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Introduction

L et C  be  a  non-singular irreducible compact complex curve imbedded in  a
complex manifold of dimension 2. A s a n  oriented differentiable manifold, the
structure of the neighborhood of the curve C  is completely characterized by the
Chern class of the normal bundle of C, in other words by the self-intersection number
(C2 )  of C .  This topological structure imposes restrictions on the complex analytic
properties of the neighborhood o f  C .  Specifically the curve C has a strongly pseudo-
convex neighborhood if and only if (C2 ) is negative (see Grauert [3]); on the other
hand C has a fundamental system of strongly pseudoconcave neighborhoods if (C2 )
is positive (see Suzuki [11]).

The purpose of the present paper is to investigate such complex analytic prop-
erties of the neighborhood of the curve C when the self-intersection number (C2 )
vanishes. W e shall see that, if the complex normal bundle N  o f C  is a  general
element (in the sense of Lebesgue measure) of the Picard variety VC), then C  has
either a  fundamental system of strongly pseudoconcave neighborhoods or tha t of
pseudoflat neighborhoods. We shall find moreover, in the former case, a restric-
tion  o n  th e  behavior o f  plurisubharmonic functions and  holomorphic functions
having singularities along C .  This restriction may be regarded as an expression of
the weekness of pseudoconcavity of the neighborhood of C.

In §1, we make some preliminary observations concerning flat line bundles, i.e.,
complex line bundles whose transition functions are constants of modulus 1. In
§2, we define the type (1, 2,..., or infinite) fo r  a  curve C  whose complex normal
bundle N is topologically trivial. T h is  type  can be described as fo llow s: A unique
structure of flat line bundle is introduced on N, and N  is extended uniquely to a
flat line bundle F over a  neighborhood of C; then the type represents the order of
coincidence of F and the complex line bundle [C ] corresponding to the divisor C.
The curve C is of infinite type if F and [C ] coincide form ally . In  §3, the case of
finite type is treated . W e construct a  strongly plurisubharmonic function 0(p)
defined on a neighborhood of C except on C which tends to  + co as p approaches C.
Letting n be the type of C, we can construct, for any real number n'> n, such a
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function 0(p) of order 11r(p)" , where r(p) is the distance of p  from C (Theorem 1).
But there exists no non-constant plurisubharmonic function which increases slower
than 1/r(p)n" for n" <n (Theorem 2). This presents a  contrast to the case (C2 )> 0,
where we have such a function of order —log r(p) (see Suzuki [1 1 ] ) .  In §4, the case
of infinite type is considered. W e show that F and [C] coincide on a neighborhood
o f C , if the complex normal bundle N  o f  C  is contained in  a  subset e. o f  13(C)
(Theorem 3). Here the  se t (f. consists of the elements o f finite order and the ele-
ments which are not "well approximated" by those of finite order. Thus Theorem
3 generalizes the result of Arnol'd [1] for elliptic curves. In  §5, summarizing the
results, we classify the  curves C  into four classes, and make some supplementa-
ry remarks. Finally we give an  example, suggested by Arnol'd [1], of a  curve of
infinite type for which F and [C] do not coincide.

I am very grateful to Prof. A. Takeuchi and Dr. M. Suzuki for their advice and
encouragement. I also thank Dr. T. Ohsawa, who called my attention to Arnol'd's
work.

§ 1 .  Preliminaries

1. Flat line bundles

Let E7-*' M  be a complex line bundle over a complex m anifold  M . We call E
a f lat line bundle if an open covering 11= {Ui }iE , of M and a collection of fiber co-
ordinates {Ci } of E  over U; a r e  so chosen that the transition functions ti k = ( i /C,
on  Ui n U k  are constants of modulus 1. Then the system ft i k } is a  1-cocycle with
coefficients in the multiplicative group T o f all complex numbers o f  modulus 1.
Two flat line bundles E  and E ' with systems of transition functions {ti k } and {ri ,},
respectively, are equivalent, if and only if there exist constants t i e T, i e I ,  such that
t ik = tik tTitk ; then they are considered as different expressions of one and the same
flat line bundle E .  The set of all (equivalence classes of) flat line bundles over M
is identified with the first cohomology group IN M , T ) in an obvious manner.

We introduce, on a flat line bundle E, a  fiber metric of curvature zero by
over each U.. We note that the structure of flat line bundle on a complex line bundle
is determined by such a fiber metric.

For a complex line bundle E over M, we denote by c(E) the Chern class of E,
and by c,(E) the element of H2 (M, R) corresponding to c(E) by the map H2 (M, Z)—>
H2 (M, R).

Proposition 1. ( 1 )  I f  E  is  a  f lat line  bundle , then  c R ( E ) =0 .  (2) When
M  is compact, two f lat line bundles over M  are equivalent if  and only  if  they  are
equivalent as com plex  line bundles. (3) W hen M is compact, the necessary and
sufficient condition for any complex line bundle with c R (E)= 0 to adm it a structure
of  f lat line bundle is that dim I/ 1(M , C )=2 dim 111 (M , 0 ) .  (a theorem of Kashi-
wara, see Kodaira [7], pp. 124-126).
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P ro o f . Consider the  following commutative diagram o f  sheaves of abelian
groups over M:

0

0

Z R T

- - > Z - - - * 0 - - > 0 * - - > l ,
I

with exact rows, where 0  denotes the sheaf over M of germs of holomorphic func-
tions and 0*  denotes the  sheaf over M  of germs o f  non-vanishing holomorphic
functions. From this we obtain the commutative diagram

Ht(M , Z ) Hi(M , R) —4 H '(M , T H 2 (M, Z) H2(M, R)

       

H'(M , Z ) ---> 11 1 (M, (9) — > H' (M, (9*) H2(M  Z )

with exact ro w s . The assertion (1) follows from this immediately. W hen M is
compact, the vertical maps a and )3 are injective. In particular the injectivity of 13
implies the assertion (2). From the diagram we infer that the following two con-
ditions (i) and (ii) are equivalent:

( i ) Any Ee (9*) with cR (E)=0 is in the image of the map 13.
(ii)) The map oc is surjective.

If M is compact, the condition (ii) is equivalent to
(iii) dimR  111(M, R)=dim R  H '(M , (9) (real dimensions),

or
(iv) dim 1-P(M , C )= 2 dim 111(M, (9).

The assertion (3) is thus proved, q. e. d.
We note that the condition (iv) holds if M  is a compact U h le r  manifold, in

particular, if M is a compact Riemann surface.
The set consisting of all topologically trivial complex line bundles E (c(E)= 0)

is called the Picard variety of M and denoted by 43(M). If M is a compact Riemann
surface, we can identify $(M) with H'(M , T).

2. Holomorphic sections and pluriharmonic sections

A complex valued function h defined on a complex manifold is called plurihar-
monic, if h is locally expressed as a  sum f-1-4- of a holomorphic function f  and an
anti-holomorphic func tion  # . If a pluriharmonic function h is represented by two
such sums: h = f + g = f  + # ',  then w e have f '= f + c  and g '=# .-e , where c  is  a
constan t. Indeed, f ' — f=g is holomorphic and anti-holomorphic therefore it
is a  constant. A  differentiable function h is pluriharmonic if and only if the (1, 1)-
form ä h  vanishes identically, as is well known. W e note that, for a pluriharmonic
function h, the modulus 'hi is a plurisubharmonic function, so that the principle of
maximum modulus holds.

A section of a flat line bundle E  is called constant (resp. holomorphic, anti-
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holomorphic, or pluriharmonic), if its expressions with respect to  the fiber coordi-
nates are constant (resp. holomorphic, anti-holomorphic, or pluriharmonic) functions.
The sheaves of germs o f  such sections are denoted by C(E), 0(E), e(E) and d r(E ),
respectively. Denoting by E - 1  = {tal} = {i ik }  the dual of the flat line bundle E =
{t ik }, w e  have anti-C-linear isomorphisms C(E) C(E - 1 ), 0(E) (E - 1 ), e(E)
(9(E- 1 ) and if(E ).Y e (E - 1 ), by complex conjugation.

Let us consider, following Kashiwara (see Kodaira [7]), the exact sequence of
sheaves over M

0 C(E) -`11-4 0(E)e).5(E) Y e(E) 0 ,

where the map go is defined by cl-cp(c)=cep(-c), an d  th e  map is defined by
fOg->tk(fQ -4)=f +:4 .  From this we obtain the exact cohomology sequence

0 H°(M, C(E))--, H°(M , (9(E))(DH°(M , 0(E)) H°(M, .Y e(E))

H '(M , C (E )) --H '(M , 0(E ))011 1(M, 0(E)) ---L*4' 111(M , r(E )) .

Let us assume M to be com pact. We note first that

H°(M , .e(E))=H°(M , (9(E))=H°(M, 0(E))=H°(M, C(E))

C ,  if E =1,

1  0 ,  if E 1,

where 1 denotes the analytically trivial line bundle over M . In  fac t, fo r any global
section {h i } e H°(M, .re(E)), IN  i s  constant by the principle of maximum; hence
{hi } is a constant section, which can be non-zero only if E = 1. Therefore the map

is a zero-map and the map go' is injective. Thus the sequence

0 —> II 1(M, C(E)) 111(M , 0(E))elli(M , e(E)) 111(M, .e(E))

is e x a c t . Clearly the following three conditions are equivalent : (i) 0 1 i s  a zero-
map; (ii) (p1 i s  surjective; (iii) dim 111(M , C(E))= dim 111(M, (9(E)) + dim 111(M,
e(E)). We have thus the following

Proposition 2. L et E be a f lat line bundle over a compact complex manifold
M .  I f

dim 111(M, C(E))= dim 111(M, (9(E))+ dim (9-(E)),

then the homomorphism 11 1(M , (9(E))-41 1(M, .Y e(E)) is a zero-map.

Now let us assume the conclusion of Proposition 2. Then, for any holomorphic
1-cocycle { f ik } e Z I (U , (9(E)), there exists a  0-cochain {h i } E ie (E )) such that
{ f ik }  is the coboundary of {h i } , i.e., f ik  = t ik hk - h i o n  Ui n U k .  The 0-cochain {h i }
is uniquely determined if  E 0 1 , and unique u p  to  an additive constant if E =1.
Indeed, if { f ik } is the coboundary of two such 0-cochains {h i } and { J} , then {h'i - h i }
is a  pluriharmonic global section of E , which is zero or a constant according as
E 1 o r  E = 1 . We can define an  anti-holomorphic (0, 1)-form {o); }  on  M  with
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coefficients in E by w , =h, on each U . .  Obviously, the correspondence {f,,,}1-qcoi l
gives the Dolbeault isomorphism

\\ {0-closed (0, 1)-forms with coefficients in E l  
" M ' 69( "  {a-exact (0, 1)-forms with coefficients in E}.

The condition of Proposition 2 is satisfied if M is a compact Kdhler manifold.
In fact, denoting by EN E), H° , 1 (E), and / / 1 , °(E), respectively, the  space o f  all
harmonic 1-forms, (0, 1)-forms a n d  (1, 0)-forms o n  M  w ith coefficients in E,
w e h a v e  111 (M, C(E))'-' W (E), H'(M , Hi) (M, &(E))c--: H ' , °(E) and
H'(E)=11 15, '(E)OH' , ° (E ). (see Kodaira [6], [7])

If  M  is a compact Riemann surface of genus g , we have, b y  Riemann-Roch
theorem,

g for E = 1,
dim I-P(M, 0(E))=

g -1 for E0 1.

§ 2 .  Type of curves

1. Let C be a  non-singular irreducible compact complex curve imbedded in a
complex manifold S of dimension 2. We assume in all what follows that the normal
bundle N  of the curve C is topologically trivial.

We choose and fix a  finite open covering II= {U,},e i  o f  C consisting of small
disks U.: lz,1 <1, where z1 is  a local coordinate o f C which covers the closure U,
of U . Further w e choose, for each (l b  a  sufficiently small neighborhood V, of Ui

in S in  such  a  way that V, n c= u; ( ic i) ,  a n d  that U n u k = 0  implies V, n Vk =0
(1, k e I). T h e n  = {V,},E ,  is a  finite open covering of the neighborhood V=

i c i
of C .  In the course of the following considerations we shall replace, if it is necessary,
the neighborhoods VI by smaller ones satisfying the above cond itions. Such smaller
neighborhoods will be again denoted by V,. We are thus concerned with the germs
of the neighborhoods o f U, in  S. We extend each local coordinate z , on U , to  a
holomorphic function on V, and denote the extended function also by z,.

Let {W,} b ebe a system of holomorphic functions w, on  V, such that (z i , w) is a
local coordinate system o n  V, and tha t V; n c= u i  is defined in  V, by the equation
wi =  0 . The complex line bundle [C ] over V corresponding to th e  divisor C  is
defined by the multiplicative 1-cocycle {w,/w,,} composed of the non-vanishing holo-
morphic functions wi/wk o n  V, n Vk . The complex normal bundle N  of the curve C
is identical to the restriction [C] I C o f  [C] to  C .  Since N  =[C]IC is topologically
trivial, it is expressed by a  multiplicative 1-cocycle {tm } e Z1(11, T ) .  This implies
that there exist non-vanishing holomorphic functions ei o n  U; (i e I) such that tik  =
ei ek

- 'w i lwk  o n  Il i n Uk . We extend e, to  V, and put IT), = ei wi . Then {0,} is a system
of holomorphic functions satisfying th e  above conditions for Iwi l  and further

ui n U k = tik  on Ui n U ,, ( i ,  k  I).
Let us fix a multiplicative 1-cocycle {tik } representing N  and consider the sys-
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tems {w i } such that wilwkl U i n U k = tik  on U i n U k .  A system  {wi }  will be called of
type y if each tik wk —w i vanishes on u, n Uk = V, n Vk ri C w ith order (at least) y + 1.
If {wi } is a system of type v, then we can put

tikWk wi =fi k (z)Wi  + •• • o n  V; n vk .
We regard f ik  as a holomorphic function on U  n Uk , and further as a holomorphic
section over U i n uk  of the flat line bundle N - v represented by the fiber coordinate
over U.

First we assert that {AO is a 1-cocycle composed of holomorphic sections of
IV- v over U i n U k , i.e., {fa } e (9(N-v)). Indeed, we have

O =  (t i iW i w i)  t i i ( t ik W k tik(tkiWi-

tikefki(zOwr=(f i i (z i)w1+1
 +  •  •  • ) +  tu ( f ik (z 1)wy+1

 +  •  •  • )+ + •••)
= ( . f i l zd + tTil i k (z . ) + tavfki(z0)wt + 1 + • ••

on Vi n Vn Vk ;
and hence

f i;+ tZ ivf; k + tavfk i = 0 o n  U. nu.nu
which implies the assertion. The 1-cocycle {fm } will be called the v-th obstruction
associated with the system {140 of type v.

Now suppose that the v-th obstruction { f ik }  is the coboundary of a 0-cochain
{fi} e C°(11, 0(N - v )), namely, f ik =tTkvfk — f , o n  U i n Uk ( i ,  k  ni). Then putting

"Wi = wi —fi (z i )wr+' o n  V,

we can obtain a system Oi } of type v + 1. Indeed,

— Oi= tiawk — fk(zOw n ) — (wf — f i(z i)wr +1 )

( f ia z i ) w r + ') — ( tav f (z k ) — f i(z i))wr -" +• • •

is of order at least v +2.
Next let us consider two systems Iw i l and {iri }  of type v with v-th obstructions

{fi k } and ff k l  respectively. We assert that {fi k } and { f i k }  are cohomologous up
to a constant factor. To see this, we put

=ew i +g i 1 2 (z i)wf +•••+g i i ,i (z i )wit +••• on

where e is a constant different from zero and independent of the index i. We have

+ • =
= t ik (ew k + g k i ,(z k)wi+ • • .) — (ew , + g 1 2 (z i )wi: + • • .)

=e f ik (z i )wri + • • • + t i ag k i 2 (z k )w,2+ • • •)—(g i1 2 (z i )wl +•-•)

on V, n Vk . Comparing the terms of order 2, we see that ta1 g k 1 2  —g, 1 2 =0 on U i n U k •

Therefore {g i 1 2 } consitutes a global holomorphic section of AT- 1 ,  and g i 1 2  a r e  all
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constant. Hence t a g, '—  g i p ty?=g i i ,( th w t, w f)  is  o f  order y +2 (> v + 1).
Next comparing the terms o f  order 3, we have ri k

2 g k 1 3  — = 0  o n  U n  k. We
proceed in this manner and finally, comparing the terms of order y + 1, we have

e v + i f'ik =efik+ITkv gkiv+i — gilv-1-1 o n  U i n Uk•

This shows that fev f k l  and { f, }  are cohomologous.

Definition. (i) The curve C  is called of finite type n  if  there exists a  system
{m} j o  of type n such that the n-th obstruction associated with it is not cohomologous
to  zero . (ii) T he curve C is called of infinite type if, for any system fiv 1l 1E1 ,  the
obstruction associated with it is cohomologous to zero.

By the above observations we infer that, if the curve C is of finite type n, then
there exists no system of type v> n; for any system of type y <n , the v-th obstruction
is cohomologous to zero; and that, for any system of type n, the n-th obstruction is
not cohomologous to ze ro . O n  th e  other hand, if C is of infinite type, then there
exists a system of type y for any arbitrarily large v.

So fa r we have fixed the open covering 11= {U,},E,  and the multiplicative 1-
cocycle {t ik } defining the complex normal bundle N .  But it is easy to see that the
definition of the type of the curve C  is independent of the choice of 11 and {t ik }.

2. It is necessary for the later purposes to represent the obstructions in a different
w ay. L et + co) be the type of the curve C  and let {w i } be a  system of type y
(y. n) such that t ik wk i v ; = f

1k
(z i)wy+1 + • • • on Vi n Vk.

We can regard the multiplicative 1-cocycle {t ik } e Z 1(11, T )  as a multiplicative
1-cocycle on the nerve of the covering  =  {Vi }  of V. Then {t ik } e Z 1(93, T )  defines
a flat line bundle F  over V. The restriction FIC of F  to  the curve C  is identical to
the complex normal bundle N  = [C ] C  of C .  But generally F and [C ] do not coin-
cide on any small neighborhood of C (see also §4, 1).

Now let us consider the  system {wTv} of meromorphic functions wTv on
The system {wi} is regarded as an additive Cousin data composed of meromorphic
sections tyTv of F - v. I ndeed,

ikv Wk W i v = W i v 0 ± f ilS Z  ()W Y  +  •  •  4 )  v - W i v

= vfik (z i )+ • • •

is holomorphic o n  Vi n Vk. This shows also that the y-th obstruction is identical,
up to the constant factor — y, to the restriction { yfik } to C of the 1-cocycle {tTkvwv —
wTv} e V(13, 9(F - v)) corresponding to the Cousin data {wrv }. We shall sometimes
call { y f ik }  the y-th obstruction.

3. Suppose that the curve C  is ra tio n a l. Then the complex normal bundle N
is analytically trivial. Since IN C , 0)=0, all the obstructions are cohomologous to
z e ro . Therefore C  is  a  p rio ri o f infinite type. Suppose next tha t C  is elliptic.
We have 1-'(C , 0(N - v ) )0 0  if  and  only if N - v is analytically trivial. Therefore,
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if  N  is of infinite order, then C is of infinite type; and if N  is of finite order m, then
the type of C is either infinite or finite n, n being a multiple of m.

When a compact Riemann surface C, a topologically trivial complex line bundle
N , and a positive integer n (or infinity) are preassigned, we can easily construct an
example of imbedding of C in a complex manifold S of dimension 2 in such a way
that the complex normal bundle of C is N  and that C is of type n, as long as the
above conditions posed a priori are satisfied (see also Miyajima [9]). But this is
not always possible if S is required to be compact, as we shall see in the forthcoming
paper.

§3. The case of finite type

1. In this section we assume the curve C to be of finite type n. Let us take open
coverings II= {Ui }iE , and =  { and a system {w i }l,  of type n as in the preceding
section. To represent the distance from C of a point p  in the neighborhood V of
C, we take a non-negative continuous function r(p) on V which has the form r(p)=
p i(p)iw i(p)I on V ,  where p i is  a positive smooth function such that  p 1 = 1 on U1=

n C .  The first purpose of this section is to prove the following

Theorem 1. In  the above situation there ex ist, for any  real num ber n' greater
than n, a  neighborhood V o  o f  C  an d  a strongly  plurisubharm onic function 0(p)
on V o — C which increases with the sam e order as 11r(p)n" w hen p approaches C.

Corollary. The curve C has a fundam ental system  of strongly pseudoconcave
neighborhoods.

2. Let us begin with some preliminaries. Let E  be a flat line bundle over the
neighborhood V =  V i o f C  defined by a multiplicative 1-cocycle {r i k } e Z1(3 , T).
We denote by g (E )  the sheaf over V  of all germs of differentiable sections of E,
and by / v ( E )  the subsheaf of g ( E )  consisting of germs of differentiable sections
o f  E  w hich vanish o n  C  w ith order v . A  differentiable 1-cochain
C1( 13, g (E ))  is called a 1-cocycle modulo / v ( E )  if we have

+ tjjÇøjk+ Tik(Pki e F(V i n V n V k , / v(E)), i, j, k  E I,

where F(X , 9 9 )  denotes as usual the set of all sections over X  of a sheaf .9'. T h e
set of all differentiable 1-cocycles modulo / v ( E )  is  d e n o te d  b y  Z'03, g(E ),
mod o f v(E)). A 1-cochain {cp i k } e C ( B, g ( E ) )  is called the coboundary  modulo

v(E) of a 0-cochain {9i} E C
°
( l3 , 9 ( E ) )  if we have

( Pik —  tik9k + ( Po E r(V i n Vk, , -"(E)), j, k

We denote by ..,v(E) the subsheaf of 0 (E )  consisting o f germs of holomorphic
sections which vanish o n  C  w ith  o rder v, i.e., f v (E)=6(E) n v(E). W e set
Z103, 0(E ), m o d  v(E))= C1(93, C(E)) n Z 1 (93, g(E), mod j 'v (E ) ) ,  whose elements
are called holomorphic 1-cocycles m odulo v (E).



On the neighborhood of a compact complex curve 591

L em m a!. F o r  any  {(Pik} E Z10 3 , 0(E ), mod ..sfv+ 1 (E )), v=0, n ,  there ex-
ists a dif ferentiable 0 -co cha  in e C°(?3, 9 (E )) such that

(i) {9ik} is the c o b o u n d a r y  of {9,} modulo / 1 (E),
(ii) each 9 i is of the form

çoi(p)= E ii 4.(z i(P))w i(P) A w i(PY,
2,g 0 ,A+p5v

where 9, 14 (z i)  are harmonic functions of  the variable z 1.

Pro o f . Since the restriction {plk  I U1 n Uk }  o f  { 9 ,}  to  C  is in V(11, 0(E I C)),
we have a 0-cochain {9, 1, 0 }  consisting o f  harmonic sec tio n s  o n  U1 su ch  th a t
{9 i k I U n uk }  is the coboundary of {9 i1 „ }  (see §1, 2). We extend each {(Pnoo} to
a pluriharmonic function on  V; depending only on the variable z i ,  which we denote
a g a i n  b y  

(P i l
o o •

 T hen  w e ob ta in  a 0-cochain {91100} E O (J3 / 9 (E ))  such that {9,}
is the coboundary of {9 11 0 0 } modulo l ' ( E ) .  This shows the lemma for v = O . W e
proceed by in d u c tio n  fo r  v  1 . A ssu m e  th e  lemma fo r any fla t line bundle E
with v —1 in the place of v. S in ce (p ik  — 7 (01ik , W O +  (P i100 is pluriharmonic and vanishes
on U i n Uk , we have the decomposition

( P ik -  Tik (P k I 0 0  (Pi100 = ik + 171ik o n  Vi n
where

 j k
 is holomorphic, 

ik
 is anti-holomorphic, and they vanish on U i n uk . Such

a decomposition is obviously u n iq u e . Since {9,— tik9kloo+ (Piloo} is in  D (0 , 9 (E),
m o d  v + i ( E ) ) ,  we see easily that

{ik} E Z V I),  Oa mod f v + 1 (E))

and

{riik } e Z1(93, 0(E - 1 ) , mod siv+I(E - l ) ) .

Now, setting P i k l 1kWi
1 , we have

{(Pik} e  Z I M  (9 (EOF - 1 ), mod .1 "(E0E - 1 )),

where F  { t ik } is the flat line bundle defined in  § 2 ,  2 .  Indeed, from  t ik w,— rvi --
0(w7+ 1) it follows that tatwil = + 0(wr i); hence

+Tuti."  j' k ± t i k t a l V k i

T ijiT j i jk W 7 1 ±T  ik tT k i

T i j j k + T i g k i ) W T 1  0 ( A , 7 ) = 0 ( W 1 ) .

Similarly, setting P k w e  have

{97k } e Z 103, (9(E - ' O F - ), mod i f v (E - 1 0 E - 1 ) ) .

Now, by the hypothesis of induction, we have a 0-cochain {Vi } e C°(93, 9 ( E 0
F - 1 ) )  of the form

VI= E
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su c h  th a t { 9 }  is  the coboundary of {ço} modulo tv (F  a F - 1 ) ;  a n d  a  0-cocain
{97} e C°(Z, .g(E - ' OF - 1 )) of the form

(P7 = E 971,1,..(zi)101TI,

(Pi = (Pi +such that {97k }  is  the cobundary of {97} modulo o fv (E - 1 P F - 1 ). Let
Then {9 i }  is a 0-cochain of the desired properties. q. e. d.

3. Proof of Theorem 1. C o n s i d e r  the additive Cousin data {vvi- "} and the cor-
responding holomorphic 1-cocycle { ri k niq"—  w ï n }  e Z 1 (13, 0(F - ")). Applying Lemma
1, for v= n, to this 1-cocycle, we obtain a  differentiable 0-cochain {9 i } e C°(0,
9 (F - ")) of the form

(Pi= .14z(z i)W t
1,11. 0,2+g5n

where 9, 12,  are harmonic, such that

rik"(wi n - 9 0 — (wT" - - (Pi)e F(Vi n V, i
n +  l ( F — n ) , , k e l .

By the assumption that the curve C is of type n, none of 9 0 , 0 is holomorphic. W e
can assume here, choosing the system {w i } suitably, that 9 n o o  a re  all anti-holomor-
phic. To see this we put

qkn INT H  — 111TH —  nfik (z i )+ • • • o n  V i n Vk.

The n-th obstruction {— nfik } e Z 1 (11, 0(N - " ) )  i s  the coboundary of the harmonic
0-cochain {(Pil cm} • W e decom pose each 9 i1 0 0  in to  a  sum f i + # 1 of a holomorphic
function f i and an anti-holomorphic function -d i , and define a  new system {O i } by

n = iv ; " — fi (z o n  V

Then we have

lano i n oïn = — nfik (z i)--tiirfk (z0+f1(z0+ • • •

=ITil'gk(zk) - - 41(zi)+ • • • on V i n vk .

This implies that the n-th obstruction associated with is the coboundary of
the anti-holomorphic 0-cochain

Thus we may assume that the 0-cochain {9 i } is of the form

(Pi 
= ( z 1 )  + E 9 i i ,344 (z i )w tvT1 on V .

.1.,g0,15.1-1-1.t5n

Adding to each wT" —9 ; a correction term cc ; e F(Vi, i n + 1 , . - - -v  " )), we obtain a global
differentiable section a of F - " over V with "pole" of order n on C:

g  =w ïn - 41(z1) — ( P i l A g ( z i ) w t I T I +  g i
.1,1v?,.0,151+ r1

o n  Vi •

Let us calculate the complex Hessian H(lo- la) of the  function laia for a >O.
We restrict our consideration in 1/i and omit the index i. We write s=lo - 12 . Since
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w - „  E  0 w A o ft i3 E  ,p 4 w AvT, „ . 4., 1g12 ± 0 (1w1) 9

we have
sw = -nw - n- 1 1Tr."+•••, sz= - w- n gz+•",

\ n2 1w1- 2 "- 2 + ••• 0 (1w1- ")

sz ,  s z ,  / 0(lwi - n) 19z12+•••

Here we have sz , = Igz i2 +•••, because q (z) are harmonic. From

( 1 0 1 ,9 =  a s l  s  w z + a_( a  _1),4 -
2 s ,s ,,  etc.,

2 2  2

it follows that

-1 1012 - ali(lala)= - 2 - s 1 - 5 11(s1 ) =H (s)+(-E .-1 )s - 1

a a 2 s z s ,  isz12

 

a n 2114,1-2n-2+ ...
2

(a2

    

+

since jai lwrn, Therefore

d e t  ( —a2
10.12-a H(10.11 =) (a - 1)n21w1 - 2,2ig 2i2

Now we put Z =U  fpe U i l (g i)z i(z i(p ) )=0 ) . Since Z is the set of the zeros of
i.r

the holomorphic 1-form Ogi on C with coefficients in N - n  which does not vanish
identically, Z consists of a finite number of points. By the above calculation, we
infer that, for a> 1, there is a neighborhood V' of C - Z  such that la- la is strongly
plurisubharmonic on V' - (C - Z).

Our intention is to modify Iola to obtain a strongly plurisubharmonic function
on I/0 -C, where I/0  is a sufficiently small neighborhood of C. Let q be a point of
Z and assume that q is in U1. We define a function fl,(p) on V; by

13 g(p)= z i(p) -  z i(q)plz i(p) -  z i(q)12 1wi(p)1(2
- a)n,

where p(x) is a non-negative smooth function of the variable x, 0 + co, such
that

1
_.fo r  0 _ x x „ ,

p(x)=1
0 fo r  x

x, being a sufficiently small number. Then we have

and

H(s)=

Is12 s w s,
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o(I wil - 2 ) 0(1 w
H(13g ) lwi l ( 2 - a) "

()Ow 0(1 ) / ,

and

(#dzi = I wil ( 2 - °)" if iz i(p)— zi(g)l< x 0 .

We define 4, „= +g E /3q ,  w h e re  g > 0 . I f  g is sufficiently small, we can find a
qez

neighborhood V, of C such that O a  is strongly plurisubharmonic on  V,— C .  Since
n' > n, the  function 0„ 7 „  has the  desired property. Thus Theorem 1 is proved.

4. Let us consider the function lo-la with 0<a < 1 .  There is a  neighborhood V'
of C— Z such that the complex Hessian H(101 ° )  o f  lal a h a s  one positive and one
negative eigenvalues at every poin t in  V' — (C— Z ). We define 0 a=1 7 la 8  E

gez

where e is a  sufficiently small positive num ber. Then there is a  neighborhood V,
of C such that (P a  has the above property at every point in V0 — C . With the aid of
this function, we prove the following

Theorem 2. Let V  be a neighborhood of  the curve C and let W be a plurisub-
harm onic function on V — C. If  T (p)=o(11r(p)"") as p approaches C , where n"
is a positive real num ber sm aller than n, then there exists a neighborhood V, of C
such that VI is constant on V o —C.

Corollary. Let f  be a holomorphic function on V — C, where V isa  neighbor-
hood o f  C . I f  log+ If(p)1=o(11r(p)"") as p approaches C, then f  is constant.

To prove Theorem 2, we show first the following

Lemma 2 . In  the situation of  Theorem 2 , if  the plurisubharm onic function
W is bounded from above, then there exists a neighborhood V , of  C such that W is
constant on V 0 —C.

P ro o f . By a  theorem of Grauert and Remmert [5], VI is extended to a pluri-
subharmonic function on V, which we denote also by W. By Theorem 1, we can
take in  V  a  relatively compact strongly pseudoconcave neighborhood V , of C.
We will show that W is constant on V , .  Let the maximum of W on V, be attained
a t a  boundary point p o  o f  V,. Since V, is strongly pseudoconcave, there exist a
neighborhood W of p o  and  an  analytic set X  in W such that X  n W and such
that X n OV0 ={ p 0 } , where avo denotes the boundary of V,. Since W is plurisub-
harmonic, there exists a point p i  in  X— {p,} such that W (p 1) _  P (p „ ) . This shows
that the maximum of W is attained at an interior point of V,. H ence W  is constant
on V,. q. e. d.

Now let us prove Theorem 2. In view of Lemma 2, it suffices to derive a con-
tradiction from the assumption that W  is unbounded from above. W e take the
function (P, with Since Oa —1/1-"" and limsup r(p)""P(p)=0, w e  have

p•-■C
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limsup P(p)I0 a( p ) = 0 .  We choose in V a relatively compact strongly pseudoconcave
p-c

neighborhood V, of C such that, at every point in V,— C, the complex Hessian of
Oa has one positive and one negative eigenvalues. We may assume th a t W is non-
positive on the boundary avo o f  V ,, since it suffices to prove the theorem for W— A
in the place of W, A  being a  sufficiently large positive n u m b e r. The function PlO a

is upper semi-continuous and takes a positive value at some point in V 0 —C, since
W is unbounded. Therefore P/On a ttains its maximum B  a t  an  interor point pc,
o f  V0 — C .  W e  h av e  (P(p)_ BO,,(p), p E V0 — C  a n d  P(p 0 )=B(1)0(p0 ). Since the
complex Hessian of ( Pa a t  p, has a  negative eigenvalue, there exists a  holomorphic
map f  o f  th e  u n it  d isk  {  e  ICI <1 ) t o  V0 — C  such  that f (0)= p o  a n d  that

(4) of)(0) < O. W e  haveOCOC "

217r 1 (0„0f)(pe1e)d0 < 0 .(f (0 ))= a(Po)

if p is sufficiently small. F ro m  th is  and the fact that Pof  is subharmonic, we have

W(Po) 21
7r Y r

o
n (P°D(P e i ° )(10- -f fr

- Y;:r (0 a°f)(Pe i° )d0

<B 0 a(Po)=P(Po),

which is a contradiction. Thus Theorem 2 is proved.

§ 4. The case of infinite type

1. We consider in  this section the case where the curve C  is  o f infinite type.
Some definitions are necessary to state the re su lt . As was mentioned in  §1,

the Picard variety $(C ) of the compact Riemann surface C  can be identified with
the multiplicative group H '(C , T ) consisting of all flat line bundles over C .  As a
real Lie group, 13(C)=H 1(C,T ) is a torus of dimension 2g, where g is the genus of C.
W e introduce o n  43(C) an invariant distance d, i.e ., d(E1 1, Eit)= d(E,, E 2 ) and
d(E 1 0G , E 2 OG)=d(E 1 , E2)  for any E 1 , E 2 , Ge 3(C). There exist o n  $ (C ) infi-
nitely many such distances, but obviously they are all equivalent to one another.
Now we denote by e o the subset of $(C ) consisting of all elements of finite order.
W e denote by e, the  subset o f $(C )— e, consisting o f  all elements E  such that

— log d (1, Ev )=0(log v) a s  v + co.

This condition is equivalent to the condition: There exists a positive number a
such that

d(1, Ev)..(2v) - - / f o r  v =1, 2,....

Clearly the set e, is determined independently of the choice of the invariant distance
d. It is easy to see that $(C)—e, is of Lebesgue measure z e ro . In  this sense the
elements of cto u ,  are g en e ra l. But we note that i s  the union of a countable
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number of nowhere dense closed sets; it is therefore a set of the first category.
The purpose of this section is to prove the following

Theorem 3. Suppose that the curve C is of  infinite type and that the complex
norm al bundle N  of  C is contained in e 0 U 1 . Then there exist an open covering
{r,}  of  a neighborhood V ' of  C and a system {u 1} of  holom orphic functions u 1 on
V', such that u,=0 is a local equation of  C n 1/ on each V ', and that u i lu, is a con-
stant of modulus 1 on each 1/ n V A .

We note that the conclusion of Theorem 3 is equivalent to either of the following
statements (i), (ii):
(i) There ex ists a m ultiplicative holom orphic function u w ith div isor C on V '.
Here, by a multiplicative function on V ' we mean a function u defined on a covering
manifold of  V ' whose modulus ui is a (single-valued) function on V '.
(ii) The restriction [C] I V ' of the complex line bundle [C] to V ' admits a structure
of f lat line bundle, i.e., [C] I V' = F I V '.  (See § 2, 2.)

Corollary. If the curve C is of infinite type and N is offinite order in, then there
ex ists an m -v alued m ultiplicativ e holom orphic function u w ith div isor C on a
neighborhood V ' of  C, such that u"' is a (single-valued) holomorphic function with
divisor mC.

2. Construction of formal power series. We choose and fix a finite open covering
93 = { Vi l  of a neighborhood of C consisting of small dicylinders V, of the form I w11 < 1,
Izi l < 1 , where (w 1, z 1)  is a  local coordinate system of the manifold S  which covers
the closure V 1 o f  Vi . We assume that the functions wi satisfy the conditions: (i)
wi = 0  is a  local equation of C n V, in each Vi ,  and (ii) the system {w 1}  is of type
(at least) 1, i.e., the restriction of wi/wk t o  C n Vi n  Vk is a constant of modulus 1.
Then the transformation of local coordinates on Vi n V  of the form

f Wk(P)= (Pki(wi(P), zi(P))= tkiwi(P)+ i (Pkil v(zz(P))wi(PY,

zk(P)= tkki(wi(P), zi(p)).
v=2

We set U1= C n v,. Then tt = {U i} is a finite open covering of C by disks Ui : z  <  1 ,
and the transformation of local coordinates on Ui n (A is of the form

zk( p)= ki( 0 , z

To prove Theorem 3 , it suffices to construct a  system {ui }  o f  holomorphic
functions u i defined respectively on a neighborhood V  ( g V ,)  o f  Ui satisfying the
conditions: (i) each u, is of the form

ui(p)=g ; (w i (p), z i (p))= wi(p)+ (terms of o r d e r  2),

and (ii) u i = tik uk o n  1/ n V .  B y  (1), the condition (ii) is equivalent to

(2) g ,(w,, z 1) = t ik g k (9,a (w,, z 1), , a (w  z 1)) ,

where ( 1, 1, z i )=(w i(p), z ,(p)), pe 1/* n

(1)
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We will determine each u i = g i(wi , z i )  as an  implicit function defined by the
equation

CO

z d = u i+  E  f i1(Z1)141,
v=2

where f i (u i , z i )  is  a power series in  u ; w hose coefficients f i l v (z i)  are holomorphic
functions of the variable z i , Iz i l < 1 .  The condition (2) is equivalent to

(3 ) (Pk i(f i(tti ,z i ) = f a t k i t t i l  t l i k t ( f i ( 11 i5 z i ) )  •

We expand the left-hand side of (3) into the power series

z 1), z i) =  tk i( 14 i + f ilv (Z i) t in + tk i E wikiv(ZOUÏ,v=2 v=2

0 0 v
' k J  E  h 'ik iv (z i)1 4 =  E  (Pk1lv(zi)(u 1 + E

= 2
f i l , (z  0 /4 ")

v=2 v=2

The right-hand side of (3) is expanded into the form

tk iu i+  E ZiM tk illiY  •
v=2

Letting

fk iv(Gdwi, z 1))=fkiv(Oki(0, z i ) )+  E  fkilv(zi)wit,

we have
(6) fk(tkiui, thi(fi(ui, z1), zi))

=tk iui +  E f k i v (Ok i(0,z )) ( tk iu d v +tk i E
v=2 v=2

where

(7) t k i E  h i v ( z i ) u ï  = E LE f k i l v i A z i ) ( u i + E
v=2 v=2 0=1 .1=2

cc co oo
( 1k 1 i

We infer from (5) and (7) th a t, if  f 112 , . . . , f i l v , i c i ,  a r e  determined, then h'ik " ,
and h'ik i v + ,  are determined independently o f f,iiv+15filv+2 , ••• •

To obtain f ( u i , z i), i E I , satisfying (3) as formal power series in u i ,  it suffices to
determine successively the systems I f i 1s,+ 1 11e1 , v = 1 , 2 ,..., in such a way that

(8, v) tikvfkiv + 1(0 d o ,  z 1) ) - f i l ,7+1(z 1 )=h 1k l y +i(z i) ,

for z i =z i (p ) , p e  ui n U k , are satisfied, where we have set

hik Iv + 1 = Iv+1-117kIv+1•

(4)

where

(5)

Suppose that {f112} ..... {f1} satisfying (8, 1),..., (8, y— 1), respectively, are already
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determined. We shall show that { —Ii i k i v + 1 } is the v-th obstruction (e 0(N-v)))
associated with a system of functions of type v (see §2, 1). Then by the assumption
that the curve C is of infinite type, { f „ . 1 }  satisfying (8, v) will be obtained.

Consider the functions vi =g 1(w1, z i), i E I ,  defined implicitly by the equations

wi = of - flub  z 1)= f1112(z1)01,
it=2

respectively; and let {v i (p )} be the system of functions vi (p)=g i(w i (p), z i (p)) o n  V.

It follows from (4) and (6) that

wk— f(tk(vi, 2:k)=9ki(fyi(vi, zi)— f rc(tkivi, k i ( f z 1),  z 1) )

= 1(z1)vy+1 + • • •

where w ,=w i (p ),  z i =z i (p), v i =v i (p), w k =w k (p), z k =z k(p), peV i n Vk ,  and where
denotes th e  term which vanishes o n  C n V1 f l  V k  w ith  o rd e r  -1H- 2. Therefore

k(Wk -  k ih  ik I v+  1 (Z  ) 14 + 1 + • • • , Z k) =  tkiVi•

Hence

llk +  tk ih ik i v i (Z  i )V 1 + ±  •  •  •  =  tk iV i,

or, multiplying by t ik ,

t io k — — hi k i v + I (z i)vy+ 1 + • • •.

This implies that { — hi k i v +  ,} is  the v-th obstruction asscoiated with {v i }.

Thus we can obtain f i (u i , z i )=u i + f i l v (z i ) u ,  i e / ,  as formal power series.
v= 2

3 .  Estimate of obstructions.
CO

F o r tw o power series a(u)=a u v and  A (u)=
v=o

A v uv, we write a(u)«A (u), when Ia I A f o r  v=0, 1, 2,.... We shall

show  th a t  the pow er series f i (u i , z i )

paragraph can be constructed in  such

u + E  A v uv  w ith constant coefficients
v= 2

satisfying

= u, + E  f i v (z i )uy, i c i ,  o f  t h e  preceding
v= 2

a  way that there is a pow er series A (u)=

a n d  w ith positive radius of convergence

(9 ) f (u i , z i )«A (u,),l e i .

If we write f r(u i , z i )=u i + f i i ,z(z )ult and A v(u)=u+ A 0A , then (9) is equiv-
'v=2 11=2

aient to  the conditions for v =1, 2,....

(10, y) fR ui, z i )« A v(u), i e l.

Suppose that fy(u i , z i ) ,  and A v(u) satisfying (10, v) are  already determined.
We shall first make an estimate of h k IV + 1  and  h k tV + l , in  terms of A 2 ,..., A,. Let
R  be a  sufficiently large number such that icpk i i ,,(zi)1. 1?A, p =2, 3  Then from
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(5) it follows that
v+1
E h (z i)1 4 << E Rg(A v(ui))"—  

R 2  ( A v  ( u  i ) ) 2

g= 2 m=2 1 — R A v ( I i i )  •

Let 11*= { U t}  be an open covering of C  such that each UP is relatively compact in
U.. We choose a sufficiently large number Q such that, for every point p in Ui n
the closed disk

zip= { q e  vilzi(q)=zi(P), Iw(q)=1/Q}

is contained in  Vk. Since

z i(q ) ) )1 5 4 „ o n  zlp g_ V n Vk, v,

we have

ifkii0.(zi(p))1<A A QA , o n  U ; n 14, =2 ,..., v , /1=1 , 2,....

Therefore, by (7), we have

v+1E ifik i A (z i ) u « E A ,Q A (A v (um lu'it
A=2 s=2 A =1

QA v (ui)  << Q(Av(u i )) 2

= (A v(u1)—  u i )

l — Q A v ( u i )  1 —  Q A v ( u ; ) '

for z i =z i(p), pE  U i  U t. Thus we have

v+i
E  hi k i ,(z i ( p ) ) 0 «

-V ( A q u i) ) 2  

IA=2 1 —  M'A v(u i )

where M ' = 2 max { R , R 2 , Q}.
This implies that

f o r  p e U i n

Ihiki,-1-1(zi(P))15 (the coefficient of /en i n  A T(A v(u)) 2  

1 — M 'A v (u )»

for p e U i n U .
To make an estimate of hi k i v ,  on Il i n U k , we use the fact that {h i k i v + , }  is a

1-cocycle. For any point p  in  ui n U k, there exists a j  e I such that p e t i l .  From

huiv +i(z i(P))+tUk ik iv  + i(z i(P))+ ray  hkiiv +1(ziSP))=

it follows that

Ihik iv , i ( z i ( 0 1 .- -  1 hut v + 1(zi(P))1+ ifrikj + azi(P)) I

Hence, setting M =2M', we have

(11) Ihiklv+I(z i(P))1 5 (the coefficient of uv+ 1 in .111(Av (u)) 2  

1— MAv (u)

for p E  v i n U k•

4 .  Proof of convergence for the case N e eéoL e t  E  be a  complex line bundle
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over a compact Riemann surface C defined by a multiplicative 1-cocycle on the nerve
of a finite open covering 21= {U,} of C .  For a 0-cochain f°={A} c (9(E)) and
a  1-cochain f = {A} e C1 (11, (9(E)), we define, respectively,

f°I1 =max sup Ifi(P)Ip.u,
and

If' 11= m a x  su p  I  f ik (p)I.
i,k  p e U i n u ,

Lemma 3 . (Kodaira-Spencer [8 ] )  T here  ex ists  a constan t K = K (E ) such
that, f o r an y  l-cocycle f1 e Z1(11, (9(E)) with + oo w hich is cohomologous to
zero, there ex ists a 0-cochain f° e C0 (11, (9(E)) such that f '  is the coboundary of  f°
and that .-1(11f1

Now returning to the proof of Theorem 3, let us consider the case N e (.%, i.e.,
the case where N  is of finite order, say of order tn. We put K =  m ax K(N - v)=

m a x  K(N - v). Since the obstructions {k k i ,,,,} are in Z 1 (11, (9(N - v)), we can
v= 1,2 ,...,m
determine {f, 1 , , }  satisfying (8, v) in such a way that

(12) IlIfilv+1111-51(11 V1,10+1111

We define the power series A(u)=u + A u '  as the solution of the functional
v=2

equation

M(A(u))2 A (u)—  u K 1— MA(u)

where M is as in (11). Clearly A(u) has a positive radius of convergence. Suppose
that f r(u ,, z d=u,+ f i l m (z ,)4, i E / ,  satisfying (8, 1),..., (8, v —1) and (10, y) are

it=2
already determined. Then we can obtain f i l v + ,(z,), i c i,  satisfying (8, y) and (12).
By (11) we have

M ( u ) ) 2
{ f i  I v+1} Ihik Iv+ 1111 K  (the coefficient of uv+I in A (  

1 — MA (u) )

Av+ 1 •

Hence f r q u i , z i )=M u i , i e /, satisfy (10, v +1). Thus we can
obtainf,(u,, i e I, satisfying (9 ). Theorem 3 is thereby proved for the case N

5. Let C be a compact Riemann surface and let 11= {I/i }, ,  be a f ix ed finite open
covering of C  by disks U,: Izi l < 1 .  For two flat line bundles E , and E2  over C,
we define a distance d(E,, E2 ) by

d(E,, E 2 )= inf max IN )  — tR) I ,
i , k e l

where the infimum is taken over the sets of all multiplicative 1-cocycles { tP }  and
{t ,i) } representing E, and E 2  respectively. Clearly the distance thus defined is an
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invariant distance on 13(C)=H'(C, T ) (see no. 1 of this section). W e have

d(1, E)=inf m a x i —tjk ,
i ,k e I

where the infimum is taken over the set of all multiplicative 1-cocycles {tik } represent-
ing the flat line bundle E; or equivalently

d(1, E)=inf m a x  — tik tk l
1, kci

where {t ik } is a fixed multiplicative 1-cocycle representing E and the infimum is taken
over the set C°(11, T) of all multiplicative 0-cochains {t i }.

W e denote  by 5  the coboundary m ap C(11, e(E))-4C 1(11, (9(E)). If E  is  a
flat line bundle and E#1, then (5 is injective.

Lemma 4. There exists a positive constant K such that, for any fiat line bundle
E over C and for any 0-cochain f e C°(11, (9(E)), the inequality

d(1, E) i: —1(116f11
holds.

P ro o f. We observe first that, there exists a positive constant a 0 such that, for
any flat line bundle E and for any  f=  {fi l e (9(E)) with 11f11=1 and
we have min i n f  i(p)I. 1/2. To see this let us assume the contrary. Then we can

i p e U ,
find sequences of flat line bundles E =  {t } an d  o f  0-cochains =  {P ) } E

v=1, 2,..., such that II fyll =1, min inf IfIv ) (p)1 <1/2, and th a t  116fv11—>0 as
i p e U

o13. We can find subsequences E and fr „  IC =  1, 2,..., such that, for each i, k e I,
the sequence W' )  tends to  a  lim it ei V) , and that, for each i e I ,  the  sequence
converges uniformly on  every com pact set in U, to  a  holomorphic function fo ) .

Then {42 ) }  is a multiplicative 1-cocycle and defines a flat line bundle E0  over C.
Moreover, since t(dc'- )fiv- )  — PO  converges to  0, we get t12)fr 

_ f o )
 =0 on Ui n Uk ;

which implies that
 { f o)}

 is a global section of E0 . Therefore each
 f o )

 is a constant
and clearly we have If (

i.°) 1= 1. Let 11*— {M E, be an open covering o f C such that
each tip is relatively compact in U1 and such that U; n Uk 0 0  implies up n u;,!' 00.
Let p be any point in (Ji and assume that p is in U t .  From

I f (iv - ) (p) —  f () ) (P)I I f  .) P) — 4Z.) f .) 1+14Pd/1v- ) (p) — f i( ) ) (p)I

II (5fv, II + Itz- ) P k v . ) ( p)-42 ).fi°) (p)1
it follows that ',<) converges uniformly on U1. This contradicts that min inf I fl"" ) ( P)I

i e l  p e U ,
<1/2, and the statement is proved.

In view of the fact that the distance d(1, E) is bounded, it suffices to prove the
following asssertion: (*) There exists a positive constant K o  such  tha t, for any
flat line bundle E and for any f e C°(1I, (9(E)) with 11f11= 1 and 116f II the inequality
d(1, E):_K o llbfil holds.

We note that, for f =  { f }  satisfying the above conditions, we have min inflf(P)1
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1/2; and hence

l o g  lfk 1(p) I lo g  I f i l(p)1 211fk( p)I — If1(p)1 I

52Itikfk(p) —fi (p) 1_2116f11,

for pe U i n Uk.

Now we need the following

Sublemma. There exists a positive constant K , such that, if  {h i }  is a system
of  bounded non-negative (real-valued) harmonic functions h i o n  I l i satis f in g  the
conditions:

(i) min inf h i(p)=0,
i c i  peUt

(ii) Ihk(P) — VP)15 6 , f o r p e U i n U k , i, k e I ,

then we have max sup h i(p) K 1 .
ie l p e U i

Proof of the su b le m m a. By Harnack theorem, there exists a positive constant
L such that, for every non-negative harmonic function h on U  and for every pair of
points p and p ' in up, the inequality h(p) Lh(pr) holds. B y the condition (i), there
exist an i0  e I and a point p o  in  Uf a  such  that lim  inf h i 0 ( p ) = 0 .  For any k e I  and

a point g in U k, we can choose a sequence j, ..... j1 E I  of length I such that Po e  U ,
E Uri an d  tha t U t n 00 (v=1,•••,1-1). We take points p, (v =1,•••, I-1 )

respectively in  L/P n U t + ,. We have ii i „(pv )__Lh i ,(p „_ ,) ; a n d  by  the condition
(ii), h i , 1(p 0 ) 5 h 1v (p 0 ) + E .  Hence

hk (g).11,,(g)- E e..5_ • • • - (1,1 L ' - ' + • • • + L + 1)s.

The sequence can be always so chosen that the length / does not exceed a
fixed number /0. Thus, K i =L 10+•• •+1  i s  a  constant of the desired property.

q. e. d.

If  we apply th e  sublemma f o r  h i(p)= lo g  If i (
l
p ) , a n d  c= 2 11011, w e  have

max sup log , (
1 ,, :5_21( 1 115f11.

I p e U i I J  R P )! —
The following fact is easily proved: There exists a positive constant K , such

that, if f  is  a  holomorphic function o n  LI, such that 1 then it holds
I f (P) — f (P')I K  2 6 for any points p and p ' in 1.11̀.

To prove the assertion (*), we choose a point p i in  each up and put t i =f,(p,)I

I f i ( 1 4 .  When U i n U k 0  0 , we take a point p  in n Ult . Then

Itiktk —  til ltk — fk (P )I+ It ik fk (P ) — .fi(P )I + I f i ( P ) — til •

We have I tikfk(P) — .f/(P)1 5 II bf Ii;
and
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fk (P k ) f  (  7 ,\
f k (  l  I J I

k(POI

Lfi lk!( P )pkk)1 M P ° +1.6(pk)-fk( p )1

= ( 1 — Ifk(POI)+Ifk(Pk) —fk(P)1

(2K1 + K2.21( i )O f  ,

since 1— Ifk (P )I log 1< 2 K 1 5f. Sim ilarly w e haveIlk ( Pk)I =

t1l (21( 1 +K 2 21( 1 )11011.

Therefore, putting Ko =1+ 2(2K, +1( 2 2K 1 ), w e  have It ik tk

proves the assertion (*). Thus Lemma 4 is proved.

6 .  Proof of convergence for the case N e " 1. A proof of the following lemma is
found in Siegel [10], though it is not stated explicitly.

Lemma 5. L et Ey , v= 1 , 2 ,..., b e  a  sequence of  positive numbers satisfying
the conditions:

(i) There exists a positive number a such that

e <(2 v )2, for v= 1, 2,....

(ii) +e;i for v > p.
CO

Then the formal power series A(u)=u+ E  Av uv satisfy ing the functional equation
v=2

(13) E -
v -

1
1  
A v —  M (4 (1 S ) )2

1— MA(u)' M > 0 ,

has a positive radius of convergence.

Now we return to the proof of Theorem 3 for the case N e We put e ; '=
1 1N- v)= x -d(1, Nv), where K  has the same meaning as in Lemma 4. Then

the condition (i) is satisfied by the assumption N e The condition (ii) is satisfied
because

d(1, Nv - P)=d(NP, Nv)_d(1, N)+ d(1,  NV).

Let M have the same meaning as the end of no. 3, and let A(u) be the solution of the
equation (1 3 ) . Then A(u) has a positive radius of convergence and we have

f i(u  zd «A (u ,),  j e I,

which

in the same manner as in no. 4. Thus the series f i(u i, zi) are convergent. Theorem 3
for the case Ne e, is thereby proved.
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§ 5. Conclusion

1. Classification. W e  have so far investigated the structure of the neighborhood
of a non-singular irreducible compact complex curve C with topologically trivial
normal b u n d le . In view of the obtained results we may classify such curves into
four classes as fo llow s. Let n denote the type of C and let m denote the order of
the complex normal bundle N of C .  Curves with n < oo constitute class (a). Curves
with n = oo, m < oo constitute class (fl'). Curves with n=cx:1, m= co are divided into
two classes: A curve C belongs to class (/3") if there is a multiplicative holomorphic
function with divisor C on a neighborhood of C; otherwise C belongs to class (y)
(see Theorem 3 and the following remark for equivalent criteria).

We know by Theorem 3 that, if C belongs to class (r), then there exists an
m-valued multiplicative holomorphic function with divisor C on a neighborhood of
C; and that if C is of infinite type and N is in (53,, then C belongs to class (fl"). We
shall give an example of a curve of class (y) at the end of this section.

2. Neighborhood of a curve of class (In or (p"). We have seen in §3 the "strong
pseudoconcavity" of the neighborhood o f a  curve of class (ce). T h e  following
remarks will make clear the "pseudofiatness" of the neighborhood of a curve of class
(X) or (fl").

1 °  Let C be a curve of class (/3') or (fl"), and let u be a multiplicative holo-
morphic function with divisor C on a neighborhood V of C .  We take a sufficiently
sm all num ber e>0 so that V, {p e VI lu(p)I <81 is relatively com pact. Then the
neighborhoods V,. = {p G VI I u(p)1<r}, 0< r e, are pseudoconvex and pseudoconcave
(but not strongly). We may call such neighborhoods pseudoflat.

There is no strongly pseudoconcave neighborhood o f C  which is contained
and relatively compact in V. To see this it suffices to consider the plurisubharmonic
function lui (or the pluriharmonic function log lu I, if one prefers) on V; the above
fact is known by the same reasoning as in Lemma 2.

20 Suppose tha t C belongs to class (fl'). T h e n  um  is a (single-valued) holo-
morphic function on V with divisor mC, nt being the order of N .  The curves F c ,

defined by um — c= 0 , are irreducible and compact. Hence any plurisub-
harmonic function or holomorphic function on a neighborhood of P c is dependent
on um

It is clear that, if there exists a non-constant holomorphic function on a neigh-
borhood of C, then C belongs to class (X).

30 Suppose that C  belongs to class (fl"). Let us consider the compact real-
analytic hypersurfaces Er = { lie V1114 (0 = 6 ,  0< r e; and the holomorphic foliation
" '  defined by the multiplicative function u on V (see Suzuki [11]). The leaf Lof the
foliation through a point po  in V is defined as follows: We take a small neighbor-
hood W of p o and a branch u, of u on W, and let L' be the curve on W defined by the
equation u,(p)—u,(p 0 )= 0 ; the leaf Lis the analytic continuation of L'. Every leaf
L in K, except for C, is contained in a hypersurface Er ; L is non-compact and dense
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in I ,.
L et W  b e  a plurisubharmonic function o n  a  neighborhood of

Then W is constant on Er . To see this let the maximum of P on Er  be attained at a
point po . Then, by the principle of maximum, P is constant on the leaf L through
po . Hence P is constant on Er  by the upper semi-continuity.

It follows that any holomorphic function on a neighborhood of Er is constant.
In particular, there is no non-constant holomorphic function o n  V— C , fo r any
neighborhood V of C.

3. Curves in the neighborhood of C. Let us examine how many compact complex
curves are distributed in a small neighborhood V of the curve C .  We may assume
that V is a tubular neighborhood. If F is a 2-cycle in V, then F  m C  (homologous),
where m is an integer; and hence we have the intersection numbers (F2 )=(F, C)=- 0
because (C 2 ) = 0 .  In particular, if F  is  a compact complex curve, then F —mC,
m > 0; and if further F is irreducible and  r c , then l and C do not intersect, i.e.,
F c V— C.

Suppose that C belongs to class (a). Then there exists no compact curve other
than C in a sufficiently small neighborhood V. To see this, we consider the strongly
plurisubharmonic function .13, o n  V— C constructed in  § 3 . I f  there were a compact
curve F  in  V— C, then the restriction of to  F  w ould be a non-constant sub-
harmonic function; this contradiction proves our assertion.

Suppose that C belongs to class (r). W e have the irreducible compact curves
F,:um— c= O. I t  is  c le a r  th a t th e y  are the only irreducible compact curves in a
small neighborhood o f  C .  We note that T e m C  ( c  0), m being the order of the
complex normal bundle N  o f C.

Suppose that C belongs to class (fl"). Then there is no compact curve other
than C in the neighborhood V .  To see this, let F be an irreducible compact curve
in  V,. S in c e  the restriction of III to F is a subharmonic function, it is a constant.
We take an arbitrary point p o on F and a small neighborhood W of p o . L e t  u*  be a
branch of u o n  W . Since =  u  is constant on r n vv, u*  is constant th e re . This
implies that F coincides with the leaf L through p o of the foliation .9". B u t  L  is com-
pact if and only if L = C .  The assertion is thus proved.

By the above observations we have the following proposition :

Suppose that there is a sequence of  irreducible compact curves F v , v =1, 2,...,
with the properties:
(i) For any small neighborhood V  of  C, there is a number v o  such that, if  v
then r v V .
(ii) L etting F v —mv C, there is no v o  such that m v o = m v o + i = •••.
Then the curve C belongs to class (y).

The author does not know whether, conversely, there exist infinitely many
compact curves in the neighborhood of a curve of class (y). (See Arnol'd [I] 4, 5.)

4 .  Example of a curve of class (r ) L et us first make an observation concern-
ing iterations of some holomorphic functions (Cremer [2]).
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Let go: C—>C be an entire function. A system of distinct points (c„ c 2 ,..., cm )
is called a cycle of order m  if we have (p(c1)=c 2 ,..., go(cm _,)= cm  a n d  go(c,,,)= c„
A point c is called a fixed point of the /-th iterate (pi = go.•••ogo (1 tim es) of if (pi(c)=c.
It is clear that the set of all fixed points of 9, is the union of all cycles whose orders
divide /.

Suppose that go is a polynomial of  degree  d  2 of the form

9 (w )= a 1 w + a 2 w2 + •••+ w d ,

w here la i l= 1  an d  (4 0 1  f o r 1 =1 , 2,.... S uppose f urther that a l  satis f ie s  the
condition: There is a num ber A >1 such that lim inf A/11 —  aildi-(= 0. Then there1—co
ex ists a  sequence of cycles (c„,,, cr,m,) of order m v , v =1, 2, .......such that
max Icy kl —4) and tn— oo as v-+ oo.

There exist uncountably many a l which satisfy the condition (see [2], P .  155).
To prove the above assertion, consider the fixed points of the 1-th iterate goi(w)—

(4w+ •• • -Ewd` of (p. They are the roots of the equation.

(al, —1)w+ ••• =O.

Since the product of the roots except for 0 of the equation is (

is at least one fixed point c of 9 , such that 0 < <11 —
number r> 0, we can find a sequence of fixed points c„ of

We choose a sufficiently small r so that

— 1)4 1 - 1 (a — 1), there

. Therefore, for any
v=1, 2,..., such that

K = su p  19 ( w )

Iwi<r W
<A , which is possible because 9(w) —>1

as w—+0. Then we have, for k =1, 1, - 1 ,

19k (01<K k A - Iv r<(K IA )Gr<r.

Let m v be the in teger 1 such that gok (c,)0 c v fo r  k =1,..., m w - 1 ,  and 9 „,(0 — c ,
and  consider the cycles (c 1 , go,,, _ , ( 0 )  o f  order mv .
Since max lc, k l < (KIA )Gr, we h a v e  m ax lc , --A  as v—> oo. W e have m— * cc

1 Ic S tn s , 15k5m,
because there are only a finite number of cycles of order smaller than a fixed number.

Now let C be a compact Riemann surface of positive genus. We take a closed
Jordan curve J  on C such that U0 = C— J is connected, and a neighborhood U , of
J  such that U, n U1 = U 1 — J consists of two connected components U ' a n d  U".
Let d o : Iwo ! <r 0 be a disk of radius r o , and let A ,:lw ,i<r, be a  disk of radius r 1 .
We construct a complex manifold S from the disjoint union of U 0 x d o and U 1 x A,
by the following identification: Identify (po , Iv()) in U 0 x d o and (p„ w 1) in U 1 x A,
if either po =p , E U ' , 14'0 =14, 1 , or p o =p , e U", w 0 =go(w 1 ). Here cp is a polynomial
as above, r ,  is sufficiently small so that go is injective on A 1 , and I-, is sufficiently
large so that supl(p(w i )1< r o .

w e s t

We identify the curve on S  defined by w0 =0 on U 0 x d o  and w 1 = 0 on U, x A,
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with C .  Thus C is imbedded in S with topologically trivial normal b un d le . Con-
111y

sider the curves F v , v= 1 , 2,..., on S  defined by fl (w o —c,,,)=0 on U, x  d , and
m y k = 1
jj (% i —c k) =0 on U1 xA 1 . F o r  sufficiently large y, the curves r v are irreducible
k=1
and compact, and F„ —  m „ C . Thus the sequence of the curves l',, satisfies the con-
ditions of the proposition in no. 3. The curve C therefore belongs to class (y).
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