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1. Introduction

In the previous paper [10] we studied an interacting system in population
genetics, which is called a continuous time stepping stone model. Let us review
our model. Let S be a countable set. Each element i of S is called a colony.
Assuming that there are two alleles A and B at each colony, we denote by x;
{1—x;) the gene frequency of the A-allele (resp. the B-allele) for the colony :€S.
We consider a time evolution of gene frequencies, which is caused by migration
among colonies and random sampling drift.

Let X=[0 135 be the space of systems of gene frequencies, which is equipped
with the product topology. Let C(X) be the Banach space of all continuous func-
tions equipped with the supremum norm and C3(X) be the set of all C2-functions
depending only on finite number of coordinates of X.

Let us consider the following infinite dimensional differential operator A4,

@y AfD)= 3 g 5= 2oL 4 3 (3 gL

0
i€s jes 0x;’

where N>0 and ¢;; (i, j€S) are constants such that ¢;;=0 for i#; and %%‘:O
for each ieS. !

Let {T',} be a strongly continuous semi-group on C(X) such that

(1.2) T.=1 and T,f=0 for every feC(X) satisfying /=0,
and
(1.3) TJ—fzS:T,,.Afds for every feC¥X).

Such a semi-group {T,} is uniquely determined under the following assumption,

(1.4) sup |gui| <4oo.  (cf. [10], [11]).

Here N means the effective population size of each colony and g¢;; (i#j) means
the migration rate from j€S to ieS.

Then {T,} defines a diffusion process on X, which we call a continuous time
stepping stone model without mutation and selection.

Discrete time stepping stone models were first proposed by M. Kimura and
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they have been investigated by many biologists. cf. [1], [3], [7], [8], [9], etc..
However the problems of stationary states and ergodic behaviors seems to be
difficult for discrete time models with infinite colonies.

On the other hand the stepping stone models can be regarded as interesting
examples of infinitely interacting systems, which have been studied extensively for
the last decade. (see e.g. [5]).

In particular dual processes, which are often used in the theory of infinitely
interacting systems, are powerful tools also in our model.

In the previous paper [10] we introduced the following classification by the
migration rates Q={q:;}. Let P,=exp tQ for any t=0, and P,QP, is defined by

(1.5) PP, )=Pi, j)P.ir, jo)  for each i=(i,, i)€SXS

and j=(j, j)ESXS.

We denote by (X,=(Xi, X?), PP);s,s the continuous time Markov chain on SXS,
associated with P,@P,. We assume that Q={g;;} is irreducible.

Case I. P%?’[S:IAZ(Xt)dt=+OO]=1 for all {ESXS,
Case 1. PO[["T1(X)dt=+0]=0 for all ieSxS,

Case 111, 0< P®| "1, (Xodt=+eo]<1  for all ieSxs,

where 4,={(i,, i,)€ SXS|i,=i,} and I,, denotes the indicator function of 4,.
Since Q is irreducible, Case I, Case II, and Case III exhaust all possibilities.

In [10], we solved the problems of stationary states and ergodic behaviors
in Case I and Case II. In this paper we shall investigate the general case, includ-
ing Case III. The dual process of our model is similar to that in a voter model
of Holley & Liggett [2] and also the stationary states of our model can be des-
cribed in the same fashion as the voter model.

Let us introduce the space of P,-harmonic functions 4 and a sub-class 9*
of 4.

H={h; defined on S, 0=h=1, and P.h=h for all >0},
and
H*={hed,; ltim h(X%):ltim h(XH=0 or 1, (P%?’)—almost surely on QW

for each 1€ SXxS}, where Q“’:U:IAZ(Xt)dtz-{—oo].

If we endow % with the topology of point-wise convergence, 4 is a compact
convex set. So, let us denote by .. the set of all extremal elements of 4.
Then, it holds generally that 4..S4*S 4. In particular 4*=4 holds in Case
11, because of PP[RMI=0 for each i€ SXS.

Let P(X) be the set of all probability measures on X equipped with the topo-
logy of weak convergence. Let us denote by {T%} the adjoint semi-group on
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@(X) induced by {T,} and S denotes the set of all stationary states, i.e. S=
{peP(X); T¥p=p for all t=0}. Since & is a compact convex set, we shall
investigate the structure of S.;, the set of all extremal elements of S.

Then the following theorems hold.

Theorem 1.1.
(1) For each heJdi, there exists a v, P(X) such that ltim T¥on=v,, where
0, stands for the point mass at h,

@ Syxivh(dx)zh(i) for each he s and i<,

and
() Sex={vn; heg*}.

Theorem 1.2. Let pc P(X) and hex*. Then, lim TFu=v, if and only if

(1.6) %lfil %}SP,(i, j)SXxjy(dx)-:h(i) for each i€ S,

and

1.7 %1_{2 %}S ESPL(i, NP1, k)SXxjx,”u,(a,’x)—_-h(i)2 for each 1€S.
Remark.

(i) In Case I it holds that H*=.4(.,={0, 1}.

(i) In Case II it holds that #*=49#2{c; 0=c=1}.

(iii) In Case III it holds that .9(,,S #*E.9.

In fact, we have examples of Case Ill, for which 4..S.9* holds.

In §2 we shall introduce a dual process of our model and discuss some'pro-
perties on it. §3 will be devoted to the proof of the above theorems, and in the
final section some examples will be given.

Acknowledgement. The author would like to thank to T.M. Liggett who
kindly showed him the proof of the final theorem in [2].

2. Dual processes

Let I be the set of all non-negative integer-valued functions « defined on S,
satisfying |a|= gsai< +co. a is denoted by ¢* if a;=1 and a,;=0 for j#i. For
1

acsl and €I, a+p and a—f are defined component-wise.

Let us introduce two kind of continuous time Markov chains (a;, P.)se; and
(e, Pac;, which are generated by the following infinitesimal matrices {Ra. 8}
and {ﬁa,ﬁ} on IXI, respectively.
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aiq;ij if ‘Bza—si—l-ejel (l?t]) y

4—‘1N—ai(ai—1) if ﬁ=a—5‘€],
@1 R s=

1 .
ig}gaic]ii——mig aa;—1) if f=a,
0 otherwise .
aiqi; i B=a—ceitelel (i#)),
2.2) Ra = iezsaiq” if f=a,

0 otherwise .

Here we note that (a,, P,).c; can be regarded as an independent system of P,-
Markov chains and (a,, P,).e; has the same probability law as (a;, Pa)ael up to
the hitting time for 4, where d={a<l; a;=2 for some i S}.

Also, (a;, Pyeer is a dual process of {T,} in the following sense. Let us
define a family of functions {f.}e; on X by f,,(x)=£1;g x%:, Then we have by
Lemma 2.3 in [10] the following

Lemma 2.1. Let p€ XX) and fla)={y, fe>. Then it holds that
(2.3) Ttp, fa>=Ed fla)]  for each a<l.

Let us introduce some kind of Markov times.
(=inf{t=0; |a.| <la,l}, Ey=inf{120; |a;.[=k}  for =0,
r=inf (t20; a,€I\4 and |a:|=|a,l}, o=inf{t=0; a,€4},
and 7, and o, are defined inductively by

Ta=0n-1+7(3:,.) and o,=7t,+0(J,), where ¢,=0.

Let us denote 2,=| [ Tu(@)dt=+oo] and @o=[{Tu(@dt <+ oo]. Then the fol-
lowing lemma holds.
Lemma 2.2. Let g be any bounded function on I. Then,
(1) Eugla); t<ol=E.lga); <ol if acl\d,
2) [ta<+oo, gu=+00 for some n211=2, a.s. (P.),
3) [{=+o]=[r,<+0, g,=4 for some n=1] a.s. (P,),
4 lim B[P, [2.]1=0,

G 1= utanf @

E, denotes the exectation by Ph.
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5) | E.Lgla)]—E.Lg@)]| Sl glP(<+0]= gl|PoLo, < +00],
and

(6) 1}_{2'Esi+ei|:g(at):|_EsiEg(aL)]|é“g”Psi+sf[C:+OO]§“g“ﬁsi+sj[90:| .

Proof. We shall show only (4), since (1)~(3) are trivial and (5) and (6) can
be shown by constructing coupling processes. (cf. Lemma 4.9 in [10]).
For acI\4

(2.4) lim E,[P,,[2:]; o1=+co]=lim E,[P. [2.]; 0,>1]
:151-1:2 Patglf\[(’x> tjjzﬁatglﬂ[01=+°°]]=0 .
Also,

@5) lim E,[P,,[Q]; (=+oo]=lim 3 ELP,[2]; ta<t, 0a=+c0]
=lim 35 B[ Ee, [Puy_ [2.]; 06=+00]ums,; Ta<+00]

=3 Ellim E,, [P, [2]; o;=+00]; t,<+00]=0, by (24).

Thus, we have

lim E,[P,,[0.]]=lim 3 ELP.[2]; La<t, Laoy=t00]

= 3 Bullim Eog [P, [0,]; {=+00]; {i<+00]=0.

Let us define the spaces of harmonic functions of (a;, Po)ecs, and (@, Pa)aer.
J=1{h; defined on I, 0SA<I, and E.[h(a)]=h(a)
for each a1l and t=0},

G={g; defined on I, 0=g=1, and E,[g(a,)]=g(a)

for each a=l and t=0}.

Then we can obtain the following lemma by a similar argument to Lemma 4.2,
Lemma 4.3, and Lemma 4.4 in [10].

Lemma 2.3.

(1) For each he % lzim E.[A(a,)] exists for each a<l, and

() for each g€ lim E. [gla); 20] exists for each a<l.

So, denoting @ﬁ(a)zltizn E.[h(a)] and ¥1g(a)=lim Elgla); 2,1, @ is a map
from K into @, and ¥, is a map from @ into H. Moreover, it holds that
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(3) OV g=g for each g=g, and
(4) WI@ﬁ(a)=}im E.[h(a); 2,] for each he I and a<].

Lemma 2.4 (Lemma 4.8 in [10]). Let f¥,=P.,.;[2:N\[0,<+]]. Then,
(2.6) }1}3 ESP‘(i’ k)fE= for each (i, )ESXS.

Lemma 2.5. Let f;;=P.i,.{0,<+00], fi;=P.a,[2,], and Fi;=fi; N
(l—f-i,j). Then,

(2.7) lim [im ZS n% P.(i, B)Ps(j, m)F. »n=0.

t—oo §—o0 EkE

Proof. Noting fi;=f¥;+fu; Fi; Sff+fi;A(1—f.;) and Lemma 24, it
suffice to show

28) Jfim S S P, PG, 1) n A—=Fom)=0.

, 8= EE
Let (X}, X%, P#,) be a continuous time Markov chain corresponding to the
transition probability P,@QP,. Let us denote by B, the o-field generated by
(XL, X%; 0=u=<t, 0=<v=s} and

oo=[["r (X1 XDdt=—+eo].

First we claim that
2.9) J?X;,X3=PE%.’;)[Q‘I)I.‘B[,3] a.s. (P{¥;)  for all ¢, s=0.
Since 2 is a tail event, by the Markov property we have

P@[02%| B, =P x3,[QV]=F 1 52 for each t=0.

Also, we may assume {=s, and then it follows that
PRV B, J=E@HLPEHL2V [ Be, ] Be.s]
=E(i.j)[fxg,xgl-‘3c.s]=]§s P (X3, f)fxtl.jz]?xg, x2-
Here we used a fact that f; ; is P,-harmonic function of each variable by Lemma

4.7 in [10], since f; ; is P,QP,-harmonic. For any ¢>0, there exist #,>0, s,>0
and an event Q% such that

QFfe 8,,,, and PR, [2VO02F]<e.
Then for t>1t, and s>s,,
EE%?;»EIf,,x, 2T [ J=E@,[ PRV 8, J—1gu!]

SEQ,LPENRCOR2% 8. 1]+ PEHL2VOL]<2e,

aAb=min {a,b}.
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because of PE%?;,[QTl.th,xj-——IQT.
EE%?j)[fx}, Xi/\(l—f-xi.X%)]:E:%?j)[f_xi,Xg/\(l_fxé_X%)_Ig(l)/\(l—jg(l))]
éZEE%?j)[lf_th,xf_Ig(l) [1<4e
for all t>1t, and s>s,. Thus, we get (2.8).
The following lemma holds in the same way as the voter model.

Lemma 2.6. Let g€ Ses, gla)=<{p, fo> and h(i)=g(e?). Then,
1) |glet+e)—h@DA()| S2F;, ;, and
(2) hed*.

Proof. First, we claim that

(2.10) | B ivoil gle)]—glet+e?) | S2F; ;.
By Lemma 2.2 (6), we have
(2.11) | g(ei+eh)—h()| =| Byl gla)]— E.lgla)]|

<P, [2=1-F.;.
Also,
| Byl gla)]—hG)] P} mZG)SPz(i, k)P,(j, m)(g(e*+e™—h(k))]

=3 3 PG, DPG, mA—Frm)=1—fi;.

RES MES

Thus, we have

(2.12) | E.iv il g(a)]—glei+e) | 22(1—F1. ).
On the other hand by Lemma 2.2 (5),
(2.13) |E.ivolgla)]—glei+e) | =| E.isilgla) — Eayeilgla)]|

ZP.iy.ilo,<+0]=f1 ;.
Hence (2.10) follows from (2.12) and (2.13).
Next, it is easy to see that il_m %}g Ze‘,sPs(i, EB)Py(j, m)f¥ »=0, so we have
by (2.8)

(2.14) lim 3 3 P, &)P(j, mFin=0.

§—=0 RES ME.

Accordingly, it follows from (2.10) and (2.14) that tlim E.i..;[g(a,)] exists, which
is denoted by h(i, j).

Thus, we have
(2.15) | g(e*+e)—h(i, )| =2F; ;.

Finally we claim that h(i, j)=h(@)A(j) for all { and j. Since g€ S,., it fol-
lows from (4.16) in [10] that
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(2.16) limir 2 P, k)gle* +el)di=g(e")g(e)=h(h().

T-T Jo i

Noting that A(7, j) is P,-harmonic in each variable, and combining (2.12), (2.16)
and Lemma 2.5, we can see that A(i, j)=h()h(j) for all 7 and j.
Next, we shall show he*. By (2.11),

2.17) |[ROA(N—r@D|S1—Fi; (G, JES).
Then it is easy to see that

lim A(XH=lim A(X)=0 or 1 a.s. (P;) on [S:IAZ(Xt)dtz—l-oo].

Thus, we complete the proof of Lemma 2.6.

3. Proof of Theorems

We shall begin with the proof of Theorem 1.2. Assume that lim T#p=y,
t->c0
for some heg*.
Let <y, fo>=g(a) and v, fo>=g"(a). Then it holds that

(3.1) ltifi E.[gla)]=g" (@) for each a<l,

and particularly

3.2) }im GZS PG, ))g(e))=h(i)  for each ieS.
—eo j

First, we claim that

(3.3) llim E...ilgla)]=hG)R() for each (1, j)eSXS.
For this it is sufficient to show that if for a sequence {¢,} tending to +oo,
lim E,[g(a.,)] exists (which is denoted by A(a)) for each @€, then h(ei+e?)=
h()h(j) holds for each i, j&S. Evidently it holds that

(3.4) ﬁ(si+ef)=li£r}° o 2 Pal BPLG, m)g(et+e™)

RES mES

Slim 3 PG, k)g(e*)=h(), and

T e KES

(3.5) h(2¢t)—h(i)*=lim \ ZS P, (i, k)P, (i, m)g(e*+e™)—h(i)?

n— kES ME

=limS (3 PG, B)xe—h@)u(dx)=0.
X RES

Also, it follows that for any a<],
(3.6) lim E.[h(a); gy=-o00]=lim E. [h(a): 7,="+0o0],

where A(a)= IT h(i)%:.
=
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For lim E.[A(a,); o,=-+o0]=lim lim E.[E, [g(a,)]; 6,=+c0]
=lim lim E[E. [g(a,)]; o.>t]=lim lim E.[gar,.); 0:>1]
=lim E.[g(); oy=+0c0o]=lim E.[g(a)]~lim E,[gla,); 0,<o0]
=g"@)—Eulg"(as); 0:<+o0]=lim Eu[h(ar); o,=-+00].
Thus, using (3.6) we can see easily that
3.7 lim E.[h(a); 2]=lim E[A(a); 2] for asl.
Next we shall show
(38) lim Eoiyoilh(er); 2]=lim Eooilh(a); 11 acl.
Since 2,=[0.<+co for all n] a.s. (B,), it follows from (3.5),
lim BevroCh(a) s 2]=lim Eoivoilhlas,); 21
2lim E. . lh(a,); .Q,]:li_rg E.i,5lh(a); 2.
On the other hand if we identify (@, P.i:.s) with (X}, X3), PQ,),
lim E.o..ilh(a); 2.] =lim E@[h(e giteyn); Q0]
=lim E@;,[h(XD; 2PT  (by (3.4)
=lim E@,Lh(XDAXD) ; 2e]
=££r§ E.i.olh(a); 2,1  holds.

Thus we get (3.8).

Moreover we note that 1.4 by Lemma 4.5 in [10]. Hence we can conclude by
(3.7) and (3.8) that

h(ei+e)=h(ei+e)=hEA()) holds for all 7 and .
By (3.2) and (3.3), it follows obviously that

(3.9) lim Sx(%}s P.(i, Dx;—h@)u(dx)=0,

t—co

and this implies (1.7).
The proof of the converse is easy and it is found in §5 of [10].

Next, we shall prove Theorem 1.1.

By Lemma 2.3, it is immediate that for each he4 Itim T¥#0,=v, exists and
Sxxivh(dx)zh(i) holds for each i€S.

First we shall show that {v,; he 4*} CS., holds.
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Let he s*, and assume v,=(1/2)(¢'+p") with ¢’ and p’€S. Theorem 1.2
implies that ESP‘(i’ 7)x; converges to h(i) in probablity with respect to v,, and

also it is true for g’ and p”. Again by Theorem 1.2 we have ;z”zlirg T¥y =v,.
Hence v, is extremal.

Conversely let g€ S.,, gla)=<g, f«»> and h(i))=g(¢!). Then Lemma 2.6 and
(2.14) imply that (3.9) holds. Hence,

(3.10) lim E.[gla)]=h(a) for each acI.

By Lemma 2.3, (3.10) and Lemma 2.2, we have
[<vn, fud>—g(@)|=|Dh(a)—g(a)]
=|0¥,g()+1im lim E[E. [g(as); 21— g(a)]

<lim E,[P,[2,]]1=0 for each ac].

Therefore pg=v, holds, and h€ 4* follows from Lemma 2.6.

4. Examples

In this section we shall present two examples of Case Il
1° Consider the example in §6 of [10] with k=00,
Let S={s=(, n); i€ N, neN}UJ{0}, and Q={gs, s} be given by g u n=a;
>0, qo,o——‘—‘iéah G m, onen=242>0, Gam.ca-d=f2>0 n2Z1), qumw. =
—(An+pa), and ¢;, =0 for all other (s, s').

Assume that sgp(2n+yn)<+00, g}lai<+00, and that the continuous time

Markov chain (X,, P,)es, generated by Q={q; s}, is transient. Then, Q satisfies
the condition of Case III. Denote by {i*; i€ N} the set of infinity points of S,
and for each subset SCN, define /’lﬂ(s):Ps[ltiIn X,ep~], where p*={i"; i€ fp}.

Then it is easy to check that Q“’:[ltim X}:tlim X3=1* for some i] holds. So,
we have H.,=H*={hg; BCN}.
2° Next, we shall consider an example such that 4%,,.S&49* holds.

Let S=2*U{0, 1, 2, ---}. Q=/{q: ;} is given as follows.
Let 1=(1,, 1y, 13)E€ 2"

1 if 13:0 and j:(il; in il)r or j:(jly j2) 1'3) With Ij_iI:]‘ .
gi.;=1 p if j=(i,, iy 1,-+1) with i,>0, or j=(1, ¥, i,—1) with <0,
g if j=(,, i, 1:—1) with >0, or j=(,, i, 1;+1) with 7,<0,

40.0.0.0=q0, 0, 0.0=1, gn.ns1=0, Gn.n-1=¢ (n=1) and ¢; ;=0 for all other (i, j)E

N denotes the set of natural numbers.
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SxS with i#j. We assume p>¢>0. Then Q={g; ; satisfies the condition of
Case lII. Let L*={i=(iy, iy, is)EZ%; i,>0}, L ={i=(,, 1y, is)€Z*; 1,<0}, and L,

—{0,1,2 ). Let us define h"(i):Pi[S::[ﬁ(Xt)dt=+00], h-(i):Pi[rlL—(X»d t

=+o0] and ra@=P{[["T.,(Xdt=-+e0]. Then we have

H*={ho+ah*+bh~, ah*+bh™; 0=a, b=1}.

On the other hand it holds that

‘ﬂ[GI: {Oy hOJ h+’ h_v h0+h+; h0+h_: h++h_7 1}'

Thus, for this example we see ., S4*.
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