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O. Introduction.

It is known that solution of ordinary differential equation by means of central
difference scheme does not lead one to the true solution but rather different solutions,
so called ghost solutions. The significance of this phenomena was first recognized
and analysed mathematically by M. Yamaguti and S. Ushiki [5, 6]. Mathematical
mechanism of the  appearance of the  ghost solution in the 1-dimensional system
was elucidated by Y. Takahashi [ 4 ] .  In  this note we consider the n-dimensional
case (n >2), and show that in  general the solution by means of central difference
scheme leads one to considerably different solutions, no matter how small one make
the time mesh Lit, or even when one takes the limit z lt-4 0 . We also show that limit-
ting central difference scheme exhibits very interesting bifurcation phenomena when
the original differential equation has a symmetry.

Let us consider an ordinary differential equation on R n (in  general on an open
domain of it).

=f  ( x ) ,  X E R n

ddt ) (1)

The corresponding central difference equation is given by

X„,+i f i x m ) ,  x m R "  (At > 0)24 t (2)

Does the solution of (2) approximates well the corresponding solution of (1)? It
will be shown this is not the case even if we take the limit Lit-+0 in the sense stated
latter. We show the solution of (2) converges to the corresponding solution of the
equation

5c=f(y)

=f(x ) (3 )

in the limit that Lit-+0. T h i s  is veryfied in  §1 in  slightly more general situation.
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More precisely, let x,„(xo , X 1 ; t )  be a solution of (2) with the initial condition
xo (xo , x,; t) = x0 , and x,(x o ,  x ,;  z lt )= x ,. I f  we set

x ( t ;  t)= x1; A t)

y(t; At)= x 2 [ / i l t ]  +
,(x 0 , x 1 ; At)

(here [ r ]  denotes the integral part of the number r)
then the limits

lim  x(t; At)=x(t), lim y(t; At)= y(t)
At—■0

exist, and (x(t), y(t)) is a solution of the equation (3) with the initial condition (x(0),
y(0)) = (x o , x 1).

We call the equation (3) the centralization of the equation (1). The centraliza-
tion (3) is a consequence of an averaging of the equation (1) in the direction to  the
future and to the past in some sense.

Centralized equations have a number of remarkable properties.
Firstly, the diagonal A ={(x, y)e R" x R"lx= y} is  an invariant space of (1),

and the system on A is equivalent to the original equation (1). That is, centralized
equation has a sub-system equivalent to the original equation. Secondly, centralized
equation preserves the Lebesgue measure, that is, it induces a  measure preserving
flow. This follows from that the divergence of the right hand side of (3) vanishes.

Here we give the important remark, which follows from the facts stated above:
If x , e R" is a stable point of the system (1) in the sense that div f (x 0 ) < 0, then the in-
variant manifold A of the system (3) is unstable at the corresponding point (x o , x 0) e
A, namely, the solution curves of the system (3) passing through the points (■E A) near
to (x o , xo ) leave exponentially from the A .  This means that if we approximate the
system (1) by the system (2), then the error grows with exponential rate which is
independent of small enough A t. In this sense, the solutions of (2) do not approxi-
mate well the solutions of (1) no matter how small we make the time mesh At.

Especially, centralized equation is Hamiltonian, if  a n d  only if the original
equation is a gradient system . Here, symplectic structure on R" x R n is given by the
usual one (0 2 =dx  A dy=E dx i A dy i , th a t i s ,  x  a n d  y  a r e  th e  conjugate vari-

ables. T h i s  may be very interesting because of the  contrasted properties of the
gradient systems and the Hamiltonian systems. Note that 1-dimensional system is
always a gradient system. "Centralization of the static system leads the metabolic
sy stem ."  If the original system is Hamiltonian, then the centralization of it is again
Hamiltonian, where symplectic structure of the space R" x R n  D  (p, q; P, Q), R" =
R2 t" D (p , q ) is  n o t th e  natural one but one given by Co2 =dp  A dQ+ dP A d q .  Es-
pecially, if the original system is natural Hamiltonian, i.e. Hamiltonian with a
Hamiltonian function

H(P, q)-= T(P)+ U(q),

then, centralization is given by



Chaos and bifurcation phenomena 41

13 _  au ( ) _   a T  p __  aua T  
aQ ap

,
ap a P

that is, the sum of independent two identical systems which are equivalent to the
original system . This means that if we project the solution of the centralization to
the space (p, Q) or (P, q), then we get the true solution of the original system.

Similar situation occurs when one deal with the linear equation

Its centralization

is transformed to

*= Ax.

*=A y, Y  =A x

= — AY,

if we set X = x + y and Y=x — y.
In  3  we investigate some concrete example, which depends o n  a  parameter

and appears in the well known Hopf bifurcation:

X, =x 1(1 —(xf + xi)) — wx2

(4)
= x2 (1 — (xf + xi)) + cox] .

This system is invariant under the rotation arround the origin and is  a gradient
system when (0=0.
Because of its rotational invariance, its centralization

-1= Y1( 1+ — wY2

= Y2( 1Y i » +  WY 1
(5)

5, 1 = x(1 —(xf + xi)) — cox 2

5, 2 = X2(1 - (X? + ± COX

can be reduced to a 3-dimensional system. Especially, when  w =0, it has a first inte-
gral, that is, kienetic momentum F = xi Y2 —  x2Yi, so the system is integrable.

If the original system (1) has not symmetries, then its centralization has, even if
(1) is  gradient system, very complicated structure and its solutions show chaotic
behavior.

Returning to the system (4) and its centralization (5), when w is large (say w=1)
the solutions of the system (5) show the behavior similar to the 1-dimensional case.
When w is small (say w =0.2) it shows chaotic behavior. In other words, the one-
parameter family of the system (5) has an interesting bifurcation phenomenon. To
see this, let us consider the Poincaré map of the "periodic" solution (0= 4)=0, q = 2,
4=O— n= 0, n=0) of the reduced system (6) of (5):

ii =r/(2— q) cos tb cos 0
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(b= 2(n — 1) sin 0 cos 0— 2co sin 0 (6)

(.9 — 
co

l

s 0  
[{n(1 + sin2  0)-21 sin 0+2w sin 0 cos 0]

According to a  detailed analysis by a computer, when n.)= 1, the Poincaré map
is as a fig. 4, which is well known as a  first approximation (or an averaging) of a
perturbed twist mapping (cf. Henon and Heiles [3]), when co= 0.554 the mixture of
the invariant circles and instability zones which are very thin, which appear in the
perturbed twist mapping in  general (see fig. 5). When w=0.548 th e  instability
zones grow and show a chaotic behavior (see fig. 6).

Lastly, we should note that the centralization of the system depends unfortunately
on the coordinate systems in genera l. As is easily seen, the centralization procedure
is compatible only with the affine transformation of the space R".

1. Centralization of differential equations.

Let

i=f (x ) , x e  R n (1)

be a differential equation on an n-dimensional space R".
Let

xm+ — xm _i

2zIt — f(x„,), x m e R n ,  d t> 0 (2)

be the corresponding central difference equation. If we put ym = xm +  th e n  (2) can
be rewritten to the form

X i n  +2—  X m = 8  f(ym)
(2)'

Y.+ 2 Y. =g f (xm+ 8 f(Y ,O)

where s=2z1t> O.
We show that solutions of (2)' converge to  the corresponding solutions of the

equation

; =f (y )
(3)

=f(x )

in the sense stated in the introduction. We prove it in more general form.

Definition. Let {0,} be a smooth (local) flow defined on a smooth manifold M.
Let {Os } be a family of smooth mappings of M which satisfy the following conditions:

( i )  0 o =id

d d
(11) (0e(x ))it.o= ds (P (x ))[, -dt s -o
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We call such a family {Os } a discretization of the local flow {0,}.

Theorem 1. L et {Of }, {Os }  be as abov e . Let (T, xo ) be in the dom ain of the
flow 01(x), and 4  b e  a  decompotion of  the interval [0, T]; 0= t o < t i < ••• <t,=T,

14 1= max 0 1 + 1 - 0 ,  then if  Al1  is sufficiently small

N-1

( H 0,,+ 1- 0 ) ( x 0 )
i =0

is defined, and converges to 4 T (x 0 ): O T (x 0 )=-- urn (IT 01 ,,_0 (x 0 )

Remark. This result can be easily extended to the time dependent flow.
P ro o f . It is clear that there exists a  neighborhood U  of {(x, e M x R; x=

44)0, O  t  T }  in the extended phase space M x  R  of the flow {0,} such that:
( i ) if (x, t)eU , then 0 5(x)e U for - t -< ,s < T -t
(ii) if (x, e  U, then there exist s> 0, IC, > 0 such that 4),(x) is defined for

Isl <s, and P(C(x), Os(x))<K1lsI 2  (here p is a metric of M)
(iii) Or(x) is Lipschitz continuous, that is, there exists K2 > 0 such that if (x, t),

(y , t)EU  then p(Os(x), 0,(y))<eK2 1s1p(x, y) for -  t<s< T- t.
Now let

Xk rl P _ 1(x0), k  0, . . . ,  N.
i=1

we show inductively that (xk , tk) E U  if  141 is sufficiently small. Assume that (xk ,
tk) e U and

P(OT —tk(X1c), OT(X 0)) Ke ( f i _ f i  1)2
1=1

then

p(4) T , , 1(x1 , 1 ) ,  4'T(x0)) = P(OT —  tit  + t ( (P t„ t— tkO Ck», ( I)  TOCCI»

▪ P(OT — t„ ,( 4
) t„  — t k (X 0), 4r — t„  t(O t„  I — tk(Xk)) P(OT —tk(Xk), 4) T (X 0 ))

e tc2 e r - r k  +0 p i  I ,  k + , t k (x k ) ,  O (k + ,- tk (x k ) )+ e
K 2 T K I (t1 - 1 1-1) 2

1=1

▪ e K 2 T  K  Mk+ I +  e ic,T K E t1_ 1t —  1

ki -1
= e

x2rK 1 E t 1 _ 0 2 < e K2TK 1 i i i i  T .

i=1

Hence, if  I l  is sufficiently small, then (02 - - t i, , ,(x k + 1 ) , T)E U  SO

Therefore, p(x,, 0 7,(x))..<,e1c2TK
i lAIT, that is,

N -1

P ( H OT(x))<KiTeK2T1211i=0

(X1-1- 1, tk -i- U.

Hence,
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N-1
tim (  n

141-.0
Q. E. D.

Convergence of the system (2) to the (3) is clear from this theorem 1;

Let ( x  2 ,  y n  + CD ( X  V ( F. f (  V V  - k  f( P. f(v  )11 then  d
d
e 0,(x„,2 , = - E .  n, o f ,  = . X n  •  - .1 n  •  E., \X n  •  - .1

Y n ) ie =  =  ( f  (Y), f(x„))•

2. Centralization and Hamiltonian system.

In this section we study the relation between a system (1) and its centralization
(3 ).

Theorem 2. T he centraliz ed sy stem  (3) is  a  Ham iltonian sy stem  w ith the
natural symplectic structure of  R"x R n , (.0 2 = d x  dy=Edx i d y i , iff  the  system
(1) is a gradient system.

P ro o f . Let (1) be a gradient system, i.e.

5c =grad U(x) for some function U(x) on R n
.

Then (2) is given by

OHa i l
ax  ,  where H (x, y )=U (x)— U(y).

Conversely, let (2) be a Hamiltonian system.
0 0 Let X(x, y)=f(y)  x  + f (x ) a y  •

Then ix w =f (y)dy f (x)dx is a closed form, so

dix w= d(f(y)dy)— d(f(x)dx)= 0,

that is, d (f(x )d x )= 0 . Therefore by the Poincaré's lemma, there exists a function
U(x) such that f (x)dx = du, that is, f (x)= grad U(x). Q. E. D.

Theorem 3 .  Let the system (1) be a Hamiltonian system:

a i l a il  
— 4= , H= 1103, q)eg Op

x =(p, g)eRm x =  R 2m

then its centralization

p=  O H  
aq  ( 13, 0 ,  4 —

 a l l (P
'
 Q)Op 

15_ _  OH 
e g  (P ' q ) ' 0 —  ° H ( )O p  P'

y=-(P, Q )E x R'"

(7)

(8)
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is again a Hamiltonian system  with the Hamiltonian function

171(p, q, P, Q)=H(p, q)+ H(P, Q)

and the symplectic structure 6' 2 on (Rm x Rm)x (Rm x Rm)

=d1)A dq+dpnc/Q.

R em ark. If the Hamiltonian system (7) is a natural one, i.e.

H(p, q)= T(p)+U(q)
then (8) is given by

p _  _   aMP, q) 
aq '

H.a  (p, Q) 
— a Q

aH(P, q) 4— ap
0 1 1 (13 , Q) 

op

That is, the sum of two independent systems which are same as the original system
(7 ).

The proof of the theorem 3 is straightforward.

3. Centralization and Bifurcation.

Let us consider the following system (4) and its centralization (5):

, = x(1  — (xf + xi)) — cox2{

5C2 = x2(1 - (Xj. ± Xi)) + COXi , X = (Xi, X2) e R2

1 it  = .Y1(1 — (Yi + Yi)) — wY2

. 2 = Y2(1  - (yi + A))+ WY1

Pi =x(1  - (Xi + 0 ) -  (OX2

512 = X2(1 - (Xi ±  0 ) +  M C I ,  (x , y )=(x  1 , x 2 , y ,  y 2 ) e R 2 x R 2

Because of the rotational invariance of the system (5), (5) can be reduced to a  3-
dimensional system.

Let x 1 = r cos oc, x2 = r sin a

y i  =s cos fl, y 2  = s sin 13 (s >0)

and let r =,Incos -2-7 + ,  s = ,  •ln ( + -4 - )

0=oc—,6 (7)

— 0 (mod 2)

(4)

(5)
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Then (5) is reduced to the system,

=17(2 —n) cos 0 cos

=2 ( 1— 1) sin 0 cos 0-2w  sin 0 (6)

— 1{ ( / ( 1 +  s in 2 0) — 2) sin 0+2w sin 0 cos 0}cos 0

The system (5) or (6) has several special properties:
( i ) When w =0, (5) is a  Hamiltonian system with Hamiltonian

Mx, Y )=  --(x +  x )—  —
4
1 (xi+ 4 ) 2 — - - (y +  y) +  ( Y i +  Yi) 2

Because of its rotational symmetry, it has an integral, so called angular momentum
F(x, y)=x 2 y 1 —x1y 2 . Therefore the system (5) is completely Integrable, so we can
study it thoroughly (cf. V. Arnold [1]).

( i i )  The system (6) is invariant under the following transformations:

(a) (n, 0, 0)1— (t1, — 4), —0)
(b) (g, 0, 0) I--+ (g, 4), 0+n) w ith  t —t

(iii) S 0 = {g=0}, and S2 = {n =2} are invariant surfaces so D={0 7 2}2} is an
invariant dom ain o f  t h e  system (5). { 0 = 0 ,  0=0, 0< ri < 2 }  a n d  {0=0, 0= tr,
0< j <2} are solution curves of the system.

Henceforth we consider the system (6) in the invariant domain D= {0<n <2},
ab= So u S2, D=D-313, especially near the solution, 0=0=0, 0<n <2, which cor-
respondings to the solution with the initial condition x = y  of the system (5).

First, we consider the case w = 0:
As is mentioned,

HO, 0, 0) = g ( g —  2) sin 0

1F(g, 0, 0)= 17 cos  sin 0

are integrals of the system (5) with co= 0.
Now,

 afo)_ 1grad H
(  aH— ' (20 — 1) sin 0, g(g —2) cos 0, 0)a i  ao 4

grad F = 4- (cos 4) sin o, —n sin s i n  0, I/ cos 0 cos 0)

In the invariant domain D = {0 <n <2}, grad H and grad F are not linearly indepen-
dent on the set

i(n, 4), 0)111=1, 0= ± i(g, 0 , 0 )10=  ±  -  
1
-2—
c

 ,  0 =n7r} U
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u 0, 0)Iq= 2 , 4) =0, ± 0 = 1  +nit}1 + sin2

Taking these circumstances into consideration, we can see that almost all solutions
are periodic. Especially, orbits which start from near the solution 0=0=0 are all
periodic except ones on the surface 4)=0 or 0 =0 (see fig. a).

Let us turn to the case (DO O.
A t first, we consider the  system (6) on the invariant surface S 2 .  O n S2 (6)

becomes

4) =2 (sin 49 cos 0 — w sin 0)

0 —2  sin 4)
cos  

4) (sin 4) sin 0 + co cos 0)
(8)

Fixed points of this system are (4), 0)= (0, 0) and (0, it). A n d  th e  linearlized system
of it around (0, 0) is given by

d ) ( 2  —  2(1) ( \
dt 0 2 a )  0  )  0  )

and its eigenvalues are 2 =1+ \ II —4(02 .
Taking its symmetries (7) into consideration, we can draw the phase portrait of

the system (8) on S2 (see fig. b, c)
Similarly, on the invariant surface So (6) becomes

= —2 (sin 4) cos 0 + o) sin 0)
(9)

—2  (sin 0 —  co sin 4) cos 0)cos 4)

Fixed points of this system are (49, 0)= (0, 0) and (0, it). Linearlized system arround
(0, 0) is given by

d  

(

4 ))  ( —2 —2a) \( 4) \

dt   0 2 w - 2  A  0

and its eigenvalues are ).= —2 +2a)i
The phase portrait of the system (9) is shown in fig. d, e.

Next, we investigate the system (5) near the solution gS = 0 = O. In order that we
consider the variational equation along the solution 49= 0 =0 ,  = )7(2 — 11):

  

2(1 — n) o o  \fan \

0 2()/ — 1) —2a) ao
0 2a) n —2 / \ 00

 

d
dt

a°
n= n(t) (10)

  

If 0)1(0)=0, then ari(t)_ O. This means planes that are perpendicular to the solution
line 4)= O = 0 are preserved by the variational equation (10). The variational equa-
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tion (10) can, therefore, be seen as a time dependent 2-dimensional system:

Let
2(, - 1 )  - 2 0 )

A( 11) =
2o) n - 2

1The eigenvalues of A(7) are /1= —
2  

(3n -4  ± 072 - 160)2 )

If co is small enough, the system is of saddle type. 4 )= 0 is a lm ost "stable"
manifold, and 0 = 0  is almost "unstable" m anifo ld . Therefore, we can guess that
"periodic" solution: 0 = 0 =0, n=2, 4)=0-n=0, n=0 is unstable. (Note the sym-
metry (7).) (see fig. g and fig. 3 drawn by computer)

Conversely, if o) is large, /1 are not real, so the behavior of the solutions of (6)
near 0 = 0 = 0  are resemble to the spiral, and the "periodic" solution can be stable.
This expectation can be confirmed by the computation by computer. We can in-
vestigate the behavior of the solutions near the "periodic -  one 4 ' =  0=0, n =2, 0 =
0-n=0 , and n=0, by the Poincaré m ap. For this sake, take a cross section S=
{(n, 4), 0)111=0.6}, and the Poincaré map P: S-)S.

Unfortunately, we could not study it (mathematically) rigorously. By the
detailed study by the computer analysis we can see that these Poincaré maps P c,
depending on a parameter co, show very interesting bifurcation phenomenon. For

= 1, P, is "integrable", which appears in the first approximation or the averaging of
the perturbed twist map (see Henon and Heiles [3] & fig. 4). For co =0.554, we can
see the mixture of invariant circles and very thin instability zones. (see fig. 5)
For w= 0.548, chaotic region is already la rg e . (see fig. 6)
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Fig. 1(a). Stereoplot of trajectorial flow of eq. (5) in the (xi, x2, yi) subspace. 0)=1.0. Initial
values: x 1 (0)= 0.031821658, x2(0)=0.07054278, y i (0)— 0.031649066, Y2 (0)=0.054817789.
(These values correspond to  the initial values of Fig. 3 (a), (c).) Time 70. axes: 0,..., 1
for x i , 0,..., 1 for x2 , 0,—, 1 for y i . Initial values and axes of (b) are common to (a).

Fig. 1(b). (0=0.2. Time 90.
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- 1.0 0 . 0  1 . 0

Fig. 2(a). Cross section of a trajectory of Fig. 1 with the (x i , y i ) plane. (0=1.0. Time
350. Surface of section is determined by the conditions x2 =0.0 and ±2> 0.
This conditions are common to (b). Succesive points lie on a smooth curve.

0.0 1 . 0 x
1

Fig. 2(b). (0=0.2. Time 1500. Succesive points are scattered chaotically.
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0.02

0.01

0.0

-0.01

-0.02

0.02 4)

Fig. 4. Cross section of trajectories o f eq. (6) with the (0, 0 )  plane. w = 1 .0 . Time 2000.
Surface of section is determined by the conditions 72= 0 .6  and 7, This conditions
and time are com m on to Fig. 5, 6. The microscopic instability zones lie below the
computer integration accuracy. Here and in all level curves are drawn by real lines
whenever intersection points of a trajectory obviously lie o n  a  smooth curve.
Points in this figure lie on a smooth curve and the number 1, 2, 3, .. indicates the order
of succesive intersection points of a torajectory.

0.02

0.03 4)
Fig. 5. Cross section of trajectories. (0=0.554. In this stage, the instability zones grow visibly

and islands are observed. Succesive points started from point A and C  are surrounded
by points started from point B.

o
0.02

0.01

0 . 0

-0.01

-0.02

-0.03 - 0 . 0 2  - 0 . 0 1  0 . 0  0 . 0 1  0 . 0 2  0 . 0 3  0
Fig. 6. Cross section of trajectories. (0 = 0 .5 4 8 . D o tte d  lin e s  d is tin g u ish  the succesive

points started from point A, B and C each other. Note: Instability zones grow rapidly
as (0 decreases.



54 M . Mizutani, T. Niwa, T. Ohno


