J. Math. Kyoto Univ. (JMKYAZ)
22-3 (1982) 369-433

The Plancherel transform on SL.k) and its
application to the decomposition of tensor
products of irreducible representations

By
Masao TSUCHIKAWA

(Communicated by Prof. H. Yoshizawa, May 25, 1981)

Introduction.

Let k2 be a locally compact, non-discrete, totally disconnected topological
field, with an odd residual characteristic. Let G=SL,(k) be the group of two
by two unimodular matrices with entries in k. Let S(G) be the space of complex
valued functions which are locally constant and compactly supported. We define
and study the Plancherel transform of f=S(G), and next define the Plancherel
transform of a distribution on G, applying the Plancherel formula. We discuss
tensor products of irreducible unitary representations of G, of the principal
series, of the supplementary series or the special representation. Calculating the
Plancherel transform of certain distributions, we give their explicit decomposition
formulas into irreducibles.

To decompose tensor products is one of the fundamental problems in group
representation theory, and many authors have been studying this problem.
Historically, as to semisimple Lie groups and their related groups, there are
works of L. Pukanszky [12], R.P. Martin [5] and J. Repka [13] for SL,(R),
and G. Mackey [7] and M. A. Naimark [9], [10] and [11] for SL,(C), and N.
Tatsuuma [18] for inhomogeneous Lorentz group. For principal series repre-
sentations, the problem was studied by I. Gel'’fand-M. Graev [2] and N. Anh [1]
for SL,(C), and by F. Williams [19] for general complex semisimple Lie groups.
For the present group G=SL,(k), Martin [6] studied the tensor products of a
principal series representation with any irreducible one. He gave the decom-
position formulas by an approach analogous to that of [19], that is, by using
Mackey’s subgroup theorem, tensor product theorem and Mackey-Anh’s reci-
procity theorem. The decompositions are expressed as a direct integral on the
subset of the -unitary dual G of G with respect to the Plancherel measure.

However, the harmonic analysis on a semisimple Lie group is now much
studied. So, it seems desirable to establish the decomposition formula in more
explicit manner. Here, we give the decompositions directly, naturally obtaining
the intertwining projections of the product spaces to each irreducible component.
Our method is an extension of Naimark’s idea and available for other groups.
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We sketch the contents of this paper. W denoted by p a fixed prime ele-
ment in k, ¢g=|p|~}, and by ¢ a fixed (¢—1)-st primitive root of unity in k. In
the first three sections, we summarize results concerning the Fourier analysis
over k, given in [4] and [14], reconstructing some of them to fit on our pur-
pose. In §4, summarize results on the irreducible unitary representation of G.
Most of them are well known ([4], [16] etc.). In this paper, we realize, for
instance, the principal series representation ®, on the space S, and its %-
realization R, is on the space $.. The operator for geG of the representation
&, is given by means of a kernel K.(g|u, v). The X-realization is useful for
our decomposition.

In §5, we define and study the Plancherel transform on G: for feS(G),
we make correspond the function K.(f|u, v) of u, vEk™ and =, where

K.(flu, v)=S6f(g)K,-.(g| u,v)dg.

In §6, we describe the tensor products R QR ;, of

Case (I): principal series @ principal series,

Case (II): supplementary series @ principal series,

Case (I): supplementary series X supplementary series.
As the limiting cases of Case (II) and Case (), we consider tensor products

Case (IV): the special representation @ principal series,

Case (V): the special representation @ supplementary series,

Case (VI): the special representation @ the special representation.
For the tensor product in Case (1), we define an intertwining operator U of R
={Ry, S(G)}, the right regular representation, into R, Q®R,, whose image is
dense in L*®L% Let {,> be the inner product in L:®L: Put B(f, f)=<e, ¢>
for f€S8(G), where o=Uf. Then

M B(f, N=| | Hee (&) T@I e dg.,
where H(g) is a certain distribution on G. We give H explicitly.

We define in §7 the Plancherel transform D of a distribution D on G.
D(u, v, =) is formally given by SGD(g)K,r(g“lv, u)dg. We prove in Theorem
7.1 that for H above H vanishes outside of /7, where IT is the set of & deter-
mined by the value of m,;n,(—1). The right hand side of (1) is rewritten as

@) S S S A, v, DK(Flt, WE.(F|t, v)dtdudom(z)dr,
RQIrJr

where m(zx)dr is the Plancherel measure on G. After computing explicitly in
§8 the Plancherel transform H, we have in §9, the decomposition formula for
Case (I). In more detail, rewriting (2) we obtain

3 o, py= ZJ)S”((D, D> m(r)dr .
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Here @=9(t; =, s) is a function on kXIIX {1, ¢, p, ep}, and as a function in
t, @ is in the spaces of irreducible representations. A linear mapping W: ¢p—@
is extended to a unitary G-morphism of the space L@ L? onto the Hilbert space
$ (in §9.2). To prove that W is onto, we use “continuous analogue of the Schur
lemma” in [7]. The G-morphism W display the decomposition for this case
(Theorems 9.4 and 9.5).

In §10, we can compute easily H for Case (II) by using results in Case (1)
and establish the formula (3) and finally get the decomposition (Theorem 10.3).
In §11, 12, we treat the tensor product for Case (Il). This case is further
devided into two cases: for m(x)=|x|*, —1<a;<0 (1=1, 2),

Case (I. A): 0<1+a;+a,; Case (I.B): —1<l4a;+a,=0.

We again compute A for H in (II.A) by using results in Case (II) and the
Hankel transform of a “homogeneous distribution” (Proposition 3.7). Then we
get the decomposition (Theorem 11.4). For Case (IlI. B), A can not be computed
directly, so we do it by analytic continuation of A in (. A). In the decom-
position formula, there appears a supplementary series representation as a new
discrete component (Theorem 12.3).

In the last section, § 13, we give the decomposition formulas of the limiting
cases. For Case (VI), it is obtained by taking the limit a;——1 in the formula
(3) for Case (II) (Theorem 13.4). For Cases (V) and (VI), decompositions are
obtained from the formula (3) in Case (llI), but the supplementary series com-
ponent disappears here (Theorems 13.5, 13.6).

The author is very grateful to Professor T. Hirai, who read the original
manuscript and let to the improvement for this paper.

1. Preliminaries.

Let » be a locally compact, totally disconnected, non-discrete topological
field, £* the additive group, k£* the multiplicative group, O the ring of integers
in 2, P the maximal ideal in O and p a generator of P. O/P is a finite field
with ¢ elements, ¢ a prime power. Throughout this paper we assume that ¢ is

odd. Let dx denote the Haar measure on k*, normalized that Sodle. The

valuation (non-archimedean) |-| on % is determined by d(ax)=|aldx, ack*, and
|0]=0 for which |p|'=qg, O={x; |x|=1} and P={x; |x|<1}. Let O*=O0O\P
be the group of units in O. Let ¢ be a primitive (g—1)-st root of unity in O*,
then the collection {0, 1,2, ---, 22} is a complete set of coset representatives
for O/P. The set A,=1+P={x; |1—x|<1} is a compact subgroup of O%, and
every element x of 2* can be uniquely written as x=p"y, y=¢e™a, (n€Z, 0=
m=q—2, y€0* and a< A,). Thus |x|=¢™™ and k=ZXO0*"=ZXZ, XA, Z,,
~Z/(g—1).

We denote by (k*)? the set of square elements in k%, then it is known that
in our case, ¢ an odd number, (£*)? is a subgroup of k" of index four, and a
complete set of coset representatives of 2*/(k*)? is given by E={l, ¢, p, ep}:
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kx=(k*)*Je(k)\I p(R*)Jep(k™)™.

Any quadratic extension of £ is, up to isomorphism, given by L.=k(4/7),
t€E'={e, p, ep}. The norm N, and the trace S. for z=x4+/7 y are defined
by N.(z)=zz==x"—rty? and S.(z)=z+Z=2x respectively.

The subgroup kX=N.(L}) of k* includes (k*)*and [&*: kz]=[k}: (k¥)*]=2.
Furthermore if —1le(k*)? kX=(k*)®*Jr(k*)? for each t€E’, and if —1e&(k%)?
Ri=(R*)2Je(k*)?, kp=(k*)*Jep(k*)® and kip=(R*)*Ip(k")

The collection {P™},_;,s, ... of ideals P*={x; |x|=q¢~'} in &, gives a neigh-
borhood basis of 0 in k£*. There is a unitary character X(x) on k* which is
trivial on O=P° but non-trivial on P~!. Every unitary character on k* has the
form X(ux) for some usk. The Fourier transform on k* is defined for feL?

as f(u)——-EFf(u)szf(x)X(ux)dx, and its inverse transform as f(u)=%F 'f(u)=
Skf(x)X(—ux)dx.

Let S be the space of testing functions on k, that is, the space of complex
valued functions which are locally constant and compactly supported. The space
S is topologized by defining a null sequence to be {¢,} where {p,} all vanish
outside a fixed compact set, and are constant on each cosets of a fixed P™, and
tend uniformly to zero. The Fourier transform ¢ of ¢S again belongs to &
and, if ¢ is constant on the cosets of P and supported by P-™, then ¢ is con-
stant on the cosets of P™ and supported in P-®. Thus the Fourier transform
is a topological isomorphism of S onto itself. Each element in &’, the topological
dual of S, is called a distribution on k. The Fourier transform f of a distri-
bution f is defined by (f, p)=(f, §) for peds.

The principal value integral is defined for a locally summable function f by

(LD P-{ fndz=tim | 0 1uxdx,

where [f], is a function equal to f on the set {x; ¢ "=<|x|=¢"} and zero out-
side. The principal value integral Fourier transform P- Skf(x)x(ux)dxz

(P - 9)f(u) coincides with the usual transform for fe L?, and if (P- 9)f(u) exists
for feL? it coincides for almost all u <k with the usual f(u) by the Plancherel
theorem.

We set A,=1+P" n=1 and A,=0. The collection A, is a neighborhoods
basis of 1 in k*. The character group E* of k* is expressed as B *=TxO0%,
5X=Zq_1xﬁ,, where T=[—=/log q, =/log q) is one dimensional torus and O* a
countable set, Each element z of £* is written as z(x)=|x|76(x) where 7T,
and @ is determined by #(p)=1 and §|0*. The measure dz on B* is given by
> dr,g dr=1.
oco* T

Following [14], we say that, when #=1, r is unramified or has ramification
degree 0 and that, when @ is trivial on A, and non-trivial on A,_,(h=1), r is
ramified of degree h.

* Non-unitary characters on k* are obtained by replacing the pure imaginary
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7y by a complex number « with non-zero real part. Non-unitary characters in
which we are specially interested are of the form n(x)=|x]|% « real and —1
<a<0. The following character is called the signature of 2* with respect to z:

1 xek;,

(1.2) Sgnf(x)={
—1 xek*\k}.

The character sgn.(x)=|x| *"°€? s unramified, and sgn,(x) and sgn.,(x) are
both ramified of degree 1. In the following, we will denote |x| by p(x), and
x|~ by mp(x). The latter relates with the special representation.

Let 8™ be the space of functions ¢ in S, satisfying ¢(0)=0. It is the space
of testing functions on k£*. On this space the Mellin transform is defined by

gb(:r):Skga(x)n(x)dxx where d*x=p *(x)dx (the Haar measure on 2*).

The image S* under the Mellin transform of S is a space of functions on
E<. Ttis proved that, for ¢ supported by the set {x; ¢ "=]|x|=g"}, the Mellin
transform @(z)=@(a, @) is characterized by

(1.3) fa, 0= 3 au@q*e,  w(x)=|x]"0(x).

Here, a,(f) vanish except for only a finite number of 4.
The gamma function is defined for all characters = of %2* (not necessarily
unitary) except #=1. If m(x)=|x|%6(x) is ramified of degree h=1,

(1.4) I'(m)=Ts(a)=P- Skn(x)X(x)d‘x=Caq"“"”2) )

where Cy is a complex number such that [Cg|=1 and CyC,_,=6(—1). If =n(x)
=|x|* Re(a)>0,

a-1

(1'5) [(@)=I(a)=P- Skn(x)X(x)d“xzflli_Z_a .
For Re (@)<0, a#0, I'(«) is defined as the analytic continuation of (1.5) and is
meromorphic, zero at a=1 and has a pole at a=0.

The gamma function on % is closely related to the Fourier analysis on k as
in the case of the usual gamma function on R. For instance, f(x)=1'(7)"'zn(x)p (x)
=I'(z)'mp~'(x) is a homogeneous distribution on %, and if 7=1, it denotes the
delta function 4 on k supported at 0. The Fourier transform f of this distri-
bution is given by f=7r“:

1
(1.6) f, ¢)=—F(—ﬂ)—(7rp“, @)=(z"%, ¢),

For n(x)=]|x|%f(x), this is proved first in case (0<Re a<1) by changing the
order of integration, then by analitic continuation to any a.
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§2. The spaces S, and S..

Let #=|-|%# be a non unitary character of k*, p(x)=|x|, Ts a mapping
of S such that Trp(x)=mp *(x)p(—1/x), and S, the linear span of S and T;S.
In this section we study the Fourier transform 8, of the space S;, in the sense
of principal value integral, and in the next section we study the Fourier trans-
form of TZ.

2.1. For ¢&S8, mp~'(x)p(—1/x) is locally constant, zero on a neighborhood
of 0 in k, and mp~*(x)p(0) for large |x|. Therefore every function f in S, is
canonically expressed as

2.1) f=p+ag.,
where ¢S, a a complex number and

0, x| =1,
(2.1a) d(x)=

mp~'(x),  [x[>1.

The topology in S, is defined in such a way that {¢,+a.¢:} is a null
sequence, if {p,} is a null sequence in § and a,—0. Then T is an isomorphic
mapping of S, onto itself.

Lemma 2.1. ([14], Lemmas 1 and 2)

qk(l—l), k<0,

q
(A) Sl.tl=qu<x)dx: 1, h=1,
0, kE>1.
If 7 is ramified of degree h=1,
I'(x), k=h,
(B) [ rmd =
1E1=q 0, k+h.
We set
2.2) Gl n)=P—S __mp (O, uek, n>0.
qtuis|T)

Then the following holds.

Lemma 2.2, For n=]-|% a+0,
A) G ) {0, |u[>q‘"+1,
2\U; T)= (n-Da 1
_4 — < -n+l
Fe—1 (1=, 0<lul=e,
and for n=1 (a=0),
B) Culas ) {0, lul>g="+,
o5 )= —log|u| 1y 1 < -uhl
( log ¢ u+1)(1 q) o 0<Inisge
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For © is ramified of degree h=1,
0, [ul|>q ",

©) Gnlu; ﬂ)={
(), 0<|ul|<qg "+".

Proof. It is easy to see, from Lemma 2.1, that the values of G.(u: x) are
zero for |u|>¢g "*' in (A) and (B), and for |u|>¢™*** in (C). Let =n(x)=|x|
and |u|=¢ ™=<q¢ "*, then

Galu; n)ZS n'p“(x)X(x)dxzkg)_"mq“”(l—q“)—q“‘l .

qrhuls|z)
By the direct calculation we obtain the required formulas in (A) and (B).
Similarly we obtain the formula in (C). Q.E.D.

Remark. For n=1, G.(u; n)= lir{}l Galu; |-]9).

2.2. We consider the Fourier transform of f€S.. Let f=¢+a¢, be as in
(2.1). We consider

Fa)=(P- F)f(u)=P- Skf(x)X(xu)dx C uekr.

Since (P-9)¢. is given in Lemma 2.2 as (P- g)¢”:P_Sl<m T ' (x)X(xu)dx

=n"%u)G,(u; =), the principal value integral Fourier transform f of fes$, al-
ways exists and f:¢+a7r"(-)G,(- ; wr) for every m=|-|*0. In particular, take
the constant function 1=¢,(x)+¢-(x) in S, where ¢, is the characteristic func-
tion of O and =n(x)=|x|. Then i=¢0(u)+lu|"Gl(u;7r)=0 for uek*. Note
that if Re (a)<1/2, then S,CL? and feS,, coincides for almost all u with the
Fourier transform in L®%sense, and moreover if Re (a)<0, S,C L' and then f
coincides with the usual one,

As to the inverse transform, we consider the integral P—Sngv,((u)X(—xu)du.

This integral converges only for = in Re (a)<1 and coincides with ¢.(x). Thus
we have the following proposition,

Prooposition 2.3. The principal value integral Fourier transform S, of S,
is the space of the functions on k* of the form f=@-+an"'(-)G\(-; n) where
¢0€S, a€C and Gy(u; ) is in (2.2). For m in Re (a)<1, the inverse transform
8:—8, is given by the usual inverse Fourier transform F-'.

The space 8. is topologized by null sequences {p,+a,7"(+)Gi(-; 7)} where
{¢a} are null sequences in S and a,—0, then the mapping P-F:S.—3, is
continuous and moreover for = with Re (a)<1, it is topological.

For the case n=m;,=]|-|"?, there exists a Tj-invariant subspace S;, in S,

consisting of functions f such that Sk f(x)dx=0. Since S,CL? every function
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f in S, has the usual Fourier transform f(u)=¢(u)+a|ulGl(u; |11 with peds.
The condition “f€S,,” is equivalent to “pS*”. Therefore §,, is the space of
functions of the form ¢+alulG,(u; |-, pES™.

2.3. Let A be a non-unitary character of k*, then for f=S, the integrals
Skl(x)f(x)dx and Skl(u)f(u)du converge under suitable conditions on A1 and =,

and they give linear forms, “distributions” on S, and 8. respectively. The fol-
lowing is on the Fourier transform of distributions.

Proposition 2.4. Let z=|-|90 and i=|-|#z, 0,z 0*. Assume that 0<
Re (B)<1 and Re (B—a)>0. Then for f€S,,

[ 2o-f@du=r@| 10 s

To prove this, we need the following:
Lemma 2.5. Let A and © be as above. Then the function
P(u)= 2 1Az~ (w)p (WG (s ©) =G s : m)} |

is zero if |u|=¢°, s=max. (1, h), and h the ramified degree of n. Moreover @
7s summable.

Proof. This is proved by concrete forms on G.(u; 7)—Grs:(u; ) which
we can calculate from Lemma 2.2.

Proof of Proposition 2.4. Let f=¢p+a¢, be in S,. For f=¢, we have al-
ready the desired equality in (1.6).
Now for ¢,

Sk,?p"(u)(P— F)fa(u)du ZSkZp‘l(u) lim SKmsqnﬂp"(x)X(ux)dxdu

n-—oo

=Sk lim @ ,(u)du

where @, (u)=2Az"'p " (u){Gi(u; 1)—Gnr+:(u; n)}. We have
[02(w)| =127 0" (WH{Gy(u; 7)—Gras(u; T} |
éél 22710 (W {G r(u ; T)—G paau; T} | =D(u),

where @ is the function in Lemma 2.5 which is zero if |u|>¢®, s large enough,
and is summable. So, by Lebesgue’s theorem,

g lim @ (u)du= limS D, (u)du
k n-—co |1ulsq®

n->00

= lim Smsqslp"(u){gmIlsqﬂn’p“(x)%(ux)dx}du s

n—oo
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and by Fubini’'s theorem, we can change the order of integration and finally
come to

lim ﬂp"(x){s ]sqslp‘l(u)X(ux)du}dx

n—oo Sl<|x|sq7‘ lu

—I'() lim S
n-oo J1LITISQR

2"np"(x)dx=F(Z)Skl"(x)¢x(x)dx . Q.E.D.

Corollary 2.6. Let A and =« be as in Proposition 2.4, and moreover we assume
Re (a)<1. Then it holds

[ 2002 f0de =T D Fwfwde,  fes..

Proof. Replace 2 by 17'p in the formula of Proposition 2.4, and used
raHrQp)=a-1. Q.E.D.

§3. The Hankel transform.

3.1. The Bessel function of order z is defined as follows: for u, vek™

3.1 Jolu, v)=P- SkX(ux+vx'1)rc(x)dxx
= lim i} S Wux+vx Hr(x)d*x .
n-oo k=-nJizi=¢k

This principal value integral converges. In fact, for fixed u, vE k™, except only
a finite number of £ in (3.1), integration terms vanish. Because, from Lemma
2.1, for large k>0,

S kX(ux+vx")n'(x)dxx=S _kX(vx“l)n'(x)dxx
|ZI=q~

Irl=q
=n(v)glzl:ww}z)((x)n"(x)dxx:0 ,
and
g k%(ux—l—vx'l)n(x)d*xzﬁ‘l(u)g 2Wx)r(x)d*x=0.
1z1=q |zi=1ul-1gk

Thus we remark that for every compact subset ACk*, there exist large n>0
such that

J=(u, v)= i S X(ux+vx Hr(x)d*x, u,veA.
k |z1=q—k

The Bessel functions have the following properties:
(B'l) ]ﬂ(_uy _v):n(_l)]ﬁ(uy v) ’
(B.2) Jx(u, v)=Jz-1(v, u),
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B.3) #(w)Jz(u, v)=r@)]z-1(u, v),
(B4 Ju, v)=Jz:(—u, —v),  where z#(x)=n(x).
(B.5) If m is ramified of degree h=0, a#1 and |uv|<gq', [=max. (1, h),
J:(u, v)=a)[(z=)+z " (w)(x),
and if #=1 and |uv|<gq, J-(u, v) is obtained by the limit of J.(u, v), ==|-|%,

—log | uv| o
“esq +1) 2. (see [14]).

3.2. The Hankel transform of order = is defined for fES,, by

as a—0. It equals (l—q“)(

(3.2) H; A(u)zgkj,,(u, v)fw)dv, usk*.

Proposition 3.1. Let ==]-|%0 such that —1<Re(a)<1, and feS’,,. For
uek*,

R —1
(3.3) H, fu)=P- Sknp"(x) (= s
Proof. Since f=F " (P- F)f=F"'f from Proposition 2.3, then it holds

SQ‘"SImsqn SkX(ux—}—vx“)n-p‘l(x)f(v)dvdx

T (x)f(—x DX(ux)dx .

Sq—"51z|sq"

The right hand side tends, as n—oo, to that of (3.3). Since the integrand on
the left hand side of above is summable, we can change the order of integra-
tion, and then it equals

(3.4) Skf(v)sq_nsmsqnx(ux+vx")n:p“‘(x)dxdv .

We prove this tends to the left hand side of (3.3). Let |u|=¢™ and n>m.
Choose an integer [ such that f is zero for |v|>¢'. Then, (3.4) equals

3.5) Srmswlsgl f<”)Sq-ns.mn"' dxdv+5|vl<q_m f(")gq-ns.z.sqn"‘ dxdv
=(1)+(ii).
Since S e Xux+vx Yrp (x)dx=](u, v), for n large enough and for |v]|
g-"siz1sq"

such that ¢ ™<= |v| <4, we have
(3.6) w=| . foJdw,vd.
q~-Mg|visq

On the other hand,
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GD (ii):Sq‘"snvlsq—mf(v){sq—nslmsq_mx(vx_l)ﬂp_l(X)dx}dv
+S“"<‘1’"f(v){Sq'"smsq-mx(vx-l)ﬂp-l(x)dx}dv

7 -1
+Swl<q_mf(v){sq_m<msqnx(ux)n‘p (x)dx}dv.
We denote the inner integrals in (3.7) by A.(v), B.(x) and C,(u) respectively.

A v)= n(v)S Xx)r o (x)dx=aW){Gu; 77— Gasi(u; x79}.

qMvisizISqMivl

For B,(),

Bn(v)=Bn=S Xvx Hrp '(x)dx :S T lp N (x)dx

g-"s|x|Isqg~™ qMmsizIsq™

(I=g™hgm{g- - =1}g "=,  ==[-]% a#0,
=:! (=g HY(n—m+1), =1,
0, x ramified .

For C,(u) with n large enough,

C=Catw=] _  Munzxdx

Mgz

—q* Y (u), 7 unramified,

— -1 X -1 d =
d (u)S1<|z|Sqn|u| (x)ﬂp (x)dx { n—l(u)r(n.)’ 7 ramified.
Thus
= ... f(v)n(v)An(v)dv+B,,S“Kq_m Fw)dv-+Cu) Sm_m Fw)dv
= FOR0)Galw; 79+ Cabdv—] | 0)a0)Gasto; 7y
g~ Tsivig™ g "sivgm™
+Ba|  fordvrcw | fondy
1vi<g=" 1wi<g="
=(a)+(b)+(c)+(d).
We show that, as n—oo,
(3.8) @) —>Sm<q_mf(v>f,,(u, vdv,  and (b), (¢), (d)—C.

For (a), since |v|<g™™, the direct calculation and (B.5) leads us to
TW)Gn(v; ) +Cw)=a) (=) + (W) (x)=J(u, v).

Considering the function of the form f=g+ax"'(-)Gn(-; ), we get
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@) — S|vl<q—mf(v)]ﬂ(u, v)dv.

Next we show the other integral terms (b), (c) and (d) tend to zero. For
), Gpeiv; ©71) is zero if |v|>¢™", then

=] fOr0Ganw; xdv

1o

=Swl=q_nga(v)7r(v)G,,+1(v; ﬂnl)dv+g G 1)Gasi(v; 7 )dv .

1vi=q

These integrals converge for #, —1<Re(a)<1, and tend to zero as n—oo with
order of ¢~™* and ¢“*~®™. For (c), if = is unramifed and #1, B, is bounded as
n—oo, and from the summability of f, we get (c) tends to zero. If z=1, (c)
equals

(1—q-l)-l(n—m—i-l)Squ_n{go(v)—I—Gl(v; ) dv.

It is easy to see that this tends to zero as n—oco. If x is ramified, the integral
(c) already equals zero. Thus (c) tends to zero.
It is also easy to see that (d) tends to zero. Thus we proved (ii) tends to

Sw[< f(v)],,(u, v)dv. Combining this with (3.6), we get the proof. Q.E.D.
q—m

From this proposition, for = in —1<Re(a)<1 and usk*, the integral in
(3.2) converges, and H,=(P- ¢)T:F'. Note that for feS,, Hﬁf is again in
3., and moreover H, gives an isomorphism of &, onto itself.

Corollary 3.2. For n in —1<Re(a)<1, Hi=n(—1)I.

Proof. 1t is a consequence of the fact that (T';)*>=n=(—1)I, and Propositions
2.3 and 3.1.

3.3. We have the following propositions :

Proposition 3.3. Let n=]-|“0 in —1<Re (a)<1, then

(1) SkH,,f(u)H,,_lﬁ(u)du=n(—l)Skf(u)ﬁ(u)du . fes. hed, .

A

(1) Skn'(u)H,, f(u)H,,ﬁ(u)duzn(—l)Skﬂ(u)f(u)ﬁ(u)du . fhes,.

Proof. (I) Let = be as above. We can assume that —1<Re (a)<0. In
case Re (a)=0 (x is unitary), H,=(P- F)TEF"* by Proposition 3.1 and each
operator in the right hand side is defined on L2, then the usual Plancherel trans-
form for L? gives the formula (I).

In case —1<Re (a)<0, fed,CL? and H,.f€S, is a bounded function on &.
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On the other hand, ,Hn_lﬁeS”_l is in L' and is the limit of g,(u)=
Skgn(x)X(ux)dx, where g.(x)€S is a function equal to 7 'p ' (x)h(—x"1) if |x|

=q¢" and zero otherwise. We have an expression 77'po ' (x)h(—x"")=¢+c¢__,,
pES, ¢__; as (2, la) and ceC. Then

én(u)=¢7+cS 7o (X)W (ux)dx

1s|z1sqn
=¢+cn(w){Gyu; 1) —=Grsi(u; z71},
and
[ &) | = gu) |+ el |m(u){CGi(u; 7 ) —Gari(u; w71}
<11+ lel] 57 Gau; 7= Gras(u; 70}
S1ow+clPu),

where @ is the summable function given by q)(u)zkzn) |m(u){Ge(u; m71)—
=1
Gre(u; mY}|. By the Lebesgue’s theorem,

[ He fa0H, shdu={ tim H, fagadu=tim | H fagadu.
Since mp~(x)f(—=x"')L? the above equals
tim | 7o~ (=0 f(—x Dga(—n)dr=a(=D| fh(-x)dx
=a(—1| fah@du.
() =(wh(u) is in §_-,, therefore from (I),

SkHz f(u)H,,_l(nﬁ)(u)dFn(—l)gkn(u)ﬂu)ﬁ(u)du .

On the other hand, Hn_l(wﬁ)(u)zsk]ﬂ-,(u,v)n(v)h(v)dv, and (B.3) shows that
Hx_l(nﬁ)(u)zn(u)H,,ﬁ(u). This gives the formula (II). " Q.E.D.

Corollary 3.4. Let f, hed.. If nis unitary (Re (a)=0),

[ HefaoH R du={ fakodu.
If #=|-1%, «a real and —1<a<l,
[ ot R du={ mfitdu .

Proof. First equality is obtained from the fact z=="*, (B.4) and (I). The
second one from (II). Q.E.D.
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By the corollary, there hold that, for = unitary, |H, f = f I, where | f ||12=
S | f(u)|%du, and that for m(x)=|x|%, a real and —1<a<1, |H.fl.=fl., where
||f||,2,=Sk7r(u)|f(u)|2du. If = is unitary, 8, is dense in L2 If =(x)=]|x|% —1<

a<l, 8, is dense in L2, the space of square summable functions with respect
to the measure 7(u)du. Thus H, can be extended as a unitary operator of L?
and of L2 respectively.

3.4. Proposition 3.1 is extended to the cases z=mn,,=|-]|"* and z=|-]| as
follows.
Proposition 3.5. (1) For ==|-| and f€S it holds

H, fw)=P- S f(_—l)X(ux)dxz(P— FT5Fflu).
k X
(2) For m=mp, let Hyy=H:, |8p, Ssp the space of functions f in Sz, Such
that Skf(x)dx=0. Then it holds for feSsp.
Hypf=P- 212 ( SR Wux)dx = T35 ()
$p k x w .
Proof. The proofs are similar to that of Proposition 3.1 but the convergence

of integrations (a), (b), (c) and (d) in (ii) in this proposition should be checked.
Q.E.D.

Proposition 3.6. For f, ﬁeSsp, it holds
[, 11 Hoy a0 Hophodu={) 1u1 = fuohodu

Proof. Since for n=rm,,, an,,ﬁ:Hn_l(nﬁ) and :rﬁeé’, it is enough to prove
the equality

SkH,,ﬂu)H,,_,ﬁ(u)du=Skf(u)ﬁ(u)du, fe8,, and hes.

In case hes8*, h(—x~') is also in $* and then Hﬂ_lﬁ(u)zP—Skh(—x")-
Xux)dxeS. Thus H.,f, H”_J?E L2 This leads to the equality by the Plancherel
theorem. In case h&S*, h(—x™") is expressed as ¢,(x)+¢, ¢, €S and c€C. Since
P—Skl X(ux)dx=0 for uck*, we get H,,_lﬁ(u)=¢1(u) by Proposition 3.5, and

Skapf(u)Hx_lﬁ(u)duzgkp‘z(x)f(—x")gol(x)dx

={ f@tn—n—adx={ swh0dx ={ fahkwde, QE.D.
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By Proposition 3.5 (2), H,, gives an isomorphism of §;, onto it self. Again,
by Proposition 36, it holds for f€S,, I|Hipflsp=|Flsp where |fl2=

Sklul"lf(u)lzdu, and H,, can be extended as a unitary operator of L%,. Here

L2, the space of square summable functions with respect to the measure |u|'du.

3.5. The Hankel transform H., n=|-|%0 and —1<Re(a)<1, is an isomor-
phism of 8, onto itself, and so is H,, for 8;,. The following proposition is on
the Hankel transform of the distribution 2=|-|fz, € O0*.

Proposition 3.7. Let 7=|-|%0, —1<Re (a)<1 (resp. n=n;,), and i=]- |
such that 0<Re (8)<1 and 0<Re (8—a). Then for f€3, (resp. fE€3,p),

Sklp'l(u)H,, f(u)du=F(2)F(,27r“)27r(—I)Skl"ln(u)f(u)du }

Proof. This equalily is a consquence of Proposition 3.1 (resp. Proposition
3.6), Proposition 2.4 and Corollary 2.6. In fact,

SkZP"(u)(P— 9’)(7rp“(')f(—x'1))(u)du=F(2)Sk2"ﬂp"(x)f(—x“)dx
:[’(Z)Rn-(—I)Skln“p“(x)f(x)dx-—-[‘(Z)F(Zn‘l)ln(—I)Skl"n(u)f(u)du . Q.E.D.
§4. Unitary representations of SL,(k).

In this section we describe unitary representations of G=SL(k).

Let G be the group of matrices g=(: B ), ad—fBr=1, with elements a,

0
B, v and 4 in k. We consider the subgroups of G as follows:
a? 0
4.1) D=1{d(a)= s a€Ek =k,
0 a
1y 1 0
Nr={n*(y)= ; yekt, N={n(x)= s x€ki=kt.
0 1 x 1
Put
0 1
4.2) w= .
-1 0

Let G° be the dense subset in G of elements g such that §+0. Every ele-
ment g&G® can be decomposed as follows:

(4.3) g=d(a)n*(y)n(x), with a=0d, y=08 and x=y07'.

4.1. Let = be a (not necessary unitary) character of £*. It is extended to
that of the subgroup B=DN* by #(b)=n(a) for b=d(a)n*(y) B. The induced
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representation Ind§x is realized on S, and for which the operator T is

ax-+
(4.4 Tipm=r(Br+0lfx+ol (571 L),  peSe
In particular, TEp(x)=rp *(x)p(—1/x). We denote this representation by R
={T", S,}.
When €k, ®, is extended to a unitary representation with respect to the
norm

45) lol*={, gt} %dx,

known as a representation of principal series, and is irreducible except in the
cases n(x)=sgn.,x with z=¢, p, ep.

When z(x)=[x|% —1<a<l and a#0, ®. is extended to a unitary one
with respect to the norm

(4.6) lelz= F(i_l)Skgkn"p“(xl—x2)¢(x1)go(xz)dx1dxz,

known as an irreducible representation of supplementary series.
Representations ®, and R __, of principl series or of supplementary series,
are equivalent and the intertwining operator E.: ®,—R_., is given by

_ﬁJ‘___ -1 ,.-1 Y ’ ’
4.7) E.p(x)= F(n“)Skﬂ oM x—x"p(x")dx",
The special representation R, arises as the limiting case of supplementary

series R,, w(x)=|x|% as a—»—1. R, is defined as R_,_|S,,, and is extended
to a unitary one with respect to the norm

EXSY

“8) loliz=cl | log | x,— xal p(x g dx

where ¢=(1—¢ !)(log ¢)~%, and is irreducible. As to this norm, ||go||“,=al_i'rpl llolla
for a compactly supported function ¢ in Ss,.

Representétions R, given above are realized in another way called the X-
realization. It is the Fourier transform ®,.={T~, 3} of the representation ®..
We already discussed the space 8.. The transformed operator T§=(P— F)TzgF?

are expressed by means of a kernel K.(g|u, v) which is a distribution for every
usk given as follows: ’

for gy, T;go(u):SkK,,(g[u, V)p)dv
4.9 ={ m@laldo—awpeidv=r(@)alplew),  g=d(a),

4.10)° ZSkX(—ux)A(v—u)gp(v)deX(—ux)gp(u) , g=n(x),
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@.11) =Hop(w)=| Jew, vio)dv,  g=uw,

where 4 is the delta distribution on % supported at 0. The operator T'% for
other elements g=g;g, is given as

(4.12) Ska(glgzl u, v)¢(v)dv=SkSka(gl lu, DK:(g:1t, v)pW)dvdt .
The relation T 'E.=E.T% is transformed into
(4.13) K__(glu, v)rw)=m(u)K(glu, v).

In the Fourier transform &,,={T~, §,,} of the special representation, the
transformed operators T'* for d(a), n(x) and w have the same expression as
(4.9), (4.10) and (4.11) for p=38,, respectively.

4.2, Let z be a fixed element in {¢, p, ep}, L.=k(4/7) the quadratic exten-
sion. L. is a local field of the same kind as k£ with the valuation |z|.=N.(2)
for z=x++/7y= L. The Haar measure on L. and L are given by dz=dxdy
and d*z=dxdy/|z|. respectively. A set of elements ¢ in L, satisfying ti=a for
an a€k* is called a circle in L.. The circle C, with a=1 is the (compact)
kernel of the homomorphism N,: L;—kZ. On a circle C, we denote a measure

d*t, invariant under multiplication of element in C,, normalized as Sc d*t=1.
T

Fix veL; such that voe&(k*)% If N.(z)=r?’c(k*)?, z is written as r¢ for
some t€C,. If N (z2)e&(k*)? then N.(z)=vir’evp(k*)? and z is written as wrt.
(r, t) or (vr, t) is the polar coordinate of z, but (», ¢) and (—r, —1?), or (vr, t) and
(—vr, —t) give the same elements.

If a function f(z) on L. satisfies f(tz)=f(z) for teC,, then f(2)=¢(N.(2)),
where ¢ is a function on k.. For a summable function f, we have

4.14) SL f(z)dzzargksD(X)dx,

where
_ 201447 ~ X
ac= "1 and (V=] fuzet.

Representations of the discrete series are obtained as invariant components
of the Weil representation. The latter is defined as follows. Let S(L.) be the
space of complex valued, compactly supported, locally constant functions @ on
L.. For @S(L,),

sgn(a)la|P(az), g=d(a),

(4.15) W, D(z)=1{ XxN.(2))P(z), g=n(x),
cr@(z) ’ g:w ’

where the coefficient ¢, is determined by c¢.= %’-Skx(x) sgn.(x)dx, and
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(4.16) @(z):SL X(S.(z2")D(z")dz’ with S.(z2)=z+2z.

For teC,, we define the opertor R, in S(L,) by R, @(z)=®(tz), then R, com-
mutes with W,. Let n be a unitary character of C,, and S(L,, =) be the sub-
space of functions @ in S(L.) satisfying R,@==(t)®. Then, S(L., =) is an in-
variant subspace. Putting T2=W,|S(L., n), we define a representation Ri=
{Tz, S(L., m)}.

We set

4.17) <1>z<z>=Sc_ D(t2) 7D d"t

for @=8(L.). Then @, is in S(L, ) and we have the inversion formula @(z)

= 2~ @ .(z), where 5, is the character group of C., and the Plancherel formula
reCr

SL, 10()|*dz= % S

reCT

into {T%, S(L., 7)}.

. |@.(2)|%dz. So we get the decomposition of {W,, S(L.)}

T

Lemma 4.1. For every n%£l and @S(L,), . vanishes on a neighborhood
of 0 in L.. Moreover, ®.=0 except for a finite number of zeC..

Proof. Let PB. be the maximal ideal in O, the ring of integers in L.
Suppose that @ is supported by P;* and constant on the cosets of B2 for some
positive integer n. We set @=@,+@,, @, equal to @ if zeB? and zero otherwise.
Then @,=(®,).+(D,).. Clearly (?,).=0 for x=£1. @, is supported by P;*\(B2)¢
and constant on the cosets of P?, then @,(tz)=00,(z) for te(1+P2*)NC, and
zeL.. Therefore, if = is not trivial on (1+P2*)NC;, (D,),=0. The number of
characters which are trivial on (14+R2*)NC, is finite. Thus the lemma. Q.E.D.

The following is known. If z is not of order two, the representation ®¥
is irreducible, ®% and R __,* are equivalent, and the interwining operator E.
between R} and R _.,* is given by the form

(4.18) E:: @.(2) — D.(2).

4.3. If = is of order two, the intertwining operator E, maps S(L,, 7) into
itself. In order to study the reducibility of ®%, we should discuss in detail the
character 7. We confine ourselves m=m, the character of order two in C..
Let C. be the subgroup (1+P.)NC. of C.. The index of C. in C, is g+1. Since
o, is of order two. m, is trivial on C/, and n,(t)=1 or —1 according as ¢ is a
square element in C. or not. Weset S’={zeL.; N(z)=(k*)?} and S*={zeL.;
N.(z)&(k*)%. The following proposition holds.

Proposition 4.2. The representation of discrete series R, m, the character
of C. of order two, splits into two irreducible components Ri={Tz°, S(L., m,)|S*}
and Ri={T%, S(L, =,)|S?, where S(L., m,)|S* is the space of functions in
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S(L., m,) supported in S*.
To prove this, we need the following lemmas.

Lemma 4.3. If —1€(k)? then no(—1)=—1, and if —1 (k)% then m(—1)
=1.

Proof. First we show that, if —1=(£*)?, —1is not a square element in C..
Assume that —1=z?=(x++/¢ y)%. Since zz=1, we have zx=0, and then x=0
and —1=ey*ce(k*)? which is a contradiction. Second, it is easy to see that,
if —1e&(k*)?, —1 is a square in C,, and hence 7,(—1)=1. Q.E.D.

Lemma 4.4. 4.4. Put A(R@)=n,(2z7Y), then
1, ze St

-1, ze 82,

A(z)———{

Proof. The proof is obtained by using the polar coordinate of z. Since
every z€S! is expressed as z=rt, rek* and teC, A(z)=n(l/t)=n(t*)=1.
Next, let z be in Sz If —1€(k*)? z is expressed as z=+/¢ #¢, and then by the
above lemma A(z)=n (—t2)=m(—1)=—1. If —1&(k*)? take an element v such
that wo=—1. Then z can be expressed as z=vrt and hence A(z)=r,((J/v)t%)=
To(—D%)=m,(P?) by the above lemma. It holds 5?C. but ve&C,, and hence A(z)
=—1. Q.E.D.

Proof of Proposition 3.2. On the space S(L., m,), the operator E., in (4.18)
is a non-trivial intertwining operator of ®}  onto itself, and

E:9:(2)=0. (2)=m(227") D ()= A(2) D~ (2) ,
The space of intertwining operators is at most two dimensional, and therefore

we have the proposition. Q.E.D.

4.4. Fix r in E'={e, p, ep}. Let reC., 7%l and extend it to a unitary
character of LY. Put @'(z2)=@.(z)x"(z). Then @’'(tz)=0’(z) for all teC,, so
@'(z2)=¢p(N.(2)), and ¢ is a locally constant function on k7, vanishing near 0.

By (4.14), SL |qr(z)[?dz:a,sklgo(u)vdu. Thus the mapping U: ®,—¢ is an iso-

metry, up to the multiple by a., of S(L., ) onto S*(k}), the space of functions
in &* supported in k7. The operator UTZU"!, denoted again by T3, is given
by the kernel as follows:

T;gp(u):SkK;(g[u, Vpw)dv
(4.19) =(sgn.a)|a|n(a)p(a®u), g=d(a),

(4.20) =X(—xu)p(u), g=n(x),



388 Masao Tsuchikawa

(4.21) -——Hﬁgo(u)=a,,crg k]%(u, vp@)dv, g=w,
where
(4.22) T, 0= tutrorzndt.

(4.19), (4.20) and (4.21) are analogous to (4.9), (4.10) and (4.11) respectively.
For the later discussion, we deduce (4.21) in detail.

Tﬁso(u)———CTSLrX(Sz(zé')‘D’(Z’)ﬂ(Z’)dZ’7r"(2)

:c,SLr{SCrX(S,(zé’i))n((z’/z)t)dxt}@'(z’)dz’ .
On the other hand, the inner integral is
SC X(S,(zé’f))rr((z’/z)t)dXt=SC AzZ't 1 H-Z2'0)r((2'/2)t)d "t ,
and changing the variable (z’/z)¢t by t, then it equals

T, =] tutrorymode,

tt=u-

where u=N.(z) and v=N.(z’). So we have, for g=w
T§<p(u)=SLr]‘,’r(u, v)¢'(2’)d2’=afcrgk]$(u, vew)dv .

4.5. The intertwining operator E.: ®Rf—®R%_,, in (4.18), is transformed on
the space S*(k;) as E.p(u)=n(u)p(u), because ¢(u)=90'(z2)=P.(z)x '(z) and
0.(2)n(2)=D'(2)r(22)=¢(u)m(u). In particular, in case R}, Exp(u)=A(u)p(u),
where A(u)=A(z) in Lemma 4.4 and u=N.z). Since A(u)=1 for us(k*)? and
=—1 for use(k*)? the representations R} and R§ in Proposition 4.2 are realized
on S*((R)H=8*|(k™)? and S*(e(k*)?)=8*|e(k*)? respectively.

4.6. For neé,, another discrete series representation comming from R} is
given on S*|(k*\k}) as

Tig=| Ki(glu, gy, a8 (k"\k:).

The kernel K; is obtained from (4.18), (4.19) and (4.20) by replacing “u, vekX”
by “u,veki\k;”. We denote this representation by Rz={T%, S*(k*\kJ)}. Ifx
is not of order two, R; is again irreducible, equivalent to R5-1, but inequivalent
to any Ri}.

In the following, ®% and R; appear in the form of their direct sum R.=
RiPR;. The kernel K, (g|u, v) for R, is defined on 2*X k*, equal to K#(g|u,v)
on kIXk’, equal to Kz(glu,v) on (kF)*X(k;), and zero if u-'vek;.
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For m, of order two in c., Rz, again splits into RE=R7 |S*(p(£*)*) and
RP=R7,|S*(ep(k*)?). The representations Rj, Ri, RE and R? are all irre-
ducible and mutually inequivalent. The kernel for R. =QRIPRPRIPR® is
defined similarly as above, and is zero if u~'ve&(k*)2.. As to an other character
of order two in 5,, or in (~3E,,, reducible representations is constructed similarly

but it is equivalent to Rp.
The representation ®* is extended to a unitary one Ki={T3%, L%k})}, and
R is also to Rz={T%, L*((k;))} and R}, s€FE, to R§={T30, L¥s(k™)»}.

We denote by £, the set of characters of the form ==]-|%, —1<a<1, and
by £, the set of all elements in C. with reE'={e, p, ep}, except of order two.
Put Q=E"U{r,,} IR, {x,} and 2,=02UR0,. We have seen that any irreducible
unitary representation appears as a completion of a subrepresentation in one of
R., r€,. Moreover the “support” of the Plancherel measure is £2.

§5. The Plancherel transform.

In this section, reviewing the Plancherel formula, we define and discuss the
Plancherel transform.

5.1. Let S(G) be the space of locally constant, compactly supported func-
tions on G. For every f€S(G) and 1€ 2=k {r,,} U2, {r,}, the operator
T”(f)=SGf(g)£r§dg, gr=T" if nElst{mp} and g7=T" if 7€,V {n,}, has

an integral kernel K.(f|u, v) given by
G.1) Ko(f 1w, 0= _f(@)Kxglu, vdg,

where K.(glu,v) is in (4.9), (4.10) and (4.11) for neEXU{mp}, and in (4.19),
(4.20) and (4.21) for r€2,\J{m,}. As will be proved soon, the kernel is a func-
tion on Xk and of trace class with tr T“(f)szK,,(qu, u)du.

The inversion formula is proved in [4] and [15]: for f=S(G),

5.2) fe) =Sgtr To(fym(z)d

:S;Xtr T*(im(z)drn+m(xsy) tr T=sp(f)
+ ZQ m(x) tr T=(f)+m(m,) tr T=o(f),
r€Rq

where m(z)=1/@2|(z)|?) for x<E* but as to m(rsp), m(z) for r€ Ry and m(m,),
see [15].

The inversion formula and Proposition 5.1 lead us immediately to the Plan-
cherel formula:
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53) [, r@idg={ tr @=(rerommdz
=[N e v dudomian
+m(7rsp)skgk | Ky (L, 0)|Prsp(uv™dudy
-{-ZEZQd ’”(”)SkSkIK”(qu’ v)|*dudv

+77z(no)ngkIKﬁo(f|u, v)|2dudv.

The above equality implies the map f—K.(f|u, v) is an isometry of S(G)
into L3yaemra=(kX kX 2) and by the general theorem of the Plancherel formula
on a locally compact group the image of S(G) is dense in the latter space. We
call K.(f|u, v) the Plancherel transform of f.

5.2. Again let f€S(G) and consider the kernel K.(f|u, v) of the operator
T=(f).

Proposition 5.1. The following equalities hold:
KoRof 1w, v)=] Ka(f 1w, DK (g2, v)dt,

M
Ko(Lof 14, 0)={ Ku(glu, DS 11, v)at,

where Ry is the right regular representation of G and L, the left vegular one.
) Kg ', )=K__(glv, ), where K.(glu, )=K.(g|—u, —v).

3) K__(flu, v)=K(flu, v)x(uv™),

@ K flu, =Ko, W),  where flg)=f(g™).

6 Ku(flu, )=Kz(flu,v), where {@)=F(@).

)  K(f*lu, =K To, wn(u™),  where f*=f.

M Kelffalu, )=\ Ke(fslu, DK falt, v)dt,
where fl*f2(g):Safl(gl)fZ(ngg)dgl .

®  Kelfoefthu, o= Ke(filu, ORI, Dat e,

and especially if © is unitary,
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Kofusftlu, )= K(flu, DRI, Dt

Proof. The proof is routine. Take (2) for instance, it is easily to proved
for g=d(a) and n(x). For g=uw, it is proved by the Bessel functions properties
(§3). Q.E.D.

5.3. Now, we express the kernel K.(f|u, v), f€S8(G), explicitly as a func-
tion on kXX k™.

Let G° be the set of elements gz(? ‘g) in G such that d+#0, then G=

G"UwG", and every function f in S(G) is expressed as f=f,+f, where f,, f,<
S(G) are supported in G° and wG® respectively. We discuss the Plancherel
transform K.(f|u, v) for f supported in wG°®. For the function f, supported in
G°, it is expressed as f,=L,-1if, f as above. Then the Plancherel transform of
f1 is given by Proposition 5.1 (1). Since each element in wG°® is given as
wn*(x)d(a n(y)=n(x)d(a)wn(y), f(g)=f(n(x)d(a)wn(y)=f(x, y, a) is locally
constant with respect to parameters x, yek and ask*. So, f(x, y, a) is ex-
pressed as a finite linear combination of functions of the form &(x)n(y)x(a), &,
7€S and x=S*. The Haar measure on G is given by dg=|a| *d*adxdy on
wG®, g=n(x)d(a)wn(y). Note that

| f0qiopidr={ ERK.(n(x)u, vp)dvdx=Ewp) .
Let f(g)=&(x)n(v)x(a) as above, then

6o | Kelflu, vp@dv={ [ | €n0@T i ammnarptlal *dadxdy

=[ fr@ gt wwiglwlald"a.
Further we discuss the forms of kernel K.(f|u, v) dividing into two cases:

(A) rek*U{n,,} and (B) neQ,\ {r,}.
Case (A). In (5.4), rewrite & and 7 by § and % respectively.

[ Kef 1w, vip)do={ Ewr@nta)l alTing)a)lal *d*a

:Ls'f(u)fc(a)],r(au, av)p)pw)dv|a|~'d*a .

because J.(au, v)=n"%a)J:(au, av). As we seein §3. J.(u,v) is a function on
k*x k*. Hence the kernel K.(f|u, v) is a function on £*Xk*:

(5.5) K:(flu, v)=6)n)M(u, v)

where M. (u, v)=Skx(a)],,(au, av)lal-'d*a



392 Masao Tsuchikawa

Suppose &, y are supported by P-™ (m>0). Take an integer k (£>0), and
set £=&,+&, where £, is equal to £ on P* and zero outside and &, is equal to
& on (P*)° and zero outside. Set yp=1x,+%. similarly. Then

(5.6) Eu)p)=E&1(w) (W) &1 (w) (V) +Ex(u) N1 (V) +E(u) (V) .

The first three terms on the right hand side are zero outside of the set {(u, v);
|luv| <g™-*} and the last is zero for |ul|, |v|<qg %

Let &(u)p() of f be one of the first three terms. Suppose x(a) is supported
by {a; ¢ "<|a|<q"}. If we take k as k=m+2n—1, it holds that |a’uwv|=
gmttn-k<g for u, veSupp [7] and a=Supp [x]. By the Bessel function property
(B.4),

M (u, v)=§k{F(:r")n(av)+F(7t)7r“(au)}x(a)lal"d*a

=r@)[(z &)+ 7 (W) (m)k(x™) .

where for #=|-|%8, E,(n)zgk/c(a)lalﬂ(a)dxazznlc,,(ﬁ)q“" (finite sum). Thus we
have
(5.7 Ko (flu, v)=6@) @) {z@)"(x~Y\(m)+ 7~ (u) [ ()& (x 1)}

Let &(u)np(v) of f be the last term in (5.6). Then for all ueSupp[£]CEk*,
vESupp [y]Ck*,

M.(u, v)=Sklc(a){P— SkX(aux+av/x)n'(x) d"x}lald"a

=S x(a){g X(aux—i—avx")x(x)dxx}lal'ld”a,
k g lsizisql
for an integer [ large enough. We chang the order of integration, then

M. (u, v)———gkﬁz(ux+vx")X,(x)77:(x)d*x R

where /Ez(ux+vx“‘)=SkX(a(ux+vx‘1))/c(a)]a|‘2da and X, is the characteristic

function of {x; ¢ '=|x|=¢'}. The function G(u, v, x)=&(u)p(W)k(ux+vx~)X,(x)
is locally constant and supported on ¢ *<|ul, [v]|<¢ ™ and on ¢7'=|x|=¢%, and
therefore G is written as X a(u)b;(v)cy(x) (finite sum), a;, b; and ¢;€S*. Thus
we have '

(5.8) K:(flu, v)= 3 ay(u)b;v)¢i(x) (finite sum).

Now, as to f,=8(G) supported in G° set fi(wg)=f(g). Then f is in wG°,
f]ZLw-lf and

5.9 Kelfilu, 0= Kowlu, 0K.(f1t, v)dt

On the right hand side, for a fixed ve k*, a function K.(f|u, v) in u is operated



Plancherel transform on SLy(k) 393

by H,.
Case (B). We treat the kernel for discrete series representations. Let me
2., JY{r}. From (5.4),

[ K12, v)p)dv={ &) TEwwrp)w)]a] *d"a

=a.c£w)| (], 70t sgn-0) al 4@, pw)dv)da,

where a. and ¢, are in (4.14) and (4.15) respectively. As in (4.22), J&(u, v) is a
function on k£*Xk*, and then

K:(flu, v)=a.c.£w)p)M(u, v),

where M, (u, v)=Sk/c(a)7r(a)(sgn,a)]al“j‘,”,(azu, v)d“a. Note that

J(a®u, v)=SC AUS(azz'D)r(a(z’/z)t)d "t
where u=N.(z), v=N.(z’). Then we have

G.10)  M.(u, v)=gkgc (a)(sgn.a)|a|-NaS.(zz D)xlalz' /2))d td" a

=\ m(Sz D 2d,

where Eg(x)zskx(a)(sgn,a)]aI"X(ax)d‘a. £, is in S. Since £, is constant on

the neighborhood of 0, the last side of (5.10) is zero for small |uv|. Thus
M_.(u, v) is locally constant, supported in the set {(u,v); s<|uv|, s a small
number} and except a finite number of 7€, M.=0. So, &u)pW)M(u, v) is
in $*X8* and we obtain K.(f|u, v)=> a'(u)Bv) (finite sum), a?, ff€S*. From
§4.6, it is easy to see that for neer\é,, al(u)fi(v)=0 if uv-'ek;, and more-

over for n=m,, a*(w)B*)=0 if uv=te (k)

Theorem 5.2. The Plancherel transform K.(f|u, v) of f€S8(G) is expressed
as a finite linear combination of the functions on k*Xk*X 82 of the following
form:

(A) For n:EIg*U{n'w}, the functions

Tz &) p@)n@)E(r)+ I (m)x(w)(w) y)k(z ) .
[ (7 ) H )W) @)z @)k(a)+ (x)(Hew E) () p)i(xY),
a(ub@)é(z),  (H.a)uw)b@)é(r),

where &, n€S and «, a, b, cES™.
(B) For nef,\Y{rn.}, the functions a.(u)B(v), where a, and B. <S> vanish-
ing except for only a finite number of =. Moreover a(u)B:(v)=0 if uwvek;, and
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() B, )=0 if uve (k)

Corollary 5.3. Fix nelsxu{n,p}, and consider K.(f|u, v) as a function in
u,v. Then it is a linear combination of @(u)p(v), where if neE*, o8, and
GE8 ., and if n=myp 98,y and 8. Fix r€2,NC., then Ki(f|u,v) is a
linear combination of @(u)p(v) where ¢, pS*(k}), and Kz(f|u,v) is a linear
combination of @(u)p(v) where ¢, &S (k:)). For m=m, K5 (f|u,v) is ex-
pressed as of the functions o(u)pv) where ¢, p=S*(s(k*)?), S€E.

§ 6. Tensor products of irreducible unitary representations.

6.1. Let R.,={T"% S:;} (1=1, 2) be representations of principal series or
of supplementary series. Let S.&S., denote the tensor product of S,, with
Sz, that is, the space of finite linear combinations of &(x:)7(x.), EE Sz, 7E S,
The topology is defined in such a way that a sequence of functions {£,7.} con-
verges to £y if and only if £,—¢ in S, and §,—% in S:,. The operator T, of
the tensor product R, @R., of R, and R, is given as follows: for oS, QSx,

ax,+r  axs.t+r )

(6.1) T (x4, x2)=nlp"(,Bx1+5)7rzp“(,@xz+5)go< Bxitd’ Preto

R., @R, is extended to a unitary representation with respect to the inner

products corresponding to the following norms:
(1) If ay, 1,€F* (R, Rr, are of principal series),

llgollf:SkSkgO(xl, x2)p(X1, X2)dX,d X5 .
() If m(x)=|x|", —1<a,<0 and m,=k* (R, is of supplementary series)
1 — ’
Ilsol|%1=—ﬁﬁgkgkgkfrilp"(xl—xi)so(xl, x)p(x1, xo)dx,dxidx, .
1

() If m(x)=1|x|% and my(x)=|x|%, —1<a;, a:<0 (R,, R, are of sup-
plementary series),
1
2 P S VOGRS IS OV
lolifu= F(ﬂl)r(ﬁl)gkgkskgkm o Mx1—x)73 o (x2—x3)
Xo(x1, x)0(x1, xp)dxdxidx.dx;.

As limiting cases of (1) and (), we have tensor products with the special
representation as follows:
(IV) Rsp®.‘sz, (TL’IIIXI" and ngekx), for SDES’IJ®S”2’

lottv=c| [, toglxi—xilp(r,, x)pGT wadxdxidx.,

where ¢=(1—¢"!)(log ¢)~%.
(V) -'Rsp@-‘kn(ﬂ'x(x)zlxrl and m(x)=]|x|, —1<a,<0), for gDES:p®Sx2,
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lote=c| | ]} loglxi—xiimsto tamridptrs, x)6GT xDdx dxidradis.
(VI) RpQ@Rsp(my and mo=|x|7"), for ¢ €S, QSsp,
lot=e'],{ ]|, toglxi—xlllogl xs—xil p(xs, x0GGT, 7D dxidxad.

Let (x,, w,) be one of the pairs of characters in (I), (I) and (I), and % be
the space of p€5,,&S-, satisfying ¢(x,, x.)=0 on a neighborhood of the dia-
gonal “x,=x,". 4 is G-invariant and has the same completion & as S: @Sz,.
We denote the representations on & by R, &®®R.,. Our problem is to decom-
pose these tensor products into irreducibles.

6.2. We consider a linear mapping U of S(G). For feS8(G) and g=
d(a)n*(y)n(xy), put

(6.2) (U Nz, xz)=ﬂa‘p(yl)gkﬂ?‘ﬂz(a)f(d(a)n*(yl)n(xl))d‘a ,
where x,=x;+1/y;. In other words,

oy 1
U f)(xy, x5)=m3p (x5 xl)(Sf)(xh xz_xl);

where

(Sf)(x4, y1)=SknI‘m(a)f(d(a)n*(yx)n(xx))d”a .

Proposition 6.1. For feS(G), Uf=pe4 and UR,=T,U where g—R, is
the right regular vepresentation of G.

Proof. Let G° be the open subset in G as in §4.

(1) Let f be supported in G° The function (Sf)(xs, y1)=Sk77:I‘7r2(a)

f(d(a)n*(y)n(x,))d*a is a finite linear combination of &(x,)n(y,), & n€S. Then
the function Uf is a linear combination of

O(x1, x9)= ngp"(Xz—xl)f(xx)ﬂ( X2'£X1 ) )

and ¢ is locally constant, compactly supported with respect to x,, zero on a
neighborhood of the diagonal “x,=x,", and for large | x,|, ¢(x,, x,)=dn3'p(x:)&(xy)
with d=%(0). Thus we get Ufed.

(2) Let f be supported in G°w, put f,=R;'f. Then f, is supported in G°
and from (1), Uf;=¢p,€4. It holds that

U f)x1, x)=URwf1)(x1, x2)=nE‘p(yl)Skﬂ?‘ﬂz(a)fl(d(a)n*(yl)n(xl)w)d*a ,

n*(y)n(xdw=d(x)n*(x(x13,+1D)n(—x7") by (43), and —x7'+x7(xy,+1)!
==y +D'=—x3},
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=nE‘P(y1)San‘nz(a)f(d(a)n*(xx(xlyl+1))n(—xT‘))d*a

=r3'p(y )T (x )T (22 (x 1y 1+ D)ei(— 27, —x7 27y, + 1D
=m0 (x )T (x2)pi(—x7Y, —x3)=Twi(x1, X1),

where T, is in (6.1) for g=w. Thus we get Uf=UR,f,=T ,p,E .
To show that UR,=T,U, it is enough to check it for g=d(a) and n(x),
because for g=w, it is already over. This is easy. Q.E.D.

Proposition 6.2. The linear G-morphism U of S(G) into 4 in (6.2) is con-
tinuous and surjective.

Proof. The continuity is clear from the definition of U. Let us prove the
surjectivity. Suppose ¢@(x;, x2)=&(x)np(x.)E% and & be compactly supported.
Put

(6.3) fld(a)n*(y)n(x))=mm3(@)k(a)mp (¥ )X, x1+37%)

where k(a)eS* such that Skls(a)dxazl. Then f is a preimage of ¢ under U.

In fact, f is locally constant in (x;, y,) and compactly supported with repect to
x;, and for large |yil, ¢(x;, x;+37)=0, and for small |y,|, ¢(x1, x;4+y7") is
expressed as d&(x.)m,p '(y7Y), d€C. Then f is compactly supported with respect
to y;, and Uf=e¢.

If o(x;, x2)=E&(x1)n(x.)€4 and & is not compactly supported, we can assume
that & is zero on a neighborhood of x,=0. Then T ,@(x;, xo)=mp (x)7p  (x2)
o(—x7t, —x3")E4 is compactly supported with respect to x,, and there exists
he8(G) such that Uh=T . So, U(R;h)=T,(Uh)=¢. Q.E.D.

6.3. Let <p, ¢> be one of the inner products in (I), (II) and (II). For
f, heS(G) we define B(f, h) as

(6.4) B(f, =<Uf, Uh}.

B is a continuous sesquilinear form on S(G)XS(G) by Proposition 6.2, and there
exists a distribution H,(g,, g=) on GXG such that

B(f, =\ [ Hig, 20/ (e)hg)dgdg..

Put ¢=Uf, ¢=Uh. Then by Proposition 6.1,
B(le’ Rgh):<ngD, Tg¢>:<¢; ¢>:B(fy h') ’

that is, H,(g.1g, g:8)=Hi(g1, g.) for all geG. Hence there exists a distribution
H(g) acting on S(G) such that H,(g;, g.)=H(g.,g3"). So we have

(6.5) Bf, w={ | H@)ee)REidgde,=| Horio)ig,
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where fu()=|_f(g)h g g)dg.=F+h*2).

Proposition 6.3. Corresponding to the tensor products in (I), (I) and (1),
the kernel distributions in (6.5) are written as follows: for g=d(a)n*(y)n(x),

(H.1) H(g)=n71'ny(a)d(x)4(y),
1
(H.1) H(g)=Wﬂ?‘m(a)ﬂ‘p“(x)d(y),
1
(H.11) H(g)= T miimy(a)m o (x)wst e (y)

To prove this proposition, we apply the following:

Lemma 6.4. Let m,€k* or m(x)=|x|%, —1<a,<0, and =, similar. Let
F€8(G) and put Uf=¢. Then, for g=d(a)n*(y)n(x,),

(A) Skﬂ‘ﬂz(a)f(d(a)g)dxa =mirs(a)meo  (y)e(x1, x2),

® SkSk”T”fz(aW‘p"(x>f<d<a>n(x>g)andx

=ﬂ?‘ﬂzl(al)mp'l(yl)gkrrflp"(x)go(x+x1, xo)dx,

© SkS,ﬁ‘Ma)ﬂ‘p"(—y)f(d<a>n+<y)g)dXady

zﬂlﬂz(al)ﬂzp—l(}’l)Sk”ElP_I(X)QD(xh x+x)dx,

where x,=x,+y7%

Proof. We prove this by using (6.2) and by changing variables. (A) is
easy. (B) Remarking n(x)d(a,)=d(a,)n(a7?x) and replacing x by a?x, we have

M ZS kS T m(a)nrp (0 f(d(a)n(x)g)d "adx .

=SkSkﬂ?‘m(a)niz(al)ﬂ‘p"(x)f(d(aax)n(x)rt*(yx)n(xl))d“adx .

Since n(x)n*(y)=d(xy,+Dn*(y(xy,+1)n(x(xy,+1)") by (4.3), we replace a by
aai'(xy+1)"'. Then we have

M:SkSkﬂl”?(a!)“Tlﬂz(a)nlnz‘(xy;-i—l):r?‘p-l(x)
X fld@)n*(yi(xy,+D)n(x(xy,+1)"Hn(x,))d*adx

=ﬂI‘n§‘(al)ﬂzp‘l(y1)Skmp"(xy1+l)ﬂI‘p“(x)rp(x<xy1+1)"1+x1, xa)dx ,
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because x(xy,+1)"'4+x,4+y7'(xy,+1)'=x,+y7'=x,. We change the variable x
by x(xy:;+1)"'=x’, then x=x'(—x"y,+1)!, xy,+1=(—x"y,+1)"! and dx=
p ¥ —x"y,+1)dx’. Thus we obtain
M=ﬂ?‘na‘(a)nzp"(yl)Kkff?‘p“(x’)so(x’+xl, x:)dx’ .
(C) is similar as (B). Q.E.D.

Proof of Proposition 6.3. The formula (H.I) follows from Lemma 6.4 (A),
and (H.1) from (B). The formula (H.M) follows from (B) and (C). Q.E.D.

§7. The Plancherel transform of a distribution.

Let <M be the imge of S(G) under the Plancherel transform. We consider
the induced topology on # from S(G). Let D be a distribution on G. We de-
fine the Plancherel transform D of D as follows: for Fe.H. take f€S8(G) such
that F(u, v, 1)=K.(f|u, v) and put

(7.1) SgShSkﬁ(u, v, m)F(u, v, ﬂ)dudvm(n')dn':SGD(g)f(g)dg.

Then, De#’, the dual of H. We call D the Plancherel transform of D. From
the inversion formula (5.2), we obtain

a2 | p@r@dg=]{] ] DKL, S 1o, dom(mdo)dg
=J A1V p@K.te 10, waf1u, vdudommd(m g

Thus D can be formally expressed as D, v, 7r)=SkD(g)Kz(g"‘|v, u)dg.

According to (5.3), (7.1) is written as

(7.3) SGD(g)f(g)ngS;xS,,ng(“’ v, OK(f |u, v)dudvm(z)dz
+771(ﬂsp)SkSkD(u, v, Tep) K-, (f lu, v)dudy
+ze§d771(ﬂ)gkgkﬁ(u, v, m)K-(f|u, v)dudv

—(—m(m)gkskﬁ(u, v, 7o) Kz o(flu, v)dudv.

Here the notations m(z) are described in (5.2).
We recall the abbreviation of notations: = m.(x)=m,(x)m,(x), 7 sgn.(x)=
n(x)sgn.(x), and so on. We prove the following:

Theorem 7.1. Let H(g) be one of the distributions in Proposition 6.3, and A
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the Plancherel transform of H. Then Au, v, 7)=0if nEE*U{nsp} and mym,n(—1)
#1, and Hu, v, 7)=0 if 7€(Q.NCIV{ns} and mimom sgnl—1)#1.

Proof. In the equality

SGH(g)f(g)ngSQSkSk]:I(u, v, MK(f|u, v)dudvm(z)d(x).

We replace f by Law-1f(g)=f(d(a)g), ack*. Then it is easy to see from the
explicit form of H(g) that

7.4 H(g)f(d(a)g)dg=mn3'(a)\ H(g)f(g)dg.
G G

On the other hand, for neE*U{zw}, K:(Lyorflu, v)I=np(a)K.(f|a*u, v), and
for ne(Qdm@,)U{no}, K:(Lawflu, v)=mpsgnla)K.(f|a%u, v). From these
equalities, (7.4) and Proposition 5.1 (1),

@5 | Hor@dg=| Heo LiwNd@gdg
—mminp@|. | | A v, mKf o, vdudomz)dr
+aimrmpp(amn(eg)| | A, v, m)Ke,(f 10, v)dudy
+mi'np sgni(a) 3 m(@| | A, v, DKf 0%, v)dudy

+mmiinep sgns(a)m(no)SkSkﬁ(u, v, m) Kz (fla®u, v)dudv .

Now, put a=—1 and compare (7.5) with (7.3) for D=H. =m,x3'7p(—1) and
mwy'wp sgn.(—1) equal always 1 or —1. So, we easily see that the integral
with respect to 7 on the set of £, consisted of elements nEEXU{mP} such that
mmen(—1)=—1 and 7€ 2,\J {n,} such that = 7,7 sgn.(—1)=—1, is zero. Thus
we obtain the theorem. Q.E.D.

To simplify the notations on integration domains, we set
I, =11, (.~ 1)) = {m€k*; n(—D=mz(—1)},
”dzﬂd(ﬂlﬂz('—l)):rég’ {”E(‘Qdmér); T sgn—1)=mm(—1)} ,

{zsp}r if mm(—1)=1,
(7.6) Qsp:{

a, if mm(=1)=-1,

{mo}, if mo(—1)=mws(—1),
de{

@, if mo(—1)#Fmm(—1),
and put
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7.7 ”=H(7L‘177.'2(—1))=HWUQ3PUII¢UQ¢ .

In the succeeding sections, we shall explicitly calculate the Plancherel trans-
form of the distributions H(g) in Proposition 6.3, and after obtaining it, we can
get the decomposition formulas for the tensor products of representations. Note
the following. In (7.3) we replace D by H and f by f,=f*h*, f, heS(G). From
Proposition 5.1 (4) and (8), for 7€k~ or 7€ 2, {x},

Ko(filu, =] K(f1u, DEL0%12, 0)ds

={ 1t R 1E, —0)m ot
where f(g)=/(g™") and K.(f|u, )=K.(f 1%, 1), and for m=r,

Koo filu, 0=\ Ko Flt, =Ko, (Rt =)z, (tu=Ddt

Thus from Theorem 7.1 we have for ¢=Uf, ¢=Uh€H TS QSx,,

78) <o, 9>=| H@)fia)dg
ZSnp,SkSkSkﬁ(_u' —v, n)n"(uv“)K,,(fIt, u)I?,,(fzIt, vYdtdudvm(z)dn
()| [ | A=, =0, 2w u Ko F11, 00 (R, 0)70p(®) dtdud
+"e;7d m(ﬂ)SJkSkﬁ(—u, —v, x)n‘l(uv‘l)K,,(f[t, WK (h|t, v)dtdudy

tm [ | A—u, —v, 20w Ke (F1t, ), Kot vdtdudy.
kJRJ R

§8. The Plancherel transform of H(g) in (H.I).

In this section, we calculate the Plancherel transform A of the kernel dis-
tribution H in (H.I) in Proposition 6.3.

First let n(x)=|x]*0(x)—x/log ¢<Im (a)=r/log g) be a character of k*
and suppose that it is satisfies n(—1)=6(—1)=1. Then, asin §1, 6=0'0, where
6’ is a character of the group {1, e, -, 9% =Z,_, satisfying 6’@/2=1 and
6, is a character of A;=14+P=(1+P)%. So, we can determine 6’(¢)'/2 for all §’.
Then we define the square roots of z as n*(x)=|x|*/20"™'*(¢)f,(a,) for x=
pre™a=pre™al, a, a;€1+P. Thus, since n in I1,,\JQ,, (resp. (ndmé,)UQd)
satisfies the condition =,73'n(—1)=1 (resp. m,w3'mr sgn.(—1)=1), we can take the
square root of m;73'mp (resp. mm3'mp sgn,).

Let 7, n, fix in B*. We define the functions A(r, s)(u), s€ E= {1, €, p, ep},
on k as follows: for €1l ,,\JQ,,,
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{ (mimy'np) o~ u),  ues(k™)?,

, otherwise,

8.1) Az, s)(u)=

and for re(IT,NC.)\UQy,

(mymyimp sgn,) 2o~ (u), ues(k™)?,
(8.2) A(r, s)(u)z{

, otherwise.

Now we have the Plancherel transform of H in (H.I).

Theorem 8.1. Let H be in (H.1), H(g)=r1'm(a)d(x)A(y) for g=d(a)n*(y)n(x).
Then it’s Plancherel transform A is given as follows:

Hu, v, 1)=2 > A, WA, )v),  for aell,, I, JQ,,
ﬁ(u, v, m)=2 XE)A(n, ) A(r, )W) rsp), for r€Q;p,

where A(x, s)w)=A(xw, $)©).

For the proof we remark the following. For any s€E, sgn, is a character
of E=Fk*/(k*)* and sgn,s=sgn,r. Therefore, for ues’(k*)? 3 sgng sgn,u=
r€EE

2 sgnyr sgn, r=40,,., 0 the Kroncker’s delta. Hence we have: for €I, \JQ;,,
rEE

(8.3) Az, s)(w)= %TEZE] sgny (mam3'wp)/2p ! sgn,(u),
and for re(IT,NCH\IQq,
8.4) Alr, s)w)= %EE sgnyr (mamy'mp sgn.)'*p " sgn.(u) .

Thus, the right hand sides in the formulas in Theorem 8.1 are rewritten as
follows: for rell,,,

- 1
2%; Az, s)Yw)A(x, s)w) = 7%}: (mywy'm )P o sgn(u)(w ' mem = )2 o~ sgn,(v) ,

and for w€Q;,,

ngg Ar, s)w)A(r, s))mshw)

1
= 7TEZE) (m17w3'msp0) 207  sgnu)(w ' mamipp) 20t sgn,(v) .

For ne(1,NC)\IQ,,
23X Ar, s)w)A(x, s)()
SE€E

= %2} (mim3'mp sgn) 2o sgn(u) (w7 mem ™ p sgn )2 p~! sgn,(v) .
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So, Theorem 8.1 is reduced to the following.

Proposition 8.2. The Plancherel transform a of Hin (H.1) is given as fol-
lows: for rell ,,\JQ;s,,

Au, v, 7r)=%rg;(frﬂr?ﬂp)”zp‘l sgn,(u) (z1'm,mw~'p)2p~ 1 sgn,(v),
and for ze(IT,NCHIQq,

A(u, v, m)= =% 2 (mumy'mp sgno)'*p™" sgn.(u) (w7'm,n™ p sgno)'*p™" sgn,(v).

Proof. Let H(g)=nrT1'nx(a)4(x)4(y), where z,, m,&k*. Then, using Proposi-
tion 5.1 (1), (7.3) and Theorem 7.1, we have for f€S(G),

[ Her@de= [[ | 7 m @KL acasf 10, wdum(mdz]da

@®.5) =Sk[snmskn'flrczn“p'l(a)Kn(fIa'zu, u)dum(n)dn-]dxa

(®.6) +Qu () || wrimmto (@K, (10w, wydud*a
®.7) +][ 3, m@ mrmaom sgnd@Ketf e, wdu]da
8.8) +[Qd:|m(7l'o)Sk[Skn}‘nzng‘p‘l sgn (@)K, (f |-, ) du]d*a ,

where [Q,] (resp. [Q.]) means that if Q,,=@ (resp. Q=) the term just
following it does not exist. (cf. Theorem 7.1). We will study each of these
terms separately. First we prove the following lemma.

Lemma 8.3. Let f& Ll ((k*)?), then it holds

89) [ ranamx=2|  fod.

Proof. Since the space S*((k*)%) is dense in L}x,((k*)?%), it is enough to
prove for the characteristic function f of the set S=p?"e?(1+P™) (m>0). In
the correspondence x—x?, there exist two preimages S,=p"e'(1+P™) and —S,

of S. Then the left hand side =SS dXx+S . d*szS ndx=2¢"" and also the
1 -o1

1+

right hand side =2$sdxx=2q‘"‘. Thus we get the lemma. Q.E.D.

Now, let us continue the proof of Proposition 8.2. First take the term (8.5),
and denote it by A. Change the integration order with respect to d*a and
dum(z)dr and put A=m,x3?, then by Corollary 5.3 and Lemma 8.3
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A =S”mSk{gk(lnp)”z(az)K,,(flazu, u)d*a}dum(z)dz
=25ﬂprskg(kX)Z(an)‘/zp"(a)K,,(fIau, wdadum(z)dz

=2§HWSkg(kx)zv(ln'p)”zp"(u)(l“ﬂ:"p)”gp"l(v)K,,(f|u, vYdudvm(zn)dr .

As to the integration with respect to dudv, it holds

1
Skg(k")zv dudv_SkSk,qu(kx)z dudv—Zré'SkSksgnruv ~dudv.
Thus

1 -1 1/2 -
(8.10) A=53 0§5x518k8k(mﬂ2 2 0) - sgn(u)

(z1'mem )20 sgn (WK (f |u, v)dudvm(z)dy, (z=1-170).

This gives the formula A for z<ll pr in Proposition 8.2.

To justify the change of integration orders, we check that the integral
(8.10) is absolutely convergent. This can be done using the explicit form of
K.(flu,v) given in Theorem 5.2, Proposition 3.7 and m(z)==z(—1)/Q2I (z)(x~)).

Next we treat the term (8.6). It holds that

@1 || srraer @K 10, waufda

=% 2 Skgk(ﬂmslmpp)”zp“ sgn(u)(zi'wemsp )20t sgn, (V) K (f |u, v)dudvy

T€EE,

The equality (8.11) is given under the condition that integrals of the right hand
side are absolutely convergent, and the absolute convergency is similarly proved.
Thus we have the formula A for 7€ Q,, in the Proposition 8.2.

For the term (8.7) and (8.8), again it holds, for re(7.NC.)UQq,

8.12) SkSkﬂI‘ngn“p“sgn,(a)K,,(fla’zu,u)dud*a

= -;— EESkSk(mn’;‘n sgn.)?p~' sgn,(u) (z7'm,w™'p sgn.)2p~ ! sgn,(v)
XK. (flu, v)dudv,

under the condition that integals in right hand side are absolutely convergent,
and it is more easy to check this, because of the form K.(f|u, v) in Theorem
5.2 (B). Q.E.D.

§9. The decomposition formula in Case (I).

9.1. Let x, m,€k*, and R PR, ={TTQT"?, S$.,S:,} be the tensor
product of two principal series representations. The inner product correspond-
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ing to || [{ in (I) is §6.1 in L*QL?
loti={ [, et x0l*dnidx,

Take f=S(G) such that Uf=¢ and put fi=fxf*, then

©.1 loli={ Her i)

:Sﬂgkgkﬁ(u’ v, M)K-(f1lu, v)dudvm(z)dr,

where H is in (H.I). From (7.8), Theorem 8.1 and the fact that H(—u, —v, )
:ﬁ(u, v, @), we get

02 eli=g |, 1]} 240 g wAc 907w

XK-(f1t, WEL(f1t, v)dtdudvm(z)dx
+LQuInte) [ | 240, X730 A, sY0TT)
X Kz (F1t, WK (FIt, V)msp()dtdudy
+.3mm 3 [.1.] 24 910z, sswzio)
XK.(f1t, WR.(fIt, v)dtdudy
+0Qam) 2 [ | 240, 91wz, 90)750)

X Keo(f1t, WK (f1t, v)dtdudy .

where [Q;p] and [Q.] are as in (8.6) and (8.8) respectively.
We put for mell,

9.3) o¢; «, s)=\/'2_SkA(7r, W (W) KL(f|t, wdu

x/’z_gs(kx)z(nﬂr?ﬂ“p)‘”p“(u)Kx(flt, wdu, for z€ll,\JQ;,,

vl e sen) i WKLt wdu, for ze(TAEIIQ.

By Theorem 5.2, this integral converges and the function @(¢; x, s) in ¢ is in
8. if r€ll,, and O(; m,p, 5) is in 8,,. Let r€ll,NC.. By the definition,
s(k*)ckr if and only if sgn,s=1. Again Theorem 5.2, we see that O@(¢; =, s)
e8*(ky) if sgn.s=1, and €8*((k)) if sgn,s=—1. For every s€E, @(t; x,, 5)
is in S*(s(£*)?. In addition, we have the following identity:

9.4) O¢; 1, 5)=0¢; &, s)x(t) for rell ,,\JII 4,
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which follows from Proposition 5.1 (3) and (9.3).
We define a linear mapping:

9.5) Vif—s0=0(; x,s).
Here @ is a function defined on £XIIXE. From (9.2), we obtain for ¢p=UY,
9.6)

loli= 5], 1,106 7 9 *dim@dn+{QuIn(r.p) T, 100; 7, 9limep(tdl

+. 3 @] 10 7, 9P dt+QImEZ] 106; o, s(Pdt=]01 (pus)

Now we have the commutative diagram:

U y
o(x1, X2) f >K, (f|t, uy) ——=> @
S g g g g
(T2QT5)e R.f K(LHt, ) —>T,0,

where T,@=930(; r, s). For nell,, 9;=TF acts int as the principal series
representation R, in §4.1. For m=n,, IZ=T% as the special representation
Rsp in §4.1. For z€ll,\JQ,4, T5=Tj; as the discrete series representation: if
zeﬂdméf and sgn.s=1, 95=T7% as R} in §4.4, and if sgn,s=—1, as R; in
§4.6, and for n€Qq4, T2=T% as R in §4.6.

Note that if m,m,(—1)=1 the special representation terms appear, and if
7im(—1)=—1 they disappear. From Lemma 4.2, no(—1)=1 if —1e(£*)? and
mo(—1)=—1 if —1=(k*)%. Then again note that in case =,m,(—1)=1, split dis-
crete series representation terms all appear if —1&(k*)? and disappear if —1e
(k)% and in case mw.(—1)=—1, they appear if —1e(k™)* and disappear if
—1le (k%)

9.2. To give the decomposition formula, we construct a Hilbert spaces
H and H0. Let

Hpr:Hpr(+1): {EEEX ; m(—1)=1},

=1 (+1)=\ {ze2snC.; nsgn(—1)=1},

9.8) TeE

{mo}, if —le(k™)?,
Qe=Qqu(+1)= .

0, 1f _le(kx)zy
These sets are in (7.6) for m,7,(—1)=1. Also put
9.9) =)=, Iz} VI ;JQ,.

Let § be a space of complex valued measurable functions A=A¢; x, s)
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on kXII X E satisfying the following conditions:

(5.1) For zell ,,\ VI, At; n°t, s)=A(t; &, s)x(?).

(.2) Let neﬂdr\é,, then if sgn.s=1, A(t; =, s)=0 for almost all t=(ky)°,
and if sgn.s=—1, A(t; =, s)=0 for almost all t€ k. Let r=Qq, then A{; 7, s)
=0 for almost all ¢e s(k))2

H®.3) A=A(t; =, s) is square integrable in the following sense:

@100 J41r= 5], Skma;n, S)l2dtm(7r)d7r+m(rrsp)2‘,gkl/l(t;ﬂ:sp, )|Pzep(dt
pr s

SEE

+ 3 m(n)ZS |A¢; S)lzdt-l-[Qd]m(m)ZS 1At 7o, 5)[Pdt< oo,
rellqg s Jk s Jk

where [Q.]=[Q4(+1)] means that if —1le(k*)? the term just following it
vanishes.

@ is a separable Hilbert space with the inner product corresponding to
(9.10). We define a representation R ={T H®} of G by

9.11) TP A=T5A¢; 7, s),

where 9% is the irreducible unitary representation corresponding to = or (x, s)
as is explained for the diagram (9.7).

The unitary representations obtained by completion from R etc. are denoted
as follows: (a) R, for R, with r€ll,,, (b) R,, for R,,, (¢) R and R; for
Rt and R; with =<l respectively, and (¢) R§, s€E, for ®§. Let II), be
the set of the equivalence classes with a relation z~z~'on II,, and I} similar.
Then the representation R is expressed as a direct integral

(9.12) SH‘*’:[{IS”/ R .m(x)drD[4] R,

r

B2l 3 (RPRIPLQNRDRIDRIORIT).
el g

where [4] and [2] are the multiplicities of the representations.
The Hilbert space $¢ is defined similarly as §™. Let

=11~ D)= {z €k, ; n(—D)=~1},

(9.13) Hd:Hd(_l)zréé,{ﬂEQdﬂéf); 7 sgn.(—1)=—1},
{me}, if —TE(®R7)?,
Qa=Qd(—1)={ )
0, if —le(k*).
Put
9.19) H=1-1)=1I1,\IJI,JQ,.

H is a Hilbert space of functions A=A(t; =, s) on kXIIXE, IT in (9.14),
satisfying (9. 1), (§.2) and the condition:
($.3) A=A(¢; », s) is square integrable in the following sense:
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9.15) | 4l*= EES” Skl/l(t; w, $)|*dtm(n)dn
sE€ pr
+ 3 m@T| 1A 7 )M QAmET 1465 7, 9)|%d1 <o,

where [Q:]=[Q4(—1)] means that if —1e&(k*)* the term just following it
vanishes.

On ¢, we define a representation B¢ of G and it is expressed as a direct
integral

(9.16) R z[4]5” ' ."R,,m(n)dn-EB[Z]xe%d, (REDR7)
pr

BLRI(RIDRIDRIDR) .

9.3. Suppose mmy(—1)=1. We show the tensor product 92,,1®.<R,,2 in §6.1
equals R, Similarly, in case m;my(—1)=—1 the tensor product equals R¢.
In this subsection, % means R¢* and so on.

Every element @ in (9.5) is in §. So, we get a linear isomorphic G-morphism
W:p—® of 4 into  such that WU=V, and it is extended to an isomorphic
mapping from L2®L? into P, denoted again by W.

Proposition 9.1. The image of L*QL? under W is the whole space 9.

Proof. For each s€E, let §, be the subspace of the functions A=A(t; «,s)
in  such that A(; x, s")=0 if s’#s. Then

9.17) 571:%69?{5@991;»@91;1: ’

where for s€E, ®,={T*, §,}, T* the restriction of 7' to §,. All the irreducible
component in R, appears with multiplicity one. Take ®,. It is denoted by

9.18) =, (a7, S} m(x)dx

where §(z)=L? for r€ll,, =L%, (in §3.4) for r=m,,, =L*k;) for rell,NC.
and =L%(k*)?) for r=Qq.

Let M be the image of L2®L? under W, and P, the orthogonal projections
of  onto ;. Then M,=P,M is G-invariant.

We shall prove the proposition by two steps: (1) M,=9, for every s€E,
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and (2) M=9.
Step 1. We prove M,=9,, and the other cases are proved similarly. On

9, we consider the representation S”I {7, H(x)y m(z)dr of the group algebre

L*G), corresponding to R;. Note that M, is closed and L*G)-innvariant.

Lemma 9.2. The representations f—IF of LYG) satisfy the following pro-
perties:

1. 9% as an operator valued function on the locally compact space II', is
continuous in the sense of the operator norm and is zero at infinity.

2. The operator IF is compact.

3. Every representation f—I7F is irreducible.

4. For arbitrary m,, m.€1Il’, n,# 5, the vepresentations are not equivalent.

Proof. For given fe LYG) and ¢>0, we have h€S(G) such that ||f—h|,<e
where | ||l; is L*-norm. Since 9} is given as an integral operator with K.(h|u,v)
as in Theorem 5.2, we see easily that 1 and 2 hold for gZ. This lead us im-
mediately to 1 and 2 for 9%. 3 and 4 are obvious. Q.E.D.

Lemma 9.3. Let RN be a Ii-invariant subspace, f € LXG), in 9=
S”,«b(n)m(n)dﬂ. Then M is the set of all vectors @=D(x)ED;, which satisfy the

condition @(x)=0 for almost all w€ N, where N is a fixed dn-measurable set in II’.

Under the properties in Lemma 9.2, Lemma 9.3 holds and it is obtained by
modifying a little Corollary 1 of Theorem 8, “Continuous Analogue of the Schur
Lemma”, in [8, p. 358, p. 356]. Thus M,=§, will be proved if we show that
N is a set of measure zero. For this, it suffices to prove that for each nell,
there exists ¢ € HCSx,@Sx, such that @@; «, 1)#0 in H(x) where O(; =, 1) is
the component of @=We.

We give ¢ as o=Uf, f€S(G) supported in wG®. Take f as

(9.19) f(@)=&(—=x)n(—=yk(a™),  for g=n(x)d(a)wn(y),

where &, €S and x€S*. Then, f(g)=f(g"‘)=1;(y)§(x)/c(a), and from (5.5),
KA(f1t, w)=HO&u)Mx(t, u), where

klc(a)],,(at, au)r~Na)d*a, for rell ,,\J {7 p},
9.20) M., u)=
a,ctgkx(a)jg(at,au)n"sgn,(a)d*a, for nell\J{x,}.

For a given nell,,\J{r,,} (resp. n=ll;\JQy), there exists a neighborhood
of a fixed point (u,, ty, @) ER*XE*XEk* on which the function J.(at, au) (resp.
J%(at, aw)) takes a non-zero constant value. This makes clear to be possible to
choose &, » and £ such that
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o; 1):5(

where A(z, s) is as in (8.1) and (8.2). Thus we get M,=9..

Step 2. To prove M=, it is enough to show that, for arbitrary 49 and
¢>0, we have pe4 such that |A—@| <4e where @=W¢. According to (9.13),
A is decomposed as A=A+ A +A,+A4.,, A,€9,. 1f we have p;e4 for every
s€E such that @,=Wop,€9, and |4,—D,||<e, then for @= 3 O,= > We, it
holds |A—®@| <4e and so ¢= 3 ¢, is a required function. =k =

r€E
From Step (1) there exists ¢4 such that |P,W¢—A||<e/2. On the other
hand, from the next lemma, there exists ¢,€4 such that We,€9, and
|Weo,—PW¢l<e/2. Hence [|[We,—A,|<e, and this completes the poof of Pro-
position 9.1. Q.E.D.

A, ) WK fit, wydu=0,

BX

Now the following lemma is left to be proved.

Lemma 9.4. Let ¢, ¢>0,and s€E. Then there exists a function @€ 9
such that Wo,€ 9, and |Wo,—PWo| <e.

Proof. Let ¢=Uh, heS(G). We can assume h is as in (9.19). Then
K.(hlt, u)=f/(t)é(u)Mﬁ(t, u) where M (t, u) is as in (9.20). For given 6>0, let
k be a natural number such that, for zll,,\J {n,,}, it holds

l SN(ME’n"p)l”p“(u)é(u)du <4,

and if ueP* then |e®ut| <1 for all teSupp [7], a=Supp [x]. Let {(u) be the
function equal to é(u) if ueP* and zero otheerwise, és be the function such
that £,=&—¢ on s(k*)? and zero outside. Since £é—{e8*, £,&5* and whence
eS8, We set fi=E(—x)p(—y)k(a)ES(G). We prove for s=1 that ¢,=Uf,
is a required function, namely, prove that We,=Vf,€9, and |Vf,—P,Vh||<e
for 6 small enough. For another s, the proof is similar.

Put @,=Vf,. Its component @,(t; =, r) for rll and reFE is given by

Out; 7. = Al N WIOEWM., wdu,

where M.(t, u) is in (9.20). Since Supp [é,]c(k‘)z, the above integral is actually
taken over r(k*)2N\(k*)%. Hence @,(t; r, r)=0 if r+1. Thus Vf,€9,, Put ¥,
=P, Vh and let ¥(t; =, 1) be its component. Then

Wit m D=0t 7 D= A Dawm @wnOMa, wdu.

(k

Since the support of {(u)7(t)x(a) is contained in {(u, t, a); |a*ut| <1}, it follows
from the discussions in §5 that if {(u)#7(#)#0, then
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(W) (m Y& () + 7 O (72)k(xY), for rell,,
Me(t, u) =1 iy (wsp)fi(n53), for z=mn,,,

0, for r€ll;\VQ,,

where El(z):Skx(a) la|n(a)d*a. Thus

Wits 7 90t 7, 9| = Alw, D 0XWHIOM, wdu

is less than 4|HW| | (@ V&(m)+ T (n)k(x™")| if mell,, and less than
Ol sy (s )k (msi)| if m=m,, and equal to 0 if zell;,\JQ,. Thus we have

IIWl—¢1I|2<52{IIf/II25”m|F(n")ﬁl(n)+F(n)E;(ﬂ") [*m(m)dw
w1 D)k (m33) -

Since I'(z V& ((x)+1'(x)k,(r~*) can be extended as a continuous function, even
at =1, and is compactly supported, then the integral converges. Taking @, for
a sufficiently small , we have the lemma for s=1. Q.E.D.

9.4. Now we arrive at one of our main results.

Theorem 9.5. Let m,, . be fixed unitary charactersin k<, [I=I1(+1) be in
9.9) or (9.14). Let D=9 be the Hilbert spoce of the functions on kXIIXE
satisfying the conditions (9.1), (9.2) and (H*°.3) in §9.2. Then there exists a
unitary mapping W:op—A of L*QL* onto 9, D=9 or H according as
mim(—1D=1 or mm(—1)=—1. W is given on I (CS.,QSx,) by WU=V, where
U and V are defined in (6.2) and (9.5) respectively. Moreover W is a G-morphism,
HW=WT, (g€G), where T, is an operator of the tensor product 92,,1@)9{,,2:
for pe L*QL?,
ax;+r ax,+y
Bxi+0’ Bxestd

Tgp(xy, xz):71'1,0_l(ﬁx1+5)ﬂzp-l(ﬂxz+5)§0(
and T, is given as follows: for A€,

T A=[95A(t; =, s), n€ll, s€E],
where
T3A@; =, s)=np(a)d(a’; =, s), g=d(a),

=X(—tx)A; =, s), g=n(x),
=H A{t; x, s), g=w and rell,,\JQ,,,
=HeAG; =, s), g=w and n€ll,\JQ,,

Here H. and HE are defined in (3.2) and (4.22) respectively.

In other words,
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Theorem 9.6. The unitary transformation W realizes the decomposition of
the tensor product 92,1@92:2 into irreducibles as follows: In case —1€(k*) if
71'17'[2(_1)21

o2  R.O2.,~[4],  Kmmdr@IRLO2], (RO,

I prc+n

and if mw(—1)=—1

02 K.,  Rm@dzd2] T (RiOR)
pri-1’ rellqg(-D'
D(RIDRDRID RE?) -
In case —1&(k*)?, if mm(—1)=1
9.23) gzz@gzﬂzzmgﬂ oy, (@) AT DA R
@Brz2] ”E( )(9?‘;@9?;)65(@5699?8@5_%6’@@8"),
TEM g(+1)'

and if 7'[177:2('_1):_17

020  R.,8,~04]|, | Remmdr@2 3 (RIOR7).

I prc-1) PIGEN

9.5. We give the direct form of the intertwining projection for z €Il ,,\J Q;,.
First let for »rE,

D, ”):‘/7—:27“; (sgn,$)P(t; «, )

=z (masa ) sgn WK1t wdu.

Let @T(x; 7) be the (principal value integral) Fourier transform of @.(¢; z) with
respect to t. Then we have the following direct formula of the intertwining
projection : go—»@,(x; r). This is quite analogous to that given in [9, p. 124]
for the decomposition of the tensor product for SL.(C).

Proposition 9.7. For nell ,,\JQ;,,

D,(x; 1)=+2 T(zim3'n'p)"/* sgn,)
X SkSk(ﬂI‘nznp)‘”p“ sgn(z:.)(m w3 7w p) 2 p " sgny(z,)

X(ri'nyin~p) 2 p " sgn(z,—z)p(z:1t+x, 2,+x)dz1dz, .

Proof. We set, for feS(G),

Fx, o, m=| | fn(=nd@n*GIntzmp-a)d*ady

:SkSkf("(_"l)d(a)"“(y)n(x))?r"p"‘(a)dXady .
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For a fixed r€ll,,\JQ;,, F(x, x1, 1)ES8:QS,-1 and K,,(flt, u) is given by

K.(flt, w)=P- SkSkF(x, Xy, W —ux)dxdx, .

Then

a /\ v
Dx; T)=F '/ 2"’{5k[(ﬂrmz‘n"p)”zp“Sgnr](u)Kn(fIt, u)du}
=2 [ ((myw5'n " p)!/? Sgnr)gk(ni‘ﬂznp)‘“p" sgnx)F(x, x1, m)dx,

=vZ T (mms'n o) sgnn)| | [ eimazpyreo- sgnite)

fn(=x)d(@)n*(y)n(x)rpNa)d adydx,.

According to the decomposition (4.3), we have

n(—x)n*(y)=d(—x1y+Dn*((—x,y+Dy)n(—x(—x,94+1)7Y),
then

N
:Skskgk(”7]”27fp)”29_] sgn(x)x7'wy(a) f(d(a)n(—x)n*(y)n(x))d*ad yd x,
B

NS @rmmpyot sgnieiaraa)

X fld(a@)d(—x1y+Dn*((—x,y+Dy)n(—x(—x19y+1)+x))d“adyd x,,
Take, for given o4, f(g)=mn3'(a)e(a)mp  (y)e(x, x+37") in S(G), where
kES* is such that Skxdxazl. In the last side of A, replace a by a(—x,;y+1)"},

then we obtain

A =Skgk(7r71mrrp)”2p'l sgnx )i w s (— Xy +Dmep (= x1y+1)y)
o(—x(—x,y+1)"Hx, y ' +x)dxdy,

because (—x;y+1) 'y '—x,(—x,y+1)*+x=y"'+x. Now we change the vari-
able; z;=—x,(—x,y+1)"* and z,=y ' Then (—x,y+1)y=(2,—z)"Y, —x,y+1
=2z,(21—2,)7Y, x1=—2:12:(2:—22)7", and dx,dy=p~*(z,—z,)dz,dz,. Then we come
to the desired formula for @,(x; x). Q.E.D.

§10. The decomposition formula in Case (II).

In this section, we give the decomposition formula of the tensor product of
a supplementary series representation with a principal series one. Let 7, be a
character of the form my(x)=]|x|®, —1<a,<0, and 7m,=£*. Note that in this
case the equalities m;m,(—1)=1 or =—1 turn out to m,(—1)=1 or =—1. So,
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Il,, and other sets in (7.6) depend only on zm,(—1). We have the following
theorem quite similar to Theorem 8.1.

Theorem 10.1. Let Hin (H. 1), H(g)=I(x1) 'n1'z:(a)n1 0 (x)A(y) for g=
d(a)n*(y)n(x). Then the Plancherel transform A is given as follows:

ﬁ(u, v, m)y=2 Zl)f Alx, s)WA(x, s)w), for rell ,, I ,\Q,,
A, v, 7)=2 > A, WA(r, s)W)rskv),  for r€Qs,,
where A(rw, s) are similar to (8.1) and (8.2).

This theorem is reduced to the following.

Proposition 10.2. The Plancherel transform H of H in (H.1) is given as
follows: for nell ,,\JQ;,,

A, v, ”):% I (mri'mp) o™t sgni(u)(mimon 1p) 20~ sgn,(v),
and for re(IT,NCHVQq,
Hu, v, n)=% 2 (mimyinp sgn)' o™ sgn,(u)(mimar "o sgn.)'%p " sgn, ().

Proof. Let H(g)=I'(r7")'ni'ry(a)nilp (x)d(y), where m(x)=|x|", 1<a,
<0, and m,€k*. Remark d(a)n(x)=n(a®x)d(a), then replace a®x by x, and put
fi=Lacof. So, we get

I Hef@dg={ mito- | madafd@)daldx

=], 7o O+ i+ G+ (v}
where as in the proof of Proposition 8.2,
. 1
(mimam ™ p) 20 sgnW) K (f1lu, v)dudvm(z)dr,
(ii) ——l-[Q Im(z )ES S( 1imy! Y2~ sgny(u)
) sp sp) 2 kkﬂlﬂ'ﬂﬂ:spp P gngu
(mimamspp) 2o~ sgn(W) Kz, (f1lu, v)dudv,

1

(iii) =7”e”dm(7r)%}Skgk(ni‘n';‘rcp sgn.)!2p~1 sgn,(u)

(m7om ™ p 5gn.)2 07" sgn (W) K« (f1lu, v)dudv,
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. 1
(V) =5 [Qnz) T | (xi'5tmp sgn s sgn,(w)
(mimems’ o sgne) o~ sgny(W) K, (f1|u, v)dudv.
First consider the integral A:Skn;‘p"(x)(i)dx. Put A=m,73?, then

Xw(Ax = p) 2 p " sgn W) K (f1lu, v)dudvm(:r)dn}dx .

Next we change the order of integration with respect to dx and dvm(z)dz, then

iA=Ly Snprgkﬂg(lﬂ'lp)”zp Sgns(v){SkSkn}‘(ln’p)”zp‘l sgn.(u)

2 r€EE
X p X (xuw)K(flu, v)dudx}dvm(n:)dn .

By Corollary 5.3, as a function of u, K.(f|u, v) is in Sy for a fixed v and z€k*.
Then it is easy to see that F(u)==7'(Azp)"%p *sgny(u)K.(flu, v) is a linear
combination of functions in 8, and §,.-1, where p=n7'(Anp)'?p*sgn,=|-|#4.
Since Re (B)=Re ((—a;—a.+1)/2—1)<1 and 0<—a;<1, we apply Corollary 2.5,
and obtain

SkSknylp"(x)X(xu)F(u)dudx=F(7r7‘)§kn'1(u)F(u)du

=T (i p)2p~" sgnyK(f |, v)du
Thus
awn A=y @, | { marneo sano

X(miman ™ p) 20" sgn (VK (f |u, v)dudvm(z)dr .

The integral in the last side in A is absolutely convergent and so the above
change of order of integrations is justified.
The calculation for (ii), (iii) and (iv) are similar. Q.E.D.

We put for nell=11,JQ;,\ I, JQ,,
(10.2) D(t; «, S)=x/’2’SkA(7r, $) W)z WK fIt, u)du
Then, as a function in ¢, @(t; «, s) is in one of the spaces of representations

Ry, Rsp, RE and R§ corresponding to « or (z, s). This is similar as in §9.1.
For nll,,\JII,;, @ satisfles the condition;
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(10.3) O@; nt, )=0(t; =, s)n(t).
We define a linear mapping
(10.4) V,f— 0=0(t; x,s).
We have the same diagram as (9.7). From Theorem 10.1 and (7.8), we obtain

(10.5)
loli= 5, 1,10 2, 9ltdm@da+0.In(mp) D], 10 7y, 5)1mep(0t

+.2 m(n)Eg |0@; =, 5)|2dt+[Qd]m(ﬂ'o)ZS |O(t; 7o, $)|2dt=]D|* (put),
z€llg s Jk s Jk

where | || is in §6.1 (II). The right hand side above has the same form as in
(9.10). Therefore @9, where H=9" or ¢ is the separable Hilbert space in
§9.2. Thus we get a linear isometric G-morphism W: ¢—® of 4 into $ such
that WU=V.

Let L2 ®L® be the Hilbert space of all measurable functions ¢ on 2X£Z
such that [¢lly<co. Again by Proposition 9.2, W is extended to a unitary G-
morphism of H=L2®L? onto . Thus we obtain another one of our main
results.

Theorem 10.3. Let m, and =w, be characters of k* as at the beginning of
this section. Then there exists a unitary mapping W of L2 QL® onto 9, which
is given on 9 by WU=YV, where U and V are defined in (6.2) and (10.4) respec-
tively. Moreover W is a G-morphism, that is, WT,=T,W, where representations
T, and T, are as in Theorem 95. Thus W realizes the decomposition of the
tensor product 9{,,1@)9,,2 into irreducibles for this case.

In case —1€(k™)® and n,(—1)=1, it is given by the formula (9.21).

In case —1e€(k”)? and n.(—1)=—1, by (9.22). In case —1&(k*)? and 7(—1)

=1, by (9.23). In case —1&(k™)? and m,(—1)=1, by (9.24).

§11. The decomposition formula in Case (III. A).

The decomposition of the tensor product of two supplementary series repre-
sentations is studied according to the following two cases: for =,(x)=]|x]|“1,
ma(x)=]|x|% such that —1<a;, a,<0, we say

Case (II. A) if 0<1l+a;+a, and Case (II.B) if —1<1+a;+a,<0.

In this section, we give the formula for (Il. A), calculating the Plancherel trans-
form H of H. In the next section we give the formula for (III. B) by an analytic
continuation of A. Note that, for these cases, in (7.6) and (7.7) it is only
mimo(—1)=1, therefore IT=1II(+1) etc.

11.1. Let #, and =, be as in (Il. A). We consider the following products
of gamma functions: for nell,,\J{x,,}
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(1L.1) Iz, 7o, ©)=1'((7 72w p)"* sgno)[((r,7om 2 p)!/% sgny)
I'((z7'memp)? sgn) (7' mem ™" p)'/® sgny) .

From the property I'(A)=A(—1)I'(A), 2 a non-unitary character of £*, we see
that I'y(w,, e, x) is positive. For m=mr,, and =,==, we should understand
I'((z1'momsp o) 2L (7 memsp ) =1. It is also that I'y(rx;, &, msp) IS positive.

For a character v of £* and zell dué,, we define a gamma function on
L.=k(+/7) by

(11.2) vz, v) =SL W22 T (DUS(2)d 2 .
Put
(11.3) gs(xy, Ty, m)=ci((m1mem ™" p sgN)Y* sgn, (7,77 p SENL)Y? sgNy)

I'((zm7'mom ™ p sgn,)'/? sgn,, (w7'mymp sgn,)'/? sgny),
where ¢. is in (4.15). We assert that g,>0. Since
z —> v(2Z)r " (2)=(m,mom p sgN.)* sgny(2Z)n~!(2)

is a ramified character of L}, g;=c*x(—1)a with a>0, and ¢?=sgn.(—1) b with
b>0. So we have g;=abr sgn.(—1)=ab>0.
We need the following lemma, which is analogous to Proposition 3.7.

Lemma 11.1. Let v be a character (not necessarly unitary) of k* such that
v(x)=|x|*0(x), 0<Re (a)<1. Then for reC, and pS*(k;),

Skvp"(x)H%go(x)dx=c,ﬂ(vn“, v)Sku"n'(x)go(x)dx ,
where H? is as in (4.22) and I.(vz~', v) is as in (11.2).
Proof. Take z= L} such that zz=x. As we studied in §4.4, there exist

D(z)eS(L.) such that ¢(x)=0.(z)x"'(z) with @x(z)zgc D(tz)x~1(t)d*t. Then

H%so(x)=chK]%(x, e(y)dy

ZC’SL 1S3 N1 2) () dz = .0 (2)m-1(2) .

From (4.14), we have

Skvp“(x)H%go(x)dx=c,Skvp"(zé);r“(z)(ﬁ,,(z)dx
=a?’CrSL VP_I(ZE)ﬂ~1(Z)(ﬁz(Z)dZ

=a;'c. I (vr~?, v)SL v (z2)n(2)D.(2)dz (. D.€S(L.)
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=c(vr~?, v)Sku"n(x)go(x)dx . Q.E.D,

11.2. We have the following proposition analogous to Proposition 8.2.

Theorem 11.2. Let 7, m, be in Case (I.A) and H be in (H. 1), that is,
Hg)=I(z7)"[(x3") n1ima)nr o~ (x)n3t p~ () for g=d(a)n*(y)n(x). Then the
Plancherel transform H of H is given as follows.

For nell ,,\J {ry},

A 1
H(u, v, n)=5 gEl’s(m, 7y, w) Tyt ) ot sgng(u)

(mymy'n~ ) *p~  sgny(v) .
For ze(Il,nC)UQ,,

N 1
H(u, v, 7r)=7 295w, T2, m) (w3 sgn,) 2t sgny(u)
(mim3y'n~'p sgn.)?p~'sgn,(v) .

Proof. For feS(G),

Tz ()| Hg)f (g)dg

ZS kg kS T p () p () fd(a)ut(y)n(x))d adxdy .

Remark that d(a)n*(y)n(x)=n*(a"%y)n(a®y)d(a). Replace x by a~*x, y by a’y,
and put fi=L,+cp»f. So, we have

=[ o[ | e @rewamwd@nd adxldy

=[ mtom oy @+ D+ dy,
where as in the proof of Proposition 10.2,

. 1
(1) zfr(ﬂ?) > SnprSkSk(nlﬂ'znP)lmp-l sgny(u)

SEE
X(mmy'n~p) 2ot sgn (VK (f1lu, v)dudvm(z)dr ,

and (i), (iii) and (iv) are similarly calculated.

I. First we consider the integral Azskn:;‘p"(y) (1) dy. Put A=m,x7}, then

A= %['(77:;‘) ?QESH Sk(lﬂ:"p)”zp" sgn,)S@, ©)dvm(z)dx

T

where
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ard) S o=] | 70 0)m0mp) o sgn) KL u, v)dudy.

Since n*(—y)=w'n(y)w, K(filu, V)=H7'K.(Lacpwflu, v), where H, acts
on u. Hz'=H, by Corollary 3.2. Moreover since 0<1+a,+a,<1, we can apply
Proposition 3.7 and obtain

(11.5)  S(v, n)=aNSkSkn;‘p“(y)(nz‘(lfrp)"’zn sgn (W) K(Lacpwflu, v)dudy,

where N=I(rm,(Axp)"/? sgny)l (zy(Azp)"/?*z ' sgn,) and a=m,(Awp)"*n sgny(—1).
Note that

K:(Luopwflu, )=2—(u)K(Lpfiu, v)=X—yu)H K(f|u, v).

Apply Corollary 2.6 to (11.5) as in the proof of Proposition 8.2. Then apply
Proposition 3.7. So we see that S(v, ) equals

aN S 5 70T (U= yu)(ay A ) *x sgn WK (Luflu, v)dudy
ZGNF(ﬂEl)Sk(Zﬂp)'“Zn sgn (W) H K.(f|u, v)du

= aa'NN'T(x3)| (Ap)"p™" sgn,K.(f |, v)du,

where N'=I'((Azp) Yz sgn, ) ((Axp)~**sgn,) and a’=(Amp)"?sgn,(—1). It is
easy seen that NN'=I(x,, m,, =) and aa’=1. Substituting the last side above
in A, we obtain the desired formula for </l ,,.

II. Next we consider the integral for (ii). This case can be treated simi-
larly as L.

M. We discuss the integral Azgkn;‘p"(y)(iii)dy. By changing the inte-
gration order,

1
a=2Ta g | e 0{] [, mee sgnormp- senw
X (Az~'p sgn.)'?p" sgn(W)Kx(f1lu, v)dudv}dy

=%F(7z;‘) EEL(ZM) sgn,)*z ' p~' sgn,(v)S(v, m)dv,
where
(11.6) S@, 71)=Sk7t§1p“(y){gk7rz(lzp sgn.) %0~ sgn, (K- u, v)du}dy.
Note that

Kz(fll u, v)an(Lw"ln(y)wfluy 'U)
=nsgn(—DH{X(—yw)HiK(f |u, v)} =HZ {X(—yu)HZK:(f|u, v)}.
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Apply Lemma 11.1 and Corollary 2.6 repeatedly to (11.6), then we see that the
S(v, n) equals

I'(z3Y)gs(xy, 7, n)Sk(nm;‘np sgn.)'?p " sgny(u) K (f |u, v)du,
Substituting this equality to A, we have the formula for rll,.

IV. The integral Azskng‘p"(y)(iv)dy is treated similarly as (II).

Summing up these four terms we get the desired formula. Q.E.D.

11.3. We study the formula which gives the decomposition. Put for zll
=II(+1),

(11.7) o,t; n)

J?“Sk(nngln‘lp)"zp"sgns(u)K,,(flt, wydu for mell ,,\J {x,}

V’z"lgk(rclna‘n"p sgn.)"2p " sgn, (WK (fIt, wdu for xell\JQ,.

For o4 and f€S(G) such that Uf=¢, we apply Theorem 11.2 to (7.8). Then
we get

(11.8) loltu= QESHWFS(%U s, x)Skl@s(t; 7)|tdim(n)dx
) ST, e wp)] 104 )| 7p(0)dE
+.3, mm Do, m w10, m)| %t

+LQuIn(zo) S outms, 7oy 70| 104t o) 2t

where | |l;; is as in §6.1 (III).
To make the decomposition formula, we normalize the formula (11.8). We
define O(; x, s) for @t; ) or D; x, s) in (9.3): for ncll,,\J{nsy,},

(11.9) Ot; m, s)=T(ry, ms, 7)2Q4(t; 7).

Let = fix in Hdmé,. Let ¢/, 7€ FE such that {1, z, ¢/, t”} =E, and r,€F such
that k;=(k")®Jz, (k)% and 7,, ;€ F such that {1, z,, 75, 734 =E. Then we put

O(t; 7w, D= (g:+ g7 (0; 7, D+ 7, ),

O 7, ) =5 (G +I O 7, D—0(t; 7, 7,),
(11.10) 1
O(t; 7, 72) = 5 (g1 19" {0 7, 7))+ O 7, 7o)},

O(; 7, ) =5 (g0 +9 D 7, )= 0 7, 7).
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For Qg
(11.11) O(t; m, $)=2"(Zg)"*D(t; 7, s).
We set for rell,NC.

(11.12) K= g.(z,, m, n)Sk (@t )|t

1
=7 Egsg | 2 (sgn)®(t; 7, )+ X (sgny)D(t; =, r)|2dt.
s gn, r=1 sgn, r=-1

k sgn

For r=1 or r,, sgn,r=1 and then @(¢t; 7, r)S*(k}). For r=t, or 7;, sgn.r=—1
and O¢; n, r)eS*((kX)). Then O@; x, r)eS*(kX) if sgnyr=—1 and O(; =, »)
eS8 ((k})) if sgnr=—1. Therefore

1
K:Zsé gs{SkIQ(t; m, D+(sgn,c)O(t ; =, 7,)|2dt
+gkl(sgnsrz)@(t; T, To)+(sgnTy) (¢ ; =, 73)|2dt}
=[,106; = Drar+ 100 7, w1
k k

+{ 1665 7. vt 166 7, 71t

For 70, it holds

(11.13) K’=S§Egs(n1, s, m,)gkl(l?s(t; no)lzdt:sz Skl@(t; 7o, S)|2dt.

EE

" lil)lbstituting (11.9), K and K’ to (11.8), (11.8) is rewritten as

lelfa= ZES” SkIQ(t; T, S)Izdtfrl(fr)drr+7n(7rsp)Z)Skl@(t; Tsp, $)|*Top(t)dt
se pr s
+ 3 m@ D] 16¢; 7, 91dtHQIn=IZ 16 =, 917

11.4. We note that for rell,,\JIl,, O(t; x, s) satisfies the condition
(11.15) Ot; n, s)=0(t; =, s)x(t).
We define the mapping of S(G) by
V'if—>0=0(;x, s)€H=H® .

¢—@(t; 7, s) is a G-morphism as in (9.7) and it is easily seen that @—06 is also
a G-morphism. So, by (11.14), W: ¢—0 is an isometric G-morphism of 4 into
9, and it is given by

(11.16) wU=v’.
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It is extended to that of A=L2 L2, into 9, where L2 ®L;, is the Hilbert
space of all measurable functions ¢ on 2Xk such that |¢|<ce.

Proposition 11.3. The image of L3, QL2, under W is the whole space 9.

Proof. The proposition is proved by modifying that of Proposition 9.1, in
particular, of Lemma 9.4. Q.E.D.

Thus we obtain the result for this case.

Theorem 11.4. Let W be linear mapping of L3 QL3, onto  given in (11.16).
Then W is a unitary G-morphism and it realizes the decomposition of the tensor
product 9{,,1(—8—)91,,2 into irreducibles as follows. In case —1€(k*)% it is given by
the formula (9.21). In case —1e (k)% by (9.23).

§12. The decomposition formula for Case (III. B).

In this section, we give the decomposition formula for Case (I.B): m,(x)
=|x|* (;=1, 2) such that —1<a;, @.<0, —1<14a;+a,<0. For this case the
formula (11.8) does not holds, because we can not apply Proposition 3.7 to com-
pute (11.5). To modify (11.8), we apply the method of analytic continuation, so
that we extend a,; and @, to complex numbers. We set

(12.1) D= {(a;, az)eC?; —1<Re (a,), Re (az)<0}.

12.1. Suppose peSRSNI, that is, ¢ has the compact support on kX% and
vanishes on a neighborhood of the diagonal “x,=x,”. Put

(12.2) fld(a)yn*(y)n(x)=mrr (a)x(a)mep ™ (y)(x, x+1/y),

where k€S8™ such that Skx(a)dxazl. Let f’ correspond to @ similarly. Then

f and f’ are in S(G). We consider them as functions on («;, @;). The mapping
U=U(ay, a;): S(G)—4 defined in (6.2) also depend on (a;, a,), and Uf=¢ and
Uf'=¢.

We put @ (t; n)=0(t; &, 7y, m,) for fand @i(¢; ) for f as in (11.7). Since

Oit; n)=0t; n) for a;, a real and 0<1+a,+a,, we get the following formula
from (11.8).

F(rril)"F(ﬂ?)“SkSkgkgkn?‘p"(xl—xi)rrzlp‘l(xz—xé)
Xo(x1, x2)p(x1, x5)dx,dxidx.dx;
(12.4) =

:‘?ESHP,(“,S,,Fs(”" 1o, MOyt : MOUt: 7-Vdim(z)dx

(12.5) +m(7fsp);rs(7tx, T2, Tfsp)gkd)s(t; ﬁsp)¢;(t; ﬂsp)ﬂ:p(t)dt
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(12.6) + 2 m@em, m 0| 0 D0 7l
=€l g+ s k
(12.7) +LQuIm(m) g, m 70| Pults )OI ; w3t

where I'y(m,, s, @) and g (x,, w,, 7) are defined in (11.1) and (11.3) respectively.
This formula holds even for the case (a,, a;)€D and 0<Re (1+a;+a,). The
left hand side is an analytic function on the whole D. Therefore the right
hand side have an analytic continuation to any («,, a,)eD, in particular, to
(a;, ap) such that a,, a, real and —1<l+4+a,;+a,<0. We shall observe each
integration term in the right hand side.

First we note the following. The function f€S(G) in (12.2) is expressed as
f@)=2Zpay, ax)f*(g) (finite sum), where g;(a;, @,) is an analytic function on D
and f'eS(G) is independent of (a;, as). In fact, put f'™(g)=x(a)p(x, x4+~ for
|a|=q¢" and|y|=¢™, and zero otherwise. Then f(g):lz;,nq'("l'“z)q"““z‘”f”"(g)

is of a desired form. Since K:(flz‘, u)= 2 pilay, az)K,,(filt, u), we may consider

that the kernel Kz(flu, v) in the formula of @(t; z) is independent of (a;, a.).

12.2. Now, take an integration term in (12.6) or (12.7). For a fixed n€ll,
or t€Qg, K,(flt, u) is a linear combination of functions of the form &()n(u),
&, nes*. Therefore @t; n) is that of functions of the form c(a,, ,)§(t), where

clay, an) =\ (mm3in~'o sgn.)20 ' sgns(u)n(u)du is analytic on D. As a function
. o 0 Vi

of (ay, as), g, is analytic on D, because each character in gamma function fac-
tors of g, is a ramified character of L. Hence we conclude that each term in
(12.6) and (12.7) is analytic on the whole D. As to the terms in (12.5), @,(¢; 7sp)
is similarly a linear combination of functions c(a,, a:)é(t), EES;sp. I's(mi, T, Tsp)
is also analytic on D. Thus each term in (12.5) is analytic.

We discuss the terms in (12.4). Let O, ={0€0*; 6(—1)=1}, =(x)=|x|"10(x),
6<0;, and 7 in the torus T=[—x/log g, =/log ¢). Then (12.4) equals

I'(ny, 7,, )

3 AR

D(t; m)@i(t; = ")dtdy

(12.8) - 021 ;ESTSI: dtdr+8=§éDSTSk e didr
06’51” =1
Iz, m,, 7 . Ige =1 _
(12.9) +STSk_2F(n‘)[‘(n"l) Q.(t; m)@it; x Ndtdy  (8=1)
(12.10) +S S Timo 70 0 g yoi; wdidy (9=1)
. )k 211(7:)1-1(7[_1) N\, 1 ’ ’

where the summation over G;T is actually taken over only a finite number of 4.
From Theorem 5.2 on the form of K.(fl|t, u), it is easy to see that the
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integral Sk(ZF(z)F(n“‘))“‘(Ds(t; )@t ; 7-)dt is analytic in (a;, a;)€D and con-

tinuous in y€7T. So the singularity of integrals in (12.8), (12.9) and (12.10) come
from only the gamma factors I'(z,, @, ). On the other hand, since the
characters in gamma function in Iy (m,, 7, ) in (12.8) are all ramified,
I'(m,, 7, 7) are analytic on D and continuous in yT. The integrals in (12.8)
are analytic functions of (a,, a,) in D. As for the integral in (12.9),

Fs(ﬂ:l; o, n.):(l+q(b+1+ir)/2—1)(1+q—(b+1+ir)/2)—1(1+q(b+1—i7)/2—1)
X(1+q—(b+l-ir)/2)—1(1+q(a+1+ir)/2—1)(1+q—(a+1+i7)/2)—1
X(1+q(a+1—ir)/2-1)(1+q-(a+1—ir)/2)—1 ,

where a=a;—a, and b=a;+a, Since complex numbers a¢ and b are just given
by the conditions —1<Re(a)<1 and —2Re (b)<0 respectively, I' (r,, s, ) is
analytic in (a;, as)€D and continuous in y=7T. Hence the integral (12.9) is also
analytic in (a,, a,)€D.

12.3. Now, we discuss the term (12.10). In this case we use the variable
(a, b)=(a;—as,, a;+as). The integral (12.10) is analytic on {(a, b); —1<Re (a)
<1 and —1<Re (b)<0}. So, our problem is reduced to study the analytic con-
tinuation with respect to b to the domain —2<Re (b)=<—1 for a fixed a.

When 7, n(x)=|x|", is extended to a complex variable, the integral I'y(x,,

s, n)(ZF(n)F(n“))“Sk(Dl(t; 7)@(t; = )dt is analytic on 7 on the domain

{Re (a)—1<Im (7)<Re (a)+1}. Put
B(b, n)=I"((mimom )" *) (msmram = 0) %) (0+1+17)(0+1—17) .

For b+14:r=0, the valus of B(b, 7) should be
(12.11) B(b, i(b+1))= b+11i317*03(b, =4(b+1)(1—g *)(log ¢)" I (7,7;:p) .

Put

B, NI'((wy'mamp) ) (w1 m,n ™" p)'1%)
20 () (x~Y)

(12.12) A, 1)= Skq),(z; DOt TY)dt .
Then the integral (12.10) equals STA(b, {b+1)2+r?-'dy. For a fixed a, A(b, 1)

is analytic on K={(b, 7); —1<Re (0)<0, Re (a)—1<Imy<Re(a)+1 and ReyeT}.
If y=—i(b+1), then (b, 7) is in K, and so A(b, (b+1)) is analytic in b. On the
other hand, it is easy to see that

Sk(bl(t; OO ; :r)dtzskd).(t; DO z-Ydi .
Therefore, it holds that A(b, y)=A(b, —y). Then A(b, r)— A(b, i(b-+1)) is fac-

tored by (b+1)*+7* and Ay(b, 1)={A®, 1)— A, i(b+1))} {(b+1)*+7% ~* is analytic
in (b, r)eK. The integral (12.10) equals
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__dr
r (b+I

The first term in the left hand side is analytic on b, —2<Re (b)<0. But in the
second term

S Alb, ndr

TWZSTAI(b’ ndr+A(b, i(b+1))S

2 L T
- R
S dr | b¥L A g g’ Re@+D>0,
b 1 2 2 _
7 (b1 T 2 an- ” Re (b-+1)=<0.

b1 P G ) log g

The analytic continuation of (12.10) to the domain {b; —2<Re (b))<—1} is
given by

AW, D)dr |, Ab, ib+D) , z
(12.13) Sr(b+l)2+7’"’ T Y G D og g
[} i@, m mRI@IGE 0405 D0l 7)didr
+2L (7Y r(m, m)| Ot mmap) 0L (mamap)
where,
a1y L@ (73 . T
1214 o m) =400 G (o) 2 2D log g

and,

0,(t; mmp)=v' 2| 70 WK eyl 11, W,
Oi(t; (miep) D=v/ 27| B K cryegprma( P 11, )

=2 750 WKy 1, wmmo) O
Thus the analytic continuation had been completely done.

12.4. By Proposition 9.7 valid for =,, =, in (Ill. B), we have
D25 mmap) =/ 2 (AP E S 1m30 5

I'(z3")
'\/7[‘((71'171'2,0)_1)

(12.15)

Bi(x ; (mimsp) )= Skt/_’(x—_’)(frlmp)"p“(x—x’)dx' .

where,

¢(x)=Skgkm(zl)m(h)(mnzp)"(21—22)¢(21+x, 2yt x)dzidz, .

Thus the second term in (12.13) is rewritten as 7(x1, 7o) |2 +a,+1, Where

1

12.16)  Wplarrarns= Fizizror )

Sksk(n:ln'zp)"p"(x—x’)gb(x)W)dxdx’ .
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When T,=T71QT3® acts on ¢, it occurs the supplementary series representation
T31™2f on ¢J(x).
Now, we obtain the following proposition:

Proposition 12.1. For =, n, in case (Il.B), the following formula holds:
for compactly supported function gt

21 lelt= 5|

S I(my, w0, )| Ot )| *dtm(z) dn
SEEJ prc+DJ R

+771(7rsp) 2 I’s(n'l, o, Tfsp) IQS(t; ”sp)lznsp(t)dt
SEE k

S S, m, w104 @)t
1 SEE k

€Ml g+

+LQuIm(xo) T 0wy, 7o, )| 1045 701%dE

+r(my, 77-'2)”9[’“31”2“ .

The last term vanishes when m,m.p=1 (a;+a,+1=0).

Remark. Except the last term in the formula, the right hand side can be
rewritten by means of (11.14).

12.5. Let 9.,-,, be the Hilbert space of all measurable functions ¢ on k
such that [[@]la,+agr1<00. Let & =HPz,z,,, D=9, be the Hilbert space with
the inner product given for A’'=A@¢ by

(12.18) [A"1P=1 AP +7 (s, T PIE 4 ages -

On §’, we consider the representation 7,=T,@T5"2*, where T be as in Theo-
rem 9.5, and T™1*2* is of supplementary series. We define a mapping of S(G)
into " by

(12.19) V' f—0'=0(; x, s)DP(x),

where O are in (11.9), (11.10) and (11.11), and ¢ in (12.15). Then V’ induces an
isometric mapping W of 4 into §’ by

(12.20) wu=v’,

Proposition 12.2. Let =L QL:, be as in §11.3. Then W is extended to
an isometric mapping of K onto 9'.

Proof. As is already seen, the space 9 is decomposed as $=9,PH.PH,PY. .
The space 9’ is decomposed as 9’ =9/PH.DH,PP.,, where H=9:BPx,x,,. Put
P} the projection of §’ onto $;. We show P{W is extended to the mapping of
4 onto §; by applying Lemma 9.3. For this, it is enough to see that

(1) for well, there is an f€S(G) such that @(t; =, 1)#0,
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(2) there is an f€S(G) such that ¢(x)=0.
The assertions are proved analogously to Step (1) in the proof of Proposition 9.1.
Thus PIWH=9;. It is also proved by modifying Step (2) in the same proof
that the image of & under W is the whole space 9’. Q.E.D.

Theorem 12.3. The mapping W in (12.20) is a unitary G-morphism of
L:Q®L:Z, onto & and realizes the decomposition of the tensor product .9%,[1@9,,2
into irreducibles. There appears a representation R z,, 0f supplementary series
as a new component.

In case —1(k™)?,

S‘Zn@ﬂ%xzz[‘llgn cony, Rem(mdz@UAIR,DO2] 2 (RZD RO Rz, -
pri+1)/ e 1/

Mg+

In case —1e(k™)?

91:1®9z2:[41|5 Rm(n)dzB4]1R,,B[2] > (RIDR3)

I prc+ys =M g(+1)/

D(RIDRIBRIDRI)D R ryzy0 -

§13. Decomposition formulas for limiting cases.

As the limiting cases, we obtain the decomposition formulas for tensor pro-
ducts of the special representation with one of representations of principal
series, supplementary series and the special representation itself. These tensor
products are realized explicity in (IV), (V) and (VI) in §6.1.

Case (IV). The tensor product of the special representation with a principal
series one, the limiting case of (II). Taking the limits as a;——1 of the both
sides of the formula (10.5), we get the decomposition formula for this case.

Let ¢(x,, x,) be the following function: () ¢ is locally constant, compactly
supported and zero on a neighborhood of the diagonal and satisfies the condition

S,ﬂ’(x,, x)dx,=0. Let m(x)=|x|%, —1<a,<0, and fix 7,€k*. Put
(13.1) Fld(e)n*(y)n(x)=n3"p (a)k(ay Nmp (Me(x, x+y HESG),

where £=S” such that Sk/c(a)d*azl. Then it is proved by changing variables
that

(13.2) U xy, x)=Ulay, a)f)x1, x)=F(x7' 0" )@a,(x1, X2),

where @a,(x,, x2)=mp(x.—x)¢p(x, x;) and k(n;‘p")zgkn;‘p"(a)x(a)d*a. As

a,——1 we have ¢.,—¢ and Uf—¢. It is also proved that

(13.3) Skf(n(x’)g)dx’=0 for all geG .
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We get from (10.5) that

139 i) leali= 5, |10 7 7, 9)2dmz)dz

1y
H[Qu I £ 105 g, 71, 9)PmapO1l
+ 3 m@z 106 7, 7, 910t

r€llq s Jk

+[Qa]m(m)§)gklfl)(t; Ty, T, §)|%dt,

where || ||y is as in § 6.1 (1), and @(¢; =, &y, $)=@(¢t; x, s) in (10.2). Let || v
be as in §6.1 (V).

Proposition 13.1. For a function ¢ of (x), lelfy equals the sum obtained
the right hand side of (13.4) by replacing m, by msp.

Proof. (1) First we prove that the left hand side of (13.4) tends to [¢lv.
Since #(z7'p")—1, it is enough to prove |¢q lu—ll¢llv. We show that [, —¢llu
—0. The function ¢, —¢={m,;0(x.—x:)—1} ¢ is expressed as (a;+1)a(x,, x», 1),
where the function a(x,, x,, =) is, for every «,, locally constant on Supp[¢]
and it is uniformly bounded as a;——1. Since (a;+1)2(x7!)"'—0, the assertion
follows from

e, —pli=(a+ T | | miptei—xD

Xa(xy, Xa, m)alxi, xe, T)e(xy, x2)@(x1, X2)dx,1dxidx, .
Thus

"§0a1||121:||90a1—§0||;"1+<</?, 90«1_90>II+<§0(11'_977 SD>11+“SD”f1 - ||§0“%v .

(2) Note that f supported in wG° is a linear combination of the form
&(—x)n(—y)k(a™) for g=n(x)d(a)wn(y) where §, €S and r€S*. In our dis-
cussion we may assume f in (13.1) is of this form. Then f(g)=f(g“)=
&(y)n(x)x(a), and K,,(flt, u)=7‘;(t)§(u)M,,(t, u), where M,.(t, u) as in (9.20). The
condition (13.3) is equivalent to “6€S8*”. So, on kxkap,K,,(fIt, u) is a linear
combination of functions of the type a(t)b(u)é(zx) where a, b and ceS*. We
make «, tend to —1 in the right side of (13.4). Let us discuss the first terms.
@(t; =m,m,s) (s€E) are linear combinations of functions of the type

a)b(x, )é(x), where b(x, nl)zg (mim3'm )2 p " w)b(u)du. Since beS¥,

s(k¥)2
the integral b(x, m,,) converges, and the continous functions b(r, 7,) in = tend
uniformly to b(x, 7,,) as a@;——1. Thus we have the limit of @(; x, x,, s) and

lim Sﬂprgkl@(t; T, T, s)Pdtm(n)du:S”pTSkl(D(t; T, Tsp, S)|2dtm(z)d= .

aj~-1

By the similar discussion, we get for 7€ Q;,,
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lim Skl@(t; Tsps W1, S)lzﬂ'sp(t)dt:SkIQ(t; Tsp, Tsp, S)|2msp()di,

a1

and for 7€ll,\JQg,

limlskl(b(t; T, T, s)lzdt=5k|q)(t; Tep Topy $)|2d1 .
aj;—-

Thus each term in the right hand side of (13.4) tends to the analogous one
obtained by replacing m; by m;p. This completes the proof. Q.E.D.

Let S-4(G) be the space of functions f in S(G) satisfying (13.3), and %_,
the space of functions ¢&4 such that Skgo(x,, x3)dx;=0. Then the mapping

U=U(nsp, ms): Uf=¢, is of S_1(G) onto 4_,. Indeed, for g=d(a;)n*(y)n(x,)
it holds from (B) in Lemma 6.4 that

0={ | porr@fna@adads={ | siei@s@amtigdads

=ﬂ;,i(al)irzp‘l(yl)skgo(x+xl, xi+yihdx

Thus we have o4 _,. By (13.1) and (13.3), the mapping U is surjective.
By the mapping

(13.6) V:ifeS(G)— O=0D(t; n, sy, S)ED,

and the formula in Proposition 13.1, we can define an isometric G-morphism W
of 4_, into § by WU=V. Here H=9" or $ according as z,(—1)=1 or
m(—1)=—1. We can extend W to an isometry of the Hilbert space L2,QL*?
into 9§, where L?,®L* is a space functions ¢(x;, x;) on kXk such that [l
<oo, We can see from the proof of Proposition 9.1 that the surjectivity of W
is also valid for this case.

Theorem 13.2. W is a unitary G-morphism of L2,QL? onto $, D=H or
O according as w(—1)=1 or =—1, and realizes the decomposition of the tensor
produdt R;,@R ., into irreducibles as follows.

In case —1€(k*)? and n.(—1)=1, by (9.21). In case —1<(k*)® and m(—1)
=—1, by (9.22). In case —1&(k*)® and m(—1)=1, by (9.23). In case —1l&
(B*)? and 7 (—1)=—1, by (9.24).

Remark. The result for this case is of the same form as that in Theo-
rem 10.3.

Case (V). The tensor product of the special representation with a supple-
mentary series one, the limiting case of (II.B). Let n(x)=|x|* (i=1, 2), —1
<a;<0. We fix =, and make a, tend to —1. So, =, =, are in Case (II.B).
Let ¢ be of (x) and f as in (13.1). Then Uf=k(z7'p "¢, as in (13.2). By
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formula in Proposition 12.1,

(13.7) £z 0" )Pl eyl

=5, | rim, 010,05 7, 7, 7l*dtmz)dz
TEE. Hp, k
+m(7rsp)ZT)I'7(1t1, T, mp)Skl@r(t; Tsp, T1, T2)|2mep(t)dt
+ X mr) 2 glmy, 7w, n)g |Dt; =, my, wo)|2dt
n€ll g T k

+LQuIm(z) 2 gy, o, )| 10ult 7o, 71, o)l 2t

+r(x,, 7T2)“¢’"31+a2+1,
where || ||l is as in §6.1 (1), @, in (11.7), r(x,, me) in (12.14) and

(13.8) Sb(x):Skgk77~'2(21)77-'1(22)(71'171'2,0)_1(21—22)90(21+xy 2yt x)dzidz, .

We prove the last term in (13.7) tends to zero as a,——1. The last term
is rewritten as

(13.9) T%‘f’(%,)—gkgb(x)gb’(x)dx ,
where
(13.10) ¢’(X)=SkSk7rI‘p“(zl)zi‘p“(zz)go(zl+x, 2+ x)dzidz,s .

Since Skgo(xl, x:)dx,=0, we have that I'(z7")"'¢’ is in S and, as a,——1, it

uniformly converges to

cngk loglz:| 73t p Nzo)p(z,+x, 2,4+ x)dz,dz. €S .

Let P*XP™ be a neighborhood of (0, 0) in 2X/ such that ¢(x;, x:)=0 on
P*xP", We divide the integration domain in (13.8) as £ X k=(k X P™)\U(k X (P™)°)
=I,JI,. Then (13.8) equals

SS“"- dzldzz-l—sglz... dzidza=Ji—]s.

The integrand of the first term is equal to 0 if z;€P”, and to =n7'p '(z))7i(z.)
o(z1+x, z,2+x) if z,€(P™)°. Thus

1 o
]l—mgf(mgw)cs”m p (27 (z)p(z1+x, 2o+ x)dz1d 2,

— cgkloglz1|¢(21+x, xdznes.
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The integral J, also converges to a function in S. So, we get that the integral
(13.9)~7r(7y, wo)~(a;+1)—0 as a;——1.

Similarly as in Case (IV), |&(z7'0 )| ll¢a,llma,—ll@llv. For other terms in
the right hand side of (13.7), we can change the order of lim and integrations.

ay—~-1

Thus, we get

Proposition 13.3. For ¢(x,, x2) be of (), l@l§ equals the sum obtained from
right side of (13.7) by replacing m, by msp. Here, the last term vonishes.

Similarly as in § 11, we get the decomposition formula for this case.

Theorem 13.4. There exists a unitary G-morphism W of L%,QL2, onto HP,
which realized the decomposition of the tensor product .423,,@511,,2 into irreducibles
as follows. In case —1€(k*)% it is given by (9.21). In case —1e (k™) by (9.23).

Remark. The supplementary series representation appeared in Case (II.B)
vanishes here.

Case (IV). The tensor product of two special representations. Let again
m(x)=|x|* (I=1, 2) as in (. B). Let ¢ be of () and satisfy Skgo(xl, x5)dx,=0.
Put f(g)=f(d(a)n*n(y)n(x))=xlay )p*(y)e(x, x+y )ES(G), where k€S such
that Sklc(d)dX(IZL It holds that (Uf)xi, xo)=&(x7'ma)mip(x2a— x) (%1, X2) =
E(m7'm)pa,. Then we have

(13.11) |#(77'72)|*|@a, Ifu=the right hand side of (13.7).

We make «; and a, tend to —1.

First we show that the last term in the right hand side of (13.7) vanishes
as a;, ap—>—1. As a;, a,——1, (@) (z3)¢’ with ¢’ in (13.10) converges
uniformly to

c2gkgk log | z,|log | z: | p(z,+x, 2,4+ x)dz,dz, €S .
We divide the integration domain in (13.8) into three parts. Let ¢>0 such that,
if |x,], |x:]<e, then ¢(x,, x:)=0. We set [,={(z), z)ESupp ¢; |2:[<e}, [,=
{(z1, z.)ESupp ¢ ; |z:] <e} and I, the other part in the support of ¢. Since

|z:—2s| =|2z:1| for (z,, z,)€l, and |z,—z,|=|z,| for (z;, z.)E1,, therefore

sb(x):SSI 7l Nz)m (2214 x, 2o+ x)dzid 2,
1
+SS! o203 p N 2)p(z1+ x, 22+ x)dzidz,
2

+SS: 7o(2)71(2:) (w170 0) " H21—22)p(21+ %, 22+ x)d21d2s .
8
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As in Case (V), when a,, a,——1, these three terms converge each to functions
(a;41)(as+1) -0

in S. So, we have the integral (13.9)~#(x,, )~ (@ tatD

Next we should discuss the integral

S=TI\(r,, 7, H)Sklfpl(t; T, Ty, To)| *x(t)dt

=I{t; m, 7, n)gk@l(x; 7, Ty, ) Di(x"; 7, 7wy, w)w(x—x")dxdx’,

where n(x)=|x|* —1<a<0.
Since, for u(x)=|x|#, B—0, it holds I'(¢)~1/B and I'(pp)~pB, we have

—a,ta,—a—1

(ait+a,—a+1)(—a+a+a+1) ’

I'(m,, my, )~

as ay, a; and a——1.
On the other hand, for @, we use the formula in Proposition 9.6 which is
applicable for this case. That is,

D(x;m, m, n2)=¢‘2‘—1]“((7r,7r,-_,17:~1p)1/2)SkSkA(z,, 2)0(z:+x, z,+x)dz:dz.,

where A(zy, z,)=(z71'7,7p)""* p (2 (71 w3 'wp) 2 p~H(2,) (m7'my'm ™ 0)? 07 (2,—20).
We divide the integration domain.

Ou(x; 7, my w)=||, Al zplentx, 2t x)daidz,

By similar method as above, we can prove that @ ,~(a;—a,—a—1)I(x), I(x)

€S;p.

(—aita,—a—D(a;—a,—a—1)
a+a,—a—1

Thus we get S~ —0 with a;, a, and a——1.

So, we should understand that the term I'\(z,, 7, nsp)SSkI(D,(t; Tspy T1T2)|27sp(2)dE
vanishes.

Proposition 13.5. Let ¢ be of (x) and satisfy gkga(xl, x2)dx,=0. Then |plliy
equals the sum obtained from the right hand side of (13.7) by replacing w;, and

7y by msp. Here, the term Rsqu)llzm,,(t)dt and the last term vanish.

Through the analogous discussion to Case (IV) and (V), we get the decom-
position formula.

Theorem 13.6. There exists a unitary G-morphism W of L3,QL%, onto
DYOL2,. It realizes the decomposition of the tensor product gl,p@g{s,, into
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irreducibles as follows.

(1]
[2]

[3]

(4]

[5]

6]
[7]
[8]
(o]

[10]

(1]

[12]
(13]
(14]
[15]
(16]

In case —1€(k*)?, Rs;QRsp=the right hand side of (9.21) OR,.
In case —1&(k*)?, R,QR,p=the right hand side of (9.23) OR,,.
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