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Let & be a field. Let X, X,, -, X, be elements in an over-field of % such

that 8§(~ have meaning. We consider derivations of k(X;, X, -+, X5) of the
forms
0 1 o 1 0 1 0
= . ST T T A 1
L) RIS R LIS GRS AL SR ' (D
and
0 1 0 1 0 1 0
- 9% 4y, 9% 4 - 9 4 .4+ 9 2
L O ) ALED'% A ) LD NS SR & (2)

Using (1) or (2) in the case ch(£)=0 and (2) in the case ch(k)=p+0, we
prove the only if part of the following theorem. The if part is well-known (e.g.
Heerema-Deveney [1]).

Theorem 1. Let K/k be a finitely generated field extension. Then K[k is
regular if and only if there exists a derivation of K whose field of constants is
k when ch (k)=0 and there exists a higher derivation of infinite rank of K whose
field of constants is k when ch (k)=p+0.

Next, using (2), we give an alternative proof of the only if part of the
following Weisfeld’s theorem in [4].

Theorem 2. Let K/k be a purely inseparable field extension of finite exponent
r where ch (B)=p=+0. Then, K/k is modular if and only if there exists a higher
derivation of rank m with p™*<m=p", whose field of constants is k.

Weisfeld defined and used the notion of non-integrable elements for higher
derivations but in our method, we only use non-integrable elements of ordinary
derivations. Our proof is much simpler than Weisfeld’s one.

Finally we give a proof of the only if part of the following theorem, using
Miyanishi’s idea in [2] and Zerla’s result in [5].
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Theorem 3. Let K/k be a finitely generated field extension where ch (k)=
p#0. Then, K/k is regular if and only if there exists an iterative higher deriva-
tion of infinite rank, whose field of constants is k.

Although the only if part of Theorem 3 is stronger than that of Theorem 1
for ch (k)=p+0, our method used in the latter is direct and common for other
purposes (Theorem 1 for ch (k)=0 and Theorem 2).

In working on these problems, Prof. Nakai, himself, gave the author precious
advices, to whom the author would like to express his thanks.

1. Preliminaries.

In this section, £, K and L denote fields. £ is a subfield of K and L is an
overfield of K.

Lemma 1. Let L/K be separably algebraic. Let D={D},qicm be a higher
derivation of K where m may be o and let k be the field of constants of D. Assume
that k is algebraically closed in L. Denote by D’ the unique extension of D to
L. Then k is the field of constants of D’.

Proof. Let yeL be such that D’*y=0 for 1=</<m. Since
D/iylzz D’ilyD’”y'-‘D'“y (1, +ipt e +i,=1, 1, =20),

we have D’?y'=0 and therefore D’(ay")=(D'a)y’ for acK, 1=i<m, 0=[. Let
MN=Y"+a,Y* '+ +a, (a;€K, 1=j=<n) be a minimal polynomial of y over K.
Then we have

0= D" (fy)=(D'a)y™ +(D'a)y™ 4+ Dicty

Hence Diay=D'a,=--=D'a,=0 (1<i<m) and we have a;k (1=j=<n). Hence
y is algebraic over 2 and yek by our assumption.

Lemma 2. Let d be a derivation of K. Let k be the field of constants of d.
Let H be an overfield of k contained in L, such that K and H ave linearly disjoint
over k. We denote by d an extension of d to K-H such that da=0 for a<H.
Then

1) k-His a field of constants of d.

2) If 2eK and A& d(K), we have A& d(K-H).

Proof. 1If H is algebraic over k, our assertions follow from linear disjointness,
directly. If H=Fk(x), a purely transcendental extension, we easily obtain 1) and
2) embedding H in k((x)). Our proof is reduced to these two cases.

Lemma 3. Assume that ch (K)=0 and that L/K is algebraic. Let d be a
derivation of K and let d’ be the unique extension of d to L. Then, if 2K and
A& d(K), we have 2 d'(L).
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Proof. Assume that there exists ye L with d’y=A4. Let f(Y)=Y"4a,Y"!
+--4+a, be the minimal polynomial of y over K. Then it holds that

0=d’f(M)={{da))y* ' +(day)y" "+ +d az}
+{ny" ' +(n—Da,y" *+-+an_i} 2
=(da;+nA)y" 1+

Hence da;+n41=0 and 2=d<_7a’>ed(K), a contradiction.

2. Proof of Theorem 1 for ch (K)=0.

We can reduce our assertion to the case where K=£k(x,, x,, -+, x,), a purely
transcendental extension of %2 with indeterminates xj, x,, :-, x5, by Lemma 1.
Therefore, our assertion follows from the following two lemmas.

Lemma 4. Let x be an algebraically independent element over a field L of
characteristic 0. Let d be a derivation of L whose field of constants is k. Let d
be an extension of d to L(x) such that dx=0. Let ¢ be a derivation of L(x)
over L such that e(x)=1. Let A€ L and A& d(L). We put d’=d-+2e. Then, the
field of constants of d’ is k.

Proof. Let u(x)e L(x) such that d’u(x)=0. Then,
0=d’'u(x)=du(x)+u'(x) ---(a).

h(x)
g(x)
we have du=0 and u<k. Therefore we assume that u(x)e& L. Let &, &, =&
be roots of the equation #’(x)=0 in the algebraic closure L of L which are not
roots of g(x)=0. We put c;=u(&;) and take c€k such that c#c¢; for 1=/i=l/.
Since u(x)e L, there exists at least a solution £ L of the equation h(x)=cg(x).
Then g(£)#0, because (g(x), h(x))=1. Let d* be the unique extension of d to
L(&). Then it holds that

0=d*(u(E)=(du(x)z=s+W'(x)z=:d*¢ - (b).

By (a) and (b) we have d*£=2 which contradicts Lemma 3.

We put u(x)= with g(x), h(x)e L[x] and (g(x), h(x)=1. If u=u(x)elL,

Lemma 5. Let x,, x4, -, Xn be algebraically independent elements over a
field k of characteristic 0. Put K=k(x,, x5, -+, x5). Let d be a derivation of the
form (1) or (2) with X;=x;. Then we have

—1—€E d(K) in case (1) and ——1——615 d(K) in case (2).
Xn X1Xg Xq

Proof. We give a proof for case (1). Case (2) can be proved in the same
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L g Then K=K'(x.)
Xn-1 0xn 1
and, d and d, map K’[x,] into K'[x,]. Let ueK such that du=;—. We put
— 1
uzg with g, he K'[x,]and (g, h)=1. Since du:mg?—h‘—iﬁ:x—, we have 1,/ g.
Hence there exists a positive integer [ such that g=x4g where geK’'[x,] and
2(0)#0. Then we have

way. We put K'=k(x,, x5, -+, Xn-;) and d=d,+

du=—gi—r (x4 kG~ hid s B)F—— (i Kb G~ h Kb — R X2}
Xn g Xn-1
1 1 L Wz
:W[xn{(dlll-g—hd,g)—l— P (ha,8—hgz,)t — P lhg
1
=

Since [+1=2, it holds that x,|/hZ, a contradiction.

3. Proofs of Theorem 1 for ch(k)=p+0 and Theorem 2.

Lemma 6. Let L/k be a field extension of characteristic p#0. Let x be an
element of an overfield of L. Assume that x is not separably algebraic over k,
and L and k(x) are linearly disjoint over k. Let d be a derivation of L whose
field of constants is k (, therefore kDL?). We take d, ¢, 2 and d’ as in Lemma
4. Then the field of constants of d’ is k(xP).

Proof. Assume that d’f(x)=0 for f(x)eL(x). We express f(x)=fo+f1x
doo ot fp-ex PP fp 1 xP7Y where fye L(x?) 1Si<p—1). We denote by d itself the
extension of d to L(x?) such that dx?=0. Then we have

O=d'u(x)=dfo+df)x+F+(dfp-2)x? 2+ (dfp-1)x??
+Afr+2fox+ -+ p—1fp 1 xP72).

Hence we have df,.,=0, dfy.+Ap—1fp-1=0, -, dfo+2f,=0. From df,-,=0
and by Lemma 2, 1) we have f,_;€k(x?). If f,_.,#0, d(—fp-2/p—1fp-1)=A4 contra-
dicts Lemma 2, 2). Therefore f,.,=0. Using the same reasoning and by induc-

tion we prove fi=f,=--=f,.,=0 and finally f,€k(x?).

Lemma 7. Let L/k be a field extension of characteristic p+0. Let
X1, Xa, *, Xn be elements in an overfield of L such that the x; are not separably
algebraic over k (1=i<n). We put x,=1. Let d be a derivation of L over k.
Assume that L(xo, xy, =+, x4-1) and k(x;) are linearly disjoint over k for i=1, 2---, n
and 1l&d(L). Then for the derivation

RS R 1 5

Xo 0X1  XoX1 O0x, XoX1 " Xn_oq O0Xp

of L(x,, X1, -+, X5), we have



Some types of derivations 379
1

XoX1"Xnp

ng/(L(xo, X1, =, xn))'

Proof. We use induction on n. The assertion is true for n=0 by our assump-

. , . 1 0
tion. Assume n>0. We put L'=L(x,, xy, -**, X5-1) and d —dl—l-m P

1 .
Let ue L(x,, x4, -, x») be such that d’u=———— We write
xoxl...xn
U=uo+uxXnt+-Fupaxft,  uL(xf).
Then
d'u=duo+(du)xn++(d 1t p-) x84+ (d1up-1) x5!
1 N .
+ (ui4+2usx 4+ p—1lup 1227
xou--xn
_ x5
—xoxl"'xn—l'Xg )
1 1 . .
Hence dlup_lz——————p and d,(xBu,_,)=———— which contradicts the
XoX1*Xn-1*Xn XoX1*Xn-1

induction assumption by Lemma 2, 2).
Hereafter we write as p(») instead of writing as pT.

Proof of Theorem 1 for ch(k)=p+0. We can reduce our assertion to the
case where K=k(x,, x,, -, x,), a purely transcendental extension of k with
indeterminates x,, x,, -+, X5, by Lemma 1. We define a higher derivation D=

{D% 1ci<. bY
Dix,=1, D%x,=D%x,=---=0

Prrml e b0
X1

D'xp=—————, Dix,=--=0.

X1Xo**Xpn-1

D is determined by an embedding ¢ of K in the power series ring K[[7T]] such

that ¢(x)=x,+T, ¢(x2)=x2+—xl—T, --~,¢(xn)=x,,+—x—lx—T, that is, for an
1 1" An-1
arbitary f(xi, xq, -+, xa)€K, fH(Df)TH(D?*f)T?*+--- is the T-adic expansion of
f(xl—i—T, xg—{——l—T, N x,,-i-—l——T). In order to prove our assertion, we have
X1 X1 Xn-1

only to show that the field of constants of {D?!, D2, ---, D?P™-1} is pKP™ for
every »=0. We use induction on ». It is trivial for »=0. Assume that it is
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true for ». Then D!, D? ..., DP™~! are zero maps on kK?™ and D?™ maps kK?™

. . 1

into itself, because ¢(f(xP™, x™, -, xﬂ(”)):f(x{"”-l—T”‘”, xPM 4 prI TP ..
1

xBT+ L

XPO B Tp(7)>EkK"(T’[[T””’]]. Therefore the restriction of DP™ in

EKP™ is a derivation and equals

s 1 3 1 ?

. ++ . .
Axp™) T w0 A )T g 3

Therefore by Lemma 6 and Lemma 7, the field of constants of D?™ in kKP™

IS ka(1'+l)' FOI' f(xf)(r+l)’ xé’(T*i'l)y ey xg(T'Fl))e ka(T'O-l)’ ¢(f)=f(xf7(7‘+l)_|_Tp(’r+l)’
1 1
p(r+1) pr+1) . p(r+1)y = Tp+D p(r+1) pr+1)
x} + e T , o0, XB + TGS TRICSY T YekK [[T 1.
Xy X Xn-1
D'=D?=...=DP0+b-1=( in pKP"*H  Hence we are done.

Before proceeding to the proof of Theorem 2, we give

Lemma 8. Let k be a field of characteristic p+0. Let I be a well-ordered
set without maximal element. We denote by ¢+1 the successor of c=]. Let
L/k be a purely inseparable extension of k and L= @ k(U,)) where U,&k. We

define a derivation of L over k such that dU,=U,U,.1. Then the constant field
of d is k(L"):(EX}k(‘U?) and l1&d(L).

Proof is easy. Hence we omit it.

Proof of Theorem 2. Let A be a subbasis of K. As in Weisfeld [3], we

split A into B={u}.e; and {x,, x,, -**, x,} such that expu,<exp x; for every
¢cel and /=1, 2, -, n and there are infinitely many elements of exponent q:maIx
133

expu, if B#0. Then well-order I so that this ordering keeps the orders of the
exp u;. We put e,—exp u, and e;=exp x; (¢, 1=<i<n). We may assume that
r=e,=e,=---=¢,. We consider a higher derivation D= {D% . ;«<, which is de-
termined by the embedding ¢ of K into K[[T]]/(T™), a power series ring over
K modulo (T™), such that

1
Plr=x:+ xPCeomev) xPler=e . x Plei1-ep

Tro-eo (1<i<n)

Pu)=u,+u uPl+17e0TPT¢0 (cel),

where we put x,=1 and e¢,=r-+1. Our assertion follows from the following fact.
For every non-negative integer /<r the field of constants of {D!, D?, ---, DP»-1}
is

Ki=k({u} .1, Xn, o, x5) (xPL3-17770 won ) g Pe0m7-0)

if there exists j (1=<j=<n) such that ¢;<r—I[=e;_, and otherwise
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Kl:k({ul} €1y {u?(el_r—l)} tElgr Xﬁ(e"_r_l), R x(I)NeO-T-l))y

where I, is a subset of I consisting of elements ¢ such that e,<»r—/ and I, is
the complements of I, in I, provided that K, is the field of constants of {D?, D?
, D™} when [=r.
We prove this fact by induction on /. It is trivial when /=0. Assume that
it is true for an [/ (0=/=r). Then
1

(xp(e, =) xp(el-r l>_|_ — —— TP
9[’ )= xg’“° r—l)...xg_(gz-rr—l) ’

where 0=</<j—1 in the first case and 0=/=<n in the second case and
sb(u‘p(e,—:))__.u‘p(ez-m)_I_u?(e,-:)u?ﬁ”,l—ﬁ)Tp(l)
for c=l, in the second case and

gb(xi):xi-i— 1 Trr-ei , r—e;>1

Ceg-€; (e;-1+eq)
xg’ 0 l)"'x?—lll i

and
Gu)=u,fu,ugy TP r—e, >

for other ¢'s and ¢’s. Therefore D? induces a derivation of K, over k({u.}.r,
X+, X;) in the first case and over k({u.}.er,) in the second case. We can
apply Lemma 6, Lemma 7 and Lemma 8 to this induced derivation and it is
easily seen that the field of constants of this derivation is K,;.; and D?®, ...
DrA+b-1 (PP ... D™ in case [=r—1) are zero maps on K.

Remark. In this section, we used derivations of the form (2) but we cannot
replace it by those of the form (1), which will be shown by the following counter
example.

Example. Let %2 be a filed of characteristic p#0. x, y, z, are independent
variables over k.
For the quation

of L1 9 1

Fre x 0y v’
we have solutions fek(x, y) such that

H—1)! !
f:c+(pyp1). (pyz) . + Ly 2+_ry,,1

with cek. And the u=f—z<k(x, y, z) are solutions for

ou ou 1 8u

ox ay y 9z
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4. Proof of theorem 3.

Zerla proved in [5] our assertion when the cardinality of % is countable.
Therefore we may assume that 2 contains infinitely many algebraically indepen-
dent elements {a;;|2=<7<n, 0=<j<oco} over the prime field, where n=trans. deg;
K. Our assertion is also reduced to the case where K is a purely transcendental
extension K=Fk(x,, x,, -+, x,) over k (e.g. [5], Lemma 5). We use Miyanishi’s
idea in [2]. In the quotient 2((x)) of the formal power series ring over %k, n

elements y,=x, y;= i}aijxp‘f’ (2=£:<n) are algebraically independent over *k.
j=0

Let x be an embedding of K in k((x)) such that y(x;)=y; (1=i/=n). We consider
the standard iterative higher derivation D of k((x)), which is determined by the
embedding ¢ of k((x)) in the formal power series ring k((x))[[T]] such that
d(c)=c (cek) and ¢(x)=x+T. Then the field of constants of D is k. D induces
an iterative higher derivation of K through y whose field of constants is k.
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