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Introduction.

Let k be a  locally compact, non-discrete, totally disconnected topological
field, with an odd residual characteristic. Let G=SL 2 (k) be the group of two
by two unimodular matrices with entries in k .  Let 6. (G) be the space of complex
valued functions which are locally constant and compactly supported. We define
and study the Plancherel transform of f S (G ) ,  and next define the Plancherel
transform of a distribution on G, applying the Plancherel formula. We discuss
tensor products o f irreducible unitary representations o f  G , of the principal
series, of the supplementary series or the special representation. Calculating the
Plancherel transform of certain distributions, we give their explicit decomposition
formulas into irreducibles.

To decompose tensor products is one of the fundamental problems in group
representation theory, and many authors have been studying this problem.
Historically, a s  to semisimple L ie  groups and their related groups, there are
works of L. Pukanszky [12], R. P. M artin [5] and J. R epka [13] for SL2(R),
and G. Mackey [7] and M. A. Naimark [9], [10] and [ 1 1 ]  for SL,(C), and N.
Tatsuuma [18] for inhomogeneous Lorentz group. For principal series repre-
sentations, the problem was studied by I. Gel'fand-M. Graev [2] and N. Anh [1]
for SL„(C), and by F. Williams [19] for general complex semisimple Lie groups.
For the present group G=SL 2 (k), Martin [6] studied the tensor products of a
principal series representation with any irreducible one. He gave the decom-
position formulas by an approach analogous to that of [19], th a t is , by using
Mackey's subgroup theorem, tensor product theorem and Mackey-Anh's reci-
procity theorem. The decompositions are expressed as a direct integral on the
subset of the unitary dual Ô of G  with respect to the Plancherel measure.

However, th e  harmonic analysis on a semisimple Lie group is now much
studied. So, it seems desirable to establish the decomposition formula in more
explicit manner. Here, we give the decompositions directly, naturally obtaining
the intertwining projections of the product spaces to each irreducible component.
Our method is an extension of Naimark's idea and available for other groups.
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We sketch the contents of this p ap e r. W denoted by p  a  fixed prime ele-
ment in  k , q= and by 6 a  fixed (q-1 ) -st primitive root of unity in  k .  In
th e  first three sections, we summarize results concerning the Fourier analysis
over k , given in  [4 ] and [14], reconstructing some of them to f it  o n  our pur-
pose. In § 4, summarize results on the  irreducible unitary representation of G.
M o st o f  them a r e  well known ([4], [16] etc.). In this paper, we realize, for
instance, the principal series representation .R „ o n  th e  space S„, a n d  i t s  X-
realization gt.- „  is on the space The operator for g E G  of the representation
ff2„ is given by means o f a  kernel K,c ( g lu , v ) .  The X-realization is useful for
our decomposition.

In §5, we define and study the Plancherel transform o n  G : fo r  f  ES (G),
we make correspond the function K,c (f  lu , v ) o f u, v E le  and r, where

K ,r(f  lu, v )-=,f (g)K ,;(glu, v )dg .

In  § 6, we describe the  tensor products a „ ,0 R ,,  of
Case ( I ): principal series 0  principal series,
Case ( I I ) :  supplementary series 0  principal series,
Case supplementary series 0  supplementary series.

A s the limiting cases of Case (11) and Case (IC, we consider tensor products
Case (IV ): the  special representation 0  principal series,
Case ( V ) :  the special representation 0  supplementary series,
Case (V I): the special representation 0  the special representation.

For the tensor product in Case ( I ), we define an intertwining operator U  o f R
= 1R,, 8(G)), th e  right regular representation, into ..T. 02Z whose image is
dense in V O L '. Let < , > be the inner product in L 2 0 L 2 . P ut B (f , , f )=<q),
for f  ES (G ), where w =U f. Then

(1) B (f , , f ) -=1  j .  G H(gign f  (g i )f  (gO d g g 2 ,

where H (g) is a certain distribution on G . We give H explicitly.
We define i n  § 7 th e  Plancherel transform b  of a distribution D on G.

b(u, v , 2r) is formally given by G D(g)K,(8 - 1 1v, u)dg. W e prove in  Theorem

7.1 that for H above 11 vanishes outside of H , where H  is the  se t o f 7  deter-
mined by the value of 7r 1 7r2 (- 1 ) .  The right hand side of (1) is rewritten as

(2) Uk 5k fi(u, v, r)K,r(." It, u)17,,(I lt, v)dtdudvm(r)d7r ,

where m (7)dr is the  Plancherel measure on G . After computing explicitly in
§ 8 the Plancherel transform w e  have in § 9, th e  decomposition formula for
Case ( I ). In more detail, rewriting (2) we obtain

(3) <W,W>= 4 1,<O, 0›,m(7)chr .
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Here 0=0(t; 7c , s) i s  a  function o n  k X HX  {1, s, p, Ep}, a n d  a s  a  function in
t ,  0  is in  th e  spaces o f irreducible representations. A linear mapping W: so--4
is extended to a  unitary G-morphism of the space L 2 OL 2 onto the H ilbert space

(in § 9.2). To prove that W is onto, we use "continuous analogue of the Schur
lemma" i n  [ 7 ] .

 T h e  G-morphism W display th e  decomposition fo r  this case
(Theorems 9.4 and 9.5).

In  § 10, we can compute easily f i  for Case ( II) by using results in Case ( I )
and establish the form ula (3) and  finally get th e  decomposition (Theorem 10.3).
In  § 11, 12, we treat th e  tensor product fo r  C a s e  (111). T h is  c a s e  is further
devided into two cases : fo r  77,(x)=- x  —I< a,<0 (i=1, 2),

Case (IL A): 0<1-Fa 1 +a 2 ; Case (Ill B):

We again compute f i  f o r  H  in (M . A ) by using results in  C ase ( 1) and the
Hankel transform o f  a  "homogeneous distribution" (Proposition 3.7). Then we
get th e  decomposition (Theorem 11.4). For Case (M. B), fi can not be computed
directly, so  w e d o  it by analytic continuation of f i in  (M . A). In  the  decom-
position formula, there appears a  supplementary series representation a s  a  new
discrete component (Theorem 12.3).

In  the  last section, § 13, we give the  decomposition form ulas of the limiting
cases. For C ase (V I), it is obtained by taking th e  limit a 1—>-1 in the form ula
(3) fo r  C a se  (II) (Theorem 13.4). For Cases (V) and (VI), decompositions are
obtained from the form ula (3) in Case (HI), b u t  t h e  supplementary series com-
ponent disappears here (Theorems 13.5, 13.6).

T he  author is very grateful to Professor T . H irai, who read the original
manuscript an d  le t to th e  improvement fo r this paper.

1 . Preliminaries.

L e t  k  be •a locally com pact, totally disconnected, non-discrete topological
field, k+ the additive group, k " the multiplicative group, 0  th e  r in g  o f integers
in  k , P the m axim al ideal in  0  and  p a  generator of P .  0 1 P  is  a  finite field
with q elements, q a  p r im e  p o w e r. Throughout this paper we assume that q  is

odd. L e t  d x  denote t h e  Haar measure o n  k+, normalized that Ç
o
d x = 1 .  The

valuation (non-archimedean) 101 o n  k  is determined by d(ax )=Ialdx , a e le, and
101=0 fo r which 1p1 - 1 =q, 0= { x  ; 1x15.1} and P= Ix ; I x I <11 . L e t  Ox= 0 \P
be th e  group o f units in  0 .  L e t s be a prim itive (q-1)-st root o f unity in O ,
then the  co llec tion  {0, 1, 2, •-• , eg- 2 }  is a  complete se t o f  coset representatives
fo r  0 1 P . T h e  se t A 1 =1-1-P=- {x ; 11— x  < 1 } is a com pact subgroup of 0 ,  and
every element x  o f  k " can be uniquely written a s  x-=pny , y -=enia, (nEZ ,

y E 0 ' an d  a e l l i ). Thus 1 x l=q - 4  a n d  k =Z x 0 '=Z ><Z ,_ ,x A i ,
Z /(q-1).

We denote by (1e) 2 the  se t o f square  elements in  le, then it is known that
i n  our case , q  a n  odd number, (1e) 2 is  a  subgroup o f  k  of index four, and a
complete s e t  o f  coset representatives o f  e l(k " ) 2 is given by E =  E , p, epl :
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k "= (e ) 2 Us(k") 2 Up(k") 2 Usp(k") 2 .
Any quadratic extension of k is, up to  isomorphism, given by L r =k('./z-),

rE E '= {s , p ,s p }. The norm N z. and the trace S r  f o r  z = x + / F y  are defined
by .1\1,(z)=z2=x'—ry 2 a n d  Sr (z)=z+2=2x respectively.

The subgroup k-=1\1,(L) of k" includes (k")' and [k " :  k ; ]= [k ; : (k ') 2 ]=2.
Furthermore i f  — 1 (k 1 2 , k,=-(kx) 2 Uv(k") 2 f o r  each z-E E', and if —1EE(k<)' ,
k;=(kx) 2 Us(k") 2 , k =(kx) 2 Usp(kx) 2 a n d  k = (V ) 2 Up(k") 2 .

The collection {P"} n=1,2, • • • of ideals Pn= Ix ; I x I q- '} i n  k, gives a neigh-
borhood basis of 0 in  k+ . There is a  unitary character X(x) o n  le+ which is
trivial on 0 = P ° but non-trivial on P - '. Every unitary character on le+ has the
form X(ux) for some u E k .  The Fourier transform on  le+ is defined for fe  Ll

a s  f(u )= g f(u ) -- -
k f(x)X(ux)dx, and  its  inverse transform a s  f(u)=-9 - 1 f (u )=

. .k f(x)X(—ux)dx.

Let S be the space of testing functions on k, that is, the space of complex
valued functions which are locally constant and compactly supported. The space
6  is topologized by defining a  null sequence to be {ç9,,} where {çon }  all vanish
outside a  fixed compact set, and are constant on each cosets o f a  fixed Pm  and
tend uniformly to zero. The Fourier transform -0 of ço ES again belongs to 8
and, if ça is  constant on the cosets of Pn and supported by pm , then -ça, is con-
stant on the cosets of Pm and supported in P - 4 . Thus the Fourier transform
is a  topological isomorphism of S onto itself. Each element in S', the topological
dual o f  S , is called a distribution on k .  The Fourier transform f  o f a  distri-
bution f  is defined by (f, yo)=(f, (6) for ÇoES.

The principal value integral is defined fo r a  locally summable function f  by

(1.1) kJ- (x)dx -=lim E fin (x )d x  ,k

where [ f ] , ,  is a  function equal to f  on the set {x ;a n d  z e r o  out-

side. T h e  p r in c ip a l v a lu e  integral Fourier transform P -  L , f(x)X(ux)dx=

(P -  9 f (u ) coincides with the usual transform for f E  1,', and if (P - g )f(u ) exists
for fE L 2 , it coincides for almost all u E k with the usual f (u ) by the Plancherel
theorem.

We se t A n =l+Pn , n 1 a n d  A,-= 0. The collection An  is  a  neighborhoods
basis o f  1  i n  F .  T he character group o f le  is expressed a s  kv=-Tx0- ",
(jx—Z 2 _1 x 2 i , where T=E-7/log g, 7r/log g )  is one dimensional torus and Ô" a
countable s e t ,  Each element ir  of re" is written as 7r(x)= i x PrO(x) where rE T ,
and 0 is determined by o (p )= 1  and 0 1 0 '. T he measure d7r on fix is given by

E 1, dr=1.he zx T
Following [14], we say that, when O 1, r is unramified or has ramification

degree 0 and that, when O is  tr iv ia l on  Ah and non-trivial on A h _i (h Tr is
ramified of degree h.

Non-unitary characters  o n  k" are obtained by replacing the pure imaginary
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ir b y  a  complex number a  w ith  non-zero rea l p a r t .  N on-unitary characters in
w h ic h  w e  a r e  specially interested are of the form  7r(x)=' I x 1a, a  rea l and —1
< a  < O . The following character is called the signature of k ' w ith  respect to 7 :

,
(1.2) sgn,(x)= -I 1

1 —1 x E le \ k .

T h e  charac te r sgn,(x)=- x (1 is  unramified, and sgnp (x) and sgn, p (x) are
both ramified of degree 1 . In  the fo llow ing , w e  w ill deno te  x I  b y  p (x ), and
Ix - 1  b y  7 , , (x ) .  The latter relates w ith  the special representation.

Let 6 ' be  the  space of functions ço in S, satisfying ço(0)=0. I t  is  the space
o f  te sting  func tions o n  k ' .  On this space the  Mellin transform is defined by

-çO(7r)=1. k ça(x)7c(x)ex w here  clx x= p - 1 (x)dx (the Haar m easure on  k").

The image S ' under the  Mellin transform of S" is  a  space of functions on
P . I t  is  p ro v e d  th a t , for ço supported by th e  se t Ix ; 1x1 q n } , the Mellin
transform  ç-6(7)-= fo(a, 6+) is characterized by

(1.3) '0- (a , 0)= a k (e)q '  , 7r(x)= xi aO(x).
- n

Here, a k (e ) vanish except for only a  finite num ber o f O.
The gamma function is defined for a ll charac ters 7: o f  lax (not necessarily

unitary) except 7r.=. 1. If  7r(x)=Ix I  e (x ) is ramified of degree h

(1.4) T(rc)= To (a )= P 7-c(x)X(x)(1' x=Ce9 h ( a - 1 / 2 )

J k

where Co is  a  com plex num ber such that 1C0 1=1 a n d  C00 0 1 = 0 (- 1 ) .  I f  7r(x)
=  x  ", Re (a)>O,

x -1
(1'5) T (7 )= F (a )= P  - L , r(x)X(x)dx x= 

(f

1—q - a  •

For Re (a) aztO, 1"(a) is defined as the analytic continuation of (1.5) and is
meromorphic, zero a t  a=1 and h as a pole a t  a-=0.

The gamma function on k  is closely related to the Fourier analysis on k as
in the case of the usual gamma function on R. For instance, f  (x )=  r (r ) - 1 7(x)p - 1 (x)
= r (z ) - 1 7 p- 1 (x ) is  a  homogeneous distribution on k, and if 7r__ 1, it denotes the
delta  fu n c tio n  4  on k  supported  a t O . The Fourier transform  f  of this distri-
bution is given by f= 7 - 1:

1 
(1.6) ( f  "0= (7up (‘3)=  - 1 , ),F(7)

For 7r(x)= I x  0 (x ) ,  th is  is  p ro v e d  f ir s t  in case (O<Re a <  1) by changing the
order of integration, then by analitic continuation to  an y  a.
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§ 2. T h e  spaces S , and S .

Let 7r=1 •1 '0  be  a non unitary character o f h", p(x )=1x 1,  T ,  a  mapping
of S such  tha t TjA o(x)=n-p -1(x )ço(-1/x ), and S , the linear span of S and T S .
In th is  section w e study  the Fourier transform S„ of the space S ,,  in the sense
of principal value integral, and in the nex t section w e study  the Fourier trans-
form  of T .

2.1 . For Ç E S ,  7rp - 1 (x)yo( - 1/x) is  loca lly  constant, zero on a neighborhood
of 0 in  k , and rp -1(x)w(0) fo r la rge  x  I. Therefore every function f  in S„, is
canonically expressed as

(2.1) f=g9+a07,

w here w E S ,  a a  complex number and

O, lx 1 1,
(2.1a) 0 , ( x ) =  

7rP - 1 (X) ,

T h e  topology in  S „  is  d e f in e d  in  su ch  a  w a y  th a t  {çon ± a n O ,}  is  a  null
sequence, if {y9,,} is  a  null sequence in S and an —>0. T h en  r j ,  is  an  isomorphic
mapping of S „ onto itself.

Lemma 2.1. ([14], Lemmas 1 and 2)

k (1 - -1 ), k<O,

1 ,X(x)dx=- k =1 ,

O,k > 1 .

I f  jr is ram if ied o f degree
k=h ,.ç

ixi=qk
7 r (x )X (x )d 'x =

,

f

t

( T r )  
,

k # h  .

W e set

(2.2) G n (u ; 7r)=-P- 77p-1(x)X(x)dx u E le ,  n>0.

T hen  the following holds.

Lemma 2.2. For 7r= I• 1", ot#0,

1D< Iu lq -n # 1 ,
(A) Gn,(u; 7 ) = f  CI

I ) . 1
r ( 7 ) )7r(li)1—q- ' q

and for 7r. 1 (a=0),
O,

(B) G n ( u  7 ) = {  —log u I u + Ni____1 ) _ 1 ,
log q A  q q

u I >q - " ' ,

0<!nl

(A)

(B)
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For 77 is ramified of  degree

Iul>q-n+h

1
(C ) Gn(u; 7r)= f

1  r(7 r), 0 < 1 14

P ro o f. It is easy to  see, from  L em m a 2.1, th a t  the values of Gn (u ; 7r) are
zero for l u >q - n+1 in  (A ) and (B), and for l u > q " "  i n  (C). L e t 7r(x)= Ix la

and  l u . _ q - n + 1 ,  then

G n (u ;7 r) jp - i(x)X(x)d x= E° qa (1— q - ') —q" - '
k=n-m

B y  th e  d irec t calculation w e obtain the required formulas in (A) and (B).
Similarly we obtain the formula in (C). Q. E. D.

R e m a rk . For ' r m l ,  G n (u ; 7r)= lim G n(u ; I . I").

2.2. W e consider the Fourier transform  of f ES,r . Let f= -yo -l-a0 , be as in
(2.1). We consider

f (u )= (P -  g ) f (u )= P -  f(x)X(xu)dx , u E l e .

S ince  (P -  g ) 0 ,  is  g iv e n  i n  Lemma 2.2 as ( P -  g ) 0 ,= P 7rp-1(x)X(xu)dx
1<1 XI

=- 7r-1 (u)G 1 (u ; 7 r ) , the principal value integral Fourier transform f  of f E s , a l-
w ays exists and f=0-1-a7r - '(•)G 1 (• ; 7r) for e v e ry  7= H l ao. In particular, take
the constant function 1=yoo (x )+0 ,(x ) in S„, w here çoo i s  the  characteristic func-
t io n  o f  0  a n d  7-c ( x ) =  x  .  T h e n  i.=Coo (u)-F I u I ; 7r) =0 for u  l e .  Note
th a t if Re (a)<1/2, then S ir c L 2 and  f c S ,  coincides for a lm o st a ll u w ith  the
Fourier transfo rm  i n  L 2 -sense, and  moreover if  Re (a)<O, S„CL 1 an d  then JP

coincides with the  usual one,

A s to  the inverse transform, w e consider th e  integral P1 sb,(u)X (— xu)du.

This integral converges only for r  in Re (a)<1 and coincides with 0,,(x ). Thus
w e have the following proposition,

Prooposition 2.3. The principal value integral Fourier transform :5 , of  S„
is  th e  space o f  th e  functions o n  lex  of  the form f= -0-l-arr"(•)G 1 (• ; 7r) where
y)ES, aE C  and G i (u ; 7 r) is in  (2.2). For ir  in  Re (a)<1, the inv erse transform

is given by the usual inverse Fourier transform

The space S, is  topologized by null sequences lion+ a .7 - 1 (• )Gi(- ; 7)1 where
{son} are null sequences in  S and a n - 4 ) ,  th e n  th e  m apping P -  F :  S , , -+ „  is
continuous and moreover for ir  w ith  Re (a)<1, it is topological.

For the case 7r=7r s p =HI -1 ,  there  exists a  T;L-invariant subspace in s„,

consisting of functions f  such that f (x )d x = 0 . Since S„c L 1,  every function
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f  in ,3„ has the usual Fourier transform f(u)=9)(u)-FalulGi(u;1•1 - ' )  with ço ES.
The condition " f e , 3 "  is equivalent to " y o E S " .  Therefore S s ,  is  the space of
functions of the form ça+ alulG i (u; 1• 1 - 1 ), 40 <S'•

2.3. L e t 2 be a  non-unitary character o f h ', then for f E S , the integrals

2(x)f(x)dx and .ç 2(u)f(u )du  converge under suitable conditions on À and 7r,

and they give linear forms, "distributions" on S„ and S„ respectively. The fol-
lowing is on the Fourier transform of distributions.

Proposition 2.4. Let 7r=1• 1'0 and  2=1• 1Pr, 0, rE 6 .. Assume th at  0<
Re (p)< 1 and Re (p—a)>0. Then for f,_5„,

L, 2,o - 1 (u )f(u )d  u  =P(2)  k 2- 1 (x) f (x)d x

To prove this, we need th e  following :

Lemma 2.5. Let 2 and it be as abov e. T hen the function

0 (u )= 27 - '(u)p - '(u){G k (u ; 7r)— G k+i(u : 7)11

is zero if lu  Is = m a x .  ( 1 ,  h), and h the ram if ied degree of 7 r. Moreover 0
is  summable.

Pro o f . T h is  is proved by concrete forms on Gh(u ; 7)—G k+i(u ; 7r) which
we can calculate from Lemma 2.2.

Proof  of Proposition 2.4. Let f=ça+a0 , be in S „. F or f= ço , we have al-
ready the desired equality in  (1.6).

Now for 0,,

.ç k 2,0 - 1 (u)(P -  g )0 .(u )du  = k 29- 1 (u) 71i i.m. 7 r p - 1 ( x ) X ( u x ) d x d u

=  l i m  n (u)du
k

where On (u)=27 - 1
40- 1 (u){G 1 (u ; 7c)—G.+ I (u ; 7)1. We have

On(u) I = I 27c- 1 ,0 - 1 (u) IGI(u ; 7r)— G .+1(u ; 7)11

ki l l 2 7 -  1  P - 1 (U) 1G 7C)— G k +1(U ; 71. )} (u),
where is the function in  Lemma 2.5 which is zero if I u I >qs, s large enough,
and is summable. So, by Lebesgue's theorem,

,lim  n (u)du= lim 7,(u)du
k

= lirn 2p-1(u){ 7rp-1(x)X(ux)dx}du
111, 15,1 81 . < 1  X I S q n
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a n d  b y  Fubini's theorem , w e can change the order o f integration and finally
come to

ihn rp -1 (x ).{1 .1 ,0 2 i0 -1 (U )X (U X )d U ld X

=1(2) lim 2- 1 7p - 1 (x )d x= r(2 ) .Ç 2- 1 (x)0„(x)dx
n -.0<il< 1  x150

Q. E. D.

Corollary 2.6. Let A  and 7  be as in Proposition 2.4, and moreover we assume
Re (a )< 1 . Then it holds

.ç 2 V (x)dx  =r(2)2(-1 2- 1 (u)/(u)du ,

Pro o f . Replace A  b y  2- 1  p  in  the  form ula of P roposition  2.4, a n d  used
r(2 - 1 )r(2p)=- 2(— 1). Q. E. D.

§ 3. T h e  Hankel transform.

3 .1 .  The Bessel function of order r  is defined as follows :  fo r u, v E k x

(3.1) J,(u, v)=-P-

=  lirn X(ux+vx-')7r(x)d"x
n-•e.

This principal value integral converges. In fact, for fixed u,vEkx, except only
a  finite number o f k  in  (3.1), integration terms vanish. Because, from Lemma
2.1, for large k >0,

X(ux±vx - 1 )7E- (x )d 'x = X(vx-1)7r(x)d' x
k ix1=4- k

=7r(v) X(x)7-c-1(x)d' x=0 ,

and

X(ux±vx - i)n(x)dx x=7r - '(u) .X ( x ) 7 r ( x ) e  x = 0  .
ix i i u i l q k

Thus we remark that for every compact subset A c e ,  there  ex ist large n >0
such that

J,(u, v)= X(ux+vx-1)7r(x)dx x , u, yE A .
k = - n

The Bessel functions have the following properties :

(B.1) J„(— u, —y)=7(-1)h(u, y )  ,

(B.2) h(u, Y)=1,,-1(Y,
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(B.3) 7-c(u)h(u, v)=7(v)J,_1(u, y ),

(B.4) h (u , y )=Ji(— u, —y), where Tr (x )= 5.

(B .5 ) If  7r is ramified of degree a#1  and  luy <qt, /-=max. (1, h),

J,(u, v)=7(v)F(7r - 1 )+7c - 1 (u )r(r ) ,

and if 7r:=_1 a n d  Inv <q, v) is obtained by the limit of J,(u, y), 7r=1.

as a—>O. It equals (1—q-')( 
—log I nv + 1 ) 2 g - '. (see [14]).log q

3.2 . The Hankel transform of order zr is defined for fe:25,„ by

(3.2) 1-1f(u)=.k.hr(u, Of(v)dv, u E  kX .

Proposition 3 .1 . L et r---= I • 1'0  such  that —1< Re (a )< 1 , and JE  &. F o r
u E  k",

(3.3) f(u )-=P k 7r p- ' ( x ) f ( )X(ux)dx

Pro o f . Since f =g - 1 (P  - g )f =g - 'j  from Proposition 2.3, then it holds

X(ux+yx - ')7rp - '(x)/(y)dydx. q 1.T16q j . k

p - '(x)f (— x - ')X(ux) dx .

T h e  righ t hand  side  tends, as n—co, to  that of (3.3). Since the integrand on
the left hand side of above is summable, we can change the o rder o f  integra-
tion, and then it equals

(3.4)
X (

f(y) ux±y7c-1)7rp'(x)dxdy.
k 5 q -n ix i5 q n

We prove this tends to  the left hand side o f (3.3). L e t ju I =qm and n>m.
Choose an  integer I such that f  is zero for Iv' >q t . Then, (3.4) equals

(3.5)f f ( v ) d xdv-k f(v) ••• dxdv
q - 4 51.r[5qn,

=(i)+ (ii).

Since X(ux+yx-1)7rp-1(x)dx=h(u, y), for n large enough and  fo r I v I

such that I w e have

(3.6) q-m,,v, f(v)J,(u, v)dv.6,1

On the other hand,
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(3.7) f(v ) X(vx-')7r p - '(x)d x}dv

+
1 , 1 < q _n AO{ w ..X (V X  - 1 )7rp - 1 (X )d  X P V

f(v ) X(ux)7r to - 1 (x )dx}dv
ivi<q-nt {5 4 -  n i  <I X15(1 3

We denote the inner integrals in (3.7) by A n (v ) ,  B (v )  and C (u ) respectively.

A n (v)=7 -c(v).ÇX ( x ) 7 r - 1  to - 1 (x)d x=7r(v)IG n i (v ; 7r - ') —G„,(u ; 7r - ')}

For B n (v),

B (v )= B X(vx-')7cp-'(x)dx 7r-1,o-1(x)dx
q Ix q m q m six i‘q n

( I L  - 7/1-1-1) — 11 (q -a 1)- 1 ,

-=- (1 — q - ')(n—m+1) ,

o,

For C (u ) with n  large enough,

C(u)=C n (u )=1 X(ux)r.-'(x)dx
q i x i q

r= 1 .1 a , a # 0 ,

27= 1 ,

7 ramified.

=7r- 1 (u)5 X ( x ) 7  r  p - ' ( x ) d x  =

f 7r unramified,

Kixiso[ul 7r-i(u)F(Ir) , r  ramified.
Thus

f(07r(v)An(v)dvd - f ( v ) d v + C ( u ) f(v)dv
q T h l D l q m ic<q-m itn<q-m

,--nivi<g i(v){7r(v)G.(v ; 7r - 1 ) +C(a)} dv q-uglvi<q-m.A07(v)G.+1(v ; 77 - 1 )dv

f(v)dvd-C(u ) f(v)dv

=(a)+ (b )+ (c)+ (d )

We show that, a s  n--+00,

(3.8) (a) f(v)J,(u, v)dv , and (b), (c), (d) —* 0 .

For (a), since Iv <q -  m, the direct calculation and (B.5) leads us to

7r(v)G„,,(v ; 7r - 1 ) +C(u)= 7r(v)1"(7u - ') + 7r - 1 (u )r(7r)=J,(u  , v ).

Considering the function of the form f=cd-a7r - 1 (•)G n i (• ; 7r), we get
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(a) f(v)J7,(u, v)dv. .11,1<q-74

N ext w e show the other integral terms (b), (c) and (d) tend to zero. For
(b), Gn-Fi(v ; g - 1 ) is zero if v i  > q ,  then

Av)71- (v)G.+,(v ; 7r- l)dv
ivi=q- n

yo(v)7(v)G. + 1 (v; 71- - 1 )dvdj.G i( v  ; 7 r) G  n + i ( v  7 - 1 )dv.

These integrals converge for 7 ,  —1<Re (a)<1, and tend to zero as n—*00 with
order of g- "  and g(a - 4 ) 4 . For (c), if  ir is unramifed a n d  1, B n  is bounded as
n—*00, and from the summability of f, we get (c) tends to zero. If 7rml, (c)
equals

(1— g- 1 ) - 1 (n Iço(v)+Gi(v ; 7)1 dv.

It is easy to see that this tends to zero as n—>00. If 7t is ramified, the integral
(c) already equals zero . Thus (c) tends to zero.

It is also easy to see that (d) tends to zero . Thus we proved (ii) tends to

1 ,1 < q _77,, f(v ),[(u , v )d v . Combining this with (3.6), we get the proof. Q. E. D.

From this proposition, for 7  in  —1<Re (a)<1 and u  k x, the integral in
(3.2) converges, and H„.-=(P - g) TUF - '. N o te  that for f Ç , H , j  is again  in
:57„  and moreover Ha  g ives an isomorphism of S„ onto itself.

Corollary 3 .2 . F or rc in  —1<Re (a)<1, H = 7 r (-1 )I.

P ro o f. It is a  consequence of the fact that (T ) 2 =7r(-1)/, and Propositions
2.3 and 3.1.

3 .3 . We have the following propositions :

Proposition 3 .3 . L et 7=1 • la o i n  —1< Re (a)<1, then

( I ) f(u)H,_ih(u)du=- 7r(-1) .  k f(u)h(u)du ,

7.c(u)H, f (u )H (u )d u =  7 r (-1 ) k r(u)f(u)fi(u)du , f,

P ro o f. (I) L e t  7  be a s  above. W e can assume that — 1<Re (a)_0. In
case Re (a )=- 0 (7r is un itary), H„ -- - (P - g)Tj,g - ' b y  Proposition 3.1 and each
operator in the right hand side is defined on L 2, then the usual Plancherel trans-
form for L 2 gives the formula (I).

In case —1<Re (a)<O, f  ,I,E L 2 and H ,fe S ,  is a  bounded function on k.
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O n the o th e r  hand, H,r _1 1̂7 i s  in  L 1 a n d  is th e  lim i t  o f  e n (u)=-

k
gn(X)X(UX)dX, w here g .(x )ES  is  a  func tion  equa l to  7 - 1 p - '(x)h(—x - 1 )  i f  1x1

and zero o th e rw ise . W e  have an expression p - '(x)h(—
çoeS, 0 7,_, as (2, la) and c E C . Then

1 1 x150
7,M = p-1(x)X(u x)d x

=0+ crc(u) {G i (u ; ; 7r 1 )},
and

4.(u)116_10(u)1+16.117r(u)1Gi(u; x - 1 ) — G.4-1(u 7')} I

5_ 10(01+ Ic I I ki i r(u)IGk(u ; 7r - 1 ) — G k+i(u 7c - ')} I

<10(01-Hci0(u),

w h e re  0  i s  th e  summable fu n c tio n  g iv e n  b y  0(u) =  nE. 17(u) IG k (u
G  k+I(U  ; Tc- ')} I. By the Lebesgue's theorem,

H „ f(u )1 1 ,h (u )d u =  lim H r A u ) k n ( u ) d u - =  lim H, f(u)k.(u)du
k n » . 0  k

Since rp - 1 (x)f(— x - i) E L 2 , the above equals

lim  rp - 1 (—x)f (—x - ')g ,,(— x)dx=7(-1 ) k f (x)h(—x)dx
k

= ( - 1 ) f ( u )h (u )d u .

( 1) 7r(u)ri(u) is  in therefore from  (I),

f(u)H, r _i (r r i)(u )d u = r(-1 ) k 7r(u)f(u)E(u)du

On the other hand, H,r _1(7rh)(u)= k ./1,-1(u, v)7(v)h(v)dv, an d  (B.3) shows that

H„ 1(713)(u)=n- (u)M ( u ) .  This gives the formula ( 1). Q. E. D.

Corollary 3.4. Let f, fiE,3,. I f  7 is  unitary (Re (a)=0),

k H„f(u)H„h(u)d u =1 kf(u)ri(u)du

I f  7 =  I • a
, a  real and —1< a <1,

k r(u)H, f(u)H,Ti(u)du -=1 , 7(u)f(u)h(u)du .

P ro o f. First equality is obtained from  the fa c t ft=7r - ', (B.4) and (I). The
second one from ( 1). Q. E. D.
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B y the corollary, there hold that, for i t  unitary, IIHJM=MflI, w here

.f  !Au) I 'du, and th a t  for 7r(x)-= i x ia, a real and —1<a<1, i i H f x = I i i w h e r e

11/11;;=Lit(u)lf(u)1 2du. If it  is  u n ita ry , ::32, is  dense in L 2 . If 7r(x)-=I x1', —1<

a < 1 ,  „  is  dense in L „  the space of square summable fu nc tion s w ith  respect
to  the measure 7(u)du. T hus H , can be extended as a unitary operator of L 2

and of 1 4  respectively.

3.4. Proposition 3.1 is extended to the cases 7C= Irsp= H - 1  a n d  r=I • I  as
follows.

Proposition 3 .5 . (1 ) For 7r= I • I and f  ES  it holds

H, f(u)-=P - . r
1 )X(UX)d X = (P - if(U) .

(2) For 7r=7r3 p, let H2p=H 2 ISsp, S g p  the space of functions f  in S ; r s p  such

that 
Ç
 f (x )dx =0. T hen it holds for l'E S s p .

Jk

H,pf-=-P - . ç k l X1 2 f ( - 1r 1 )2C(ux )dx=9Ing - lf (u).

Pro o f . The proofs are similar to that of Proposition 3.1 but the convergence
of integrations (a), (b), (c) and (d) in (ii) in th is  proposition should be checked.

Q. E. D.

Proposition 3.6. For f, riES,p, it holds

L, 112 1 - 1 11spf(U)11,pfl(U)dU= .çk lui - 1 f (u)ii(u)du .

Pro o f . Since for 7r=7rs p ,7z-Hs p lî-=H,_,(7r17) and 717 es, it is enough to prove
the equality

.Ç, H,,f(u)H,r _fi(u)du= .ç k f(u)fi(u)du , fE S ,  and î s .

In  case h e s ' ,  h(— x - ') is  a lso  in Sx and then  H„,1 .7 (u )=P1  h (— x - 1 )•

X(ux)dx e s .  Thus H f ,  H 1 h L 2 .  This leads to the equality by the Plancherel
th eo rem . In case hES , h(—  x - ') is expressed as çoi(x)-F-c, vqES and c E C . Since

P - .ç 1 X (ux)dx=0 for u E le ', w e  ge t H,r _i ri(u)=-  '93,(u) b y  Proposition 3.5, and

k i l„ f ( u )H , , ,h ( u ) d u = 1  k p - 2 (x)f(— x - 1 *,(x )dx

k f (x )1 h ( —  x)—cl dx 4 , f(x)h(— x)dx A l(u)17(u)du , Q. E. D.
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B y Proposition 3.5 (2), Hs ,  gives an isomorphism of S s p o n to  it s e lf .  Again,
b y  Proposition 3.6, it h o l d s  f o r  f E S s p, H s p f  sp=11 f  spy w h e r e  11/ II 4 =

.ç u  I'lf(u)1 2 du, and Hs ,  can be extended as a  unitary operator o f L 4 .  Here

1,4 the space of square summable functions with respect to the m easure lu I - 1  du.

3 .5 .  The Hankel transform  11,, n=l• a 0  and —1<Re (a)<1, is  an isomor-
phism of :52,  onto itself, and so  is H s ,  for T h e  following proposition is  on
the Hankel transform  of the distribution -=1 • I Pz-, E  x .

Proposition 3.7. L et 7=1• " O, —1 < Re (a) < 1 (resp. 2r = Jr,,), and l• I f i r
such that O<Re (73)<1 and O<Re ( 43 — a). Then for fe S , (resp.

.ç k2P-1(u)H„ f(u)du= T(2)F(27r - 1 )27r(-1) k 2- '7r(u)f(u)du .

P roof. T h is  equaliiy  i s  a  consquence of Proposition 3.1 (resp. Proposition
3.6), Proposition 2.4 and Corollary 2 .6 . In fact,

to- 1 (u)(P - g)(7r p - 1 (•) f (— x - 1 ))(u)du-= r(2) k 2- 1 7r p- '(x)f (— x - 1 )d x

= r(2)27r(-0 27 - 1  p- 1 (x)f (x)d x= r(2)r(27 - ')27(-1) . 2 - 1 7(u)1(u)du . Q. E. D.

§ 4. Unitary representations o f S L 2 (k).

In th is section we describe unitary representations of G=S L 2 (k).

Let G be  the group of matrices g-= ( a  É 3 \  ad -pr=i, w ith  e lem en ts  a,
k7 (3 )

P, 7 and 3  in  k .  W e consider the  subgroups of G  as follows :
--1 I)

D =  d (a )= ( ;  a E VI= le ,
0 a)

1

y\ (1 (:1
N+ ={n+ (y )= ( 1-

1 )

; y E kl, N=In(x )= ) ; xEk -=k+ .
0 .1c 

Put

(4.2)w =

Let G° be  the dense subset in  G  of elements g  such  tha t 3 * 0 .  Every ele-
m ent g E G° can be decomposed as follows :

(4.3) g= d(a)n+(y)n(x) , with a=3, y=513 and x=73 - '

(4.1)

4.1. Let 7r be  a  (not necessary unitary) character o f k ' .  It is extended to
th a t of the subgroup B= DN+ b y  71.(b)=- n(a) for b= d(a)n+(y)E B .  T he induced
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representation Irian- is realized on S r,, and for which the operator T ; is

(4.4)
a x + r

T;ço(x)=7r(13x+5)1Px+51 - 'Ço( px + 5  ) , -

In  particular, T s)(x )= rp - 1 (x )so (-1 /x ). We denote this representation by .42,
s,I.

When rc x ,  g2,„ is extended to a unitary representation with respect to the
norm

(4.5) IlSoll2=L,Iço(x)12dx ,

known a s  a  representation of principal series, and is irreducible except in the
cases 7u(x)-=sgnrx with v =s ,  p ,  sp.

When 2 r ( x ) = I x ,  — 1<a<1 and a=0, .42„ is extended to a  unitary one
with respect to the norm

1 (4.6) r(7 ,_ ,) ,i,7 - ip - i(x i— x o g 9 (x i)ç o (x 2 )d x ,d x 2 ,

known as an irreducible representation of supplementary series.
Representations _42, and of principl series or of supplementary series,

are equivalent and the intertwining operator E „: .42 ,-± gt , is given by

1(4.7) E„y9(x)= r
(

r - 1) L , Ir 1 p - 1 (x—  f)yo(x')dx'

The special representation R s i ,  arises as the limiting case of supplementary
series gt„, rc(x)= I x ,  as .92,, is defined as g., 82,18,p, and is extended
to a  unitary one with respect to the norm

(4.8) Iço z2)11ÇDII 4 = c klo g  x1—x2 (x1)( dx1dx2,

where c --(1—q - 1 )(log q) - 1 ,  and is irreducible. As to this norm, IlSollsp=:11111110 .
for a compactly supported function yo in S s ,.

Representations g t„ given above are realized in another way called the X-
realization. It is the Fourier transform .41,= {P`, S,} of the representation g.„.
We already discussed the space The transformed operator 1' =(/3 - g )T p - i
are expressed by means of a kernel K „(glu, y )  which is a distribution for every
u  k  given as follows :

for so „, l';ça(u) A K „(glu, y )so(y )dy

(4.9) A rc(a)1, a 4(v — a2 u)yo(v)dy z(a) fa lça(a2u) , g=d(a),

(4.10) =). X(—ux)4(y—u)yo(y)dy=X(—ux)ço(u), g=n(x ),
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(4.11) ,H,w(u)=-1/„(u, y )ço(y)dv , , g =w , ,

where ZI i s  the delta distribution on k  supported at O. The operator D for
other elements g= g i g , is given as

(4.12) K,r(g1g-21u, v)ço(y)dy= K - ( g i l u , y ) w ( y ) d y d t
k  k

The relation T r 'E ,= E „T ; is transformed into

(4.13) K7r_i(glu, y)x(y)-= zr(u)K,(glu, y ) .

In the Fourier transform IT", :5,1 of the special representation, the
transformed operators for d(a), n(x ) and w  have the same expression as
(4.9), (4.10) and (4.11) for go Ss z , respectively.

4.2. Let y be a  fixed element in Is, p, spl, L .,=k (,/F) the quadratic exten-
sion . L . is a local field of the same kind as k  w ith  th e  valuation lz I,=N r (z)
for z =x + A/Fy E L D. The Haar measure on L , and /4 are given by dz=dxdy
and e z =d x d y llz l, respectively. A set of elements t  in  L , satisfying t i=a  for
a n  a E k ' is called  a  circle in  L r . The circle Cr  w ith  a=1 is  the (compact)
kernel of the homomorphism .1 4 — k . On a circle Cr  we denote a  measure

dxt, invariant under multiplication of element in Cr , normalized as dxt=1.

F ix  v  L ;  such that in7sE (k") 2 . If N r (z )=r 2 E(k") 2 , z  is written as rt  for
some tECr . If N r (z)E(kx) 2 ,  then N r (z)=viir2 E ( k x ) 2 and z  is  w ritten  a s  vrt.
(r, t) or (vr, t)  is the polar coordinate of z , but (r, t) and (—r, —t), or (vr, t) and

—t) give the same elements.
If a function f  (z) on L , satisfies f (tz)-= f (z) for tECr , then f  (z)=v(N r (z)),

where ço is a  function on k .  For a summable function f ,  we have

(4.14) f (z )dz=a4kso(x)dx

where
2(1+q -

I l

1)a r = a n d  yo(N r (z))= . f ( t z ) d 't
1 + r c,

Representations of the discrete series are obtained as invariant components
of the Weil representation. The latter is defined as follows. Let S(L r ) be the
space of complex valued, compactly supported, locally constant functions 0  on
L r . For OES(L,.),

sgnr( a) I al 0(az) , d(a),

(4:15) W g0(z)= - X(xNr (z))0(z) , g=n(x ) ,

ci.4(z) , g =w , ,

where the coefficient Cr  is determined by cr —  a
n r

k

 X (x)sgn,(x)dx, and
G 
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(4.16) (z )=L X (Sr(z2'))0(z ')dz ' , with S r (z )= z + .

For tEC r , we define the opertor R t in S (L ) by R t 0(z)=0(tz), then  R, com-
m utes w ith Wg . L et 7C be  a  unitary character of Cr ,  and S(L„, r) be th e  sub-
space of functions 0  in  S(L r )  satisfying R t 0 = 7 (0 0 . Then, S(L,, 7r) is  an  in-
varian t subspace. P utting  7' 7;.=W g IS(L r , 7r), w e  d e fin e  a  representation
{71 S(L r , r)}

We set

(4.17) 0(tz)rc(t)d'tc,
forS ( L „ ) .  T h en  0„, is  in S(L , 7r) and w e  have the inversion formula 0(z)
=  E  0,,(z), w here e r  i s  the  character group of C,, and the Plancherel formula

nE-er

I 0(4 I 2 dz= (z)I2dz. S o  w e  g e t  the decomposition o f  {Wg , S(/,)}
n E Z " r  L T

in to  {P;, S(L r , 7r)}.

Lemma 4 . 1 .  For every 7r 1 and OGS(L,), 0,- vanishes on a neighborhood
o f 0 in  L , .  Moreover, 0,O except for a finite number of

P ro o f. Let b e  the  m axim al id ea l in  O r ,  the  ring  o f integers in  L,.
Suppose tha t O  is supported  by  q3,711. and constant on the cosets of 43;.' for some
positive integer n. We se t 0=0 1 +0 2, Oi  equal to O if z '  and zero otherwise.
Then 0„=(01),,4-(02), Clearly (0 1)„=0 for 7r 1. 0 ,  is supported by W n n(q3n c

an d  co n stan t o n  th e  cosets o f  13', th en  0 2 (tz)=0 2 (z) for tE(1-1-$P)nC, and
zE L r . Therefore, if  7r is  no t trivial on (1-03P)nCr, (02)„=- 0. The number of
characters which are trivial on ( 1 - 0 3 P ) n C r  is  f in ite . T h u s  the lemma. Q.E.D.

T h e  fo llo w in g  is  k n o w n . If is  no t of order tw o, the representation R I
is irreducible, .92t, and R. r _i + are equivalent, a n d  th e  interwining operator E,
between ge„- and is g iven by the  form

(4.18) E „ : „(z) ---> ,(2) .

4.3. If  ir is  of order tw o, the intertwining operator E , maps S(L„, Tr) into
i t s e lf .  In order to  study the reducibility of .91, we should discuss in detail the
ch a rac te r r .  W e  confine ourselves 7=-7ro ,  th e  character of order tw o in
Let C; be  the subgroup (1+$,)nC, of C ,. The index of  C  in C, is  q+1. Since
ro i s  o f  o rde r tw o . 7r0 i s  trivial on C'E, and 70 (0=1 o r  —1 according as t is  a
square element in  C, o r  n o t . We set Sl= {z  L  s ; N,(z) (lex) 2 1 and S2 =  zE L
N E(z)EE (k")2 1 . The following proposition holds.

Proposition 4.2. The representation o f discrete series 70 the character
of C , o f order two, splits into two irreducible components .g21-=  {To, S(L„
and Rtr= {T;', S(L, ro)IS z } , where S(Le, 71-0)1S1 i s  the space o f  functions in
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S (L „ r 0)  supported in S 1 .

To prove this, we need the  following lemmas.

Lemma 4 .3 .  I f  —1E(V) 2, then r 0 (-1)= — 1, and if  — leE(kx) 2 ,  then
=1.

P ro o f. First we show that, if  —1e(kx) 2 , —1 is not a square element in C .
Assume th a t —1=z 2 = (x + A/Fy) 2. Since z2=1, w e have zx=0, and then x=0
and — 1=sy 2 Ge(kx) 2 ,  which is a contradiction. Second, it is easy to  see that,
if  —FEE (k") 2 , —1 is a square in C,, and hence 7r0 (-1 )=1. Q. E. D.

Lemma 4 .4 .  4 .4 .  Put A (z)=n0(2z - 1 ), then

A(z) -={ 1

 z G  St ,

—1 z E S 2 •

P ro o f. T h e  proof is obtained by using the polar coordinate of z .  Since
every z E S ' is expressed a s  z =rt ,  rE k x  a n d  tEC r ,  A(z)=74(11t)-=7r0(t 2 )=1.
Next, le t z  be in  S2 . If  — 1  (k x)2 , z  is expressed as z = / -i - rt, and then by the
above lemma A(z) -=7r0 (— t 2 )= 7r0( - 1 )=  — 1 . If — l ( k ) 2 ,  take an element v such
that vii-= —1. Then z  can be expressed as z =v rt and hence A (z)=7 0 ((31v)t 2 )-=
70 (-132 )=71-0(f;2 )  by the above lemma. It holds L52 EC, b u t 1) EEC „ and hence A(z)
= —1. Q. E. D.

Proof of Proposition 3.2. On the space S(L,  74), the operator E , 0 in  (4.18)
is a non-trivial intertwining operator of gt.tro onto itself, and

E 0 O, 0 (z )-=0(2)=70(2z - 1 )0,,,(z )=A (z)0„ o (z)

The space of intertwining operators is at most two dimensional, and therefore
we have the proposition. Q. E. D.

4 .4 .  Fix 7  in  E.= {E, p, sp } . L e t  E 7r 1 and extend it to a  unitary
character of L .  P u t  0 '(z )=0 ,(z )r - 1 (z). Then 0'(tz) -= 0 '(z ) for all t eC v ,  so
0'(z )=- w(NT (z )), a n d  yo i s  a  locally constant function on k ,  vanishing near O.

By (4.14), LI 0'(z)1 2 dz=0,- k 1ç0(u)1 2 du. Thus the  mapping U: 0',—>w is an  iso

metry, up to the multiple by op, of S(L r , 7r) onto Sx(k ;), the  space of functions
in  6  supported in  C.'. The operator U T X - i, denoted again by T ,  is given
by the kernel as follows :

P;w (u)= k K (glu, v )w (v)dv

(4.19) = (sgn,a) I a I 7(a)w(a 2 u), g=d(a),

(4.20) = X(—xu)g)(u), g=n(x ),
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(4.21) -=1-1c, o(u)= a ,c4 y)ço(y)dy ,

where

(4.22) Jc,1,(u, v) -J tt=u-lv X(ut-Fyt-') cl7r(t) xt

(4.19), (4.20) and (4.21) are analogous to (4.9), (4.10) and (4.11) respectively.
For the later discussion, we deduce (4.21) in  detail.

Tça(u)= c4 L , X(Sr (z2')V(z')7r(z')dz' n- - 1 (z)

= c ,L {1 c , X(Sr (z2/t))7((z'l z)t)dxt} (f)dz ' .

On the other hand, the inner integral is

c ‘ i . X(S,-(z2/I))7r((z'lz)t)dxt= LX(zret - 1 -1-2z't)7((z'l z)t)dxt ,

and changing the variable (z/z)t by t, then it equals

Jg(u, v)=1 X(ut+yt - ')7r(t)dxt ,tz=u -iv

where u=- N, (z) a n d  v = N ,(z ') .  So we have, for g=u;

T ( u )= J y)V(zi)dz'= a r c4 k J y)yo(y)dy

4 .5 .  The intertwining operator E„ : gt;, — >22. -,_1, in  (4.18), is transformed on
th e  space S ( k )  a s  E ir ço(u)=7(u)yo(u), because o(u)=0/(z)=0 „(z)7 - 1 ( z )  and

,(2)7r(z)= (z )7 (z2 )=  ço(u )7 (u ). In particular, in case 22;', 0, E „ cp(u)= A(u)ÇD(u).
where A(u)= A(z) in  Lemma 4.4 and u = N r (z). Since A (u )=1  fo r  u e(k x) 2 and
= -1  f o r  u E s(kx) 2 , the representations R,!, and gt.t, in Proposition 4.2 are realized
on S x ((k x )2)=S x (kx) 2 an d  s"(E(kx) 2 )_=sx IE(kx) 2 respectively.

4 .6 .  For 7rE 'e v ,  another discrete series representation comming from R ;  is
given on Sx1(kx \k;.`) as

r;0(u) A K ;( g  u, y)0(v)dy , OE Sx (kx\k,X) .

The kernel K -,  is obtained from (4.18), (4.19) and (4.20) by replacing "u , v a le "
by "u, y k\k .;:". We denote this representation by R ; -= {T, Sx (kx \ k;)} . If 7:-
is not of order two, 22; is again irreducible, equivalent to R ;-1 , but inequivalent
to any .gtt,.

In the following, R ;  and R ;  appear in  the  form of their direct sum _4,--=
R ;e 1 R ; .  The kernel K„(glu, y )  for fft„ is defined on kx x kx , equal to K (g  I u , y)
on k; X k, X, equal to K,7,(glu, y) on (M cx  (M c, and zero if u-lyEE

g = w ,
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F o r  7r0 o f  order tw o in  0 „  R 7-t o  again splits into 22?)) -- gt7co I sx(p(k x) 2)  and
ROP-=R;i 0 lSx(sp(k") 2 ). T he representations g a  g , gR.f; a n d  gt,SP a r e  all irre-
ducible and mutually inequivalent. T h e  kernel fo r  R ,r0 =g2.1(Dgle).R MROP is
defined similarly as above, and is zero if u - 1 vffi( e ) 2 . As to  an  other character
of order two in  'Ôp  o r  in  0 , p ,  reducible representations is constructed similarly
but it is equivalent to

The representation gt+ is extended to a  unitary one 1 ;r = L2(k;)}, and
is also to 1.7,=. {T';, L 2 ((k;)c)} and .T.L s EE, to  It4,=• {To, L 2 (s(k 3 )2 )}.

We denote by S23 th e  se t o f  characters of the form 7r= I • I ', — 1<a<1, and
by Q d  th e  se t o f  all elements in  Or  w ith 2  E '= f r, p, spl, except of order two.
Put S2=1Z"Ufz, 9 1W2dUl7rol and [2.=S2US2 3 . We have seen that any irreducible
unitary representation appears a s  a  completion o f a  subrepresentation in one of

're  Q . M oreover the "support" of the Plancherel measure is Q.

§ 5. The Plancherel transform.

In this section, reviewing the Plancherel formula, we define and discuss the
Plancherel transform.

5 .1 .  Let S (G) be the  space of locally constant, compactly supported func-
tions o n  G .  For every fE S(G ) and rcES2=fixU S 2 dU {701, the  operator

T ( f ) = f ( g ) 9 - d g ,  g 't  =1 ' if 7 r Efi"U In-  s p l and  2- '= T n i f  7rEQaU {Tro}, has

an integral kernel K ,(f  lu , v ) given by

(5.1) K „(f  I u, v )= G f (g)K,r (g u ,  v )dg ,

w here K,r (g Iu , v )  i s  i n  (4.9), (4.10) and (4.11) for rcErz"UIrr s pl, and in (4.19),
(4.20) and (4.21) fo r rc f2d U {7 0 }. As will be proved soon, the kernel is a  func-

tion on k X  k and of trace class with tr P r( f )= .ç K ,r(f  lu, u)du.

The inversion formula is proved in  [4 ]  and [ 1 5 ]  for f

(5.2) f (e)=.çs2tr T 7r(f)m(7)d7r

tr ( f )m (7)dz +m (7,,) tr T ( f )

E  77/(7r) tr T V )+ 7 7 7 (7 r0 ) tr T ' ° ( f  ),
.es2a

where m(70=1/(2 T(701 2 )  fo r a-E li' but as to m(Irsp), m(7r) fo r 7C Q d  and m(70),

see [15].
The inversion formula and Proposition 5.1 lead us immediately to the Plan-

cherel formula :
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(5.3) f (g)I 2 d g tr (T'(f *f *))m(7)drc

k k k I K,(f lu, v)1 2 cludvin(77)da-

-1-77z(7,p 4 k 1k  K ,, p (f lu, v)1 2 7,p(uv - ')dudv

+ 7r ;  d in( 7C4 K ( f  lu, v)1 2 dudv

d-m(70) k 5k 11G.,(flu, v)I 2 dudv .

The above equality implies the map f -4K „(f  lu, v ) is  a n  isom etry o f S(G)
in to  L l.a.cr)d ,(k  X k x S2) and by the general theorem of the Plancherel formula
on a locally compact group the image of S(G) is dense in the latter space. W e
call K ,(f  lu, v ) the Plancherel transform of f .

5 .2 .  A gain let f ŒS(G) and consider the kernel K r (f  lu, v ) of the operator
Pr(f ).

Proposition 5 .1 .  The following equalities hold:

IC (R „f  lu, v )= k K ,(f  lu, v)dt ,

(1)

K ,(L ,f  lu, v ) 4 , K,(glu, t)K„(f  lt, v)dt ,

w here R , is the right regular representation of G and L ,  the lef t regular one.

(2) K,(8-11 u, v)=. k u), w here k 2r (glu, v)=-K ,(gl— u, — y).

(3) If7,-1(f I u, v)=K,r(f lu, v)7(uv - 1 ),

(4) u , v )=k r(f  Iv, u)7(u - 1 v), w here J(g)=f(g1) •

(5) K,(Il u, v)=- 14(f  lu, v ), w h ere  7 (g )= j( .

(6) K ,(f *lu, v )=K -,i(f  Iv, u)7r(u - 1 v), where f*=.

(7) K (f i*f21u, v ) A K ,r( f t)ICr(f2lt, v)dt ,

where f1*f2(g)=)'
G f1(g0f2(gT i g)dg1.

(8) K ,(f  i*f t I u v )-= k K(f 11u, t)K -rr(f2lv, t)7(t - 'v)dt ,

and especially i f  7 7  is unitary,
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K„(fi*ftlu , v)=I k K,r(f t)K (f  21v , t)dt

Proof. The proof is routine. T ake  (2) for instance, it is  easily  to  p rov ed
for g= d (a) and n ( x ) .  For g =w , it is proved by the Bessel functions properties
(§ 3). Q. E. D.

5.3. Now, w e express the kernel K,r (f  lu, y ), f  ES (G), explicitly as a func-
tion on kx X k x.

L et G ° b e  the set of elements g = ( a  1 3 )  in  G such that Ô O, th e n  G=r 3
G°UwG°, and every function f  in S (G) is expressed as f = f 1 + f 2 w h e re  f „  f 2 E
S (G ) a re  supported in  G ° and  w G ° respectively. W e discuss the Plancherel
transform  K,r(f lu, y) for f  supported in w G ° . For the function f 1 supported in
G°, it is expressed as f i = f  as ab o v e . T h en  the Plancherel transform of

is  g iv e n  b y  Proposition 5.1 (1). S ince  each  e lem en t in  w G ° is  g iv e n  as
wn+(x)d(a - 1 )n(y )=12(x )d(a)w n(y ), f (g)= f (n(x )d(a)w n(y ))= f (x , y , a ) is locally
constant w ith  respect to  param eters x ,  y E k  and a  k x. So, f ( x ,  y, a) is ex-
pressed as a  finite linear combination of functions of the form  e(x)72(y)K(a), e,
)2E 8 a n d  KESx. T he H aar m easu re  on G is  g iven  by  dg= l a adxdy  on
w G °, g=n(x )d(a)w n(y ). Note that

1, ( x ) g  ( x ) 4 9 (u )d  x  =  k e (X )K ,(n (X )1  u, v)ç9(v)dydx=(u)ço(u) .

Let f (g)=C(x)i7(y )K (a) as above, then

(5.4)Ç K ( f  I u, v)so(v)dv-= e(x)22(y)K(a)g7,(x)d(a)..(oço(u)la1 - 2 dxadxdy
Jk kx  k  k

(U )K (a ) i g  7crl (a ) w 1(t1)1 a 1- 2 dx a .

Further w e discuss the form s of kernel I f ,c ( f  I u, y) dividing into two cases :
(A) rE f e l. { 7  c }  and (B) paU

Case (A). In (5.4), rewrite 'e and t  b y  e and 72 respectively.

lu, v )so(v )dv= k e(u)K(a)r(a) I a I (P,L7A9)(a2u) 1 a l  a

-=1 7, 1 k e(u)K(a).1 i r (au, av)7j(u)go(u)dvl al - 1  dx a .

because J i r (a 2 u, y)-=7 - 1 (a)J,r (au , av ). As we see in § 3. J„(u, y) is  a  function on
x k x. Hence the kernel K ,(f  lu, y) is  a  function on kxx :

(5.5) K,r(f lu, v)=e(u)72(v)1 1(u, y)

w here M 7,(u, v )= k K(a).1.(au, av)l a l - id ' a
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Suppose e, )2 are supported by P - m. (m > 0 ) . Take a n  integer k (k >0), and
set e=e1-F2, where e i  is equal to e  on Pk and zero  outside and e, is equal to
e  on (PO ' and zero outside. Set )7=771 +72, similarly. Then

(5.6) (u)77(v)=ez(u)721(u)d--1(u)/22(v)-E2(u)771(v)d-ez(u))72(v)

The first three terms on the right hand side are zero outside of the set {(u, v);
I uvl 11 and the last is zero for lu I, lu l < 4 - k .

Let e(u))7(v) of f  be one of the first three terms. Suppose K (a )  is supported
by {a ; q- "< l a <qn} . If  w e take k  a s  k  rnd -2n-1 , it holds that I a2 uvl
Qm-F2n-k for u, v e Supp [)2] and a eSupp [ e ] .  By the Bessel function property
(B.4),

M,r(u , v)=-L, {r(7r - 1 )7(av)+ r(lr)Tr - 1 (au)1K(a)l al  a

= r (v ) r ( r - l)k i (7)±7r - 1 (u )r(r)k ,(7 - 1 ) .

where for 7r= I •  I "0, ki(7r)= K(a)l a l rc(a)d' a -=EcTi(e)q" (finite sum ). Thus we
have

(5.7) lu, v)=E(u)7)(v){7(v)r(r - l )ki(70±7r - i (u )r(r)k i(7 - 1 )} .

Let (u ), (0  of f  be the last term in  (5 .6). Then fo r  a l l  u ESupp [e]ck x,
vESupp [)7]cle,

M,r (u, y)= .  k ic(a)-{P - k X (a u x - F a v l x)r(x )d ' x}I a I 'd ' a

K(a)
k ,1--151x1

4 1 X (a u x - ayx - 1 )7r(x)d" x} al - ld" a ,

for an  integer I large enough. We chang the order of integration, then

M i r (u, v)-= ,(ux+vx - 1 )X 1 (x)7r(x)d' x ,

where ic",(ux+vx - 1 ) = . k X(a(ux+vx - 1 ))x(a)l al - 2 d a  a n d  X 1 i s  th e  characteristic

function of {x ; lx I q1} .  The function G(u, y ,  x)=e(u))2(v)k-
2 (ux-Eyx - 1 )X 1 (x)

is locally constant and supported on q l u I , Iv1--q - m- and on q- 1 x I qz , and
therefore G  is written as E a1 (u )b (v )c (x ) (finite sum), ai , 6, and ci E,Sx. Thus
we have

(5.8) K,r(f lu, y)-= E a1 (u)b i (v)t 1 (7 ) (finite sum) .

Now, as to f i e S (G ) supported in  G°, set f i (w g )= f (g ). Then f  i s  in  wG°,
f I =  L .- if  and

(5.9) K(f1 l u , v)=L , K,r (w l u, t)K7r(f It, v)dt .

On the right hand side, for a fixed v E k ', a function K,r (f lu, y) in  u is operated
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by H .
Case (B ). W e treat the kernel for discrete series representations. Let rcE

{7r. .  From (5.4),

f ,(f  lu , v)ço(v)dv= .ç k e(u)x(a)(T1(a),, w)(11)1aH 2 dx a

= a r c.24(u ) k (5 k 12(v)K(a)7r(a)(sgn,a)l a 1 - 1 .1 (a 2 a, v)so(v)dv)cl' a ,

w here a, and cr  a re  in  (4.14) and (4.15) respectively. A s in  (4.22), J(u, y) is a
function on  le X kx , and then

f , ( f  u, v)= a r c,e(u)72(v)M,T (u  v)

where M,r (u, v)-4/c(a)7(a)(sgri r a)1 v)dx a. Note that

J (a 2 u, y) -=5 c i . X(Sr (az:Ft))7c(a(z 1 /z)t)d't

where u = N T (z), v=Ar r (z/). Then we have

(5.10) M„(u, v)=-- k LK(a)(sgn,a) I a 1 - I(aS;(zFI))7r(a(z i  z)t)dxte a

k2 (S r (zi / t))7((z1z)t)d't

where k 2 ( x ) = 5  ic(a)(sgn r a)l al - 1(a x)clx a. k 2 i s  in S. S in c e "k2 i s  constant on

th e  neighborhood o f  0, th e  la s t  s id e  o f  (5.10) i s  zero for small I uv L T h u s
M„(u, y) is locally constant, supported in  th e  s e t  {(u, y); s< I uy I, s  a  small
number} and except a  finite number o f  7E S2 d , So, e(u)22(Y)M,r(u, y )  is
in S' xSx and we obtain K,t (f lu , v)=Eai(u )p i(v ) (finite sum), ai, pi E S x . From

§4.6, it is easy to  see that for TrES2 d r ) , - ,  a i (u)/3i (v)=0 if  uy - 1 €Elz, and more-
over for 7r-=70 , a i (u)P 1 (y)=0 if  uy - 1 (le ) 2 .

Theorem 5.2. The Plancherel transform IC(f I u, v) of f  ES (G) is expressed
as a finite linear combination of the functions on kx X kx X Q of the following
form:

(A) For ir lJ{ Irsp } , the functions

T(7 - 1 )e(u)77(v)7(vAlr)d- F(7)7r - i(u)e(u)77(v)ii(2r - 1 ) .

T(7r - 1 )(H„r e)(u)22(v)r(v)ii(7)+T(7)(H, r 7r- ie)(u)72(v)gr') ,

a(u)b(v)E(7r) , (H„c1)(u)b(v)(7) ,

where e, 72ES and K, a, b, c 8'<.
(B) For IrE  d -- )  {70}, the functions a,r(u) 13„(v), where a„ and 13„ ,_Sx vanish-

ing except fo r  only a finite number of 'r. M oreover a i r (u) 13,„(y)=0 if uvEE k r", and
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a, 0 (u)p, 0 (y)=0 if uvE(1e) 2 .

Corollary 5 .3 .  Fix 7rETZ"U fir s p l ,  and co n s id e r  K r ( f lu ,  y) as a  fu n ction  in
u, v. T h e n  i t  i s  a  lin ea r com b ina tion  of ço(u)0(y), w h er e  i f  7rEfix, yoES, and
sbES,r -i, and if 7C= 7 rs p ,  S O E S s p  a n d  O E ,. Fix 7rEf2 d nO r , th en  K (f lu , y ) i s  a
lin ear com bination  of yo(u)0(v) w h ere  yo, O ESx(k ;), and K7r(flu, y) i s  a  lin ear
com b ina tion  of so(u)0(v) w h e r e  ço, O E S x ((k ;)c ). F o r  7r = 7 0 ,  10, 0 (f lu, y) is ex -
p ressed  as of the fu n ct ion s  so(u)0(y) w h er e  ço, OES'(s(kx) 2 ), SEE.

§ 6. Tensor products o f irreducible unitary representations.

6 .1 .  Let R„ i = {T 'i , S }  ( i = 1 ,  2) be representations of principal series or
o f  supp lem en ta ry  se ries. L e t 8 2 ,0 8 „ 2 denote  the tensor product of S „ ,  with
S ,,„  th a t is, the space of finite linear combinations of e(x1)(x2), eEs„,, )2Esir,.
The topology is defined in  such a  way that a sequence of functions l e . 7 7 . 1  con-
verges to  ev if and only if  en-->e in  8 , ,  and en, v  in  S „ , .  The operator T , of
the tensor product 22.„,®.gt„, of a n d  is given as follow s: for 6oES„ 10 8 , 2

(6.1) Tgço(xi, x2)=7,1,0-1(13x1+6)72p-1(1(3x,+5)so
( a x 2 - k r  

px,+3 )•

R„ i 022, 2 2  is  ex tended  to  a  unitary representation with respect to  the inner
products corresponding to the following norms:

( I ) If 7 r1 , 72 OEP are of principal series),

= k ço(xi, x2)60(x,, x2)dx1dx2.

( I I )  If 7ri (x )=  x  I" 1 , —1< ai<  0  and 2r2 E fix (92  is of supplementary series)

1101h= r,
1

ki c , - ) ..kLx,k —1- 1 1
p  (x i— x ;* (x i, x 0 y o ( fi ,  x 2 )d x icI fi c ix 2 .

(111) If 7r1(x )=  I x l ai and 7r2 (x )=  I xlai, a2<0 62,r2 are of sup-
plementary series),

1 Ilç°11fri =  
r(r-2)r(7-2-1)kk5kk7r11P-1(x'—xD7-2-1P-1(x2—x 2)

Xço(x i , x2)cc(xi, x)dx 1 dx;dx 2 d x .

A s lim iting cases of (11) and (Ill), we have tensor products w ith the special
representation as follows:

(W) gZ2p®fft,2 2, (71=  I xa n d  7r2 Erz"), for yoES2p0S7, 2,

x 2 )go(x;, x 2 )dx1dfi dx2,

w here c=(1—q -1)(log q) - 1 .
( V )  R3pO R,c 2 (r2 (x )= 1- 1 and  7-c2 (x)=- Ix I a 2

,  — 1<a2<0 ), for q)eSspOS,r2,
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log I x  — x ' 7:ip
1 (x 2  x2)0(xi, x2)ço(fi , x)d.x i clx'i dx 2 d x .

k  k 1 

(V I)  RspORsp(7, and 72 =- x for 0 SspOSsp,

lkollii=-C2
,Ç

k l e k k  
lug I x1 — fi I log X2 —  X 2 1 Ç O (X 1 , X 2 )(X /i ,  X )d .X 1 d X ;(1 X 2 d X

Let (7 1 , 72 )  be one of the pairs of characters in (I), (11) and (IC , and <IC be
the space of 0E8„, 10 S , 2 satisfying 0(x i , x 2 )= 0  o n  a  neighborhood of the dia-
gonal "x 1 = x 2 ". ,91' is  G-invariant and has the same completion 37 as S- 1

0S,2 2 .
We denote the representations on 3? by gz, i ggz_ 2 .  Our problem is to decom-
pose these tensor products into irreducibles.

6 .2 .  W e consider a  linear m apping U  o f S (G ) .  For f S ( G )  and g =
d(a)n + (y1)11(x3, put

(6.2) (Uf)(xi, x2)=7 -i 1p(Yi) k r -i-1 72(a)f (d (a )e(Y i)n (xi))d 'a  ,

where x 2 =x 1 + 1 / y i. In other words,

(U f)(x i , x2)=r2p - 1 (x2— x i)(S f)(x i,

where

(Sf)(xi, YO A 7 T 1 7r2(a)f(d(a)n + (YOn(xi))d'a .

Proposition 6 .1 .  For fS (G ),  U f= ç o ,g C  and  UR g = T g U  where g-4.1?, is
the right regular representation o f  G.

Pro o f . Let G° be the open subset in  G  as in § 4.

(1) L et f  be supported in  G°. T h e function (S f)(x i, 3, 3-= ,Çk 7T172 (a)

f(d(a)n+(yOn(x i ) )d 'a  is  a  finite linear combination of e.(x 2 )72(y3, 77G S . Then
the function U f is  a  linear combination of

0(x 1 , x2)=72t9 - 1 (x2— xi)e(xi))2( 1 ) ,
X 2  x1

and 0  is  lo ca lly  constant, compactly supported with respect to x l , zero on a
neighborhood of the diagonal "x 1 = x 2 ", and for large I x21, 0(x1, x2)= dr -21p(x2)e(xi)
with d=72(0). Thus w e get UfEJC.

(2) Let f  be supported in  G'w, put fi=- --R ,V f. Then f i  is supported in G°
and from (1), Uf i =w i ES C. It holds that

(U f)(x i , x2)=(UR..f3(x2, x2)=-7r 1 P(3A k rT 1 7r2(a)fi(d(a)n + (311)n(xi)w)d 'a  ,

n±(Y2)n(x3w=d(x3n + (x1(x1Y1+1))n( — xT1 ) b y  (4.3), an d  —xT 1 -1--xT1(x1y1+1) - 1

=-3,i(x iy i+1)-1=— xV ,
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---7-rV p(y i ) L/cT 1
 2 (a)f (d(a)n+(x i (x i y i +1))n(— x n)dx  a

1
10(Y1)7rin' (xi)72p - 1 (xi(xiyi+1))soi( — x 1 , — x -i i ± x V (x iy i+1) - 1 )

=Trip - 1 (x1)7c2p - 1 (x2)wi( — x ',  — x 1 )=T.Y 01(x1, x2),

where T .  is in  (6.1) for g = w .  Thus we get U f = U R ,J 1 =- T 0 ,E S C .
T o show  th a t UR g = T ,U ,  it is enough to check it  for g =d (a)  and n(x),

because for g =w , it is already over. T h is is easy. Q. E. D.

Proposition 6.2. The linear G-m orphism  U of  S (G) into SC in  (6.2) is con-
tinuous and surjective.

Pro o f . The continuity is clear from the definition o f U .  Let us prove the
surjectivity. Suppose 0(x 1 , x2)=- (x1)72(z2)ESC and be compactly supported.
Put

(6.3) f (d(a)n+(. vi)n(x i)).= 2r17c i. (a)K(a)7r 2 p - 1 (y 1 ) ( x  x i - PYT')

where x (a )E S ' such that K (a)(1' a=1. Then f  is a  preimage o f  0  under U.

In fact, f  is locally constant in (x 1 , y i )  and compactly supported with repect to
2c1 ,  and  fo r la rge  I x 1+Y V )=0, a n d  fo r  small 1,Yii ç9(xi, x i + yT i) is
expressed a s  de(x1)7r29 - 1 (y V ), d E C .  Then f  is compactly supported with respect
to 3, 1,  and Uf=so.

If  0(x 1 , x2)=e(x1))2(x2)ESC and e is not compactly supported, we can assume
that C is  zero on a neighborhood of x 1 = 0 .  Then T .0 (x 1 , x2)=7r1p'(x1)7r2p 1 (x2)
0(— x7 1., x V )  ..5rC is compactly supported with respect to x 1 ,  and  there exists
hG S (G ) such that Uh-=T i o ça. So, U(R,V h)=TV (Uh)=-ço. Q. E. D.

6 .3 .  L e t  <0, 0> b e  o n e  o f  th e  inner products in  (I), ( I I )  and For
f , hG S (G ) we define B (f , h) as

(6.4) B(f, h)-=<U f, Uh> .

B  is a  continuous sesquilinear form on ,3(G)xs(G) by Proposition 6.2, and there
exists a distribution Hi(gi, g2) on G X G  such that

B (f , h )= G .ÇG H1(gi, g2)f(g1)171(g2)dg1dg2.

Put w =U f , 0 =U h . Then by Proposition 6.1,

B (R J, R g h)-=<T g ya, T ,O >=<so,0>=B (f , h),

that is, H i (g i g, g2g)=11 g2) for all g G G .  Hence there exists a distribution
H(g) acting on S (G) such that H,(g i , g 2 )=H (g 1 g n .  So we have

(6.5) B (f , h )= U H ( g ) f ( g g i )h(g i ) d g d g H .
G H(g)f i (g)dg ,
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where f i (g)= G f (g i )h(g - 'g i )dg i =f  h  (g ) .

Proposition 6 .3 .  Corresponding to th e tensor products in  (I), (I I )  and  (1[),
th e  kernel distributions in (6.5) a r e  written as follows: f o r  g=-d(a)n+(y)n(x),

(H. I)H ( g ) = 7 r 1 1 7 r 2 ( a ) 4 ( x ) 4 ( Y ) ,

1 
H(g)= 1r717L-2(d)rT1P-1(x)4(Y),

1H(g)=  r , r  i v (  r  2 i )   7rT 1,2( a ),v. i0 -1.(x ) 2Tv p _1(y )

To prove this proposition, we apply the following:

Lemma 6 .4 .  L et 7r1 fi  o r  7r1 (x )=Ix 1 ,  —1<ce1<O, and 7r2 sim ilar. Let
f E S (G ) and pu t U f =ç o . T hen , for g=d(al)n + (yOn(xi),

(A) IrT'Ir2(a)f(d(a)g)cl`a=r17r 1 (ai)7r2p - 1 (Y 1ya(xi, x2),

(B) li k/TT. 17r2( a ) 7ciip - 1 (x)f  (d(a)n(x)g)cl' ad x

0 7.c2p -1( y k  r i l p  - 1( x  ) ça(x  x i , x 2 ) dx

(C) kr-i'n-2(a)n•V p - 1 (— y)f (d(a)n cl+(y )g ) ' ad y

=7r172(a1)72p - 1 (3/1) k7Vp - i (x)ça(xi, x +x ,)d x

where x 2=x 1+Y i 1 .

Pro o f . W e p ro ve th is  b y  u sin g  (6.2) and by changing variables. (A) is
e a s y . (B ) Remarking n(x )d(a 1 )=d (a 1)n(aT 2 x )  and replacing x  b y  ax ,  w e  have

7r-,-1 7r2 (a) 13- 1 (x )f (d(a)n(x )g)dx adx
k  k

7rY7r2 (a)7ry 2 (a i )7riip - 1 (x )f (d(aa i )n(x)n+(Y On(x i ))dxadx
k  k

Since n(x )e(Y 0=d(x y 1+1)n + (y1(xy l+1))n(x(xy l+-1) - 1 ) by (4.3), we replace a  by
aai- '(x y +1) - 1 . Then we have

7-cV7rV(aOrci l x2(a)7c1)7 -2- 1 (xy1+1)7rï l p - 1 (x )
k  k

X f  (C1 ( a ) n + (3 ) 1(X 3, 1± 1 ))n(X (X  Y i+ 1 )-1 )n(X  1))Cl x ad X

--=7i 1 74- 2- 1 (a1)7r2p - 1 (3, 1) k 7rip - 1 (xy1+1)7rT i p - '(x )sa(x(xy l+1) - 1 +- x i, x 2 )dx ,

(H .  )

(H.IIE)
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because x(xy1-1-1) - 1 -1--xi+YV(xy1+1) - 1 -=x1-1-yT1 = x 2 .  W e change the variable x
b y  x(xy 1 +1) - 1 -= x ', th e n  x=-x'( — x'y1 - 1- 1) - 1 , xY1+1=( — x / y1±1) - 1  a n d  dx=
13- 2 (— x' y i +l)d xi. Thus we obtain

ilf=n- 1 7r 1 (a)72p - 1 (yi)f k 7rT1 p - 1 (f)ço(f-Exi, x 2 )dx '.

(C) is sim ilar as (B). Q. E. D.

Proof  of Proposition 6.3. T he form ula  (H .I) follow s from  Lem m a 6.4 (A),
and (H.II) from  (B ). The formula (H.III) follows from (B) and (C). Q.E.D.

§  7 . The Plancherel transform of a distribution.

Let at be the imge of S(G ) under the Plancherel transform . We consider
the induced topology on ,51 from  S (G ). Let D  be a distribution on G .  We de-
fine the Plancherel transform  b  of D  as follows: for FG,91. take fOES(G) such
th a t F(u, v, z)=K -„ (flu , v ) and put

(7.1) kb(u, y , 7)F(u, v, 7)dudvm(7r)d7=LD(g)f(g)dg

Then, b a i ' ,  the dual of .31. We call b  the Plancherel transform  of D .  From
the inversion formula (5.2), we obtain

(7.2) .GD(g)f (g)dg= U s2 5 D(g)1(„(L g - if  Iv , v)dvm(r)d(z)}dg

k.ç kp(g)1('(g-111), u)K,r(f Iu, v)dudvm(7)d(7r)}dg .

T hus b  can be formally expressed as b(u, v, 7c) A D (g ) l f , r (g - ilv, u)dg.

According to (5.3), (7.1) is  w ritten  as

(7.3) .ÇGD(g)f(g)dg = .ç b(u, v, 7r)K,(f lu, v)dudvm(r)dr

k h(u, v, rsp)K- s p (f lu, v)dudv

r ; d m(7r) ,  k b(U, v, 7c)K,( f lu, v)dudv

±n i(r 0 )5 k b(u , v, 70)1( 0 ( f  l u, v)dudv. .

Here the notations m (z) are  described in (5.2).
W e  re c a ll th e  abbreviation of no ta tions: r1z2(x)=71(x)7r2(x), r  sgn,(x)=

7(x) sgn r (x), and so  o n .  W e prove the following:

Theorem 7 . 1 .  L et H(g) be one of the distributions in Proposition 6.3, and f i
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the Plancherel transform of H. Then fi(u, v, 7)=0 if  7r E k'"U {7 8 , }  and 7-c1 7r2 7r(-1 )
*1 , and fi(u, y, 7 )= 0  i f  rr ,N {7r 0 }  and 7r1 2i-2 7 sgn,(-1)#1.

Proof. In the equality

G H ( g ) f ( g ) d g = U  k fl(U , V, 7r)K ,(f  I u, v)dudvm(r)d(7) .

We replace f  by L d ( a _i ) f (g)= f(d (a)g), aEkx . Then it is easy to see from the
explicit form of H (g) that

(7.4) .ÇGH (g)f (d (a )g)d  g= i n- V(a) .ÇG H(g)f (g)d g

O n  th e  other hand, for 7rE fixU fr u l ,  K,r(L d( i) f  I u, v)=7 p(a)K, r (f I a2 u, v), and
fo r  7rE(S2a n r )U {701 , IC (L a (a )f  I u, v)= rp sgn y (a )K„(f I a 2 u, v). From these
equalities, (7.4) and Proposition 5.1 (1),

(7.5) GH(g) f (g)d g= G H(g)(1, (a) f )(d(a)g)d g

=rc i 7r in-p(a),7j  k L , fi(u, v,701 f,(f a 2 u, v)dudvm(7)drc

±7ri7r -i 1 7rspp(a)1fl(7rA  k .ç k fl(u, v, 7r sp)IG s a  a 2 u, v)dudv

+717 -
2
- 1 7p sgn,-(a) m(7r)Li k ri(u, v, 7r)K„.(f I a2 u, v)dudv

7resid

+TrinV7op sgn,(a)m(7 0 ) (/, v, 0 )K 0 (fl a 2 u, v)du dv .

N ow , pu t a= — 1 and com pare (7.5) w ith  (7.3) for D = H .  71 7-
2

1 2-c p(-1) and
r i 7V7rp sgn r (- 1 )  equal always 1 o r  — 1 . S o, w e easily  see that the  integral
with respect to 7  on the set of 9 , consisted of elements 7 E i i " l . ) { 7 }  such that
z1727r( - 1)= - 1 and 7E,QaU{70} such that r i rgr sgn r ( - 1 ) = - 1 ,  is z e ro . Thus
we obtain the theorem. Q. E. D.

To simplify the notations on integration domains, we set

11 „=.11 „(7r 17r2( - 1))= {7r Ere ; 7r( — 1)=-'717r2( - 1)}

Hd=Hd(7172( - 1))= , ,, {7 rE (D d r1  ); 7r sgn r (-1)=7r1z2(--1)}

(7.6)
if  r 1 72 ( -1 )= 1 ,

if  7 1 r 2 ( —1) -= —1

if  270( —1)=7r i rc,(-1)

if  r0(-1 )#7172(-1),
and put
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(7.7) 11=11(7r172(-1))=117,U Q 8pU llduQ d.

In  the succeeding sections, we shall explicitly calculate the  Plancherel trans-
form of the distributions H (g ) in Proposition 6.3, and after obtaining it, we can
get the decomposition formulas for the tensor products of representations. Note
the following. In (7.3) we replace D  by H and f  by f i =f * h * , f ,  h E S (G ) . From
Proposition 5.1 (4) and (8), for 7rE ii5`  o r 7rES2d U {70},

K „(f i lu, v ) A K , r ( f  I u, t)K , r (h*It, v )dt

—u)K,(17 It, —v)7r - 1 (u7) - 1 )dt ,

where f (g )= f (g - i)  and 17,,(f l u, v )=K z ( f lu , v ) , and for 7r - = Trsp

K 8 (f1I u, V ) -A K r s p C i l t ,  —u) 3 (

Thus from Theorem 7.1 we have for go-=Uf, (p=Uhesccs„ i 0s, 2 ,

(7 .8 ) <yo, 0>= H (g)f i(g)dg

11
P r

r ) 7 7 - 1 ( u 7 ) - 1 ) K , ( f  It, u ) Ï ( I  It, v )dtdudvm (7r)d7r

+M(781)) kM — U , Irs9)7325(u-1)Kirsp( t, u)K„,(12" v)7()8p(t)dtdudv

in(7r) 12(— u, 7)7-1(uv -1)1f ,r(Ilt, u)R ,(T ilt, v )dtdudv
rElld k k k

+ M (7 ° ) k
M — U ,  — V , 7 0)7 n u v 1 (-1 ) .-0( . f l t ,  u), v )dtdudv .

§ 8. The Plancherel transform o f H (g) in (H.I).

In this section, we calculate the Plancherel transform 12 o f  th e  kernel dis-
tribution H  in  (H.I) in Proposition 6.3.

First le t 7r(x )=1 x la0(x )(-77-/log q<lm  (oe)..7r/log q) b e  a  character o f  kx
and suppose that it is satisfies r ( - 1 )= 0 (-1 )= 1 .  Then, as in § 1, 0 =0 /0 i  where
O ' is  a  character o f  th e  group {1, e, ••• , 0 - 2 } s a t i s f y i n g  9 ( a--1 )/2 ==-1 and
0, is a  character of A 1 =1 +P =( 1 ± P ) 2 . So, we can determine tr(e) 1 1 2  fo r  a ll 0'.
Then we define th e  square  roots of r  a s  7r" ( x ) =  I x la 1 2 0 ' 1 2 (6)0,(a i )  for x =
p n e a=p n  s n 'al,  a, a i E  1±P . Thus, since 7r in  /1,7A-4:18p (resp. (7rdnE)k .JQd)
satisfies the condition Ir1 7V7u(-1)=1 (resp. 7r i rc 1 7V sgni .(-1 )=1 ), we can take the
square root of 2V i 7r-

2
- '2Vp (resp. 7 1 7r 1 rp sgn r ).

Let r i , Tr, fix in  re.. We define the functions A(7, s ) (u ) , s  E = { 1 , r ,  p, 614,
on k  as follows : for 2VE /72,TUQap,
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(8.1) A (n-, s)(u)-= 
(7.4., 7 r v 71.0/2 p -1(u ) U E S ( e ) 2

o, otherwise,
and for 7r E ( 1 1 d n i - ) u Q d ,

{ (7rin- -il7rp
(8.2) s)(u)=

0 ,

sg n p )1 / 2 p  - 1 ( u E  s(k 5 )2

otherwise.

Now we have the Plancherel transform of fi  in  (H. I).

Theorem 8.1. Let H be in (H. I), H(g)=7 -cT1 r2(a)4(x)d(y) f or g=d(a)n+(y )n(x ).
Then it's Plancherel transform f i  is given as follows:

14(u, y, 7)=2 E A(7c, s)(u) -24(7, s)(v), f o r 7r E llp rU lld U Q d ,
S E E

fi(u, v , 7)=2 E A (7, s)(u)71(7, s)(v )7(v ), f o r 7CE  Qs , ,SEE

where .74(7, s)(v)=A (ir, s)(v).

For the proof we remark the  following. For any s E E , sgns is  a  character
o f  E =k 5 1(k 5 )2 a n d  sgnr s-=sgn sr. Therefore, fo r uEs'(k 5 ) 2 ,  E sgri sr sgnr u-=

T E E

E sgnsr sgn3 , r=43 55 ,, 3 the Kroncker's d e lta . Hence we have : for 7U . 1 -1 „ U Q  s p ,
rEE

1(8.3) A(7, S )(U ) = E sgnsr (7 i 77, 1 7 p )“ 2 ,3'  sgnr (u),reE

and for 7, E (H d n 'e 5 )J Q d ,

1(8.4) A (7r, s)(u)=-7  E sgnsr (7 1 7V7p sgnr ) 1/2 p - ' sgn r (u) .
4 TEE

Thus, the right hand sides in the formulas in Theorem 8.1 are  rewritten as
follows : for 7 E l l p r ,

12 E A ( ,  s)(u)111(7c, s)(0= E (717c-21 7p) 1 2 p' sgn5(u)(rilx27- i p )i 2
 p 1

 sgnr(v)
SEEL  reE

and for 7E

2 E A (n s)(u):4(n-, s)(v)n - (v)
seE

=  E  (n - 17CV 7  C  0 /
1

2 P_1 S g n 5 (U )( 7E11 7  C 2 7 ? )()) 1 / 2 i0 - 1  S gn r (V ) .
L  rEE

For 7r (ildn '& )U Q d,

2 E A(7, s)(u)A(n-, s)(v)
SEE

1=  E
G  rE E

(n- grV n- p sgn5) 1 1 2 p - ' sgnr(u) sgn5)1/2 p - 1  SgIl r (V) .
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So, Theorem 8.1 is reduced to the following.

Proposition 8.2. The Plancherel transform 1-1 of H in (H. I) is given as fol-
lows: fo r  rEl 1 „UQsp,

v, 70-= —
2 1  7 .;  

( 7 C 1 7 r T , 1 7 C p )
1 / 2 p - 1

 sgnr(u) (7rT.
1 7 2 7 - l p

)
1 1 2 p - 1

 sg11,-(v),

and for 7rE (1  dr),-)U Q ,i,

f l(u, v , 70= = (717V7 r p sgn i.)1 1 2 p - 1  sgn r (u) (7ri l 7r27c- l p sgn r ) " 2 p - 1  sgn r (v) .

P ro o f. Let H(g)=7rT 1 7r2 (a)4(x )4(y ), where 7,, 7 2 k .  Then, using Proposi-
tion 5.1 (1), (7.3) and Theorem 7.1, we have for fES (G),

G H(g)f(g)dg=-- k [W  k irV 7r2(a)K ,r(L aca-i)f  lu, u)dum (7)d7de a

(8.5)
— 7 ,  

p r a
( )

K ( f  I - 2 u, u)dum(70 cl7rld" a

(8.6) H- Rspim(7rsp) .Çk [ k 7rTi 2r27ril lJP - 1 (a )K ,," (f I a - 2 u, u)du]cl' a

(8.7) [  E m(7r) sgn r (a)K ,(f  la - 2 u, u)du]cl'a,n1 1 71- 2 7r- l p - 1

k r E i l d k

(8.8) -F[Qa1ni(7r0),Ç 
k k

7T1727rVp-isgn,(a)K„o(f l a - 2 u, u) du]cl' a ,

where [Q a p ]  (resP. M I  means that if Q = Ø  (re sp . Q ,= Ø )  t h e  term just
following it does not ex ist. (c f. Theorem 7.1). We will study each of these
terms separately. First we prove the following lemma.

Lemma 8 .3 . Let f E  LA. x((le) 2 ) , then it holds

(8.9) f(x2)clx .2c=2 cl,) , f ( x ) ' x

P ro o f. Since th e  space Sx((le) 2 ) i s  dense  in  LA..((k x)2 ), it is enough to
prove for the characteristic function f  o f  th e  s e t  S = p "s 2 i(1±/3 7 4 ) (m > 0 ). In
the correspondence x—>..7c2 ,  there exist two preimages S i =pne(l+Pn i) and —S,

of S .  Then the left hand side dx =2q-m  and also the
si - s , i+pm

right hand side = t c l ' x = 2 q - m . Thus we get the lemma. Q. E. D.

Now, let us continue the proof of Proposition 8.2. First take the term (8.5),
a n d  denote it by A .  C hange the integration order with respect to d a  a n d
dum(70d7r and put 2= n-

17 -
2

1 , then by Corollary 5.3 and Lemma 8.3
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A  = 17 p i k  U  k 
(2n-p)ii 2 (a 2 )1G(f I a 2 u, u)d"aldum (7r)d7r

(27cp) 1 1 2 /3- 1 ( a )K , ( f  I au, u)dadum (7)d7r
1 7 p ,  k  (k x ) 2

— 2. f  l l p i k .ç(  kp ) 1 / 2 p
- 1

(u)(2
- 1

Ir
- 1

p)
1 / 2

p
- 1

(v )K ,r(f  lu, v )dudvm (7)dn-

A s to th e  integration with respect to d u d v , it holds

Thus

• •• dudv= ••• dudv = sgnruv . ••• d u d v .4 rEE k kk,uvE (k.) 2

1
(8.10) A = —  E

2  7.„
E Ç (7rin-17rp)112p-' sgnr(u)

OE'r k  k

( 1 7 r 2 7  - 1 0 / 2 p  -
1 sgn r (v)K_(f lu , v )d u d v m (r)d r, (7r =  I • lire)

T his gives the formula  Û  fo r  Ira H p,  in Proposition 8.2.
T o justify th e  c h a n g e  o f  integration orders, we check that th e  integral

(8.10) is absolutely c o n v e rg e n t. T h is  can be done using t h e  explicit form of
K ,( f lu ,  v )  given in  Theorem 5.2, Proposition 3.7 and 777(7r)=7r(-1)/(2rwr(7, 1)).

Next we treat th e  term (8.6). It holds that

(8.11)f  JÇ
k

77 1 7r2 p - ' ( a ) K , ( f u)du ld" a

1
= 2  E .)  Cd » ri7 2 P-1

,
sgrir(u)(7rVir27 0)1" 9 - 1  sgnr(v )K ,,,(f  lu , v )dudv

k 1 7 3PP) 112 

T he equality (8.11) is given under the condition that integrals o f th e  right hand
side a re  absolutely convergent, and the absolute convergency is similarly proved.
Thus we have the form ula f l  for r E Qs„  in the Proposition 8.2.

F or the  term (8.7) and  (8.8), again it holds, fo r  7ra (il d n ) ' J Q d ,

(8.12)
k
7rT17r27r-1p' sgn,(a)K,(f I a 'u ,  u ) d u d " a

1
= E (7ri7ri'7r sgn,-) 1 1 2  (3- 1  sgn r (u) (7rV7r27r-lp 2/ p - I  s g n r (v )

rE E  k  k

X  K ,( f lu , v )d u d v , ,

under the condition that in tega ls  in  right hand side a re  absolutely convergent,
and it is  more easy to check this, because o f  th e  form K,r ( f  lu , v )  in  Theorem
5.2 (B). Q. E. D.

§ 9. The decomposition formula in Case (I).

9 . 1 .  L e t  ri, 7r2ef ix  , a n d  g t , 10g2 ,. 2 = {Tr1® Tx2, ..3„0,3, 2} b e  t h e  tensor
product o f two principal series representations. T h e  inner product correspond-
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ing to II Ili in (I) is §6.1 in  V O L 2 ,

1101.7=1.
1j k 140(x), x2) 2 dx1dx2.

Take f E S (G ) such that Uf=ya and put f i =f * f * , then

(9.1) Ilçally=GH(g)fi(g)dg

f l(u, v , 7c)IG(f1lu, v)dudvm(r)d7c ,
17 k

where H  is in  (H. I). From (7.8), Theorem 8.1 and the fact that 11(—u, —v, 7r)
v, 7c), we get

(9.2) 110 =  s j i  7  pi n  k 2 A(71" , s)(u)7r - '(u)71(77, s)(v)7r - 1 (v)

x1C,(i It , u)K ,r(ilt, v )dtdudvm (r)d7c

-I-[Q 5 p ]m(7r s p ) s E 1k  k 5 k 2 A(7 c , s)(u)ri- (u);4(7r 8 ,, s)(v)7,T1,(v)

x K „ ., p (f it, u)1?„, p (f lt, v )7 3 ,(t)dtdudv

+ 7, 7 , t m(7c) , ;  i ,  k  k 2A(7c , s)(u)7c - '(u)74(7r, s)(v)7c - 1 (v)

x l -C (Ilt, u )17 ,(Ilt,v )d tdudv

±[Q diM(7C4 E j  k
2 A(7 0, S)(11)7r1V(U)A(7r 0, SXV)77 71(V)

XIG 0 (ht, U)K,r o (Jit, v )dtdudv . .

where [Qsp] and [Q a ] are  as in  (8.6) and (8.8) respectively.
We put for rE/7,

(9.3) 0 (t; 77 , S)=- 1/ 2 .ç k A(n. , s)(u)7r - 1 (u )K ,(h t, u )d u

{A/ 2 (717V7r-1,0)"2p-1(u)K7,(il t, u)du , fo r ar E II p r l i Q u  ,
s c i ,')2

,v-21 (n.i7c.-0-17r-ip, s g  - , , 1/2 p -n ) i (u )K (f I t ,  u)du , for rE (Ild n ,-)u Q d •

By Theorem 5.2, this integral converges and the function 0 (t; 7c, s) i n  t  is in
:5,, i f  rE l lp r ,  a n d  0 (t; trs p , s )  is in  Ss p . Let rE H a n e r . By the definition,
s(k 5 )2 ck ;: if and only if  sgn5 s = 1 . Again Theorem 5.2, we see that Œ(t; 7c, s)

S 5 ( k )  if  sgn,s=1, and ES"((k i:)e) if  sgn r s = - 1 .  For every sEE , 0(t; r o , s)
is in S`(s(k 5 )2 ). In addition, we have the following identity:

(9.4) 0 (t ; 77-1 , $)=0(t ; 7r, s)7r(t) for 7E11 prU 1 1  d
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which follows from Proposition 5.1 (3) and  (9.3).
W e define a  linear mapping:

(9.5) V: f  --> 0=0(t; 7r, s).

Here 0  is  a  function defined o n  k x 1 1 x E .  From  (9.2), w e obtain fo r ço=Uf,

(9.6)

E I (P (t 74- S )1 2 ifitM (r )d r  + [(2  s p }n ( 7r sp)E .Ç (t sp, S)I 22 r sp(t)dtsEE H p r  k s k

F dm (T C) ki ; 7r, s)rdt - F[Qa]m(zo) . .çk 109 (t; 7o, s(i 2dt=II 0 112 (put).

N ow  w e have the commutative diagram:

ço(xi ,  x 2 )  <  Kxcht, >

(9.7)

(T pO T P)so R z f >K „(L s ( I ) l t ,  u ) - - > T z 0 ,

w here  T z 0=-if ;.0(t; 7 r S ) .  F o r  E llp r ,  g ;= - P,' acts in t  as the principal series
representation 5z, in  §4.1. F o r 7=7 5 5 , 21,-=PPP a s  th e  special representation
R 8 9  in  § 4.1. F o r rce  gT=T'z ' a s  th e  discrete series representation: if
7E/I d nC' T  a n d  sgn ,s=1 , 9 ";=T ; a s  .R1 in  §4.4, a n d  if  sgnr s = -1 ,  a s  R -r -  in
§4.6, an d  fo r 7rEQ d , g lzt= T ; a s  ..T,g in  §4.6.

N o te  t h a t  i f  rc1 n-2 (- 1 )= 1  t h e  special representation term s appear, and if
7r172( - 1)= - 1 they disappear. From  L em m a 4.2, 7r 0 (- 1 )= 1  i f  -1 E r (e )2 , and
70( - 1)= —1 i f  —1E(k") 2 . Then again  note th a t  in  case  r 1 7r2 (- 1 ) =1 ,  split dis-
crete series representation term s all appear i f  —I (I? x)2  a n d  disappear i f  —1E
(k") 2 ,  a n d  in  c a s e  re1 z 2 (- 1 )= - 1 ,  th e y  a p p e a r  i f  —1E(k x) 2 a n d  disappear if
—1E(k") 2 .

(9.8)

9 .2 .  T o  g iv e  t h e  decomposition form ula, w e  c o n s tru c t a  H ilb e rt spaces
and V - ) . Let

1 1  Pr
=  1 1 pr( ± 1 ) =  {7r E fix ; 7(-1)=1} ,

H  d  =  d (+ 1) =
{ f2 sgn( - 1)= 1

} ,reE,

Qd=Q d (+1) =

These se ts  a re  in  (7.6) fo r  7r1 7r2 (- 1 )= 1 .  Also put

(9.9) 11=17(+1)=HprUIrc5plUllaUQd.

L et t1<-1-)  be  a  space o f  com plex valued m easurable functions A =A (t; 7r, s)

{ {74 }, i f  - i c k x ) 2 ,

0, i f  —1E(kx) 2 ,
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on k x11 x E satisfying the  following conditions :
( ' .  1 )  For ;r e H p r UH d ,  A(t ; 7 - 1 , s)= A(t ; 7r, s)7r(t).
( . 2) Let 7rE H d n 0 , ,  then if sgn r s= 1, A(t ; r , S )= 0  for almost all t (k ) 2 ,

and if sgn r s= —1, A(t ; r , S )= 0  for almost all t .  Let 7  E  d ,  then  A(t ; r , .3)

= 0 for alm ost all t E s(k ;) 2 .
( (+). 3) A= A (t ; 7 , s) is  square integrable in  the  following sense:

(9.10) 11 A112 = k 11(t ; 7r , s)I 2 dtm(7r)d7r+in(z klA(t ; s)127r,(t)dt

+ d m(z) L , i A(t ; 7r , s)1 2 c1t+CQ  dIn(74)E I A(t ; z o , s)I 2 clt <00 ,
8 Jk

w h e re  [ Q , 1 ] = [ Q d ( + 1 ) ]  m e a n s  t h a t  if —1E(k") 2 t h e  te rm  just fo llow ing  it
vanishes.

V+ )  i s  a  separable Hilbert space w ith the  inner product corresponding to
(9 .10). W e define a  representation 91(+) ---- {T ( +) , V+ ) } of G  by

(9.11) A =g;A (t ; z , s),

w here  ET  i s  the irreducible unitary representation corresponding to 7  or (7r, s)
as is explained for the diagram  (9.7).

The unitary representations obtained by completion from It, etc. are denoted
as follows : (a) 12 7,  fo r §2 7,  w ith Ire H p r , (b) :9-18 ,  fo r L p , (c ) and 127, for

and .22.; w ith  7rE H d  respectively, and (c) s E E , fo r  ag. L e t 11/pr be
the set of the equivalence classes with a relation 7 , `, 7 - 1  on  H „ and 1 1 'd  similar.
T hen the representation R(+) is expressed as a direct integral

(9.12) 91(+)-='[4].. , ,m (7 t)d 7 re [4 ] ,,
p r

ED [ 2 ]  E  (ff-?.»„- e -g1;)EDEQdicgue.gz- tegze.giv).
r E i ld

w here [4 ]  and [ 2 ]  are  the multiplicities of the representations.
The Hilbert space V - ) is defined similarly as V + ). Let

11 „= H  „( - 1) -= fir Gr?. ; 7r( — 1)=

(9.13) H d =lld (-1 )= U  { z Epan 'Cr); sgn r ( — 1)= — 1} ,
T E E '

I. 

{770 } , i f  —TE(V) 2 ,
Qd — Qd( -

1) - -

0,i f  — 1 E E ( e ) 2 .
Put

(9.14) H =H ( - 1)=- HpruHdUQd.

V - )  is  a Hilbert space of functions A= A(t ; 7r , s) on  k x17 x E, H in  (9.14),
satisfying 1), (.5. 2) and the condition :

(V - ) . 3) A= A(t ; 72 , s) is  square integrable in  the following sense :
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(9.15) I1A112 = 7,7.1 k  A ( t  ;  7 r ,  s ) 2 dtm(7r)chr

n7(7r) k I A(t ; 77, .5)1 dt +1Q dlin(7r0) A(t ; s)I 2 dt < co ,

where EQ di=CQ d( — 1)1 m eans that i f  - 1 c k x ) 2  th e  term just following it
vanishes.

On V - ), we define a  representation al( - ) of G and it is expressed as a direct
integral

(9.16) 91(-)-=[4] gl,,m(7r)d7r(})[2] (12;',Ef) ,T,)7,Eil d

EDEQA (Rlegl ,SED-RôEB - 1 ,?).

9.3. Suppose Ir1 2c2 (- 1 ) = 1 .  We show the tensor product in §6.1
equals Di.( +) . Similarly, in  c a s e  717c2(-1)= —1 the  tensor product equals
In this subsection, DI means 91( +) and so on.

Every element 0  in (9.5) is in So, we get a linear isomorphic G-morphism
W: çp—>0 of SC into ,f) such that W U =V , and it is extended to a n  isomorphic
mapping from L 2 G)L 2 into f), denoted again by W.

V

Proposition 9.1. T he im age of  L 2 O L 2 under W  is the whole space f).

Pro o f . For each s E E , let be the subspace of the functions A =A (t; 7C, s)

in such that A(t ; 7C, S ' ) - = 0  if  s ' * s .  Then

(9.17) R=RIEBOLEDRpEDS167,

where for sE E , Ois = { T 3 , tos} , T 3 the restriction of T  to tos. All the  irreducible
component in appears with multiplicity o n e . Take 911 . It is denoted by

(9.18) 011=L {V . ,  f)(70). m(7r)d

where f)(1r)=L 2 f o r  7r 1-1 , ,  =L L , (in § 3.4) for 7-=7", =- L 2 (14) for r E ll'an
and = L 2 ((k x)2)  for r eQ d .

Let TR be the image of L2 OL 2 under W, and Pa the orthogonal projections
of onto Then 93/8 = P 8 0  is  G-invariant.

W e shall prove the proposition by two steps : (1) 9:118 = t ,, for every sEE,
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and (2) 9R=4).
Step 1. We prove 931i = i , and the other cases are proved similarly. On

we consider the representation fg , to(7r)} m(r)d7r of the group algebre
H'

Ll(G ), corresponding to Di,. Note that WI, is closed and Ll(G)-innvariant.

Lemma 9.2. The representations o f  LA G) satisfy  the following pro-
perties:

1. g 7 , as an operator valued function on the locally compact space H ', is
continuous in the sense of the operator norm  and is zero at infinity.

2. The operator E'y is compact.
3. Every representation f-4g if` is irreducible.
4. For arbitrary  7r1, 7r2E.W, 7r1 7r2, the representations are not equivalent.

Proof. F o r  given f E  L'-(G) and s >0, we have h ES(G) such that ilf —1111,<s
where II L is L'-norm. Since gg is given as an integral operator with K (h lu ,v )
as in Theorem 5.2, we see easily that 1 and 2 hold fo r 911. This lead u s  im-
mediately to 1 and 2 for g 'fc. 3  and 4 are obvious. Q .  E .  D .

Lemma 9.3. Let 9 1  b e  a  g .7-invariant subspace, f  E  L '(G ),  in

11 (7.c)m(7r)d7r. Then 91 is  the set of all vectors 0 = 0 (7 c )E ,  which satisfy the

condition 0(70=0 for almost all 7C E N, where Nis a fixed d7r-measurable set in H'.

Under the properties in Lemma 9.2, Lemma 9.3 holds and it is obtained by
modifying a  little Corollary 1 of Theorem 8, "Continuous Analogue of the Schur
Lemma", in  [8, p. 358, p. 3561. Thus 911,=-, , will be proved if we show that
N  is a set of measure zero. For this, it suffices to prove that for each 7rEff,
there exists ço ESCCS, 10 6 „, such that 0 (t ;  7r, 1 ) 0  in t1(7r) where 0 (t ; 7r, 1) is
the component of 0=Wço.

We give ço as ço= U f, fE S (G ) supported in w G°. Take f  as

(9.19) f (g)=e(— x)v(— y)K(a - ') , for g-=n(x)d(a)w n(y) ,

where e, ij S a n d  K E S ' .  Then, i(g )=  f(g ')=72 (y )e (x )K (a ), and from (5.5),
f x (f lt , u )=  '(t )(u )M , r (t, u), where

(9.20) M „(t, u
K(a).I.(at, au)7r - '(a)cl'a , for 7 1 1 „U { 7 r8 9 1,

ar cz- K(a)T(at, au)7r - 1  sgn r (a)d' a, for 7C E d U  { 7  0} •

  

For a given 7GH,,,U {7r8p1 (resp. 7:. /idUQd), there exists a  neighborhood
of a fixed point (uo, to, ao) XkxX l e  on which the function J„(at, au) (resp.
P r (at, au)) takes a non-zero constant value. This makes clear to be possible to
choose e, 77 a n d  such that
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; (k  < ) 2 A ( 7  S ) ( 1 . ) 7 - 1 (11)K , ( i  I t  1 1 ) d U # 0

w here A(7, s) is  as in (8.1) and (8.2). Thus w e get
Step 2 . To prove 911-=, it is enough to  show th a t, for arbitrary A and

s >0, w e have ç o e , g c  such  tha t 11 A — < 4  w h ere  0=W ço. According to (9.13),
A  is decomposed as A =A i-FA -EA p+A sp, A sG ,t08. If w e have ços GSC for every
s G E  s u c h  th a t  0,9=Wws .f)s and 11/15- 0 811< 6, then  for 0 = 8;  0,9 = SEE IVços i t
holds I A — < 4 s  and so  ço=  E sas i s  a  required function.

TEE

From  Step (1) there  ex ists OE,qC such that IIP8Wçb—A8 11 < 6/2. On the other
hand, f ro m  th e  n e x t le m m a , th e re  e x is ts  w s G M  s u c h  t h a t  Wço,G,f), and
11W408— P5W011<s12 . Hence IlWça5—A,11<s, and this completes the poof of Pro-
position 9.1. Q. E. D.

Now the following lemma is left to be proved.

Lemma 9 .4 .  L et 0 ..g f , e  >0, and sE E . Then there exists a function gos E,qC
such that W W 8E , 5  and l!Wço3— P3W011< S.

P ro o f. L et 0= U h, h e S (G ). W e  c a n  assume h  i s  a s  in  (9.19). Then
K,r (ii It, u)=-7(t)(u )M „(t, u ) w here M„(t, u) is  as in  (9.20). For g iv en  ô>0, let
k  be a  natural num ber such that, for 7G //,,U {7, 7,1, it holds

.,,,,( 2ri r 1
7 - 1 p )" 2 p - 1 ( u) (u) d u  <a,

and if u GPk, then I a 2 u tl <1  for all tESupp [], a GSupp [K] . Let C(u) be  the
fu n c t io n  e q u a l to  (u ) i f  u G P '  and zero otheerwise, b e  the function such
that on s(kx) 2 and zero outside. Since ',G,Sx and whence
ese6'. W e set f3=e5( — x))2( - 3)K(a - 1 )E S (G ) . W e p ro ve  for s=1 th a t  ços=- Uf3
i s  a  required function, nam ely, prove that Wços = Vf s G s and  11 V f

5
—P

5
17/211<s

for O  sm all enough. For another s , the proof is similar.
Put C -=V f i . Its com ponent 1 1 (t; w, r) for r E l l  and rE E  is given by

; 7r, r) =L , 11.(71- , r)(u)7 1 (u )(t) ,(u )M ,(t, u )du  ,

w here M„(t, u ) is  in  (9.20). Since Supp [ 1 ]C (k") 2 , the above integral is actually
taken over r(V ) 2 n (V ) 2 . Hence 1 )0 ; w, r)=0 if  r# 1 . Thus V f 1 E 1 . P u t  TS

=P i V h and let  ' 1(t ; w, 1) be its com ponent. Then

i(t ; 7r, 1)— 01 (t ; 7r, 1)=j.A (7 , 1 ) (u )7 '(u )C (u ) t( t)M ,( t , u )d u  .(k. ) z

Since the support of C(u)t(t)K(a) is contained in {(u, t, a); I a2 ut I <1}, it follows
from the discussions in § 5 th a t  if C(u)t(t) 0, then
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7r(u)[(7t- ')k i (7 )+ 7 - 1 (t )[(7 )k i(x - 1 ),

M ,(t, u)= 7r4,(t)T(7r8 2 )k1(7,T2
1,),{

O,

where k2(7 )= k x(a)i al 7r(a)d' a .  Thus

for 7C E ll„

f o r  = z s p  ,

for r ET/dUQ d  ,

IT .1 (t; ir ,s ) - 0 1(t; ir, s)1= A(7r, 1)(u)7r - 1 (u )(u )(t )M ,(t ,  u )d u

is l e s s  t h a n  alt (t)I I r(7r - 1 )ki(r) - F r(,) -c , - ) 1  if 7C E / / ,  a n d  less t h a n
blzi-

2
1,(t)t(t)E(278p)ki(r4)1 if  7r=7Csp and equal to 0 if  IrE l l d U Q d . Thus we have

01112 < 52 {11 t 112
1 1 ,9 7 . r (7 - 1 )ki(70 - Fr(z)ii(7r - 2 )12 m(rc)chr

+117r4C1 2 r(Irsp)ki (7r4) I 2 1

Since T(7-c - 1 )k i ((7r)+1"(7)k i (71- 1 )  can be extended a s  a  continuous function, even
at rm1 , a n d  is compactly supported, then the integral converges. Taking 0 1 for
a  sufficiently small 5, w e have the lemma for s=1. Q. E. D.

9.4. Now we arrive a t  one of our main results.

Theorem 9.5. L et 7r1 , 7r 2 be f ixed unitary characters in 11=17(-1-1) be in
(9.9) or (9.14). Let „ -, f)(') be the Hilbert spoce o f  th e  functions o n  k X 1 Ix E
satisfy ing the conditions ( .1), 2) and (V± ) . 3) in  § 9.2. Then there exists a
unitary  m apping W ço— A  o f  V O L ' o n to  ,f), to=V+) o r ,t1( - ) according as
r1z2( - 1)=1 o r Tr2 ir2 ( -1 )-=  — 1 . W  is given on SC (C S , i (S),S„,) by  W U = V , where
U and V are defined in (6.2) and (9.5) respectively. Moreover W  is a  G-morphism,
11,W=WT g  (g E G ) ,  w here T g  is an operator of  the tensor product gt„ 1 0g2.„ 2 :
f o r ça L 2 OL 2 ,

T g ya(xi, x2)=7-cit0-1(Px1+5)7r2p-1(fix2+3)ço
( a x 2 - F r  a x 2 + 7 ”  

13x 1 +6 ' /3x 2 +6

and T g  is given as f o llow s: for

T g A = [g 7gA (t; 7r, s ), 7rE ll, sEE ],
where

g A ( t ;  r , S)-= 7C P(a)A(a 2t ; 7r, s), g = d (a ),

=X(—t x)A(t ; 7C , s) g= n(x) ,

=1-1„A(t; 7r, s), g = w  a n d  e  i lp rU Q s p ,

=1-PA(t; 7r, s), g = w  and 7ce l l a U Q d ,

Here H , and M , are  defined in  (3.2) and (4.22) respectively.

In other words,
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Theorem 9 .6 . The unitary  transformation W realizes the decomposition of
the tensor product g,,,O .R , 2 in to  irreducibles as f o llow s: In  case — 1 (k ') 2, i f
7r1r2(-1)=1

(9.21) _42,1022,2= [4] ,m(7)d7rEB[4]RspED[2] (R -t,EDR7r) ,
( +1) " d (+Y

and if 7 1 72 ( - 1 )= - 1

(9.22)

ED(gueglegz.7)ED,P).
In case —1E(lex) 2, if 7 1 72 ( -1 )= 1

(9.23) 22,i0.42„.2-=[4]11,(+1),Ron(r)cbre[4]-1,,

e[2] E  (Rtreg17,)ED(RLEB -It,ED -91f,ED -21V),
E i l  d(1-1)

and i f  717r2(-1 )= .-

(9.24) gz,:ggz, 2 [4] ,çn p r c _i ) ,:g.,,m(7r)dre[2] ,, E n E( _, ) ,(

9.5 . W e give the direct form of the intertwining projection for 7C e 1 1 pr U  s  p •

F irst le t for r EE,

Or(t ; 70= N/ 2 - 1  E  (sgn r s)0(t ; r, s)
SEE

-=-V 2 (rui7V7r - l p )" 2 p - 1  sgnr(u)K,r(il t, u)du .

Let C (x ;  7) be the (principal value integral) Fourier transform  o f O r (t ; ir) with
respect to  t. T hen  w e  have the following d irec t fo rm ula  o f the  intertwining
projection : ço—>C (x  ; 2r). T h is  is  qu ite  ana logous to  tha t g iven  in  [9, p. 124]
for the decomposition of the tensor product for SL,(C).

Proposition 9 .7 .  For 7C E H p r U Q s p ,

&r (x  7 r .)_ „\ - --in (
r 1 7 r ' 2

.r -1p )1/2 s g n r )

x  1  ( r y. r 2 i r p )1/2p -i s g n r (z i )( 7 r i z v z p )112p -i s g n r (z2 )
k  k

(7T1 7-,-, 1 7 - 1 p)ii 2 p - 1 sgnr (z2 —z i )ço(z2 +x , z2+x)dz1dz2.

Pro o f . W e set, for fES(G ),

F (x , x l , 7)=5 ,1 i t(n(—x)d(a)n+(y)n(x i ))7rp -1 (a)d'ady

= iik f(n (— x 1 )
d ( a ) n + ( y ) n ( x ) ) 7 - 1 i o - 1 ( a ) d ' a d y
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For a  fixed rG 11„U Q sp , F(x , x l, 7 )G S08„-1  and K,,(11t, u) is given by

u ) =P - F(x , x ,, r)X (tx )X (— ux,)dxdx i •k k

Then

&(x ; 70= g i ,V 2 7.4,i7-2-17-10/2p-lsgnau)K,,Ct t, u)du}

='■/ 2 T((7r i n--
2
-1 7c- 1 p) 112 sgnr ) k (71 17,7rp)" 2p '  sgri r (x ,)F(x , x 1 , r)dx ,

_,v-2--iR( 7 , 7 t v 7r -i p )1/2 s g .n r

1 k,f11, ( 7 - 1 - 1 7 2 7 9 ) " 2 P
- ' s g n r( x i )

f(n(— x 1)d(a)n(y )n(x )) 1 p 1(a)d ad y d x 1 .

According to the decomposition (4.3), we have

n( — x i)e (y )= d ( — xiy+1)72 + (( — xiy+1)y)n( — x1(—xiy+1) - 1 ),
then

A = k k k 
(7 -,•1727up)112 p '  sgn,-(x i )ar'p - 1 (a)f(n(— x i )d(a)n÷(y )n(x ))d'ady dx

1

= J • k k( 7 r -11 7r2irp) 1 / 2 p - i sgnr(xi)7rT 1 7r2(a)f(d(a)n( — xi)n + (y )n(x ))dx ady dx i

17.c 2 7 r ) 'sgnr(xi)7c-i-17-c,(a)

X f (d(a)d(— xiy+l)n+((— xiy+1)y )n(— x1(— xiy+1) - 1 ± x ))d 'ad y d x i  ,

T a k e , fo r  given yo ...qC, f ( g ) = r1 r 1(a)/c(a)72p - 1 (3)* ( x ,  x +y - ')  in  S(G), where

E S " is  such  that k xcl x a = 1 .  In the last side of A, replace a by a( — x1y+1) - 1 ,

then we obtain

A (rT1r2rp)112,o' sgn(x1)717V( — x1Y+1)7c2,0 - 1 ((—xiy+1)y)
k k

çg— x1(— x1y+1)-'4-x, ,

because (—x i y + 1 ) 'y - 1 —x1(—xiy+1) - 1 +x-=y - 1 ± x .  Now we change the vari-
able; z 1 =— x 1(— x ,y+1) - '  a n d  z2 = y - 1 . Then (— x1y+1)y-=(z1 - - - z2) - 1 ,
=z 2 (z 1 —z2) - 1 , x1=—z1z2(z1—z2) - 1 ,  and dx 1dy =p - 2 (z2— zi)dz1dz2. Then we come
to the desired formula for C (x ; r) . Q. E. D.

§10. The decomposition formula in Case (II).

In this section, we give the  decomposition formula of the tensor product of
a  supplementary series representation with a principal series one . L e t r i  b e  a
character o f  th e  form r 1 (x )=1.x lai, —1<ot i < 0, and 7r2 f i'. Note that in this
case the equalities r 1n-2(-1 )= 1  o r = - 1  turn o u t to  72(- 1 )= 1  o r  = —1. So,
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p r  a n d  o th e r  s e ts  in  (7.6) depend only  on 7r2 (-1). W e  have the following
theorem  quite sim ilar to Theorem  8.1.

Theorem 10.1. Let H in (H. II), H (g)=T (7 i 1 ) - 1 7c 1 7u2 (a)rcT 1 p - i(x )4(y ) fo r  g =
d(a)n+(y )n(x ). Then the Plancherel transform  0 is giv en as follows:

f-1(u, u , 70=2 E A(7, s)(u)71(n- , s)(v) , fo r  7r E [I p rJJL iJQ ä ,
SEE

f l(U  , u, 7)=2 E A(n. , s)(u)71(7, s)(v)74(v) , fo r  r  Q  ,
sEE

where A (7, s) are sim ilar to (8.1) and (8.2).

This theorem  is reduced to the following.

Proposition 10.2. The Plancherel transform  f l  of H  in  (H. II) is given as
follows: fo r  rE,11„UQsp,

0(u, v , 7r)= (7'.17c7'.17 P) " 9-1 sgnr(u)(7ri 7rc2 - 1 ,0)" 2 p - 1  sgnr(v) ,r E 

and fo r  7-ca(/1 d r- UQ d ,

0 .(u , u, 7 )=. y s g n , ) 1 1 2 p - '  s g n r ( u ) ( 7 r i n - 27- 1 p sgn r ) “ 2 p - ' sgn r (v) .

Pro o f . Let H(g)= P( 2(a)1rT 1 P- 1(x)4(Y ), w h e r e  i(x )= I x 1"1 ,  1<
<0, and r 2 E Remark d(a)n(x )=n(a 2 x )d(a), then  replace a 2 x  b y  x , and put
f i= L n (- . ) f .  So, w e get

r(n-T') G H (g)f (g)dg-= k 7rT tp'(x ){  k n 1 7 2 ( a) f 1 ( d ( a) ) ( /  d-dx

k rï' P - 1 (x){ (i)±(ii)+(iii)+(iv)}  d x

where as in  the  proof of Proposition 8.2,

(i)
1= E ( 7 , T i , v , p ) 1 / 2 p - ,  s g n s ( u )
2  sEE k  k

(74-i n- 2 n- 1 0 / 2 p - 1 sgn s (v )K „(f i  l u, v)dudvm(7)d2r ,

1
(ii) =- .Çik(7117r217s9P)112P-1 sgns (u)

(rin- 274p)" 2 p - 1  sgn s (v)K„, p (f i lu, v )dudv , ,

1
(iii) = E m (7r)E Ç Ç (7T 1 7Vrp sgn r ) i 2 p - 1  sgn s (u)

refi d 3 k  k

(71727 - 1 p sgns(v )K ,r(f ilu, v )dudv , ,
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1(iv) = .y [(2 d im(7z-
 0 )Ç k (7 T 1 7 1 7  „ p  s g n y/2p  s g n . , ( u )

(7r1n-27r61,0 sgns )" sgris(v)K,, 0( f v)du dv .

First consider the  integral A = .ç 7T 1
 to- 1 (x )( i )d x . Put 2 =  i n-V , then

A
k  kfk z T 1 P - i ( x ) f.f .ç

 7rT1(27p),o-lsgns(u)

X n-,(27r - 1  ,o)112 p- ' sgn s(v)K,r( f  u, v)d u dvm(7-c)drc} d x

Next we change the order of integration with respect to dx and dvm(7r)dr, then

A = E r2(27r-1p)1129 sgn s(y){.U .
k7r 1(27rp) 1"p - isgri s(u)

D E E J llp rJ k

X rcT 1 p - 1 (x)X(xu)K7r(il u, v)dudx}dvm(7r)drc

By Corollary 5.3, a s  a  function of u, f,..(f v) is in S ,  for a fixed y and 7C

T hen  it is  easy  to  see  th at F (u )=
7 N - 1 ( 2 7 r  p ) 1 1 2 p - 1  sgn s(u)K,r(f lu, v) is a  linear

combination of functions in  S i ,  and S p ,-1 , where p=rT 1(27 p)" sgn s -= l • j  O.
Since Re (i3)=Re (( —al—a2+1)/2-1)<1 and 0<—a 1 <1, we apply Corollary 2.5,
and obtain

i h zT 1P - 1 (x
) X ( x u ) F ( u ) d u d x = F(n-Ti)L, 7ri (u)F(u)du

k (27r p)" p - 1  sgns(u)K,r(f u, v)du

Thus

1(10.1) A =—„  E F(7z-1')Ç  or i n .v r p r12p -1 s g n s (u )
,

G  rEE p r  k  k

X (z i r c2 x - ' p )" 2s g n s ( v ) K ,r( f v)dudvm(7)d7

The integral in  the last side in  A is absolutely convergent and so  th e  above
change of order of integrations is justified.

The calculation for (ii), (iii) and (iv) are similar. Q. E. D.

We put for 7rE H = H „U Q 8 pU ildU Q d ,

(10.2) 0 ( t ;  7r, s)=A/ -4 kA(7, s ) ( 0 7 - 1 ( u ) K , ( i l t ,  u)du

T h e n , a s  a  function in  t, 0(t ; r , s )  is in one of the spaces of representations
R „, R s ,„ 2R., and ..g2,s, corresponding to 7  or (7r, s). This is sim ilar a s  in  § 9.1.
For 7r i l p r k-)il d ,  0  satisfies the condition ;
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(10.3) 0(t ; 7r - i, s)=0(t ; r ,  s)7r(t).

W e define a  linear mapping

(10.4)V ;  f --->  0=0(t; 7r, s).

W e have the sam e diagram  as (9.7). From  Theorem  10.1 and (7.8), we obtain

(10.5)

IIi= E I (P(t ; rc, s)I 2 cltm(7r)d7r+ Nsini(Irsp)E 1(01 . ; sp, s)12 7 sp(OdtSEEll p r k s k

d in(7r) k l ( t  ;  7r dt+EQ d iM ( T C ()) .ç k l ( t  ;  70, ,S) 12dt =  VPI (put)

where II is  in  § 6.1 (II). The right hand side above has the  sam e form  as in
(9.10). Therefore w here ,I=V+) or V - )  is  the  separable Hilbert space in
§9.2. T h u s w e  g e t a  linear isometric G-morphism W :  s o - 4  of SC into such
th a t  W U= V.

L e t  L?r1 0 L 2 b e  the  H ilbert space  of all measurable functions ço on kxk
such  that W in<  00. A gain  by Proposition 9.2, W is  ex ten d ed  to  a  u n ita ry  G-
morphism o f  N = L ? r 1 O L 2 o n to  T h u s  w e  o b t a i n  a n o t h e r  one of our main
results.

Theorem 1 0 .3 .  Let 7r 1 a n d  7r2 be characters of kx as at  the beginning of
this section. Then there ex ists a unitary  m apping W  o f L 1 O L 2 onto w h i c h
is given on .ge by  W U =V , w here U  and V are defined in (6.2) and (10.4) respec-
tively . M oreover W is  a G-morphism, that is , W T,=T ,W , where representations
T ,  and T, are as in Theorem 9.5. T hus W  realiz es the decomposition of the
tensor product R,A.42., 2 in to  irreducibles fo r  this case.

In case —1E(kx) 2 and 7r 2 ( -1 )= 1 , it is giv en by  the formula (9.21).
In case —1E(kx) 2 an d  7 2 ( —1)= —1, by  (9.22). In case —1€E(kx) 2 and x 2 ( -1 )
=1, by  (9.23). In case —1E(kx) 2 and 7r 2 ( -1 )= 1 , by  (9.24).

§  1 1 .  The decomposition formula in Case (III. A).

The decomposition of the tensor product of two supplementary series repre-
sen ta tio n s  is  s tu d ied  acco rd in g  to  th e  following two cases : fo r 71 (x )=  x  a l ,

7 2(4
=  I X  I a 3  su c h  th a t  —1< a l ,  a2 <0, we say

Case (IL  A ) if  0 < 1+ a1 + a 2 , and Case (III. B) if  —1 < 1 + a l + a2 < O.

In th is  section, w e give  the formula for (III. A), calculating the  Plancherel trans-
form ri of H .  In the next section we give the formula for (III. B) b y  an analytic
continuation of fi. N ote th a t ,  fo r  th e se  case s , in  (7.6) a n d  (7.7) i t  is  o n ly
n- gr2( - 1)=1, therefore 11-=11(+1) etc.

11.1. Let r i  a n d  72 be  as in  (III. A ). W e  co n sid e r  th e  following products
of gamma functions :  for E 113 ,u {7u}
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(11.1) rs (r i, 7r2 , 7 ) = 1 (( 7r1 7r2 7ri0 ) " 2  sgn 3)r ((7 1 72 7c- lp) 1/2 sgn,)

/"((rri 1x2n- p) 1 " sgn 8 )r ((ry 1 2r2 r - ip)" 2 sgn2 ) .

From th e  property 1-(,)=(-1)F(2), A  a  non-unitary character o f le', we see
that r  s (r i, 7 2 , 2 r )  i s  positive. F o r  7r=- 7r8 ,  a n d  r 1 = r 2 we should understand
R ( 1 n .2 7.c 3 p p )/2(r(( I r j 17 2 7 ; 2 10 0/2)_ 1. It is also that 1 - 2(7r1, it 2 , rsp ) is positive.

F o r  a  character 2.) o f kx and rc /I d U 0,-, we define a gamma function on
L r = k (./i7 )  by

(11.2) Fr(v7-1 ) =-, v(z2)7r - i(z)X(S,(z))d'z .

Put

(11.3) gs(rci, 772 , r)=417,((r 1 72 7 - 1 p sgn.,-)1 1 2 sgn 3 , (7 1 72 7rp sgnr)" 2 sgn2)

1",((7 -,-. 1 7r27 - 4 p sgn,) 1 1 2 sgn g , (rT 1 rc2 n-,o sgnp)i 2 sgn8 ) ,

where c, is in  (4.15). We assert that g 3 > 0 .  Since

z -->  v(z2)7r - '(z)=(717r27p sgnr ) 1 1 2 sgn8 (z2)7 - '(z)

is a  ramified character of L ,  g 8 =07r(-1 )a  with a >0, and c.. --sgn r (-1 ) b with
b > 0 . So we have g s =abr sgar (-1 )--- ab>0.

We need the following lemma, which is analogous to Proposition 3.7.

Lemma 1 1 . 1 .  L et v be a character (not necessarly unitary ) o f  k" such that
p (x )= ix 0(x), O<Re (a)<1. Then f o r 7rE'è-',  and ç,E,V(C:),

1, vio•- 1 (x)H(A5,(x )dx=c, , v) .Ç v - 1 7(x)ço(x)dx ,

where Hg is as in  (4.22) and r , ( 7 - 1 , 1 ) )  is as in  (11.2).

Pro o f . Take z e I 4  such that i = x .  A s we studied in §4.4, there exist

0 (z )E S (L .,) such that ça(x) -=- 0,,(z)7 - '(z ) with 0,r (z)-= . c r O(tz)7 - 1 (t )d x t. Then

ligy9(x)=c r ,ÇK J((x, y)ço(y)dy

=c4 X(Sr(z2'))7r-1(z) (z ')dzi=c,-0„(z)z-1(z).
L,

From (4.14), we have

vp - 1 (x)Hgya(x)dx=c4 vp - 1 (z2)7 - 1 (z)6,(z)dx

=  a ; - 1 C,L 1  p  - 1 (22)7 - 1 (2)ø ,(Z)d Z

v) . L . r v - 1 (z2)7r(2)0,(z)dz 0 ,E S (L 4 )
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=c,TD(vr - i, ).)) k v - irc(x)y)(x)dx . Q. E. D,

11.2. We have the  following proposition analogous to Proposition 8.2.

Theorem 11.2. L e t  r i ,  r 2 b e  i n  Case OIL A) and H  be in  (H. III), that is,
H(g)=1"(rTi) - T (7 -21)-- '7rY7r2 (a)7T 1 1(x)n-V  p - 1 (y ) for g=d(a)n+(y )n(x ). Then the
Plancherel transform f l  o f  H  is given as follows.

it E p r U  { r 5 } ,

f l ( 1 1 ,  y ,  7 r)  =  —2
-1r ' s ( 7 r i ,  7r2, r)(rini 1 7 40) 1 "p - l sgns(u)E  

sgns(v)

For 7rE(11anr)U(2d,

1Au, v , 7 0 = -0  E  gs(rci, it 2 , r)(7riri l 7rp sgnr ) 1 1 2 p - ' sgn s (u)
sEE

sgnr)112p-2sgn8(v).

P ro o f. For f ES(G),

r ( r 1 )r( r72
1),ÇG H(g)f (g)dg

— ).likLz117r2(a)ri-1P-1(x)7rilp-1(y)f(d (a )a+(y)n(x))d"adxdy .

Remark that d(a)n+(y)n(x)-=n+(a - 2 y)n(a 2 y )d (a) . Replace x  b y  a - 2 x , y  by a 2 y, ,
and put f 1 = L 0 - ( ) f .  So, w e have

k ir2 p - 1 (Y) -{ k 7cirV(a)7ri l p - '(x )f i(n(x )d(a))d'adx} dy  .

= . k 7r-2ip - 1 (y ){(i)+ (ii)+ (iii)+ (iv )} dy , ,

where a s  in  th e  proof of Proposition 10.2,

(i) =  F ( r V )  E (7ui727p)112,0—' sgn s (u)
seE  1 7  p r  k  k

X  (7ri irV 7 - 1 ,o)1 ' 2 p - isgn s (v)K ,(f i ! u, v )dudvm (r)dr, ,

and (ii), (iii) and (iv) are  similarly calculated.

I. F irst w e consider th e  integral A = .ç  r 1 p - 1 (y )  ( i)  dy . Put 2 = i r r ,  then

A  = -
1

r (rcT i) E (27r-1p)i2p-1 sgn s (v)S(v, 77)dvm(7)dn. ,
2 SEE H p ,  k

For

where



418 Masao Tsuchikawa

(11.4) S(v, ir)=f  k a - l p -1( y ) ( 7, 2(2 , r  p , i/ 29 _) 1 sgns)(u)Kir(f u, v)dudy .

Since n+(—y)=w'n(y)w, 1-((f 11 u, v).= HVK„(I,( y )wf I u  v ), where H , acts
on u. 11 1 = H , by Corollary 3.2. Moreover since 0 <1+ a i ± a 2 < 1, we can apply
Proposition 3.7 and obtain

(11.5) S(v, 7r)= a k7r- p -1( y ) ( 7 .1.1 ( 2 n  p -112) 7r sgn,)(u)K,r (L n ( y ) . f I u, v)dudy, ,

where N = r(7 r 2 (27rp) 1 1 2 sgn s ).r(7r 2 (27r p) 1 1 2 7r"  s g n ,)  a n d  a= 7r2 (27rp) 1 1 2 7r sgn 8(-1 ) .
Note that

v)=X—(y u)K,r (L w f I u, v)=X(— yu)HK,r(f I u, y).

Apply Corollary 2 .6  to  (11.5) a s  in  th e  proof of Proposition 8 .2 .  Then apply
Proposition 3 .7 .  So we see that S(v, 7r) equals

aN.Ç p-1(y)X(— yu)(7rV(27r p) - 1 "7r sgn 8 )(u)K „(L.fIu, v)dudy
k k

= a N r(
1 ) .  k ( 2 7 r  p ) - 1 1 2 7 C  sgn s (u )H „K (f I u, v)du

= a a'NN' T(7r -
2
4 )  k (27r p) 1 1 2 p - 1  sgris(u)K,r(f l u,  v)du ,

where N '=1 -'((27r p) - 1 1 2 7r sgns )r((27  p )"" sgn s)  a n d  a'=(27rp)" 2 sgri s(- 1 ) .  It is
easy seen that NN' = r s(r 1, r2, 7r) and aa' =1. Substituting th e  last side above
in  A, we obtain the  desired formula for 7rE Hpr.

II. Next we consider the  integral for (ii). This case can be treated simi-
larly as I.

HI. We discuss th e  integral A - j  rV p - 1 ( y ) ( i i i )d y . By changing the inte-
gration order,

A = -12 sEErOrT 1)  E  
k
 7r2-1,0-i(y){ k  k

7r 2 (27r p sgn,)'/ 2 p - 1  sgn s(u)

X (27 - 1  p sgri T)'"p - ' sgn,(v)K,r (f i I u, v)dudv}dy

1
= —

2
r(7ri-1 ) E Ç (27r p sgn r )1 1 2 7r 1 p - ' sgn s (v)S(v, 7r)dv, ,

S E E  k

where

(11.6) S(v, 70=  7r 1p - 1 ( y ) - 1 k 7 r 2 ( 2 7 r p  sgn r )
1 p - 1  

S g n s (U )K n ( f l  u, v)duldy.

Note that

f,r (f i lu , v)=K ,r(L.-1.(0 . f I u, v)

=7r sgn ,(-1 )1-1g. {X(—yu)1/;`,Kir(flu, v)}=Hg{X(—yu)11g1(%(flu, v)}.



{ g n ,
,

u

k
S )K (1 1 t ,  u )d u  fo r  7rE /7„U {7rspl

A / 2 j  ( r r i ir-
2
- 1 7r- 1  p sgns(u)K,:(i u )d u  fo r  71- .17 dUQ a •
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Apply Lemma 11.1 and  Corollary 2.6 repeatedly to (11.6), then we see that the
S(v, 7r) equals

F(7rng,(7r i , 72, 7r)L, (7 17V7rp sgn r ) 112 p - i sgn s (u)/C(f 1 u, v)du

Substituting this equality to A , we have the form ula for 7rE H d .

IV . T h e  integral p -'(y )(iv ) d y  is treated similarly a s  (DI).

Summing up these four terms we get th e  desired formula. Q. E. D.

11.3. We study the form ula which gives the decomposition. P u t fo r  7E/7
= JR -E l),

(11.7) 0 8 (t ; 7r)

For çaESC and fE S (G ) such that Uf=yo, we apply Theorem 11.2 to (7.8). Then
we get

(11.8) 11ç9Illn= r s( 7  1, 7 2, 7.C ) k 1 s(t 7)I 2 dtm(7r)d 7r
S E E

+m(7r 8 „) r 8(71, n-2, sd . ki (t; s  p )1 2 7 7 sp(t)dt

+ m(r) E g5( 7 1, 7 27 7r) 0 5 (t 7I)1 2 dt
rzel7

-I-EQ aJni(7 0)g 5 ( 1 ,1, n 2, 7ro)L, 102(t ; 7 0)1 2 dt .

where 11 11m is a s  in  § 6.1 (III).
To make th e  decomposition formula, we normalize the form ula (11.8). We

define e(t ; r ,  s ) fo r  O s (t ; 7r) o r  0(t ; 7r, s) in  (9.3): fo r  7re // .J {7315},

(11.9) e(t ; 7r, s)=F2(2r1, 7r2, 7) 1 1 2 0 5 (t ; 7) .

L et 7  fix in  H dr-- r. L et r', r"E  E  such that {1, r, r', = E , and  z i E E  such
that iz; = - (e ) 2U7 1(k") 2, and  72 , Ta E E  such that {1, r 1 , 72, 72} =E . Then we put

(-iv ;  7 r  , 1 )=  
1

2
(91 - Eg2)

1/2

10(t ; 7, 1 )+ 0 (t; 7, 7 )1,

ect ; 70= -

2
(g,-, +g2.)" 2 {0(t ; 7r, 1 )-0 (1 ';  , 71)}

ect ; 7r, r2) = -

2
(gi+g,-)" 2 10(t ; 7r, 72)+0(t ; r  r 3 )},

1e(t ;  7r, 7 2 ) -
2

(fi r , -Eg t..) 1 1 2  10(t ; 77, 72) -  0(t ; 7r, 7 01.
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For rEQ d ,

(11.11) e (t ; 7co, s)---2-(Egr)"20(t ; 7ro , s ) .

We set for 7rEildr107

(11.12) K -= E g 8 (7 1 , 7r2, 7r) 08(t ; 7r)rdt
SEE

= E  ( s g n s r)0(t ; 7r, r)d- E  (sgn sr )0 (t  ; , r) I 2 dt .4  s k  sgnr  r-- 1 sgnr r=-1

For r=1  or z-1 , sgn,r=1 and then 0 (t; 7r, r)ES x ( M .  For r=7 5 o r  ors, sgnr r= —1
and 0 (t; 7r, r)E S "((k ;)c ). Then e (t ;  7, 7') c_5 ' ( C .`) if  sgnr r= —1 and 8 ( t ;  7 t ,  r)
ŒSx((k;.`)c) if  sgrir r= — 1. Therefore

1K = E  g 0(t • Ir 1 )+(sgn ,z i )fh—(t ; Ir , r1 )1 2 dt
4 SEEi k

▪ 1(sgns72)0(t ; 7r, r2)+(sgn573)0(t ; TO 2 d t

ie(t ;,  1 ) 1 2 dt - F). I  0(t ; 7r, r i )I 2 dt

▪ e (t 72)12dt+L» e(t ; 7r , z- 3)1 2 dt

For 7rEQ d ,  it holds

(11.13) K '=- E g s ( 7 1 , 7r0) s(t ro) I 2 dt= E f e(t ; 70, ,S) 2 dt .
SEEk sEE k

Substituting (11.9), K  and K ' to (11.8), (11.8) is rewritten as
(11.14)

= s E 1. „, 110(t ; 7r, s) I 2 dtni(7r)d7r±m(7 5 p) k e (t  7sp, s)I 2 :r sp(t)dt

+ E 7)/(7)E f I e (t ;  7r, s)1 2 cltd-[Qd]m(74) le ( t ; Tro , s) I 2 dt .
7,ra/i d s k

11.4. We note that for rcE l l p r U H d , e(t ;  r , s )  satisfies the condition

(11.15) e(t; 7 t1 ,  .3).-_—_e ( t ;  7r, s)7r(t).

We define the mapping of 8(G ) by

V ': f---> e = e (t ; zr, s)E.t■-=c+) .

g0 - 41)(t; r , s )  is a  G-morphism as in  (9.7) and it is easily seen that o—>e is also
a  G-morphism. So, by (11.14), w: ga—>e is an  isometric G-morphism of sc into
,t■, and it is given by

(11.16) W U = V' .
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I t  is  e x te n d e d  to  th a t  of ..57=L?r 1 O L 2  in to w here L i 1 ®Lii 2  i s  the Hilbert
space of all measurable functions go on k X k su ch  th a t lkollin< 0 0 .

Proposition 1 1 .3 .  The image of L 7
7,,O L 2 under W is the whole space

Pro o f . The proposition is proved by m odifying that of Proposition 9.1, in
particular, of Lemma 9.4. Q. E. D.

Thus w e obtain the  resu lt for th is case.

Theorem 1 1 .4 .  Let W  be linear mapping of Li',,O L ' 2  onto i  given in (11.16).
Then W is a unitary  G-morphism and it realiz es the decomposition of the tensor
product gt,r i g a t„ , into irreducibles as f ollow s. In case —1E(1e) 2 , it is given by
the form ula (9.21). In case —1 (k ') 2 , by  (9.23).

§ 1 2 .  The decomposition formula for Case (III. B).

I n  t h is  section, w e  g iv e  the decomposition formula for Case (M. B): 7r 1(x)
— x  ai (i=1, 2) su ch  th a t —1<a 1, a z <O, —1<1+a 1 -Fa2 < 0 .  For th is  case the
formula (11.8) does not holds, because we can not apply Proposition 3.7 to com-
pute (11.5). To m odify (11.8), w e apply the method of analytic continuation, so
that w e extend  a ,  and az to  com plex  num bers. W e set

(12.1) D= {(a 1 , a2)EC 2 ; —1<Re (a i ), Re (a2)<01 .

1 2 .1 .  Suppose goESOSnsC, th a t  is, go has the compact support on k X k and
vanishes on a  neighborhood of the diagonal "x 1 = x 2 ". Put

(12.2) f(d(a)n±(y)n(x))=7rizna)K(a)7r2p-1(Y)S0(x, x+1137),

where  r S x  such  tha t K(a)d"a =1. Let f '  correspond t o  s,3 sim ilarly . Then

f  and f '  are in  S (G ).  We consider them as functions on (a 1 , a z). T h e  mapping
U=U(a i , az ) :  S(G)—>SC defined in  (6.2) also depend on (ai, a z ), and U f=ço  and

W e put ø ,( t ; 7 0 =  s (t; 7r, ri, rz) for f  and( t ; 2r) for f ' a s  in  (11.7). Since
C (t ; 7r- 1 )= 0,(t ; 7r) for a i , az real and 0<1+a 1-Fa2, we get the following formula
from  (11.8).

1A7r 1 1) - 1 R 7 r n j 7rTI 10 - 1 (X1 —  X1) 7 V P - 1 (X2 —  x2)k k k k

xso(x i , x 2 )so(x'i , x )dx,dxdx,dx

(12.4) r1(7r1, n- 27 70 0 1 ( t  7r)V s ( t  7-c- ')dtm(7)drc
I C E  H  pr(+1),Ç k

(12.5) -Fm(7r3p) r3(7r1, 7r2, 7r8p) k 0 1(r 7r3p)C (r  7r2)Ir3,(t)dt
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(12.6) + E  m(7r)Eg,(7 2 , 7 2 , 7) . O M ; 7) ( t ;  r ' ) d t
7, Ell d(+1) , k

(12.7) ±[QAm(7r0)Egs(71, 7r2, 7r0) 02(t ; 7r0 )C (t ; ;Ta d t  ,
s k

w here r 8(72, 72, 7) and g 3 (7r 2 , 7 2 , 7 ) a re  defined in (11.1) and  (11.3) respectively.
T h is  fo rm u la  h o ld s  e v e n  for the  case  (a 2 , a 2 )ED  and  O<Re (1±a 1 -1-a2 ). The
left hand side is a n  analytic function o n  t h e  w hole  D .  T herefore  th e right
h a n d  s id e  h a v e  a n  an a ly tic  continuation to  a n y  (a1, a2) E D , in particular, to

a 2 )  such  tha t a l , a 2 r e a l  a n d  —1<1+a i ± a 2 0. W e  sh a ll observe each
integration term  in  th e  righ t hand  side.

F irs t w e  no te  the  fo llow ing . T h e  function fOES(G) in (12.2) is expressed as
f ( g ) = (a 1 , a 2 ) f i ( g )  (finite sum), w here t.ti (a 2 , a 2 ) is  an analytic function on D
and f i OES(G) is independent of (a 1 , a 2 ). In  fact, put flm (g )= x (a )y o (x , x+ y - i )  for
I a = q t and I y I =gm, a n d  z e ro  o therw ise . T hen  f  E  q / (.1 -a2 ) g n i ( « 2 - 1 ) f i N g )

1, in

is  o f a  desired f o r m . Since u )=  E  pi(ai, a2)K2-(f I t, u), we may consider

th a t th e  kernel if,-.(11u, y) in  the form ula of O s (t ; 7r) is independent o f (a 1 , a2).

12.2. Now, take  a n  integration term  in (12.6) o r  (12.7). F o r  a  fixed 7rE/id
o r  7rEQd, t, u ) is  a  linear combination o f functions o f  th e  form  e(t)72(u),

77e S x .  Therefore 0 2 (t ; r )  is  th a t of functions of the form  c(a 2 , a2)e(t), where

c(cr i , a2) (727F. 1 7 - 1 p sgn r )" 2 p' sgn 8 (u)7)(u)du is analytic on D .  A s a  function

o f  (a i , a 2 ), g ,  is analytic o n  D, because each character in  gam m a function fac-
to rs  o f g ,  is  a  ramified character of L .  H ence w e conclude that each  term  in
(12.6) and (12.7) is analytic  on  the  whole D .  As to the terms in (12.5), Œ 2 (t; 7r 2 p )
is sim ilarly a  linear combination of functions c(a 2 , a2)e(t), eOES s p. r  (7-c 7  7- -1 , 2 ,  - S p )

is also analytic o n  D .  Thus each term  in  (12.5) is analytic.
We discuss the terms in (12.4). L e t r =7.= {0 ; 19( - 1)=1} , it(x)= 0(X),

E ( 5 ;,  and r in  th e  to rus T--= [-27/log q, it/log q). T hen  (12.4) equals

f
 f

 r s(7ci, 7r2, 7r)
s E k  2 r(7 )1A 7r

 s (t  ; 7 )V s (t  ; 7 r - i ) d td r

(12.8) =Ç  • • •  d t d r +  E ••• dtdr
8*2 sEE T k T k

8 pr (0=1)

(12.9) f  e ( 7  1 ,  7r2, 7r) 
k 2r(7r)T(7r-')

; 7r) C (t; rc - 1 )d tdr (0 = 1 )

T 2 ( 7 2 ,  7 2 ,  7 )  (12.10) 01(t; 20 (t; 7-c - 1 )dtdr (0 =1) ,T.) k 21"(x)F(7r')

w here th e  summation over Cnr  is actually taken over only a  finite number of O.
From  Theorem  5.2 o n  t h e  fo rm  o f  K,(II t, u), it  is  e a sy  to  se e  th a t the

B E 3
Pr
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integral (2.r(.7r)r(z. - 1 )) - 1 0 8 (t ; rc)C (t ; 7r- 1 )d t is analytic in  ( a ,  a 2 ) E D  and con-

tinuous in 1 S T . S o  the singularity of integrals in (12.8), (12.9) and (12.10) come
from only the gam m a factors r  (-  s‘ 7rly  7 2, 7)• O n the other hand, since the
characters in  gam m a function in  r 8(7i, 7r2, 7r) i n  (12.8) a r e  all ramified,
r s (7 1 , 72, 7 )  are analytic on D  and continuous in ï T. T h e  integrals in (12.8)
are analytic functions of (a 1 , a 2 )  in D .  As for the integral in (12.9),

772, 7 0 = a + g o+i+in12-1 ) (1 + ,),-(b+i+4,2 ) _" + q (b+,,),2_1 )

X  (1 + q -  0 +1 - in /2 ) - 1 (1 +  q (a+ 1 + in / 2-1)(1 +  q - (a+1+ / 2)-1

X  (1 + q  (  a +1 -  /  2 - 1 ) (1 ± q - ( a  - /  2 )- 1

where a =a, —a2  and b=a 1 + a 2 . Since complex numbers a and b are just given
b y  the conditions —1<Re (a)<1 and —2Re (b)<0 respectively, r v7ri, 72, 7) is
analytic in (a l , a 2 ) E D  and continuous in 1 S T .  Hence the integral (12.9) is also
analytic in (a 1 , a,)ŒD.

12.3. Now, we discuss the term (12.10). In this case w e use the variable
(a, b)=(a i —a 2 , a 1 -Fa2 ). T he integral (12.10) is analytic on {(a, b); —1 <Re (a)
<1 and — 1<Re (b)<0}. So, our problem is reduced to study the analytic con-
tinuation with respect to b to the domain —2<Re (b)_ —1 for a fixed a.

When r, 7 (4 =1  x  is extended to a  complex variable, the integral r1(71,

72, 7 ) ( 2 E ( 7 ) E ( 7 - 1 ) )
1  ( 1 ) 1(t ; 7)4);(t ; 7r - 1 ) d t  is a n a ly t ic  o n  r  on the domain

{Re (a )-1 < lm  (y)<Re (a)+11. Put
B(b, r)=E((7r2r27 p) 1 1 2 )r((71727 - 1 ,0)" 2 )(b+1+1 .7)(h+1 — ir ).

For b-1-1-Viy=0, the valus of B(b, r)  should be

(12.11) B(b, i(b-1-1))= lim  B (b, y)-=4(b+1)(1—q - 1 )(log a) -- ' [(7,72p) •ir-o

Put
B (b ,  r ) r ( ( r T 1 727 p)"2)r(rcTlx27-1P)112);  r ) O ( t  ;  7 r - ')dt .(12.12) A(b, r)=

2r(x )r(7-1)

Then the integral (12.10) equals A(b, r){(b+1) 2 +1 2 } - 1 c1r. For a fixed a, A(b, r)

is analytic on K= {(b, r); — 1‹ Re (b)<O, Re (a )-1 < lm r<  Re (a )±1  and Re y
If r= —i(b+1), then (6, r)  is  in K , and so A(b, i(b+1)) is analytic in b. On the
other hand, it is easy to see that

77- 1 )O(t ; 7r)dt A , 0 1 (t ; 40;(t; 7r - 1 )dt .

Therefore, it holds that A(b, r)=A (b , — r). Then A(b, y)—A(b, i(b+1)) is fac-
tored by (b+1) 2 4-y2 and A i (b, { A ( b ,  r)— A (b, i(b+1))} {(b+1) 2 ± r 2 } - 1  is analytic
in (b , r )E K . The integral (12.10) equals
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f   A(b, r)dr 
.Çr A i (b, r)dr+ A(b, i(b+1)) .Ç d i  

J r  (6+1) 2 +1 2 T  0 + 1 ) 2 4 1 2 •

T he first term in  the left hand side is analytic on b, —2<Re (b)<0. But in the
second term

{
7C 2  tan - 1

f d i  _  b+1 2(b+1) log q
i r  (b + 1 ) 2 + 7 2_ 2 7rt a n - 1

b+1 2(b+1) log q '

Re (b+1)>0

Re (b+1) 0.

The analytic continuation of (12.10) to  th e  domain {b; —2<Re (b)< —1} is
given by

A(b, r)dr  , 4  A(b, i(b+1)) 
(12.13) tan-1

(b + 1 ) 2 +1' 2b + 1 2(b+1) log q

=.çT  k

r 1(7 C 7r2, 7){ 2 R 7 r)R 7 r - 1 ) }  1 1(t; 7)(bat; 7 - 1 )dtdr

+2R7r 1) -2 r(71, 7 6 ,

0 1(i. ; 7 17 2P) 0 1(t ; ( 7CITC210 ) - 1 )d t ,

where,
rO T T 1 ) R 2 rn 27 

(12.14) r(71, 2)=4(1 - 4 ') tan-1(log g)r((7172p) - 1 ) 2(b+1) log q
and,

0 1 (t; i n - 2p)=-V 2 1
k 7r 1 p - 1 ( u )K 2 p(1 it, u)du ,

(1) ;(t; (7r1r2p) - ') =-A/ 2 - 1 L , 71(u)Kor,,,-1(P t ,  u)du

=Ar2 7r 1 ,0- 1 (u)K;r 1 7,2 p(i' t ,  u)(zirc2p)(t)du

Thus the analytic continuation had been completely done.

12.4. By Proposition 9.7 valid fo r  71, 7 2 in B), we have

&(x ; gr2p )= - 1 R7V)0(x)ES ,

(12.15)J r(7V) 6 /1(x ; (717r2p) - 1 )=--
A/ 2  n ( r i r , p ) - 1 )  Jk 9 'x ') ( '1 7 2 P ) - 1 P - 1 ( x - x 1 ) d x '

where,

çb(X)= k7 r2(Z1) 7r 1(2 '0( 7 rl7r2P) - 1 (Z1 —  Z 2)g0 (Z i +  X  Z2+  x)dzidz2.

Thus the second term in  (12.13) is rewritten as r(7r1, 7 2)11011..2 ,+. 2+1, where

1 
(12.16) 11011L-i,+,2+,— r ( ( r i 7 r 2 p ) _, ) ' i j k(7 riT C 2 P )-1 P -1 (X — X ')0 (X )0 (4 d X d X /
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When T g =T;10T2 acts on 0, it occurs the supplementary series representation
T1T2P on 0(x).

Now, we obtain the  following proposition :

Proposition 1 2 . 1 .  For 7r 1 , 7r 2 in  case  (M. B), the following formula holds:
for compactly supported function go E .gt

(12.17) 11011i= r (7r 70 7r 7r 7r
&EEL pr (+1),Ç k

r
1 ' 2 '

10(t • )1 2 dtm( )d

d— m(7-cs9 ) E r s ( -71, 7 2, 3 4 , 1 s ( t  rs 9 )i 2 7sp(t)dt

+ E m(7-c) E g,(7r 1 , r 2 , r)Ç1 0 ,(t ; 7)1 2 dt7rE 1 d (+1) SE E
.

+CC2d1m(7,) E cs(71- i, 72, o) .ç  I ( t ; r o )12 dt
sEE

7r2)110i12« 1 +52 +1•

The last term vanishes when 7r172 p=1 (a 1 d-a2 +1=0).

Rem ark. Except the  last term  in the formula, the right hand side can be
rewritten by means of (11.14).

12.5. L e t ' 1 , 2 ,0 b e  the Hilbert space of all measurable functions 0  on k
such that 11011,2i +a3+1<c>0 . Let .=,f71(+), be the Hilbert space with
the inner product given for A '=A 30  by

(12.18) 11A/112=11 A112 +r(71, 7 2)11011i;1+. 2+2 •

On we consider the  representation T g = T g EOT;cr2P, where T  be as in  Theo-
rem 9.5, and T ' l ' 2 P  is  of supplementary series. We define a  mapping of S(G)
into •V by

(12.19) V ': f  - - > s)eo(x),
w here e  are  in  (11.9), (11.10) and (11.11), and 0 in  (12.15). Then V ' induces an
isometric mapping W of sC into to' by

(12.20) WU= V' .

Proposition 1 2 .2 .  Let‘.4.7=14,,OL 2 be as in § 11.3. ThenW is extended to
an isometric mapping of ,97 onto

P ro o f. A s is already seen, the space •f) is decomposed as •f:I=o i E1),M)to p et•, p .
The space •f:I' is decomposed as V-, NIED•ty@t■p eto,„, where t.1=t,,,Eig),„„„. Put
.17 ;  the projection of onto ,f:q. We show P N  is extended to the  mapping of
.g7 onto •N by applying Lemma 9.3. For this, it is enough to see that

(1) for Ir TI", there is an f S (G )  such that 0(t; r , 1 )* (),
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(2) there  is  an fE S (G ) such that 0(x)#0.
The assertions are proved analogously to Step (1) in the proof of Proposition 9.1.
Thus 3  'I T 4 ,q7 = ,N .  I t  is  a lso  p ro v e d  b y  m o d ify in g  S te p  (2) in the same proof
th a t the image of sE under W  is  the whole space Q .  E .  D .

Theorem 12.3. The m apping W  in  (12.20) i s  a  un itary  G-morphism of
1, 1 O L ;i, onto and realizes the decomposition of the tensor product R, i

-ggt,,
into irreducibles. There appears a representation of supplementary series
as a new component.

In case —1E(k") 2 ,

7r 1 0 2 ".= [4],
-1-1)/ r i l

-21,77/(7)d ffIs7re [4 ] p e3[2]
p r ( E

(gtrt,ED:41,-;)egz -

E d (+ 1 )/

In case —1 (k") 2 ,

„ - = [ 4 t p r ( + 0 , 1 m(70d7rEDE41R s p e r2 i , E l l E( + 1 ) , ( R. -* R ; i )

ED(Rw).gleR)0EDR.gP)EDR„,,,„.

§1 3 . D ecom position form ulas for lim iting cases.

As the lim iting cases, w e obtain the decomposition formulas for tensor pro-
d u c ts  o f th e  specia l representa tion  w ith  one of representations of principal
series, supplementary series and the special representation itself. These tensor
products are realized explicity in (IV), (V) and (VI) in § 6.1.

Case (IV). The tensor product of the special representation with a principal
se ries one, the lim iting case of (II). T a k in g  the lim its as ce1—>-1 of the both
sides of the formula (10.5), w e g e t the decomposition formula for th is  case.

Let yo(x i , x 2 )  be the follow ing function: (*) ça is  loca lly  constant, compactly
supported and zero on a neighborhood of the diagonal and satisfies the condition

ço(x i , x 2 )dx 1 =- 0. Let 7ri(X ) =  I X  l a l , —1<a 1<0, and fix ir 2 mk. P u t

(13.1) f(d(a)n+(y)n(x))=7r-i'p-1(a)K(ay-1)7r2p-1(y)ço(x, x+y - 1 ) ES(G),

w here KŒS' such that K (a )cl'a=1. T hen it is p roved  by  changing  variables

that

(13.2) (11 f)(xi, x2)=(U(a1, a2)f)(x1, x2)=k(7T 1 P - 1 )yoa1 (xi, x2),

w h e re  so„,(x i , x2)=-7r1p(x2— x1)ça(x1, x2) and k(rT 1 p - 1 ) -A / rT i p '(a )x (a )d 'a .  As

a 1 -- - 1  w e have soa i —>ço and Uf—>ça. I t  is  a lso  p ro v e d  th a t

(13.3) f(n (x ')g)dx'=.0 for a ll g G
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W e get from  (10.5) that

(13.4)I K(7r)71p -l)1211wa,
E

i l k 
IOU ; 1 , s ) I 2 dtM(717)d

8,E 

± [( 2  s p1M ( 7  sp) kl ( t  ;  7rsp, 7 r 1 ,  s)12 7 sp(t)dt

E m(7r)E 0 (t ;  r ,  l r i ,  s)12 dt
, , E i l d s k

+ [Q (1 1 712( 0(t ; 70, 7 1 , s)1 2 d t ,
s k

where IIL is  a s  in  § 6 .1  ( II), an d  0(t ; r , ir1, s)=0(t; r , s )  in  (10.2). Let It
be a s  in  § 6.1 (V).

Proposition 13.1. For a function ç9 o f ( * ) ,  114011fv equals the sum obtained
the right hand side o f (13.4) by replacing 7r1 by  7r,„.

P ro o f. (1) F irst w e  p rove  tha t th e  left hand side o f  (13.4) tends to
Since k(7T 1 p - 1)- 4 , it is enough to prove 

lk o a i l lu — > lk o l l iv .  W e  show  th a t  lko. 1
- 40 1111

—>0. The function çoa i —so={7r i p(x 2—x i )- 1 }ço is expressed as (cr14-1)a(x1, x2, ri)ÇD,
where the function a(x ,, x2, X i)  is, for every cei, locally constan t on  Supprçoi
and it is uniformly bounded a s  oe,--›— 1. Since (a1+1) 2 F(n. T1) - 1 - 0 ,  the assertion
follows from

x a (x i, x 2 , 7r 1 ) a ( fi , x2, r,)ço(xi, x2)ço(xl, x2)dx1dfi dx2.
Thus

lkoal lIfi=lko.,—ço114+<ço,

(2) N ote that f  supported  i n  LoG° i s  a  linear com bination o f th e  form
e(—  x )72( —  y ) K ( a  - 1 )  fo r g=n (x )d (a )w n (y ) w here e, )2E S and  KOESx. I n  our dis-
c u s s io n  w e  m a y  assum e f  i n  (13.1) i s  o f  t h i s  f o r m . T h e n  f(g )-=  f(g - ') =
(y)72(x)K(a), and  K2 (I1 t, u)=-'77(t)(u)M,r (t, u), w here M ,(t, u )  a s  in  (9 .20). The

condition (13.3) is equivalent to " E S '" .  So, on k x k X il iirKir(fl t, u ) is  a  linear
combination o f  functions o f  th e  ty p e  a(t)b(u)e(x) w here  a, b and  cE ,S x . We
make a i te n d  to  —1 in  th e  righ t side  o f  (13.4). L et us discuss th e  first terms.
0(t ; 7 r, ir 1, s )  ( s E E )  a r e  lin e a r  c o m b in a tio n s  o f  fu n c tio n s  o f  th e  ty p e

a(t)5(77, r 1 )t(7r), w h e re  6(X, 7 1) = 1  2
(7z-i7rY7r-',o)"2p-1(u)b(u)du. Since

th e  integral 6(7r, irsp) converges, and the continous functions 6(7r, 7r 1 )  in X  tend
uniformly to E(r, rc s p) a s  a 1— >-1. T hus w e  have the  lim it of Œ(t; X , 7r1, s) and

lim 10(t; X , zr1 , s)1 2 dtm(7r)dx= IOU ; 7r, 7 8 ,, s)1 2 dtm(7r)d:-..
p r  k 17pr k

B y th e  sim ilar discussion, w e  g e t fo r  xeC28,,
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urn Ç10(t; 7sp, 7 1, s)1 27 r sp(t)dt = I  ( t ;  s p , sp, S)1 2 7  sp(t)dtk

7 1 7 dUQc1,

lirn I0(t; 7r, 7 1 , s)1 2 c/t= .f 0 (t; Irs „, 7 7 sp , s)1 2 dt .
ar■-1 k

Thus each term in  the right hand side of (13.4) tends to the  analogous one
obtained by replacing 71 b y  7 .  This completes the  proof. Q. E. D.

Let 6_ 1 (G) be the  space of functions f  in  S (G ) satisfying (13.3), a n d  SC-1
the space o f  functions ç9 .9t such that L , g9(X1, X2)C1X1=0. Then th e  mapping

U=U(72 9 , 7r2): Uf-=ço, is of S 1 (G) onto SL i . Indeed, fo r  g=d(ai)n ± (yOn(xi)
it holds from (B) in  Lemma 6.4 that

j .
k 7r8p7 V (a )f (n(x)d(a)g)dxadx= 7r;,',7rna)f (d (a)n(x)g)d ' ad xk k

=Iri -gai)7c2p - 1 (yi) k ço(x±xi, x i --1-yV)dx

Thus we have çoE.gL i . By (13.1) and (13.3), the  mapping U  is  surjective.
By the mapping

(13.6) V: f,.3_,(G ) --> 0=0(t ; 7r, 7rsp,

and the formula in Proposition 13.1, we can define an  isometric G-morphism W
o f  SC_ i  in to  to  b y  W U = V . Here t= tc + ) or V - )  according a s  72(-1 )= 1  or
72( - 1)= - 1. We can extend W  to an  isometry o f the  H ilbe rt space L 4 0 / ,'
into to, where L 4 0 L 2 is  a  space functions yo,(xi , x 2 )  on k X k such that
<co. We can see from the  proof of Proposition 9.1 that th e  surjectivity of W
is also valid for this case.

Theorem 13.2. W is a unitary  G-morphism o f  L ,40L 2 on to  ,f), ,f)= V + ) or
according as 71-

2 ( -1 )= 1  or -= -1 , and realizes the decomposition of  the tensor
produdt Rspggz,,, into irreducibles as follows.

In case —1e(k") 2 an d  7r2 ( -1 )= 1 , by  (9.21). In  case —1G(kx) 2 a n d  72 (-1 )
= -1 ,  by  (9.22). In case —1EE(k") 2 a n d  72 (-1 )=1 , by  (9.23). In case —1EE
(kx) 2  and  72 (-1)= —1, by  (9.24).

R em ark. T h e  result f o r  th is case  is of the same form as that in  Theo-
rem 10.3.

Case (V ). The tensor product of the special representation with a  supple-
mentary series one, the limiting case of (111. B ).  Let 7r1 (x)-=1.xjai (1=1, 2), — 1
< a i< 0 .  We fix 72 an d  make a, tend to — 1 . S o, 7 1 , 7 2 a re  in  C a s e  (IL B).
L e t ço be o f  (* )  a n d  f  a s  in  (13.1). Then U t= i -c(7rTip - 1 )yo„, as in  (13.2). By

and for
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formula in Proposition 12.1,

(13.7) I k(7T1 ,0 - 1)12 11s0 a,l 2l l

= T E E  17 p r  k 
r r (7 1, 72, 701 0  r(t 71, 72)1 2dtm (7c)dr

±m(7t- 8 ) . F ( 1 , 72, Trap) .  k  Or(t ; 73p, 71, 72)1 2 7r3p(t)dt

+ E m (7 ) E g r (7 ,, 7 2 , 7r )  
k

i 0  r(t ; 7r, 7r1, 72 )1 2 dt
7E11 d

- F[Qa1m(70) E  g r ( 7 1 ,  7 2 ,  7 0  I  r ( t  70, 71, 72)12 dt

+r(71, 72)11011«
1 ..-. 2 +1,

where II is  a s  in  § 6.1 (III), C. in  (11.7), r(71, 72) in  (12.14) and

(13.8) 0 (7 )= 72(zi)7ri(z2)(27.1772P)-1(zi—z2*(zi+x, z2+x)dzidz2.

W e prove t h e  last term  in  (13.7) tends to zero as T h e  last term
is rewritten as

(13.9)

where

(13.10)

r(r1, 7r 2) c
1-(7-,v)r( rv) iko(x)ox)dx

(X )= k rT' p - 1 (z 07 1 p- 1 (z 2 * (z  x , z2+x)dzidz2.
. j k

Since 1 yo(x i , x 2 )dx 1 = 0 ,  w e  h a v e  th a t r (7 -
1
4 ) - 1 0 ' i s  i n  s  and, as it

uniformly converges to

cç loglz117 -i ip '( z 2 ) ( z i+ x , z2 +x)dz 1 dz2 S.
k k

L e t  Pi' x  P r t  b e  a  neighborhood of (0 ,0 ) i n  k x k such that yo(xi , x 2 )= 0  on
P n  X P n . We divide the integration domain in (13.8) as k  x  k = (k  x P n )U (k  x (P )e )
-= 1 1 U I 2 . Then (13.8) equals

••• dz1 dz2+ .ÇL . 2 .•• dzidz2=L+./2.

T he  integrand o f th e  first term is equal to 0  i f  z i G Pn, a n d  to  x i 1p -1 (z1)71(z2)
ço(z,+x, .22 -E x ) if  z, (P n )c .  Thus

 1 
r (7n r ( 7 0 ) 7rVio-1(z1)71(z2)ço(z1+ x, z2+ x ) dz1dz2

---> log ço(z i + x , x )dziES
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The integral 12 also converges to a  function in  S . So , we get that the integral
(13.9)--r(71, 7r2)—(a1+1)— >0 as —1.

Similarly as in  C ase (IV), I k(7Ti to- 1 ) v. For other terms in
the right hand side of (13.7), we can change the order o f lirn and integrations.

a i--1
Thus, we get

Proposition 13.3. For ço(x l , x 2 )  be of  (*),1140 4 ' equals the sum obtained from
right side o f (13.7) by  replacing 71  by  n-

s p. Here, the last term  vonishes.

Similarly as in § 11, we get the decomposition formula for this case.

Theorem 13.4. There exists a unitary G-nzorphismW  o f  L 4 0 I , ; - 2 onto
which realized the decomposition of the tensor product .gt,„OR , r 2  in to  irreducibles
as follow s. In  case — 1E(k") 2 ,  it is giv en by  (9.21). In case —1E(lex) 2 ,  by  (9.23).

Remark. The supplementary series representation appeared in Case (DI. B)
vanishes here.

Case (IV). The tensor product of two special representations. L et again

71(x)= xi ". (i=1, 2) as in  (IC  B ). Let w be of (*) and satisfy .çk w(xl, x 2 )dx 2 =0.

Put f (g)= f (d(a)n+n(y )n(x ))=- K(ay - ')p 2 (y )o(x , x + y - 1 ) ,S(G), where ES' such

that f f ( a ) d 'a = 1 .  It holds that (U f)(x i, x2 )— k (n . T1 7r2)7rip(x2 —  x i)ça (xi, x2 )=

k( 1C-1- 1 7 2» a i . Then we have

(13.11) g7I17r2) the right hand side of (13.7) .

We make a l  and a, tend to —1.
First we show that the last term in the right hand side of (13.7) vanishes

a s  a„ A s  a l , a2—* —1, r(7 -
1
- 1 )r (r -21 ) 0 '  with çb ' in  (13.10) converges

uniformly to

10g1ZillO glZ2IÇO (Zi+ X  Z2+ X )dZid .Z2ES
k k

We divide the integration domain in (13.8) into three parts. Let e >0 such that,
i f  I xi I, I x2I <s, then w(x l , x 2 )= 0 . W e  set 1 1 = {(zi, z2)ESuPP ; I z2I < e}, /2

=

{(ZI, Z2) S U P P  ;  I Z i  < e } and /3 th e  other part in  the support of w. Since
z1—z2 I = I zi I for (z 1 , z 2 ) E I ,  and I z 1 —z 2 1--=Iz 2 i  for (z 1 , z 2 ) /2, therefore

0(x).-= 2ri-1 p- 1(z1)71(z2)w(z1+ x , z2+x)dz1dz2

+1.ç 11.2(2 1) 1r 1 P - 1 ( Z 2 ) (Z i+  X  Z2+ X)dZid.Z2
1 2

72(Zi)71 1(Z2)(ri 2r2P) - 1 (ZI — Z 2 * (Z i+  X  Z2+ X)CIZ1 11Z2.
13
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As in Case (V), when a 1 , a 2 — >-1, these three terms converge each to functions
(ai+1)(a2+1) in S .  So, we have the integral (13.9) , ---r(71, 72)— O.
(a1 +a2 +1 )

Next we should discuss the integral

S=T1(71, 72, 1(t; it, 71, 72)1 2 7r(t)dt

- r i (t; 71, 72, 7) 1, 01(x ; it, 71, 72)01(x' ; 7, 71, 72 )7r(x—xi)dxdx'

where 7r(x) x ,  — 1 < a < 0 .

Since, for p (x )=  x  I 13.--0), it  holds P (p ) - 1 / 8  and T (t tp ) - - i3, we have

— a 1 ±a 2 — a -1
7r2,

(a 1 d -a 2 — a + 1 )(— a i± a 2 + a + 1 )

as a 1 , a 2 and a— ›-1 .

On the other hand, for 0 ,  we use the formula in Proposition 9.6 which is
applicable for this c a se . That is,

01(x; r, ri, 71 - 2)=N/2- ' 1 -V7E- 1r -21 r - 1 ,0) 1 I 2 U  k A(zi, z2)40(z1+x, z2+x)dz1dz2,

where A(z i , z2)-=(r.i1r27.cp)112 0.12 p(z 2 ) ( 1 1 1 p) 1 1 2 p - 1 (z 1 —z2 ).1 (z1— z2).
We divide the integration domain.

01(x; it, r i , z2)sgz1-1-x, x)dzidz,

- . 1 2 ••• dz 1 clz2 + ••• dz1 clz2 .

By similar method as above, we can prove that 01--(a 1 —a 2 —a —1)1(x), 1(x)
E5 1 9 .

( — a i+ a 2 — a -1 )(a i— a ,— a -1 )Thus we get - - * 0  with a l , a 2 and a—>-1.

So, we should understand that the term r i(r i, 7 2 , 7 r8 9 ) I o i ( t  rs p , it 1 72)12n-8 0 d t

vanishes. k

Proposition 1 3 .5 . Let ço be of (* ) and satisfy ,Çk y9(xi, x2)dx2=0. Then 114011Yv
equals the sum obtained from the right hand side o f (13.7) by replacing 7r1 ,  and

72 by 789 . Here, the term 1 1 . k 1 0 1 1 2 r s . p ( t ) d t  and the last term vanish.

Through the analogous discussion to Case (IV) and (V), we get the decom-
position formula.

Theorem 13.6. There exists a unitary G-morphism W  o f  LL,OL,L, onto
, ( 4 - ) e L 9 . I t  realizes the decomposition o f th e  tensor product gt s p OgZ s ,  into
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irreducibles as follows.

In case —1E(k") 2 , gt s ,g22.,,=the right hand side o f  (9.21) C)R 3 2 .
In  case —1EE(F ) 2 , _Rspg.gt a p=the right hand side o f  (9.23) C)R s p .
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