo r  each hESC and iES,

and
(
3

) S e x =  { h  ;  h E SC
* } .

Theorem 1.2. Let tiEga(X) and hEM*. Then, lim TPri=v h  if and  only i f

(1.6) lirn E P ,(i, j) ,Ç x j p(dx)=h(i) f or each i ES ,
t - .  jeS X

and

(1.7) lim E  E  Pt(i, x ixk (dx )=h (i)2 fo r  each iES .
t - .  jeS k e S X

Remark.
( i ) In Case I it holds that SC*=M e x = {0, 1}.
(ii) In Case II it holds that SO =M Q  {c ;
(iii) In Case III it holds that N ex ç- g r k .gC.
In  fact, w e have examples of Case III, for which SCe x .g.C* holds.

In  § 2 we shall introduce a  dual process o f our model and  discuss some pro-
perties o n  i t .  § 3 will be devoted to th e  proof of the above theorems, and in the
final section some examples will be given.

A cknowledgement. T h e  author would like to thank to T . M . L iggett who
kindly showed him th e  proof of the  final theorem in  [2].

2 . Dual processes

L et I  be th e  se t o f all non-negative integer-valued functions a  defined o n  S,
satisfying I al =  a t <d-co. a  is denoted by ez if  a 1 =1 and  a .,=0 fo r  j # i .  For,Es
a E I and a--Fp and  a—p a re  defined component-wise.

L et us introduce two kind o f continuous time Markov chains (a t , P « )E i  and
(a t , P a,), I , w hich a r e  generated  by the  following infinitesimal matrices R a , p}
a n d  {P,,,,s} on h a ,  respectively.
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a t qi i i f  p = a — s id -s iE I (i#  j),

1
a t (a t —1) if 3=a— I ,

1  
E a t gi t E  a t (a i -1 ) i f  p=a ,
iEs 4N iEs

0o t h e r w i s e .

a t qi ; i f  P=a—s i + e i E l  ( i* / ) ,

E a i q i i i f  p = a ,
iES

0o t h e r w i s e .

726

(2.1) Ra, p=

(2.2)

4N

H ere w e note th a t (a t , Pa)tter can be regarded a s  a n  independent system o f  Pt-
Markov chains and  (a t , Pa)aer has th e  same probability law a s  (a t , P a ) a E I  up to
th e  hitting tim e fo r  GI, w here 4 =  faE I; a 2 fo r  some i E SI.

A lso , (a t, -1 3. ) . e l  i s  a  dual process o f  {T t }  in  the  following sense . L e t u s
define a  family o f functions { f , , }„ , ,  o n  X  by f a (x)-= LI x`ji. T h e n  w e  h a v e  by

tES
Lemma 2.3 in  [10] th e  following

Lemma 2.1 . Let juGg'(X) and f(a)=<,a, f a >. Then it holds that

(2.3) <T'Pf.t, f a > = E a [ f ( a t ) ] f o r  each aE / .

L et us introduce some kind o f Markov times.

C=inf {t_0; latl< la01 } , Ck = in f{t 0 ; lad fo r  lz 0,

v=inf {t 0; a t E / \ J  a n d  lat1=- Ia0I}, a=inf{t 0 ;a t E4},

and and  o.„ a re  defined inductively by

rii =an-1 -1- 7 (19 r7,_ 1) a n d  un --r n +a(19 7 ), w here £7=0.

L e t u s  denote Q i = T I j (a  t )d t= + C O ]  and  Q0 = [P  4 (a  t )d t <+ 00]. Then the fol-
0 0

lowing lemma holds.

Lemma 2.2 . Let g  be any bounded function on I. Then,

(1) E a ig (a t ) ;  t< a t i= L [g (a t ) ;  t< c i ] i f  aE I \4

(2) [r n < +00, a n =±00  fo r  some 71_1]=,(2,0 a. s. (Pa ),

(3) CC=+00 7-= [ rtt<H- 0 0 , an,=-- 4- 00 fo r  some n 1 ] a. s. (P a ) ,

(4) lirn E a [P a t [S21 ]]= 0  ,

<,u,f>=f x ,tt(dx)f (x)

Ea  d e n o te s  the exectation b y  P a .
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(5) I E a[g(a t)] —  a [ g ( a t ) ] gliPa[C < + 0 0 ]=<11g1115a[c ri< ± 0 0 1,

and

(6) lim  Est,e;[g(a1)]— E,t[g(ce1)]15_11g1Pii-si1C=+ 0 0 1-11g1IP0:-F,a o i  •

P ro o f. W e shall show only (4), since (1) ,-, (3) are trivial and (5) and (6) can
be shown by constructing coupling processes. (cf. Lemma 4.9 in  [10]).

For aE /V J

(2.4) lim E a [P a t [Q i ] ;  ( 7,-=±001=lim Ra [P,,,[Q 1 ] ; t]t— 

= lim  P a[S2 inEu f'.[Q inCo- i= +0011=0.
t— .0 0

Also,

(2.5) lim Ea[Pa t [Qi] ; C=+00]=IiM ; r < t, o,,=±°°]n=i

[P. ]  •  o •  =  +cc)] ; < +00]= lim  E  E r,[E arn a u -t

= ; =+001; n  <±00]=0 , b y  (2.4).
71 1T h

Thus, w e have

lim E a[P«,[121]1= hm  
E

 E ,r[Pa t IQ11; Ck < t, k - 1 + 1k=2

l a i
-= E E a Dim E

8 -
a r  [P a  EQ11 7• ( = + °(3 1 ; C k  <  0 0 ] =0 .

k=2 k 

Let us define the spaces of harmonic functions of (a t , 15 .),,E i, and (at, Pa)aEI•

R.= {FL ; defined on I ,  0_</ and L [ ( a t )]= - Ti(a)

for each  a E I  and t -01,

g=  fg  ; defined on I, 0 g 1 ,  and  E a [ g ( a ] = g ( a )

fo r  each aE  /  and t 0}.

Then w e can obtain  the following lemma by a  sim ilar argument to Lem m a 4.2,
Lemma 4.3, and Lemma 4.4 in [10].

Lemma 2.3.

(1) For each it' l i m  E 71 [ ii(a t ) ]  exists fo r  each a E I , andt—

(2) fo r  each g E g  l im  k [ g ( a t ); Q 0]  exists fo r  each a e I .

So, denotingdenoting ,01-1,(a)-=limE a [& a t ) ]  and Ti g(a)-=lim R a [ g ( a t ) ;  Q 0 ], 0  is  a  map

from 4'f t '  into .6', and T ., is  a map from 2 into R. Moreover, it holds that
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(3) Ogri g = g  fo r  each gaL', and

(4) T i Oii(a)=1im &[li(a,) ; .Q0] fo r  each fiG,g7 and aE /.

Lemma 2.4 (Lemma 4.8 in [1 0 ]). Let ftc=1"Ei+3jiponia1<+ 0 0 11. Then,

(2.6) lim E P,(i, k)ft 1 =0 fo r  each (i, j)G SxSkes

Lemma 2 .5 .  Let = P ,t +  s i[cr i  <  co], f -=  P s t+ s i[Q i ] ,  and F 1 , =  f i ,;  A
( 1 — f ) .  Then,

(2.7) lim lim E  E  P,(i, k)Ps(j, m)F k ,,, =0.t-- k E S  in E S

Pro o f . Noting f i ,; = .0: ; + ./7 0,i , (0,JA (1-10,i) a n d  Lemma 2 .4 , it
suffice to show

(2.8) lim  E  E  N i, k )N i, m)ik,nin(1-fk,,)=0.
k E S  ir tE S

L et ((X i, X i), /3 4,) ; ) )  be a  continuous time Markov chain corresponding to the
transition  probability P O P , .  L e t  u s  denote by 23,,, th e  a-field generated by
{(X L  X ) ; ( ) _ . . v s }  and

I  
2 (X ,

1 Xpdt=±09].
0  

First we claim that

(2.9) 7424=  P iiV Q " ) I -0 0 ,0  a. s. (PR:?;)) fo r  a ll t,

Since Q( 1 ) is  a  tail event, by th e  Markov property we have

Pk i,[Q") 123,, t1=1) ( d )EQi. 4 " ) 1=fx1, xt

A lso, w e m ay assume t_ s ,  and then it follows that

fo r  each t _0.

Pri.i)ED" ) 1g t, si =EZ )[PiPi)EQ " )  g  t. J g t,

=ELI. 17  x i, t, 31= ;P t- 3(X L  pi x t , ; = f  4 •

Here we used a  fact that l i d  is  P 3-harmonic function of each variable by Lemma
4.7 in  [ 1 0 ] ,  since lid is  P O P , -harmonic. F o r  any s> 0, there exist t0 >0, s 0 >0
and  an  event Qt such that

Q te 2, 0 ,8 0  a n d  PR?1) [Q 10 e,f2t]<s .

Then fo r  t> to a n d  s>so,

ER,[1.rx it1 Q (01]=EZ)CI PLa") I B3  J - i f2 (l)1]

. EM.b[PL)Cf2" ) ept I g t. 3]1+ PW, J ,I,Q(1)eDti <26 ,

aAb=min
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because of PR? j , [ Q t  g t , 8]-=/Q t.

E Z ) [ I x it , x i A (1 - 7-4  x )1 =E 1 )[f 1 it , Al A ( 1 — f x 1 t . ( i )  A (1— /(2(1))1

2EiPpE f ,1, 4 -4 (,)1 ]< 46

for a l l  t > to an d  s > so. T h u s , w e  g e t (2.8).

The following lemma holds in the same way as the voter model.

Lemma 2 .6 .  L et pE Sex, g (a )= < p , fa> and h ( i ) = g ( ) .  Then.

(1) I g ( e i +Ei)—  h(i)h(j)I and

(2) h E  SC*.

Pro o f . First, we claim that

(2.10)I k til- t iig (a t) i— g ( + 0 1  - - 2 F id•

By Lemma 2.2 (6), w e have

(2.11) Ig(si + )—  h (0 1 = IE si+ J ig (a t)] — E i [ g ( a t ) i l

•

Also,
It s i + e i [ g ( a t )]— h(i)151 k s k ) P t ( j ,  r n ) ( g ( s k + e)— h(k ))1

k)P t(j, m )(1 - 1 k , . ) = 1 - f i  •  •

Thus, we have

(2.12) kti+ ti[g(at)] — g(E i  + 0 2(1 — f i , i ) .

On the other hand by Lemma 2.2 (5),

(2.13)I  Ê j [ g ( a ) ] —  g ( e i  0 1 = 1  a i ± j g ( c e t ) —  E ,i+ j[g(a t)ii

< P ,i+ ska1< + 0 0 ] -- - f i . i  •

Hence (2.10) follows from (2.12) and (2.13).
N ex t, it  is  e a sy  to  see  th a t lim  E  E  P s ( i , k )P s ( j ,  m ) f  t „ ,= 0 , so we have

s - o k E S  m E S
by (2.8)

(2.14) lim  E  E  P s(i, k )P s( j, m )F k ,„, = 0 .
k E S  mes

Accordingly, it follows from (2.10) and (2.14) that lim É s t+ , , [ g ( c r , ) ]  exists, whicht - -
is denoted by h ( i , j) .

Thus, we have

(2.15) g(si+ 65)— h(i, j) 2F1, , .

F inally  w e c la im  that h ( i ,  j )= h ( i ) h ( j )  for a ll i  and j .  Since ittE Se x , it fol-
lows from (4.16) in  [1 0 ] that
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1  r(2.16) irimT.fo t s
P t (i, k )g(s k +s-OcIt-=g(s i )g(si)=h(i)h(j).

Noting that h (i, j)  is P a-harmonic in  each variab le , and  combining (2.12), (2.16)
an d  Lemma 2.5, we can see that h(i, j)--=h(i)h(j) fo r all i  and  j.

Next, we shall show  h E S * .  By (2.11),

(2.17) h(i)h(.1)—h(i)1 1—/TE,; (i, jE S ) .

Then it is easy to see that

lirn h(X1)=1im h(X7)=0 o r  1 a. s. (P Z ) )  o n  [ . :/j 2 (X a )d + cc] .t-co

Thus, wewe complete th e  proof o f Lemma 2.6.

3 .  Proof o f  Theorems

W e shall begin w ith t h e  proof o f Theorem 1.2. Assume that lirn T tp=v ,,,
for somesome hEJC*.

L et <dtt, fa >-=g(a) and  <vh , f a >-=g h ( a ) .  Then it holds that

(3.1) lim E a [g(a t ) ]=g h (a) fo r  each aE/ ,

and particularlyparticularly

(3.2) lim E j)g(c-1)=--h(i) fo r  each i E  S
fES

First, we claim that

(3.3) lim t , i . , , ,[g (a t )]=h(i)h(j) fo r  each (i, j)G S X S  .

For thisth is it is sufficient to  sh o w  that i f  f o r  a  sequence {t a } tending to +co,
lim t a [g(a a. ) ] exists (which is denoted by ii(a)) fo r  each aE  I , then R e i + 0 =n -
h(i)h(j) holds fo r each i ,  j E S .  Evidently it holds that

(3.4) E  E k)Ptn(j, m )g(s k -Peni)
kES mES

lim E  P t „(i, k)g(e k )=h (i) , and
kES -

(3.5) E  E k)Ptn(i, m )g(e+sm )— h(i) 2

kES mES

=lim Ç ( E  P ,( i  k ) x  k —h(i)) 2 p(dx)?=.0
X  kES -

Also, it follows that fo r  any aE / ,

(3.6) lim L [h ( a  I ); oy =+00]=Iim  tarri(at);  =+°°1t— t—

where  ii(a)= H h(i)ai.
lES
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For lim È[1.71(at) ; ai=+.0 ] lim R.1 -ga t[g (a t)i ;t-- n—co

=lim lirn L' a [P , [g (c e t n ) ] ;  al > t ] , lim lim  a [g (a t n + t ) ; a i>  t ]t - .  rz-oc. t - . 0 0  f l — flo

-=11M  E 1[g (a t ) ;  =  c o ] = 1 i m  E a [g (a t ) ]-1 im  E a [g (a t); a i < 0 0 ]t— t— t—

= gh(a)— E a [gh (a 0.i ) ;  a l <-F t e [z (a t ) ;  a 1= + co] .

Thus, using (3.6) we can see easily that

(3.7) lim i'„[Fi(at); [20]=-1im È„[E(at); po] fo r  aE I .
t— t—

Next  we shall show

(3.8) lim É,i + 0[17i(a t ) ; S2,]=lim ko:+ti[ri(at); f21] a  I •t— t—

Since D1=[0 . n< +  co fo r  a ll n ]  a.s. (P,„), it follows from (3.5),

lim Ési+d[h(at); E,t+ti[h(act„) ; 01]

^lim E ,i+ j [ (a Q f l ) ;  a=lim  ,1+.,;[I"2 ' (at) ; (21]

O n the other hand if  we identify (at, 1-5 4 , i )  with ((X L  X ) , -M 4 ),

lim ; EL,[ii(exid-E4); Q ( 1 ) ]

lim E L , [h (X i ) ;  f2" ) ] (by (3.4))

E L 1 [h (X p h (X 7 ); Q" ) ]
t--

=-1im i',i+d [h (a t); Q 1 ] holds.

Thus wewe get (3.8).
Moreover we note that TrEic-  by Lemma 4.5 in [1 0 ]. Hence we can conclude by
(3.7) and (3.8) that

Fr(s i -hei)=Ti(e i d -e l)=h (i)h (j) holds fo r all i  and j .

By (3.2) and  (3.3), it follows obviously that

(3.9) lim (  E P t(i, .i)x, — h(i)) 2p(d x)=0 ,
t—  x ,Es

and this implies (1.7).
T h e  proof of the converse is easy and it is found in  § 5 o f  [1O].

Next, we shall prove Theorem 1.1.
By Lemma 2.3, it is immediate that f o r  each hE.gc lirn TK5,-=1),, exists and

x i vh (d x )= h (i )  holds fo r  each i eS.

First we shall show  that {v h ; h e . g c l  S „  holds.
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L et hasc*, and assum e v5
,= (1 / 2 )(r i'±p ") with a n d  tt"E S . Theorem 1.2

im p lies tha t E  P t (i, j).x ;  converges to  h(i) in  probablity w ith  respect to  vh , and
J es

a lso  it is  tru e  fo r p ' and  p " .  A gain by Theorem  1.2 w e have tt"=lim =1)h.t —
Hence 1.),  is  extremal.

Conversely le t ttESex, g(a)=<p> fa >  and h ( i ) = g ( ) .  T hen  L em m a 2.6 and
(2.14) im ply that (3.9) holds. Hence,

(3.10) Um A'a [g(a t )]=ri(a) fo r each a E / .

By Lemma 2.3, (3.10) and Lemma 2.2, w e have

<ph, f a ›—g(a)1=10ii(a)—g(a)I

=10 gri g(a)-1-lim lirn E a [P a t [g(a,); Q1]] — g(a)1

E,1/5„3[f2,]]=0 fo r  each aE / .t - -

Therefore p=v h  ho lds, an d  h ESC* follows from Lemma 2.6.

4 .  Examples

In  th is  section w e shall present tw o exam ples of Case III.

1 °  Consider th e  example in  § 6 o f [10] w ith  k=+00.
L e t  S =  • = ( i ,  n); iE  N , E N I  {0} , a n d  Q= { q.,,,}  b e  g iv e n  b y  q0 , 0 ,, 1 ,•=a 1

>0, 90, 0= E  ai, q c 1 , n )  U  n+i) =2n>0, qci. n). n-i)=Pn > 0  (n 1), q(i, n), n ) -=

—(27,-  p n ), and q,,,, =0  fo r  a ll o ther (s, s').
CO

A ssum e tha t sup  (27,- hu r t )<+0 0 , E  ai<  + 00 , a n d  t h a t  th e  continuous time
72 i=

Markov chain (X 3 , P s ),E s ,  generated by Q={q,,,,}  , is  tran sien t. Then, Q satisfies
the condition  of C ase III. D enote by fi - ;  iE N I th e  se t o f  infinity  p o in ts  o f  S,
and  fo r each subset 13 N ,  define  11 (s)=P 3 [ltim X,E13 - 1 , w h e re  13°'= fi°'; iE

T h en  it is  easy  to  check th a t  Q")=[lim  Xl=lim  X i= i , "  f o r  so m e  i ]  h o ld s . So,3--
w e  have SC,, ,=-S* -= { h  ; 13cN } .

20 N ex t, w e  sh a ll co n sid e r  a n  exam ple such that SCe .3 ,1C* holds.
L et S = Z 3 U { 0, 1, 2, •••}. Q={ q i }  is given a s  follows.
L e t i = ( i i , i3 , i s )E Z 3 .

i f  i3 =0  and i3, -I-1), o r  j -=(./i, j2 , is )  w ith  1 j— i1=1.

if  j = ( i i , j 2 , i3 -1-1) w ith  i3 >0, or i3 - 1 )  w ith  i, <O,

i f  j= (ii,  j 3 2  i 3
- 1

)  w ith  i3 >0, o r  j•-=-(ii, i3, i3-1-1) with i3 <0

(0. 0, 0). 0=q0, Co, o, 0= 1 , qn , n+ i P , qn , n - 1 =  q  (n _ l )  and  qi , ; =-0 f o r  a ll o th e r  (i, j)E

N  denotes the set of natural numbers.
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S x S  with W e assum e p>q>0 . Then Q = { q}  satisfies the condition of
C ase  III. L e t L + = {i=-(ii, j2, ; i 2 >0} , {i=(ii, i 2 , i3) Z 3 ; i3<0 }, and Lo

= {0, 1, 2, -}. L et us define h+(i)=- P i [ / L +(X t )dt=d-00], 11 - (i)=P i [P L -(X t)dt
0

=+00] a n d  h o ( i) -=PID L o (X t)dt=d-09]. Then we have

,g0=- {h 0 -Fah+-Ebh - , ah+±bh -  ;

O n the  other hand it holds that

e x =  10, 110, h + , h - , ho±h + , h++11-, 11.

Thus, fo r  this example we see
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