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L et k  be a  f ie ld . L e t X 1 , X 2 , •••, X i ,  be elements in  an  over-fie ld  of k  such
a that h a v e  m eaning . W e consider deriva tions o f  k (X i , X1, •-•, X n )  o f th e

ax,
forms

a l a l a1 a  
d= +  • ±  •  ± x n _, a x n

and

a a a1  a •ax, + x, ax, ± x,x,
• 
 ax3

+  
X1 .. .X -1  a x n

Using (1) o r  (2) in  the case ch (k )=0 and (2 ) in  th e  c a s e  c h  (k )= p # o , we
prove the  only if  p a r t  o f  th e  follow ing theorem . T h e  if  p a r t  is well-known (e.g.
Heerema-Deveney [1]).

Theorem 1. L et KI k be a f initely  generated f ield ex tension. T hen K I k  is
regular i f  and only  i f  there ex ists a derivation o f  K  whose f ield of  constants is
k  when ch (k)-=0 and there ex ists a  higher derivation o f  inf inite rank  o f  K whose
field of constants is  k  when ch  (k)= p#0.

N ext, using (2), w e  g iv e  a n  a lte rn a tiv e  p roof o f  t h e  o n ly  i f  p a r t  o f  th e
following Weisfeld's theorem in [4].

Theorem 2 .  L et K lk  be a purely inseparable field extension of  finite exponent
r where ch (k )---p# 0. Then, K lk  is m odular if  and  only  i f  there ex ists a higher
derivation o f  rank  in w ith pr - 1 <m -p r, whose f ield o f  constants is  k.

Weisfeld defined and used the  no tion  o f non-integrable elem ents f o r  higher
derivations b u t in  our m ethod, we only use non-integrable elem ents o f  ordinary
derivations. O ur proof is much simpler than W eisfeld's one.

Finally w e give a  proof o f  th e  only if  p a r t  o f  th e  following theorem, using
Miyanishi's idea in  [2 ] and  Z erla 's  result in [5].

( 1)

( 2 )
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Theorem 3. L et K lk  be a f initely  generated f ield ex tension w here ch (k )=
p # 0 . Then, K lk  is regular if  and only i f  there exists an iterative higher deriva-
tion of  infinite rank, whose f ield o f  constants is k.

Although th e  only if  p a r t o f  Theorem 3 is stronger than that of Theorem 1
for ch (k )=p#0 , our method used in  th e  la tte r  is d irec t an d  common f o r  other
purposes (Theorem 1 for ch (k )=0 and Theorem 2).

In  working on  these problems, Prof. Nakai, himself, gave the author precious
advices, to whom th e  author would like to express his thanks.

1. Preliminaries.

In  this section, k, K and  L  denote fields. k is a  subfield o f K  a n d  L  i s  an
overfield o f K.

Lemma 1. L et L be separably  algebraic. L et D= {D 1} " i ‹ .  be a h igher
derivation of  K  where m may be co and let k be the field of constants of D .  Assume
that k is algebraically closed in  L . D enote by  D ' the  unique ex tension of  D  to
L . T h e n  k is  the f ield of  constants of  D'.

Pro o f . L et y L  be such that D "T=0  fo r  1 Since

Die y i= E

we have D' 1y 1=0  and therefore D' i (ay t )= (D i a)y i  f o r  a Elf, l i<T n , 0 ./ . Let
f(Y )=1 7 n+a 1 Yn - ' +•••+a„(cr i EK, 1. .j - n) be a minimal polynomial of y over K.
Then we have

0= D' i (f00)=- (D i ai)Y n - i +(D i a2).Yn - 2 +••• +D i an

Hence Di cri =D i a,=•••=D i a n =0 (1_- _i<m ) and w e h a v e  cri E k (1 .j n ) .  Hence
y  is algebraic over k and  y E k by our assumption.

Lemma 2 .  L e t d  be a derivation o f  K . L e t  k be the f ield o f  constants of d.
L et H  be an overfield o f  k contained in  L, such that K  and H are linearly disjoint
over k. W e denote by d an extension o f  d  to K. H  su ch  th at ja = 0  f o r  aaH.
Then

1) k.H is a f ield of  constants of  d.
2) If  A K  and 21sE d(K), we have ,IGE d(K.H).

Pro o f . If  H  is algebraic over k, our assertions follow from linear disjointness,
directly. If  H=k(x), a  purely transcendental extension, we easily obtain 1) and
2) embedding H  in  k ((x )). O ur proof is reduced to these two cases.

Lemma 3. A ssume that ch (K)=- 0 and  that L IK  is  algebraic . L e t  d  b e  a
derivation of  K  and le t d ' be the unique ex tension of  d t o  L .  T hen, if  2 K  and
2EE d(K), we have 2 EE d'(L).
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Pro o f . Assume that there exists y E L  with d 'y —=A. L e t  f (Y )= Y n + ce 1 Yn - 1

-÷•••+a n  be the minimal polynomial of y over K .  Then it holds that

0=c/' f(y).= {(da1)y 7' +(da2)y n - 2 +•••+dan}

I n y ' 1 + (n - 1)a1y n - 2 +•••±an-il 2

= (d a 1 d-n2)yn - 1 -1-•••

Hence dcr1 -i-n2=0 and 2 = d ( — a 1 )ed (K ), a contradiction.

2 .  Proof o f  Theorem 1  fo r ch (K )= 0 .

We can reduce our assertion to the case where K = k (x i , x 2 , ••-, x n ), a  purely
transcendental extension of k  w ith  indeterminates x 1 , x 2 , •••, x n , by Lemma 1.
Therefore, our assertion follows from the following two lemmas.

Lemma 4. Let x  be an algebraically  independent element over a fie ld  L  of
characteristic O. Let d  be a derivation o f L  whose field of constants is  k .  Let d
be an extension of d to  L (x )  such  that J x = 0 .  L e t  E  be a deriv ation  o f  L (x )
over L  such that s (x )= 1 .  L et 2 E L  and 2E t d (L ). W e put d '— d +2 .  T hen , the
field of constants of d ' is h.

Pro o f . Let u (x )E L (x )  such that d 'u (x )= -0 . Then,

0=d 'u (x )=c7u (x )-H lu '(x ) •••(a ).

h(x) We put u (x )= with g (x ) ,  h (x )E L [x ]  a n d  (g (x ) ,  h (x ) )= 1 .  I f  u -=u (x )E L ,
g (x )

we have du-=0 and u E k .  Therefore we assume th a t u(x)ffi L .  Let , E. 1 ,  . 2 ,  • • • . /

be roots of the equation u '(x )= 0  in  the algebraic closure f  o f L  which a re  not
roots of g (x )= 0 .  We put c = u ( e )  and take  cE k  such that c * c ,  for
Since u (x )E L ,  there exists at least a solution eE T  of the equation h (x )= cg (x ).
Then g(e)#0, because (g (x ), h (x ))-= 1 . Let d* be the unique extension of d  to
L (e ) .  Then it holds that

0= d *(u (e))-=(d u (x ))„ +(u/(x))., d*e • ••(b).

By (a ) and (b ) we have d*e=-2 which contradicts Lemma 3.

Lemma 5. Let x 1 , x 2 , • • -, x . be algebraically  independent elem ents over a
field k of characteristic O. Put K = k (x ,, x 2 , •••, x.). Let d be a derivation of the
f orm  (1 ) or (2) w ith X i = x i . Then w e have

-1 EE d (K ) in case (1 ) and 1 
EE d(K ) in case (2).

xix2".x.

Pro o f . We give a  proof for case (1). Case (2) can be proved in  th e  same



a 
. T h e n  K =IC (x .)ax . 1

t h a t  d u = — .  W e  put
x nh d g  1

, we have x n 1g.
x .

w h e re  RG.K/[xn] and
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1
Xn-1

and, d and d, map K i [ x ]  in to  KTx n ]. Let u GK such

u = L1 w ith  g, hEK Tx n ]  and (g , h )=1 . Since du= 
 (dh)g—

g 2

H ence there exists a positive integer 1 such  tha t g = x ; z g.

R(0)#O. T hen w e have
1du= fx dih•R hdi

1
k )+ (hs x. ing — h4.4.2 7, - 1h4 - 1 ,01xVg 2 X n - i n

x

1= — .
x n ,

Since l+1 2 , it ho lds tha t x n  /h R , a contradiction.

3. Proofs o f Theorem 1  fo r ch (k)-_, p# o and Theorem 2.

Lemma 6. L et L/k be a f ield extension of characteristic p # 0 .  Let x  be an
element of an overfield of L .  Assume that x  is not separably  algebraic ov er k,
and L  and k(x) are linearly  disjoint over k. Let d be a  derivation o f  L  whose
field of constants is k ( , therefore k D L P ).  W e take J, s, A  and d' as in  Lemma
4. Then the f ield of  constants of d' is  k(xP).

Pro o f . Assume t h a t  d 'f (x )= 0  fo r f(x ) L (x ) .  W e  express f (x )=f o ± f ix
+•••+f p-2X P - 2 + fp_ i xP - ',  where fi E L ( X P )  We denote by d itself the
extension of d to L (x 5 )  such  that d x P =0 . T hen  w e  have

0=d'u(x)=df0+(df2)x±•••+(dfp-2)xP - 2 +(dfp_i)xP - 1

+ 2(f 14-2f 2 x •• • ± p —lf p _i xP - 2 ) .

H e n c e  w e  have dfp_ 1 = 0 , dfp_2-1-25— lf 5 _1 =0 , •••, df 0 + 2 f 1 = 0 .  F ro m  df p _1 =0
and by Lemma 2, 1) we have fp _ ,E k (xP ). If f_ # 0 , d ( — fp-2/1)-1fp_1)=-2 contra-
dicts Lemma 2, 2). Therefore fp_ 1 = 0 .  Using the same reasoning and by induc-
tion w e prove f1=f2=•••=fp_1-=0 and finally f o k (x P ).

Lemma 7. L e t  L l k  b e  a  fie ld  extension  of characteristic p # 0 .  Let
x l , x2, •••, X n  be elements in an overfield of L such that the x i  a re  not separably
algebraic over k (1 - i n). We put x 0 = 1 . L e t  d  be a  deriv ation o f  L  ov er k.
Assume that L(x o , x l , •••, X 1-1 ) and k(x i ) are linearly disjoint over k for i=1 , 2•••, n
and 1€Ed(L). Then for the derivation

d '= d + 1 a 1  a 1 a 
xo ax, x o x, 5 X2 x 0 x x 1  a x n

of L (x o , x 1 , •••, x.), we have

w a y . W e  put K '= k (x i , x2, •••, x._1) and d =  d i+

[

x .{ (d ih  •g  hd i g )+ (h. Ilkx )1V 1 g 2 n Xn-1
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1
cEd/(L (x o ,  x i ,  ••• , x .) ) .

X0X1* -  Xn

P ro o f .  We use induction on n .  The assertion is true for n=0 by our assump-

tion. Assume n >O. We put L '= L ( x 2 ,  x i ,  •••, x n _i ) and d '= d i +
1 a 

1
X oX i—  X n - i  •  a x . •

L et u E L ( x o .  x l , •••, x n )  be such that d 'u = . We write

U
=

 U 0 +
1
11)(71 +  • • •  U P -1  X P1 - 1  7 u iE L '(x f „) .

Then
d 'u =d iu 0 + ( d iu i ) x .+ • • • + ( d iu p - 2 ) x g - 2 + ( d iup_D xg-1

1
(u ,-P 2 u 2 x n +•••+P -1 u p - ix g - 2 )xo•••xn

xr,-1

X0X1 —  X n - i • Xr,
Hence d i ll p--1 =

1
 a n d  d i (x gu 1p_i)=  which contradicts the
x ox i— x n_i•x ?,)

induction assumption by Lemma 2, 2).

Hereafter we write as p ( r)  instead o f writing as pr.

Proof  of  T heorem  1 f o r ch (k )= p * o . We can reduce our assertion  to  the
c a se  where K =k ( x i , x 2 , •••, x n ) ,  a  purely transcendental e x te n s io n  o f  k  with
indeterminates x l , x2, •••, x n ,  by Lemma 1. We define a  higher derivation D =
{Di } bY

D 1 x 1 =1 ,  D 2 x 1 =D 3 x 1 =•• •=0

1
D 1 x 2 = —  ,  D 2 x 2 =D 3 x 2 =•• •=0

Xi

D 'x a=
1

, D 2 x 2 =D 3 x 2 =•••=0
x ix 2

D 'x f l=
1

, D 2 x n =• • • =0 .
X  IX 2 '" X  n -1

D  is determined by an  embedding 0  of K  in  the pow er series r in g  K IL T ]] such

that 0(x1)=x1+ 0(x2)=x2+
1

 T ,  • •  ,  0 ( x n ) =-- x
1

n + T ,  th a t is , fo r  a n
X1X 1  X n - 1

arbitary f ( x i ,  x2, xn) K , f ± ( D i f )T -f -(D 2 f ) T 2 -1-•-• is th e  T-adic expansion of

x2± 1  T, •••,
1

xn+ T ) .  In  order to prove our assertion, we haveX1x 1 • • • X n - 1
only to show that th e  f ie ld  o f  c o n s ta n ts  o f  {D', D 2, •••, DP") - 1 } i s  k i f P ( ')  for
every r_>_0. We use induction on r. It is  t r iv ia l  f o r  r = 0 .  A ssum e th at it is
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true for r. Then D ', D 2 , •••, D 9 ( r ) - 1  are zero maps on kKP ( r) and DP ( r) maps kKP ( r)

into itself, because ( x ?0 , f (r), X 1
2
) ( r ) , • • • , x r7 ) ) )=f ( x r(r)+T p( , ), x v o +   1   7 ,  p(r)

x '1
x rr )  + x f ( r ) * • • X )  T

P ( r ) G  k  K P r r T I T P ( r ) 1 1 .  Therefore the  restric tion of D P ( r )  in
g ( r

k  K P ( r )  i s  a  derivation and equals

a ,  1 a    1  a 
a(xfo- , )rn  .9cr(r) a(x )) a(x )•

Therefore by Lemma 6  and Lemma 7, the  fie ld  o f constan ts  o f D P ( r )  i n  k  K P ( r )

i s  kKP ( r+1). F o r  f (x f ( r+1 ) , x x rr+1 ) )E  k  K p (r+1 ) ,f ) ,  f  ( x f  (r+1) + T p ( r + 1 ) ,

1 1
X 72)(r+1 )4_ Tp(r-1-1), x 73t (r +1)  T P(r+1)) G  k  K p(r+1) p(r+1)11.

x r-1-1) X iP(r+1
" '

) vp(r+1)
A - 7 1 - 1

D 2 =•• • = D P ( r + 1 ) - 1 =  0  in  kKP ( r+1). Hence we a re  done.

Before proceeding to th e  proof o f Theorem 2, we give

Lemma 8 .  L et k  be a f ield of  characteristic p*o. L et I  be a  well-ordered
s e t  without maximal element. We denote by e + 1  th e  successor o f  eE I. Let
L  lk  be a  purely inseparable extension of k  and L = k ( c 1 1 ,)  where cU,EE k . We

cEl

define a derivation of L  over k  such that (IV , -=̀ 11,`U ,+1. Then the constant f ield
o f d  is k (L P)=2  k (cU P) and 1EE d(L).

Proof is easy. Hence we omit it.

Proof o f  Theorem 2. L e t A  be a  subbasis  o f K .  A s  in  W e is fe ld  [3 ] , we
split A  into B = {TO 'el a n d  { x 1 , z 2 , • • • ,  x } su c h  th a t  exp u,<exp x ,  f o r  every
cc/  and i=1, 2, • ••, n and there are  infinitely many elements of exponent q=m ax

e E l

exp u, i f  B * 0 .  Then well-order I  so that this ordering keeps th e  orders of the
exp u , .  We pu t e ,= exp  u , and  e ,= exp  x-  W e  m a y  assum e that
r=e , _ e 2 • • • en . We consider a  higher derivation D = {D i } 1 <77,  which is de-
termined by th e  embedding 0  of K  into K E T ]ll(T m ) , a pow er series r in g  over
K  modulo (Tm ), such that

1 
Sb( x)=- x i+  x  op ceo-ei ) x .  P(ei-1—e0 T P ( ' — e i )

0(u,)=-74,-1- u ,u M , +i - e 0 T P ( r - e d

where we put x 0 = 1  an d  e 0 = -r+ 1 . O ur asse rtion  follows from the following fact.
For every non-negative integer  l r the field of constants of {D1, D2 . D p ( 1 ) - 1

is

K1=—k({74,} c E . T ,  x , • • • , X  j) (X111:7-1-7.71), x re 0 -7- i))

if  there exists j j- n )  such that ej < r— l e j _ ,  and otherwise



1
r - 1 ) + X r e°

 TP ( " ,

and in the second case and

- r - 1 )+ u f ( e c r - O u r.g ,+ i - r -1 )T p (1 )
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If1=k ({ u,}  cE11, {UT"'-r-t)},e12, x re n —r—o,x re o — r— o \

where /1 is  a  subset o f /  consisting of elements t  such that e , < r - 1  a n d  12 i s
the  complements of I  in  / , provided that If t is  the field of constants of {D', D 2 ,
•-•, Dm} when 1= r.

We prove this fact by induction on 1. It is trivial when 1= 0 .  Assum e that
it is true fo r an  1 (0 1- r). Then

0 ( x f ( e i - r - 1 ) ) , x f ( e i -

where in  th e  first case

0(urce , - r- 1 ) )= u re ,

fo r tG/ 2 in the second case and

1 
0(.7C i) =  X  i+ T P (r -e i ) r— e1>1

x re0 - €0 •••x n i - i+ei )

and
r— e,>1

for other i 's  and c 's .  Therefore DP ( z ) induces a  derivation o f  K 1 o ver k ({U ,} ,E 1 ,

xn, •••, 2)  in  th e  first case a n d  over k({u,} ,E! 1) in  th e  s e c o n d  c a s e . We can
apply Lemma 6 , Lemma 7  a n d  Lemma 8  to this induced derivation a n d  it  is
easily seen that the  fie ld  of constan ts of this derivation is K 1 , 1 a n d  DP ( I ) , •••,
D p (1 + 1 )-1  (D p (1 ) ,D m  in  case 1= r - 1 )  are zero maps on

R em ark . In  this section, we used derivations o f th e  form (2 ) b u t we cannot
replace it by those o f th e  form (1), which will be shown by the following counter
example.

E xam ple. L e t k  be a  filed o f characteristic p # 0 . x , y , z ,  a r e  independent
variables over k.
F or the  quation

af 1  a f _1
ax ' x• ay —  y '

we have solutions f E k ( x ,  y )  such that

(p -1 )! (p -2 )!1 ' 0 '
yf=c+• x +  y p  x y +  +  x

YP Y P Y

with cE k .  A nd the  u =f — z e k ( x ,  y , z )  are solutions for

au 1  au au+  + .
a x  x  a y  y  az
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4 .  Proof o f  theorem 3.

Zerla proved in  [5 ]  our assertion  w hen t h e  cardinality o f  k  is countable.
Therefore we may assume that k  contains infinitely many algebraically indepen-
dent elements {o  o v er the prim e field, where n=trans. deg k

K .  Our assertion is also reduced to the case where K  is  a  purely transcendental
extension K =k (x i , x2, •••, x .) over k  (e .g . [5 ], L em m a 5 ). W e u s e  Miyanishi's
idea in  [ 2 ] .  In  the quotient k((x)) o f th e  form al p ow er series r in g  o ver k ,  n

elements y i =x , y i = E a i j x.P(1 ) (2 i._ n )  a r e  algebraically independent over k..7 =0
L et x  be a n  embedding o f K  in  k((x)) such that x (x ,)=y i (l i _ n ) .  We consider
the standard iterative higher derivation D  o f  k((x)), which is determined by the
embedding 0  o f  k((x)) in  th e  formal p ow er series r in g  k ((x ))[[7 ]] such that
0(c)--=c (c E k ) and 0 ( x ) =x +T . Then the field of constants of D is k .  D induces
a n  iterative higher derivation o f K  through x  whose field of constants is  k.
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