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Introduction

Let C be a non-singular irreducible compact complex curve imbedded in a
complex manifold of dimension 2. As an oriented differentiable manifold, the
structure of the neighborhood of the curve C is completely characterized by the
Chern class of the normal bundle of C, in other words by the self-intersection number
(C?) of C. This topological structure imposes restrictions on the complex analytic
properties of the neighborhood of C. Specifically the curve C has a strongly pseudo-
convex neighborhood if and only if (C?) is negative (see Grauert [3]); on the other
hand C has a fundamental system of strongly pseudoconcave neighborhoods if (C?)
is positive (see Suzuki [11]).

The purpose of the present paper is to investigate such complex analytic prop-
erties of the neighborhood of the curve C when the self-intersection number (C?)
vanishes. We shall see that, if the complex normal bundle N of C is a general
element (in the sense of Lebesgue measure) of the Picard variety ‘B(C), then C has
either a fundamental system of strongly pseudoconcave neighborhoods or that of
pseudofiat neighborhoods. We shall find moreover, in the former case, a restric-
tion on the behavior of plurisubharmonic functions and holomorphic functions
having singularities along C. This restriction may be regarded as an expression of
the weekness of pseudoconcavity of the neighborhood of C.

In §1, we make some preliminary observations concerning flat line bundles, i.e.,
complex line bundles whose transition functions are constants of modulus 1. In
§2, we define the type (1, 2,..., or infinite) for a curve C whose complex normal
bundle N is topologically trivial. This type can be described as follows: A unique
structure of flat line bundle is introduced on N, and N is extended uniquely to a
flat line bundle F over a neighborhood of C; then the type represents the order of
coincidence of F and the complex line bundle [C] corresponding to the divisor C.
The curve C is of infinite type if F and [C] coincide forimally. In §3, the case of
finite type is treated. We construct a strongly plurisubharmonic function @(p)
defined on a neighborhood of C except on C which tends to + oo as p approaches C.
Letting n be the type of C, we can construct, for any real number n'>n, such a
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function &(p) of order 1/r(p)", where r(p) is the distance of p from C (Theorem 1).
But there exists no non-constant plurisubharmonic function which increases slower
than 1/r(p)"” for n” <n (Theorem 2). This presents a contrast to the case (C2)>0,
where we have such a function of order —log r(p) (see Suzuki [11]). In §4, the case
of infinite type is considered. We show that F and [C] coincide on a neighborhood
of C, if the complex normal bundle N of C is contained in a subset & of P(C)
(Theorem 3). Here the set € consists of the elements of finite order and the ele-
ments which are not “well approximated’’ by those of finite order. Thus Theorem
3 generalizes the result of Arnol’d [1] for elliptic curves. In §5, summarizing the
results, we classify the curves C into four classes, and make some supplementa-
ry remarks. Finally we give an example, suggested by Arnol’d [1], of a curve of
infinite type for which F and [C] do not coincide. ‘

I am very grateful to Prof. A. Takeuchi and Dr. M. Suzuki for their advice and
encouragement. [ also thank Dr. T. Ohsawa, who called my attention to Arnol’d’s
work.

§1. Preliminaries

1. Flat line bundles

Let E-=» M be a complex line bundle over a complex manifold M. We call E
a flat line bundle if an open covering W={U,},.,; of M and a collection of fiber co-
ordinates {{;} of E over U, are so chosen that the transition functions t;={;/(,
on U;n U, are constants of modulus 1. Then the system {¢;} is a 1-cocycle with
coefficients in the multiplicative group T of all complex numbers of modulus 1.
Two flat line bundles E and E’ with systems of transition functions {¢;} and {},},
respectively, are equivalent, if and only if there exist constants t;e€ T, i € I, such that
t =tuti1t,; then they are considered as different expressions of one and the same
flat line bundle E. The set of all (equivalence classes of ) flat line bundles over M
is identified with the first cohomology group H'(M, T) in an obvious manner.

We introduce, on a flat line bundle E, a fiber metric of curvature zero by |{;|
over each U;. We note that the structure of flat line bundle on a complex line bundle
is determined by such a fiber metric.

For a complex line bundle E over M, we denote by ¢(E) the Chern class of E,
and by cg(E) the element of H3(M, R) corresponding to ¢(E) by the map H2(M, Z)—
H*(M, R).

Proposition 1. (1) If E is a flat line bundle, then cg(E)=0. (2) When
M is compact, two flat line bundles over M are equivalent if and only if they are
equivalent as complex line bundles. (3) When M is compact, the necessary and
sufficient condition for any complex line bundle with cg(E)=0 to admit a structure
of flat line bundle is that dim H' (M, C)=2dim H'(M, 0). (a theorem of Kashi-
wara, see Kodaira [7], pp. 124-126).
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Proof. Consider the following commutative diagram of sheaves of abelian
groups over M:

0—Z—R—T—1

|l

0—Z—0— 0*— 1,

with exact rows, where @ denotes the sheaf over M of germs of holomorphic func-
tions and @* denotes the sheaf over M of germs of non-vanishing holomorphic
functions. From this we obtain the commutative diagram

H'(M,Z) — H'(M,R) — H'(M,T) — H*(M,Z) — H*(M,R)

| ! f |

H' (M, Z) — H' (M, 0) — H'(M, 0*) — H*(M, Z)

with exact rows. The assertion (1) follows from this immediately. When M is
compact, the vertical maps o and B are injective. In particular the injectivity of f
implies the assertion (2). From the diagram we infer that the following two con-
ditions (i) and (ii) are equivalent:

(i) Any Ee H(M, 0*) with cg(E)=0 is in the image of the map p.

(ii) The map a is surjective.
If M is compact, the condition (ii) is equivalent to

(ili) dimg HY(M, R)=dimg H' (M, 0) (real dimensions),
or

(iv) dim H'(M, C)=2dim H (M, 0).
The assertion (3) is thus proved. q.e.d.

We note that the condition (iv) holds if M is a compact Kéhler manifold, in
particular, if M is a compact Riemann surface.

The set consisting of all topologically trivial complex line bundles E (¢(E)=0)
is called the Picard variety of M and denoted by B(M). If M is a compact Riemann
surface, we can identify (M) with H'(M, T).

2. Holomorphic sections and pluriharmonic sections

A complex valued function h defined on a complex manifold is called plurihar-
monic, if h is locally expressed as a sum f+g of a holomorphic function f and an
anti-holomorphic function g. If a pluriharmonic function h is represented by two
such sums: h=f+g=f'+g’, then we have f'=f+c¢ and g'=g—c, where c is a
constant. Indeed, f'—f=g—g’ is holomorphic and anti-holomorphic therefore it
is a constant. A differentiable function h is pluriharmonic if and only if the (1, 1)-
form d0h vanishes identically, as is well known. We note that, for a pluriharmonic
function h, the modulus |h| is a plurisubharmonic function, so that the principle of
maximum modulus holds.

A section of a flat line bundle E is called constant (resp. holomorphic, anti-
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holomorphic, or pluriharmonic), if its expressions with respect to the fiber coordi-
nates are constant (resp. holomorphic, anti-holomorphic, or pluriharmonic) functions.
The sheaves of germs of such sections are denoted by C(E), O(E), O(E) and s#(E),
respectively. Denoting by E~'={t;!}={i,} the dual of the flat line bundle E=
{tx}, we have anti-C-linear isomorphisms C(E)~C(E™'), O(E)=0(E~"), O(E) =
O(E~Y) and s#(E)~s#(E™!), by complex conjugation.

Let us consider, following Kashiwara (see Kodaira [7]), the exact sequence of
sheaves over M

0 — C(E) - O(E)®O(E) Y #(E) — 0,
where the map ¢ is defined by c—@(c)=c@®(—c), and the map ¥ is defined by
f®G-oU(f@g)=f+g. From this we obtain the exact cohomology sequence
0 — H(M, C(E)) — H(M, O(E))®H(M, O(E)) — H(M, #(E))
¢, H\(M, C(E)) 25 H\(M, O(E))®@H'(M, O(E)) “*» H'(M, #(E)).
Let us assume M to be compact. We note first that
HO(M, s#(E))=H%M, 0(E))=H%M, &(E))=H%M, C(E))
C, if E=1,
0, if E#1,

where 1 denotes the analytically trivial line bundle over M. In fact, for any global
section {h;} e HY(M, s#(E)), |h;| is constant by the principle of maximum; hence
{h;} is a constant section, which can be non-zero only if E=1. Therefore the map
§ is a zero-map and the map ¢! is injective. Thus the sequence

0 — H'(M, C(E)) -25 H\(M, 6(E))®H'(M, 0(E)) - H'(M, #(E))

is exact. Clearly the following three conditions are equivalent: (i) ' is a zero-
map; (ii) @' is surjective; (iii) dim H'(M, C(E)) = dim H'(M, 0(E)) + dim H'(M,
O(E)). We have thus the following

Proposition 2. Let E be a flat line bundle over a compact complex manifold
M. If

dim HY(M, C(E))=dim HY(M, 0(E))+dim H' (M, 0(E)),
then the homomorphism HY(M, O(E))-»H (M, s#(E)) is a zero-map.

Now let us assume the conclusion of Proposition 2. Then, for any holomorphic
1-cocycle {fy} € Z'(M, O(E)), there exists a 0-cochain {h;} € C°(A, s#(E)) such that
{fa} is the coboundary of {h;}, i.e., fyu=tyhy—h; on U;nU,. The O-cochain {h;}
is uniquely determined if Es#1, and unique up to an additive constant if E=1.
Indeed, if { f,;} is the coboundary of two such 0-cochains {h;} and {h;}, then {h;—h;}
is a pluriharmonic global section of E, which is zero or a constant according as
E#1 or E=1. We can define an anti-holomorphic (0, 1)-form {w;} on M with
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coefficients in E by w;=0dh; on each U;. Obviously, the correspondence {f;}— {w;}
gives the Dolbeault isomorphism

{0-closed (0, 1)-forms with coefficients in E}

1 ~L
HY(M, o(E)= {0-exact (0, 1)-forms with coefficients in E}.

The condition of Proposition 2 is satisfied if M is a compact Kdhler manifold.
In fact, denoting by H'(E), H%'(E), and H"°(E), respectively, the space of all
harmonic 1-forms, (0, 1)-forms and (1, 0)-forms on M with coefficients in E,
we have HYM, C(E))=H!(E), H'(M, O(E))~H%'(E), H{(M, 0(E))~H"°(E) and
H'(E)=H%Y(E)®H!"°(E). (see Kodaira [6], [7])

If M is a compact Riemann surface of genus g, we have, by Riemann-Roch
theorem,

for E=1,
dim HY(M, O(E))=
g—1 for E#1.

§2. Type of curves

1. Let C be a non-singular irreducible compact complex curve imbedded in a
complex manifold S of dimension 2. We assume in all what follows that the normal
bundle N of the curve C is topologically trivial.

We choose and fix a finite open covering U={U,};, of C consisting of small
disks U;: |z;| <1, where z; is a local coordinate of C which covers the closure U;
of U,. Further we choose, for each U, a sufficiently small neighborhood V; of U;
in § in such a way that V;,n C=U, (iel), and that U;n U,=¢ implies V;n V,=¢g
(i, keI). Then B={V},, is a finite open covering of the neighborhood V=\U ¥,
of C. In the course of the following considerations we shall replace, if it is neces‘sea!ry,
the neighborhoods V; by smaller ones satisfying the above conditions. Such smaller
neighborhoods will be again denoted by V;. We are thus concerned with the germs
of the neighborhoods of U; in S. We extend each local coordinate z; on U, to a
holomorphic function on V; and denote the extended function also by z;.

Let {w;};; be a system of holomorphic functions w; on V; such that (z;, w;) is a
local coordinate system on V; and that V;n C=U, is defined in V; by the equation
w;=0. The complex line bundle [C] over V corresponding to the divisor C is
defined by the multiplicative 1-cocycle {w;/w,} composed of the non-vanishing holo-
morphic functions w;/w, on ¥;n V,. The complex normal bundle N of the curve C
is identical to the restriction [C]|C of [C] to C. Since N=[C]|C is topologically
trivial, it is expressed by a multiplicative l-cocycle {t;}eZ'(U, T). This implies
that there exist non-vanishing holomorphic functions e¢; on U; (i e I) such that t,,=
e;ep'wi/w, on U;nU,. We extend ¢; to V; and put w;=e;w;. Then {W;} is a system
of holomorphic functions satisfying the above conditions for {w;} and further
wiw lU;nUp=t,, on U;n U, (i, kel).

Let us fix a multiplicative 1-cocycle {t;} representing N and consider the sys-
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tems {w;} such that w;/w,|U; N U,=t, on U;nU,. A system {w;} will be called of
type v if each tyw,—w; vanishes on U;n U=V, n V,n Cwith order (at least) v+1.
If {w;} is a system of type v, then we can put

t,-kwk—wi =ﬁk(zi)WE'+l + on I/, n Vk'

We regard f;;, as a holomorphic function on U;n U,, and further as a holomorphic
section over U; n U, of the flat line bundle N~* represented by the fiber coordinate
over U,.

First we assert that {f;} is a 1-cocycle composed of holomorphic sections of
N=vover U;nU,, i.e., {fi} € Z'U, O(N~")). Indeed, we have

O=(t;jw;—wp) +1;j(twp—w;) + ta(tw; — wy)
=(fifzwi 4 )+ (fu(zpwi T+ - ) + Ll flzdwi ™ + )
=(fifz) + 17 iz ) + @ fiz)wi*t + -

onV;nV;nV;
and hence

f'l+ tl—]vf:lk+ ti_kvfki=0 on U,' n Uj n Uk'

which implies the assertion. The 1-cocycle {f;} will be called the v-th obstruction
associated with the system {w;} of type v.

Now suppose that the v-th obstruction {f;} is the coboundary of a 0-cochain
{fi} e C°U, O(N~)), namely, fy=t7>fi—f; on U;nU, (i, kel). Then putting

Wi=w;—f(zwi*'  on V,
we can obtain a system {W;} of type v+ 1. Indeed,
LWy — Wi =tg(Wi — filzdwit ) — (w; = filz)wi ™)
=(fulzowi 4+ ) = (7 flz) = flz)wi ! + -

is of order at least v +2.

Next let us consider two systems {w;} and {w;} of type v with v-th obstructions
{fu} and {f},} respectively. We assert that {f;} and {f},} are cohomologous up
to a constant factor. To see this, we put

wi=ew;+g;(z)wi+ - + g5, ZIWE + -+ on V¥,
where e is a constant different from zero and independent of the index i. We have
Fulzdwi ™+ - =tywi —w;
=tylewy+ gy 2(zIwi+ ) —(ew; + g, 2(z)W? + )
=efuZIWit + o + (G 2(zdWh + ) — (g3 2(2)WE +-+2)

on ¥;nV,. Comparing the terms of order 2, we see that t;!g,, —g;,=00n U;nU,.
Therefore {g;,,} consitutes a global holomorphic section of N~!, and g; , are all
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constant. Hence tug,2WE — gij2wF =g;,(thwi —w}) is of order v+2 (>v+1).
Next comparing the terms of order 3, we have t;2g,3—¢;3=00n U;nU,. We
proceed in this manner and finally, comparing the terms of order v + 1, we have

et i =efu+ 1 g1 — Gijv+ on U;nU,.
This shows that {e'f},} and {f;,} are cohomologous.

Definition. (i) The curve C is called of finite type n if there exists a system
{w,};c; of type n such that the n-th obstruction associated with it is not cohomologous
to zero. (ii)) The curve C is called of infinite type if, for any system {w;};,, the
obstruction associated with it is cohomologous to zero.

By the above observations we infer that, if the curve C is of finite type n, then
there exists no system of type v > n; for any system of type v <n, the v-th obstruction
is cohomologous to zero; and that, for any system of type n, the n-th obstruction is
not cohomologous to zero. On the other hand, if C is of infinite type, then there
exists a system of type v for any arbitrarily large v.

So far we have fixed the open covering U={U;};,; and the multiplicative 1-
cocycle {t;} defining the complex normal bundle N. But it is easy to see that the
definition of the type of the curve C is independent of the choice of U and {f;}.

2, It is necessary for the later purposes to represent the obstructions in a different
way. Let n(< + o0) be the type of the curve C and let {w;} be a system of type v
(v £n) such that t;w, —w;=fy(z)wt*! +--- on V;nN V,.

We can regard the multiplicative 1-cocycle {t;} e Z'(U, T) as a multiplicative
1-cocycle on the nerve of the covering B={V;} of V. Then {t,} € Z'(B, T) defines
a flat line bundle F over V. The restriction F|C of F to the curve C is identical to
the complex normal bundle N=[C]|C of C. But generally F and [C] do not coin-
cide on any small neighborhood of C (see also §4, 1).

Now let us consider the system {w;*} of meromorphic functions w;” on V.
The system {w; >} is regarded as an additive Cousin data composed of meromorphic
sections wi* of F~v. Indeed,

wwi —wit=wi (L f(zdwi + )7 —wi
= —vfulz)+--

is holomorphic on ¥;n V,. This shows also that the v-th obstruction is identical,
up to the constant factor — v, to the restriction { — vf;,} to C of the 1-cocycle {t;Pw;* —

wiv} e ZY(B, O(F~")) corresponding to the Cousin data {w;"}. We shall sometimes
call {—vf;} the v-th obstruction.

3. Suppose that the curve C is rational. Then the complex normal bundle N
is analytically trivial. Since H'(C, 0)=0, all the obstructions are cohomologous to
zero. Therefore C is a priori of infinite type. Suppose next that C is elliptic.
We have HY(C, O(N~"))#0 if and only if N~" is analytically trivial. Therefore,
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if N is of infinite order, then C is of infinite type; and if N is of finite order m, then
the type of C is either infinite or finite n, n being a multiple of m.

When a compact Riemann surface C, a topologically trivial complex line bundle
N, and a positive integer n (or infinity) are preassigned, we can easily construct an
example of imbedding of C in a complex manifold S of dimension 2 in such a way
that the complex normal bundle of C is N and that C is of type n, as long as the
above conditions posed a priori are satisfied (see also Miyajima [9]). But this is
not always possible if S is required to be compact, as we shall see in the forthcoming

paper.

§3. The case of finite type

1. In this section we assume the curve C to be of finite type n. Let us take open
coverings U={U;};.; and B={V;},;; and a system {w;},; of type n as in the preceding
section. To represent the distance from C of a point p in the neighborhood V of
C, we take a non-negative continuous function r(p) on V which has the form r(p)=
pip)lwy(p)| on V;, where p; is a positive smooth function such that p;=1 on U;=
V;n C. The first purpose of this section is to prove the following

Theorem 1. In the above situation there exist, for any real number n’ greater
than n, a neighborhood V, of C and a strongly plurisubharmonic function &(p)
on Vo—C which increases with the same order as 1/r(p)" when p approaches C.

Corollary. The curve C has a fundamental system of strongly pseudoconcave
neighborhoods.

2. Let us begin with some preliminaries. Let E be a flat line bundle over the
neighborhood V=\UV, of C defined by a multiplicative 1-cocycle {t;}e Z' (B, T).
We denote by 2(E) the sheaf over V of all germs of differentiable sections of E,
and by _#Y(E) the subsheaf of 2(E) consisting of germs of differentiable sections
of E which vanish on C with order v. A differentiable 1-cochain {¢,}e€
C'(B, 2(E)) is called a 1-cocycle modulo #>(E) if we have

i+ 10+ e TVinV;n W, £YE), i, j, kel,

where I'(X, &) denotes as usual the set of all sections over X of a sheaf &. The
set of all differentiable 1-cocycles modulo _¢¥(E) is denoted by Z(B, 2(E),
mod #¥(E)). A 1-cochain {¢,}e C!(B, 2(E)) is called the coboundary modulo
FY(E) of a 0-cochain {¢;} € C%B, 2(E)) if we have

Qu—TaPx+ 0, eI (VinV,, #YE), i, kel.

We denote by £¥(E) the subsheaf of O(E) consisting of germs of holomorphic
sections which vanish on C with order v,ie., SY(E)=0(E)n #¥(E). We set
Z\(B, O(E), mod £ (E))=C'(B, 0(E)) n Z\(B, 2(E), mod #"(E)), whose elements
are called holomorphic 1-cocycles modulo #>(E).
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Lemma 1. For any {¢,}e€ Z (B, 0(E), mod L *1(E)), v=0, 1,..., n, there ex-
ists a differentiable 0-cochain {¢;} € C%(B, 2(E)) such that

(i) {ou} is the coboundary of {¢;} modulo g>*\(E),

(ii) each ¢; is of the form

o= X oqlzdp)wiplwlp),
A,u20,A+usv

where ¢;,,(z;) are harmonic functions of the variable z;.

Proof. Since the restriction {¢; |U;nU,} of {py4} to C is in Z'(U, O(E| C)),
we have a O-cochain {¢; 00} consisting of harmonic sections on U; such that
{pu | U;nU,} is the coboundary of {¢; o0} (see §1,2). We extend each {¢;jq0} to
a pluriharmonic function on V; depending only on the variable z;, which we denote
again by ¢;00. Then we obtain a 0-cochain {;q0} € C%B, 2(E)) such that {¢p;}
is the coboundary of {@; oo} modulo #'(E). This shows the lemma for v=0. We
proceed by induction for v=1. Assume the lemma for any flat line bundle E
with v—1 in the place of v.  Since @ — 7@y 00 + @ij00 is pluriharmonic and vanishes
on U;n U,, we have the decomposition

P — TikPxjoo + Pijoo = En+ M on VNV,

where &;; is holomorphic, 7 is anti-holomorphic, and they vanish on U;n U,. Such
a decomposition is obviously unique. Since {Qy — Ty @k 00+ @ij00} is in Z(B, 2(E),
mod #V*!(E)), we see easily that

{&x} € Z(B, O(E), mod #*(E))
and
{nu} € Z\(B, O(E™1), mod £ *1(EY)).
Now, setting ¢}, =&, wi!, we have
{00} € Z1 (B, O(E®F'), mod £} EQF1)),

where F={t,} is the flat line bundle defined in §2, 2. Indeed, from t;w,—w;=
O(w?*!) it follows that t;lwy ! =wil+O(wl™1); hence

@i+ Tt Okt Talil Ol
=&wit Tt Epwi ! +H Tatid Sawi !
=i+ 7€t Tal)wi T + 0w =0(wy).
Similarly, setting ¢}, =n;w:;!, we have
{0l } € Z\(B, O(E-'@F 1), mod S*(E-'@F-1)).

Now, by the hypothesis of induction, we have a 0-cochain {¢}} e C(B, 2(E®
F~1)) of the form

. ' At
0= > (pillu(zi)wiwi,
Au20,2Fusv—1
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such that {¢j} is the coboundary of {¢;} modulo #*(F®F~'); and a 0-cocain
{9} e CAB, 2(E'@F ™) of the form

" __ " A
Q= > ‘Piuu(zi)wiw'i‘,
A,u20,A+usv—1

such that {7} is the cobundary of {¢}} modulo #Y(ET!®F~!). Let@;=¢;o0+

@w;+@w, Then {¢;} is a 0-cochain of the desired properties. q.e.d.

3. Proof of Theorem 1. Consider the additive Cousin data {w;"} and the cor-
responding holomorphic 1-cocycle {t;w;" —w;i"} e ZI(B, O(F~")). Applying Lemma
1, for v=n, to this 1-cocycle, we obtain a differentiable O-cochain {¢;} € C%(B,
2(F~")) of the form

®;= > . (pillu(zi)w%wﬁl*

A,u20,A+ps
where ¢;;, are harmonic, such that
W= o) —wi"—)e L(Vin Vi, FrUF™™), i, kel.

By the assumption that the curve C is of type n, none of ¢;|o¢ is holomorphic. We
can assume here, choosing the system {w;} suitably, that ¢; ¢, are all anti-holomor-
phic. To see this we put

1w —wi"= —nfyz;)+ - on VinV.

The n-th obstruction {—nf,}eZ'(U, O(N~")) is the coboundary of the harmonic
0-cochain {¢;o0}. We decompose each ¢; oo into a sum f;+g; of a holomorphic
function f; and an anti-holomorphic function g§;, and define a new system {W;} by

Frr=wi—f(z) on Vi
Then we have
W —wit = —nfu(z) —tlfi(z) Hfi(z) + -
=ti0'gi(z) —gi(z) + - on VinV,.

This implies that the n-th obstruction associated with {W;} is the coboundary of
the anti-holomorphic 0-cochain {g;}.
Thus we may assume that the O-cochain {¢;} is of the form
0i=g:(z;) + > Qipau(z)wint on V.
A,u20,154+usn
Adding to each w;"—¢; a correction term o; € I'(V;, #"*1(F~")), we obtain a global
differentiable section o of F~" over V with “pole’” of order n on C:
oc=wi"—g{z;)— > Qi zwint + o on V.
A,uz0,1SA+pusn
Let us calculate the complex Hessian H(|o|?) of the function |g|® for a>0.
We restrict our consideration in V; and omit the index i. We write s=|g|2. Since



On the neighborhood of a compact complex curve 593

s=|w|[ 2T —wTrg — WG — W Y@, WAWE— W 3 @, Wik + g2+ O(|w]) ,

we have
Sp=—AWTPTIWT L g = — W
and
Sww Swz 712|W|_2"_2+"' 0(|W|_")
H(s): =
szW Szf 0(|W|_") |gz|2+

Here we have s,;=|g,|>+---, because ¢,,(z) are harmonic. From
a a 29—
(lala)w =(S2)w='—2—52 Sy

(|0|“)w2=% 52 sw§+%<%— 1>s%_2sws5, etc.,

it follows that

2 2 18, s a [sl? sy
Zjgp-aHlole) =25 EH(s}) = H(s) + (4~ 1)s

szs\_v Iszl2

—;—nzlwl'z"‘2+:-- (—%——l)nw‘IW‘"g,+"-

2 _ [ Yaw-twr e Q012

(2 l)nw wg,+ 2|gzl +

since |o| ~|w|™", s~|w|72". Therefore
det(Z1o[-# H(lo1%) ) =(a—Dm2lw| 2~2lg 2+ -

Now we put Z= \J {pe Ui (g:).(z{p))=0}. Since Z is the set of the zeros of

the holomorphic 1- form dg; on C with coefficients in N™" which does not vanish
identically, Z consists of a finite number of points. By the above calculation, we
infer that, for a> 1, there is a neighborhood V' of C—Z such that |g|® is strongly
plurisubharmonic on V' —(C—Z).

Our intention is to modify |6]* to obtain a strongly plurisubharmonic function
on V,—C, where V,, is a sufficiently small neighborhood of C. Let g be a point of
Z and assume that g is in U;. We define a function ,(p) on V; by

B«(p)=p(1z{p) — @)l 2 p) — A DI Iwi(p)| >~ ",

where p(x) is a non-negative smooth function of the variable x, 0=x< + 00, such
that
1 for 0=x=<x,
p(x)=
0 for x=2x,

Xo being a sufficiently small number. Then we have
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O(lwil™2) 0(|W.-I“‘)>

H(ﬂq>=|wi1<2—ﬂ>"<
o(lwil=)  0(1)

and
(Bg)zz=|w;| 2= if |z(p)—zdg)| < x,.

We define @,=|g|°+¢ > B,, where €>0. If ¢ is sufficiently small, we can find a

neighborhood ¥, of C ‘such that @, is strongly plurisubharmonic on V,—C. Since
n'>n, the function ®,,, has the desired property. Thus Theorem I is proved.

4. Let us consider the function |g|* with 0<a< 1. There is a neighborhood V’
of C—Z such that the complex Hessian H(|6|?) of |o|® has one positive and one
negative eigenvalues at every point in V'—(C—Z). We define ¢,=|o|*—¢ 3 B,,

qe
where ¢ is a sufficiently small positive number. Then there is a neighborhood V,
of C such that ¢, has the above property at every point in V,—C. With the aid of
this function, we prove the following

Theorem 2. Let V be a neighborhood of the curve C and let ¥ be a plurisub-
harmonic function on V—C. If Y(p)=o(1/r(p)"") as p approaches C, where n"
is a positive real number smaller than n, then there exists a neighborhood V, of C
such that ¥ is constant on V,—C.

Corollary. Let f be a holomorphic function on V—C, where V is a neighbor-
hood of C. Iflog* | f(p)l=0(1/r(p)*") as p approaches C, then f is constant.

To prove Theorem 2, we show first the following

Lemma 2. [n the situation of Theorem 2, if the plurisubharmonic function
¥ is bounded from above, then there exists a neighborhood V, of C such that ¥ is
constant on Vy—C.

Proof. By a theorem of Grauert and Remmert [5], ¥ is extended to a pluri-
subharmonic function on V, which we denote also by ¥. By Theorem 1, we can
take in V a relatively compact strongly pseudoconcave neighborhood V, of C.
We will show that ¥ is constant on V,,. Let the maximum of ¥ on V, be attained
at a boundary point p, of V,. Since V, is strongly pseudoconcave, there exist a
neighborhood W of p, and an analytic set X in W such that X< V,n W and such
that XN 0Vy={po}, where dV, denotes the boundary of V,. Since ¥ is plurisub-
harmonic, there exists a point p, in X—{p,} such that ¥(p,)=¥(p,).- This shows
that the maximum of ¥ is attained at an interior point of V,. Hence ¥ is constant
on V. g.e.d.

Now let us prove Theorem 2. In view of Lemma 2, it suffices to derive a con-
tradiction from the assumption that ¥ is unbounded from above. We take the

function @, with a=%. Since @,~1/r"" and limsup r(p)""¥(p)=0, we have
p=C
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llmsup ¥(p)/®,(p)=0. We choose in V a relatively compact strongly pseudoconcave

nelghborhood V, of C such that, at every point in V,—C, the complex Hessian of
@, has one positive and one negative eigenvalues. We may assume that ¥ is non-
positive on the boundary dV,, of V,, since it suffices to prove the theorem for ¥ — A
in the place of ¥, 4 being a sufficiently large positive number. The function ¥/,
is upper semi-continuous and takes a positive value at some point in V,— C, since
¥ is unbounded. Therefore ¥/®, attains its maximum B at an interor point p,
of Vo—C. We have ¥(p)<B®,(p), peVy—C and ¥(p,)=B®d,(p,). Since the
complex Hessian of @, at p, has a negative eigenvalue, there exists a holomorphic
map f of the unit disk {{eC||{|<1} to V,—C such that f(0)=p, and that

a—g‘;f@nof) (0)<0. We have

2 (@) (000 < (10) = B4po).
0

if p is sufficiently small. From this and the fact that ¥of is subharmonic, we have
1 2n i0 B 2n i
Y(po) =57\ (Pof)(pe®)di=5—\ (P.of)(pe'®)dd
2n ), 2n )o

<B®,(po)=¥(po)

which is a contradiction. Thus Theorem 2 is proved.

§4. The case of infinite type

1. We consider in this section the case where the curve C is of infinite type.

Some definitions are necessary to state the result. As was mentioned in §1,
the Picard variety P(C) of the compact Riemann surface C can be identified with
the multiplicative group H!(C, T') consisting of all flat line bundles over C. As a
real Lie group, P(C)=H'(C, T) is a torus of dimension 2g, where g is the genus of C.
We introduce on P(C) an invariant distance d, i.e., d(E7', E3')=d(E,, E,) and
d(E,®G, E,®G)=d(E,, E,) for any E,, E,, GeB(C). There exist on P(C) infi-
nitely many such distances, but obviously they are all equivalent to one another.
Now we denote by €, the subset of B(C) consisting of all elements of finite order.
We denote by €, the subset of B(C)— €, consisting of all elements E such that

—logd(1, EV)=0(log v) as v — +o0.

This condition is equivalent to the condition: There exists a positive number o
such that

d(1, E)=(2v)™® for v=1,2,....
Clearly the set €, is determined independently of the choice of the invariant distance

d. It is easy to see that P(C)—E, is of Lebesgue measure zero. In this sense the
elements of €,\UE, are general. But we note that €, is the union of a countable
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number of nowhere dense closed sets; it is therefore a set of the first category.
The purpose of this section is to prove the following

Theorem 3. Suppose that the curve C is of infinite type and that the complex
normal bundle N of C is contained in €,\J€,. Then there exist an open covering
{Vi} of a neighborhood V' of C and a system {u;} of holomorphic functions u; on
Vi such that u;=0 is a local equation of C NV} on each V; and that u;ju, is a con-
stant of modulus 1 on each Vin V;.

We note that the conclusion of Theorem 3 is equivalent to either of the following
statements (i), (ii):
(i) There exists a multiplicative holomorphic function u with divisor C on V',
Here, by a multiplicative function on V' we mean a function u defined on a covering
manifold of V' whose modulus |u| is a (single-valued) function on V'.
(ii) The restriction [C]| V' of the complex line bundle [C] to V' admits a structure
of flat line bundle, i.e., [C]|V'=F|V'. (See§2,2.)

Corollary. Ifthe curve C is of infinite type and N is of finite order m, then there
exists an m-valued multiplicative holomorphic function u with divisor C on a
neighborhood V' of C, such that u™ is a (single-valued) holomorphic function with
divisor mC.

2. Construction of formal power series. We choose and fix a finite open covering
B ={V;} of a neighborhood of C consisting of small dicylinders V; of the form |w;| <1,
|z;] <1, where (w;, z;) is a local coordinate system of the manifold S which covers
the closure V; of V.. We assume that the functions w; satisfy the conditions: (i)
w;=0 is a local equation of CnV; in each V,, and (ii) the system {w;} is of type
(at least) 1, i.e., the restriction of w;/w, to CnV,nV, is a constant of modulus 1.
Then the transformation of local coordinates on V;n V, is of the form

wi(P) = @r(wi(p), z{p)) = ti;wi(p) + é"z i (2P)wip)’,
z(p) = (wi(p), z(p)).

Weset U;=CnV,. Then U={U,} is a finite open covering of C by disks U;: |z;| <1,
and the transformation of local coordinates on U; n U, is of the form

2 p) =40, z(p)).

(1

To prove Theorem 3, it suffices to construct a system {u;} of holomorphic
functions u; defined respectively on a neighborhood V; (= V;) of U, satisfying the
conditions: (i) each u; is of the form

ui(p)=gdwip), z{p))=w{(p)+(terms of order=2),
and (i) wu;=tuu, on VinV,. By (1), the condition (ii) is equivalent to
(2) 9iwis 2) = tadil( @il Wi, 22), Yiiwis 2))),
where (w;, z;)=(w(p). z{p)), peVin V.
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We will determine each u;=g{w;, z;) as an implicit function defined by the
equation

wi=f(u;, z)=u;+ §2ﬁ|v(zi)“}',

where fi(u;, z;) is a power series in u; whose coefficients f;,(z;) are holomorphic
functions of the variable z;, |z;/ < 1. The condition (2) is equivalent to

3 okl filuis 20), 2)) = filbiathin Vi(fuis 2), 23) .

We expand the left-hand side of (3) into the power series

) Oul i, 20, 2= bt 3, @D+t 3 Wizt

where

&) Uy i Ry(z)uy = i (Pki|v(zi)<ui + i filu(zi)u’il>v-
v=2 v=2 n=2

The right-hand side of (3) is expanded into the form
it 3 St i 20, 20) ()
Letting
Sl 20) =0, 200+ 5 fua(zwt

we have

(6) St Yl filusr 20), 2))

=ll; + EZ W0, 2)) (Bius)” + ti; 2 hix(2)u?,

v=2

where

(7 Lii g’z hix v (z) uy = i [i Jreipu(20) (u; +;g‘:zfi]l(zi)u%)”](tkiui)v'

v=2Lnu=1

We infer from (5) and (7) that, if f;,,.... f;,, i€l, are determined, then hj, .,
and hjy,4, are determined independently of f,.1, fijy42.--- -

To obtain f(u;, z;), i €I, satisfying (3) as formal power series in u;, it suffices to
determine successively the systems {f;|,+}icy. v=1. 2,..., in such a way that

(8, v) i firv+ 1 (W0, ) = fiv 1 (2) = higg 4 4(20),
for z;=z(p), pe U;n U,, are satisfied, where we have set
hiklv+ 1= ik ve 1 _h,ilk|v+l'

Suppose that {f;,},.... {f;,} satisfying (8, 1),..., (8, v—1), respectively, are already
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determined. We shall show that {—hy,, 4} is the v-th obstruction (e Z!(1, O(N~)))

associated with a system of functions of type v (see §2,1). Then by the assumption

that the curve C is of infinite type, {f;|,+,} satisfying (8, v) will be obtained.
Consider the functions v;=g(w;, z;), i €I, defined implicitly by the equations

wi=fi(v;, z;)=v;+ Evzf;,,,(zi)vé‘,

respectively; and let {v{p)} be the system of functions v (p)=g(w«(p), z{p)) on V.
1t follows from (4) and (6) that

wi —fE(tais 2) = Ok f 305 29, 2) —Fi(tivis Vil filvis 20), 23))
= tihigpyr 1 (ZOF T+
where w;=wy(p), z;=z(p), v;=0{p), wi=wi(p), z,=2(p), pe V;NV,, and where ---
denotes the term which vanishes on CnV;nV, with order =v+2. Therefore
G =ty 4 1 (20 0y Z) = 05

Hence

Uk F tihig v+ 1 (ZDOV T 4 = 1oy,
or, multiplying by #;,

tiO, — 0= — Ry 1 (20} 0o
This implies that { —hy, .} is the v-th obstruction asscoiated with {v;}.

a0
Thus we can obtain f(u;, z)=u;+ X f;(z)u%, iel, as formal power series.
v=2 .

0
3. Estimate of obstructions. For two power series a(u)= Y. au’ and A(u)=
v=0

i Au’, A,20, we write a(u)<A(u), when |a,|< A, for v=0, 1, 2,.... We shall
v=0

show that the power series f(u;, z,~)=u,~+§j}]v(z,.)u,?, iel, of the preceding
paragraph can be constructed in such a wayv_tflat there is a power series A(u)=
u+§ A,u* with constant coefficients and with positive radius of convergence
sati;f?yzing

9) fiu;, z) < A(u;), iel.

If we write fY(u;, z;)=u;+ Zv: Siuzout and A*(w)=u+ sz A,u*, then (9) is equiv-
u=2 u=

alent to the conditions for v=1, 2,....

(10, v) fi(uy, z)< A% (uy), iel.

Suppose that fY(u;, z;), and A*(u) satisfying (10, v) are already determined.
We shall first make an estimate of hj;|,+; and hjy .4, in terms of 4,,..., 4,. Let
R be a sufficiently large number such that |, (z)|SR*, p=2, 3,.... Then from
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(5) it follows that

R*(A4"(u)))?

v+1 2
/. . m v . ==
ugz hu(z)uf < pz=:2 RA(A () I—RA (uy) -~

Let U*={U#¥} be an open covering of C such that each U} is relatively compact in
U;. We choose a sufficiently large number Q such that, for every point p in U; n U,
the closed disk

4,={qeViz{q)=z{p), Iw(®|=1/Q}

is contained in V,. Since

| fe1aWiiwi(@)s zd(@)) | S A, on 4,cVinV,pu=2,...,v,

we have
feua@PDISA,0%  on UinU¥ p=2,...,v,A=1,2,...
Therefore, by (7), we have
vt1 v o
2 Whu(z)ui< 3 [ X 4,0M4 (u) ]uf
u=2 p=2 1i=1

= (A" () — A (u;) 04" (uy))?
A T v ) “T- 0 ()

for z;=z(p), pe U;cU¥. Thus we have

kS 5. n M (A(uy))? : *
”gz hiklu(-'x(p))u: < 1 —-M'Av(ui) for pEUl n Uka

where M’ =2 max {R, R?, Q}.

This implies that

M'(A*(u))?

i . < 1 v+l 1y % \L %))
]h,“vﬂ(z,(p))l:(the coefficient of u**! in =M A (2) )’

for pe U;n U}.
To make an estimate of hy,,, on U;n U,, we use the fact that {hy,.,} is a
1-cocycle. For any point p in U; n U,, there exists a je I such that pe U¥. From

hijiv+1(ZAD) + 17 hjkyy + 1(2 (D)) + 1 hiiy v+ 1(2(p)) =0
it follows that
iy + 1(ZAPDI = hijy+ 1 (2P + By + 1(Z(D))] -

Hence, setting M =2M’, we have

. vi1 s M(AY(u))?
(11) Vhixjves (24( )| < the coefficient of u** in T%)
for peU;n U,.

4. Proof of convergence for the case Ne(§, Let E be a complex line bundle
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over a compact Riemann surface C defined by a multiplicative 1-cocycle on the nerve
of a finite open covering W={U,;} of C. For a O-cochain {®={f;} € C°(U, O(E)) and
a l-cochain ! ={f;} € C}(U, O(E)), we define, respectively,

[f°ll =max sup |f(p)l,
i peU;
and

[f'l=max sup [fu(p)l.
i,k peUinUy

Lemma 3. (Kodaira-Spencer [8]) There exists a constant K=K(E) such
that, for any l-cocycle {' € Z'(U, O(E)) with ||f'|| < + oo which is cohomologous to
zero, there exists a 0-cochain f® e CO(U, O(E)) such that {' is the coboundary of {°
and that |i°| < K||{']l.

Now returning to the proof of Theorem 3, let us consider the case N €€, i.e.,

.....

max K(N7"). Since the obstructions {hy,,,} are in Z!(U, O(N™)), we can

v=1,2,...,m

determine {f},,} satisfying (8, v) in such a way that
(12) ||{fi|v+1}||§K”{hik|v+1}|l-

0
We define the power series A(u)=u+ >. A,u" as the solution of the functional
=2
equation '

M(A(w))*

AG) —u=KT2

where M is as in (11). Clearly A(u) has a positive radius of convergence. Suppose
that fY(u;, z;)=u;+ Zv: Suu(zdut, iel, satisfying (8, 1),..., (8, v—1) and (10, v) are
n=2

already determined. Then we can obtain f;,,(z;), i € I, satisfying (8, v) and (12).
By (11) we have

vt} IS K1 e} S K (the coeflicient of w1 in (MU )

=4,
Hence fY*1(u;, z))=f1(u;, z) +fiy+1(z)ut, i€ l, satisfy (10, v+1). Thus we can
obtain f(u;, z;), i € I, satisfying (9). Theorem 3 is thereby proved for the case N € €,.

5. Let C be a compact Riemann surface and let U= {U,},,; be a fixed finite open
covering of C by disks U;: |z;/<1. For two flat line bundles E; and E, over C,
we define a distance d(E,, E,) by

d(E,, E;)=inf max |¢{P — |,
ikel

where the infimum is taken over the sets of all multiplicative 1-cocycles {#{}’} and
{{¥} representing E; and E, respectively. Clearly the distance thus defined is an
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invariant distance on P(C)=H'(C, T') (see no. 1 of this section). We have

d(1, E)=inf max |1 —t,],
ikel

where the infimum is taken over the set of all multiplicative 1-cocycles {t;} represent-
ing the flat line bundle E; or equivalently

d(l, E)=lnf max |ti_tiktkl N
i kel

where {t;} is a fixed multiplicative 1-cocycle representing E and the infimum is taken
over the set CO(U, T') of all multiplicative O-cochains {¢;}.

We denote by 6 the coboundary map COU, O(E))-»C' (U, O(E)). If E is a
flat line bundle and E#1, then § is injective.

Lemma 4, There exists a positive constant K such that, for any flat line bundle
E over C and for any O-cochain | e COU, O(E)), the inequality

d(1, E)|fll = K|6fll
holds.

Proof. We observe first that, there exists a positive constant ¢, such that, for
any flat line bundle E and for any f={f;} € C°(U, O(E)) with ||f| =1 and ||56f| <&,
we have min inf [f(p)|=1/2. To see this let us assume the contrary. Then we can

find sequerllcg; of flat line bundles E,={r{}’} and of O-cochains f,={f{"} e COL,
O(E)), v=1, 2,..., such that || f,|=1, mm mf If$(p)| <1/2, and that ||6f,||—=0 as

v—o00. We can find subsequences E, and f‘ , ® =1,2,..., such that, for each i, ke,
the sequence t{{*) tends to a limit tﬁ‘,{’, and that, for each iel, the sequence f"<’
converges uniformly on every compact set in U; to a holomorphic function f{®.
Then {#{9} is a multiplicative 1-cocycle and defines a flat line bundle E, over C.
Moreover, since t{}<f{¥<) —f{v«) converges to 0, we get t{Qf(® — (0 =0on U;n U,;
which implies that {f{?} is a global section of E,. Therefore each f{? is a constant
and clearly we have |f{®|=1. Let W*={U%*},, be an open covering of C such that
each U¥ is relatively compact in U; and such that U;n U,#@ implies U¥ n U¥ #g.
Let p be any point in U; and assume that p is in U}. From

£ () = (DI SIFEP(p) —t52f 2 (DI + 1832129 () =t Q0 (p)]
<l6f, Ml + k= £~ () = 12110 ()]

it follows that f{'=) converges uniformly on U;. This contradicts that min mf If(vn)(p)l
<1/2, and the statement is proved. el

In view of the fact that the distance d(1, E) is bounded, it suffices to prove the
following asssertion: (%) There exists a positive constant K, such that, for any
flat line bundle E and for any { e Co(U, @(E)) with |f|| =1 and ||6f|| L &,, the inequality
d(1, E)< K,||6f| holds.

We note that, for = {f;} satisfying the above conditions, we have min inf| f(p)| =
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1/2; and hence

l |
log FAT)) —log 7l L2l Al = 1P

<20 /i(p) = fi(p) 2211611,

for peU;n U,.
Now we need the following

Sublemma. There exists a positive constant K, such that, if {h;} is a system
of bounded non-negative (real-valued) harmonic functions h; on U, satisfing the
conditions:

(i) min inf h(p)=0,

I

iel peU;
(i) |h(p)—hdp)<se, for peU;nU, i, kel,

then we have max sup h(p)<K,e.
iel peU;
Proof of the sublemma. By Harnack theorem, there exists a positive constant
L such that, for every non-negative harmonic function 4 on U; and for every pair of
points p and p’ in U¥, the inequality h(p)< Lh(p’) holds. By the condition (i), there

exist an ig € I and a point p, in U, such that lim inf h,(p)=0. Forany kel and
peli,p=po

a point g in U,, we can choose a sequence iy,..., iy I of length [ such that p,e U},

ge U¥ and that U¥ nU¥ , #¢ (v=1,---,1-1). We take points p, (v=1,---, [—1)

tv+1

respectively in U¥ nU¥,,,. We have h; (p,)<Lh;(p,-,); and by the condition

ty

(i), hy,,,(p)=hi (p,)+e. Hence
h(@)Shi(@)+e<Lhy(p_)+e<--<(L'+L""+---+L+1)e.

The sequence i,,..., i, can be always so chosen that the length | does not exceed a
fixed number [,, Thus, K,=Llo+-.-+1 is a constant of the desired property.
g.e.d.

If we apply the sublemma for hy(p)=log —L _ and e=2|6fl, we have
| fi(p)I

max sup logl—fi—(lmédelfsfH-
The following fact is easily proved: There exists a positive constant K, such
that, if f is a holomorphic function on U; such that 1—¢=<|f|<1, then it holds
| f(p)—f(p) £K,¢ for any points p and p’ in U¥.
To prove the assertion (), we choose a point p; in each U¥ and put t;=f(p))/
| f{p)l. When U;n U,#¢, we take a point p in U¥ n U¥. Then

[tate — til S [t —flP)| +tu Sl p) —f(D)| + | f(p) —til .

We have |t fi(p) —fi(p)| = |16l ;
and
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l6e=1u(p)l=| S — 1)

< [ 28 = Ao | + 17 p) = 1)

=1 =1fi(p)D)+1fi(p) —fi( D)
S 2K+ K, 2K ) ||67 1,

since l—lfk(pk)lglogm§2K, [6f1. Similarly we have

If(p)—til (2K + K,2K,) || 6] -

Therefore, putting Ko=1+2(2K,+K,;2K,), we have [t;t,—t|<K,lléfll, which
proves the assertion (). Thus Lemma 4 is proved.

6. Proof of convergence for the case Ne€,. A proof of the following lemma is
found in Siegel [10], though it is not stated explicitly.

Lemma 5. Let g, v=1,2,..., be a sequence of positive numbers satisfying
the conditions:
(i) There exists a positive number a such that

g, <(2v)%, for v=1, 2,....
(i) &1, Z¢&'+¢,! for v>u.
Then the formal power series A(u)=u+ Y A.u" satisfying the functional equation
v=2

M(A(u))?

T-MAw M0

0

(13) > el Aut =
v=2

has a positive radius of convergence.

Now we return to the proof of Theorem 3 for the case Ne€,. We pute;l=
%d(l, N'V)=%d(1, N*), where K has the same meaning as in Lemma 4. Then

the condition (i) is satisfied by the assumption N € €,. The condition (ii) is satisfied
because

d(1, N8y =d(N*, N*)<d(1, N*)+d(1, N").

Let M have the same meaning as the end of no. 3, and let A(u) be the solution of the
equation (13). Then A(u) has a positive radius of convergence and we have

filu;, z)<A(uy), iel,

in the same manner as in no. 4. Thus the series f;(u;, z;) are convergent. Theorem 3
for the case N € €, is thereby proved.
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§5. Conclusion

1. Classification. We have so far investigated the structure of the neighborhood
of a non-singular irreducible compact complex curve C with topologically trivial
normal bundle. In view of the obtained results we may classify such curves into
four classes as follows. Let n denote the type of C and let m denote the order of
the complex normal bundle N of C. Curves with n < oo constitute class (¢). Curves
with n=o00, m<oo constitute class (f'). Curves with n=00, m= oo are divided into
two classes: A curve C belongs to class (") if there is a multiplicative holomorphic
function with divisor C on a neighborhood of C; otherwise C belongs to class (y)
(see Theorem 3 and the following remark for equivalent criteria).

We know by Theorem 3 that, if C belongs to class ('), then there exists an
m-valued multiplicative holomorphic function with divisor C on a neighborhood of
C; and that if C is of infinite type and N is in €, then C belongs to class (8”). We
shall give an example of a curve of class (y) at the end of this section.

2. Neighborhood of a curve of class (8’) or (58"). We have seen in § 3 the “strong
pseudoconcavity’” of the neighborhood of a curve of class («). The following
remarks will make clear the “pseudoflatness’’ of the neighborhood of a curve of class
(B') or (B").

1° Let C be a curve of class (f') or (f”), and let u be a multiplicative holo-
morphic function with divisor C on a neighborhood V of C. We take a sufficiently
small number ¢>0 so that V,={pe V||u(p)|<e} is relatively compact. Then the
neighborhoods V,={p e V| |u(p)| <r}, 0<r=e, are pseudoconvex and pseudoconcave
(but not strongly). We may call such neighborhoods pseudoflat.

There is no strongly pseudoconcave neighborhood of C which is contained
and relatively compact in V. To see this it suffices to consider the plurisubharmonic
function |u| (or the pluriharmonic function log |u|, if one prefers) on V; the above
fact is known by the same reasoning as in Lemma 2.

2° Suppose that C belongs to class (). Then u™ is a (single-valued) holo-
morphic function on V with divisor mC, m being the order of N. The curves I',,
lc| em, defined by u™—c=0, are irreducible and compact. Hence any plurisub-
harmonic function or holomorphic function on a neighborhood of I', is dependent
on u™.

It is clear that, if there exists a non-constant holomorphic function on a neigh-
borhood of C, then C belongs to class (f’).

3° Suppose that C belongs to class (f”). Let us consider the compact real-
analytic hypersurfaces Z,={p e V| |u(p)|=r}, 0<r=e¢; and the holomorphic foliation
& defined by the multiplicative function u on V (see Suzuki [11]). The leaf Lof the
foliation & through a point p, in Vis defined as follows: We take a small neighbor-
hood W of p, and a branch u, of u on W, and let L’ be the curve on W defined by the
equation u.(p)—u.(po)=0; the leaf Lis the analytic continuation of L'. Every leaf
Lin V,, except for C, is contained in a hypersurface Z,; Lis non-compact and dense
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in X,

Let ¥ be a plurisubharmonic function on a neighborhood of Z,, 0<r=e.
Then ¥ is constant on Z,. To see this let the maximum of ¥ on X, be attained at a
point p,. Then, by the principle of maximum, ¥ is constant on the leaf L through
Po- Hence ¥ is constant on X, by the upper semi-continuity.

It follows that any holomorphic function on a neighborhood of Z, is constant.
In particular, there is no non-constant holomorphic function on V—C, for any
neighborhood V of C.

3. Curves in the neighborhood of C. Let us examine how many compact complex
curves are distributed in a small neighborhood V of the curve C. We may assume
that Vis a tubular neighborhood. If I is a 2-cycle in V, then I' ~ mC (homologous),
where m is an integer; and hence we have the intersection numbers (I'?)=(I", C)=0
because (C2)=0. In particular, if I is a compact complex curve, then I'~mC,
m>0; and if further I' is irreducible and I'# C, then I and C do not intersect, i.e.,
rev-cC.

Suppose that C belongs to class (¢). Then there exists no compact curve other
than C in a sufficiently small neighborhood V. To see this, we consider the strongly
plurisubharmonic function @ on V—C constructed in §3. If there were a compact
curve I' in V—C, then the restriction of @ to I' would be a non-constant sub-
harmonic function; this contradiction proves our assertion.

Suppose that C belongs to class (f'). We have the irreducible compact curves
I.:um—c=0. It is clear that they are the only irreducible compact curves in a
small neighborhood of C. We note that I'.~mC (c#0), m being the order of the
complex normal bundle N of C.

Suppose that C belongs to class (8”). Then there is no compact curve other
than C in the neighborhood V,. To see this, let I' be an irreducible compact curve
in V,. Since the restriction of |u| to I' is a subharmonic function, it is a constant.
We take an arbitrary point p, on I" and a small neighborhood W of p,. Let u, be a
branch of u on W. Since |u,|=|u| is constant on I' N W, u, is constant there. This
implies that I' coincides with the leaf L through p, of the foliation #. But L is com-
pact if and only if L=C. The assertion is thus proved.

By the above observations we have the following proposition:

Suppose that there is a sequence of irreducible compact curves I, v=1, 2,...,
with the properties:
(i) For any small neighborhood V of C, there is a number vy such that, if v=v,,
then I',cV.
(ii) Letting I',~m,C, there is no vy such that m =m, . =---.
Then the curve C belongs to class ().

The author does not know whether, conversely, there exist infinitely many
compact curves in the neighborhood of a curve of class (y). (See Arnol’d [1] 4, 5.)

4. Example of a curve of class (7) Let us first make an observation concern-
ing iterations of some holomorphic functions (Cremer [2]).
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Let ¢: C—C be an entire function. A system of distinct points (¢, ¢,,..., )
is called a cycle of order m if we have ¢(cy)=c,,..., ¢(c,,—1)=c, and ¢(c,)=c;.
A point c is called a fixed point of the I-th iterate ¢, = ¢@o---0¢ (I times) of ¢ if p(c)=c.
It is clear that the set of all fixed points of ¢, is the union of all cycles whose orders
divide 1.

Suppose that ¢ is a polynomial of degree d=2 of the form

ow)y=a,w+aw2+--- +w,

where |a;|=1 and a}+#1 for 1=1,2,.... Suppose further that a, satisfies the
.
condition: There is a number A>1 such that lim inf A'|1 —a}|¢’"-1=0. Then there
=00
exists a sequence of cycles (c,y, €y ..., Cym,) Of order m,, v=1, 2,..., such that
max |¢, /=0 and m,— o0 as v—c0.
15ksm,

There exist uncountably many a, which satisfy the condition (see [2], p. 155).
To prove the above assertion, consider the fixed points of the I-th iterate ¢ (w)=
alw+---+wd' of . They are the roots of the equation.

(al=Dw+--+wi'=0.
Since the product of the roots except for 0 of the equation is (— 1)4'~1(a} —1), there

is at least one fixed point ¢ of ¢, such that 0<|c| =]l —a’lli"l——l. Therefore, for any
number r>0, we can find a sequence of fixed points ¢, of ¢, , v=1, 2,..., such that
O<|c,|SAbr.

We choose a sufficiently small r so that

K= sup ow) < A, which is possible because o) -1
w w

|wl<r

as w—0. Then we have, for k=1, 2,...,[,—1,
lou(e, )| <K*A™r<(K[A)vr<r.

Let m, be the integer=1 such that ¢,(c,)#c, for k=1,..., m,—1, and ¢, (c,)=c,,
and consider the cycles (c, 1, €y.2,..., ¢y m,)=(cy, ©(C)),..., @p, —1(c,)) of order m,.

Since max le, il <(K/A)!vr, we have max |c,;|—-0as v-c0. We have m,— o0
1SksSm,y

because there are only a finite number of cycles of order smaller than a fixed number.

Now let C be a compact Riemann surface of positive genus. We take a closed
Jordan curve J on C such that Uy,=C—J is connected, and a neighborhood U, of
J such that Ugn U,=U,—J consists of two connected components U’ and U”".
Let 4y: |wo| <ry be a disk of radius ry, and let 4,: |w,|<r; be a disk of radius r,.
We construct a complex manifold S from the disjoint union of Uy x 45 and U x 4,
by the following identification: Identify (poy, wo) in Uy % 44 and (p,, wy) in U; x 4,
if either po=p, e U’, wo=w,, or py=p, € U", wo=¢(w,;). Here ¢ is a polynomial
as above, r, is sufficiently small so that ¢ is injective on 4,, and r, is sufficiently
large so that sup lp(w))| <ro.

We 1dent1fy the curve on S defined by wo=0 on UO xdoand w;=0o0n U, x4,
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with C. Thus C is imbedded in S with topologically trivial normal bundle. Con-

sider the curves I',, v=1, 2,..., on S defined by ﬁ (wo—c,,)=0 on Uyx 4, and
k=1

ﬁ (wy—cy)=0o0n U, x4,. For sufficiently large v, the curves I', are irreducible
k=1

and compact, and I'y~m,C. Thus the sequence of the curves I', satisfies the con-
ditions of the proposition in no. 3. The curve C therefore belongs to class (y).
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