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Introduction.

Let G be a locally compact totally disconnected group and X a locally compact
zero-dimensional space. Let G act on X continuously. We denote by C*(X) the
space of compactly supported locally constant functions on X. We call an element
of the algebraic dual C®(X)* of CX(X), a distribution on X. A distribution T on
X is called invariant if T(f)=T(f9) for all ge G and fe C®(X), where f9(x)=
f(g71x), xe X. We denote by CX(X)*C the space of all invariant distributions on
X.

Assume that, for each G-orbit @ in X, there is a non-zero invariant distribution
on X supported by 0, called an orbital distribution associated with @. In the
present paper we treat a problem of expressing an invariant distribution on X as a
“superposition”’ of orbital ones (Orbital decomposition problem).

Let A=G\X be the orbit space of X with respect to the group action. For each
orbit 1 € A, we choose a suitably normalized orbital distribution T, associated with A.
We define a linear map @ of C2(X) to the space V of all complex valued functions
on A as follows:

O(NN=T(f) (Ae4, feCaX)).

Then the dual ©®* of ® maps V* into C2(X)*¢.
Our results in this general setting are stated as follows.

Weak Decomposition Theorem (Theorem 1.8). Assume that for each x e X, the
intersection of all closed open invariant subsets containing x consists of finitely
many orbits (Property (W)). Then the space CX(X)*S of all invariant distributions
on X is exactly equal to the image of the dual ©* of ©.

Strong Decomposition Theorem (Theorem 3.7). Assume that the saturation
under G of each compact subset of X is closed in X (Property (S)). Then for each
fe C2(X), the function O(f) on A is locally constant and compactly supported with
respect to the quotient topology on A. And the dual ©* establishes an isomorphism
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of C2(A)* onto CX(X)*C, that is, an arbitrary invariant distribution T on X is
expressed as T(f)= [ T,(f)dt(X) (fe C2(X)). Herex isadistribution on A uniquely
determined by T.

We call a distribution m on X a Radon measure if for an arbitrary compact
subset K of X, there is a positive constant My such that |m(f)|< M| f| for all
fe C2(X) with supp (f)= K. Here || f] is the supremum norm of f. In the strong
decomposition theorem, the space .#(A) of the Radon measures on A corresponds
bijectively to the space .#(X)¢ of invariant Randon measures on X.

Basing ourselves on the above two extreme cases, we inquire further into the
problem for an intermediate case. Suppose the space X is decomposed as a disjoint
union Y U Z with a closed invariant subset Y and an open invariant subset Z. Then
an invariant distribution on X may be decomposed into those on Yand on Z. This
is treated in 1.3. Applying Weak Decomposition Theorem, we get there the two
exact sequences for the spaces of invariant distributions and invariant Randon
measures:

() 0 — C2(Z)*0 — C2(X)*¢ — C2(Y)*S 0,
) 0e— M(Z)§ — M(X)S — M(Y)E «—0O.

Here .#(Z)§ is a subspace of .#(Z)° defined by a condition “‘finite at infinities of Z"
(see Corollary 1.17). The sequence (2) splits canonically. So we have a canonical
isomorphism of .#(X)% onto #(Y)°@®.#(Z)§. We assume in addition that the
G-space Z has Property (S). Then, by Strong Decomposition Theorem, we have
an isomorphism of C®(Z)*¢ onto CX(Z)*, and an isomorphism of .#(X)¢ onto
A(Y)SDMA(Z),, where Z is the orbit space of Z, and .#(Z), is a subspace of .#(Z)
corresponding to .#(Z)§.

By a successive use of the above argument, we get in §3 the following orbital
decomposition theorem.

Theorem 3.9. Assume that X hasa finite filtration X=X > X222 X,=¢
by closed invariant subsets such that the G-space X;_,—X; (1<i<r) has Property
(S). Then every invariant Radon measure T can be expressed as follows:

r

(=3 T (fecz,
where t; is a uniquely determined Radon measure on the orbit space Z; cor-
responding to the G-space X;_, — X;.

Now let k be a non-archimedean local field of characteristic zero. In §2, we
prove that the assumption of Weak Decomposition Theorem is fulfilled in the case
that G=GL(n, k) or its connected semisimple algebraic subgroup defined over k,
and X =G with inner automorphisms.

After establishing Strong Decomposition Theorem in §3, we prove in §4 the
existence of a filtration for G=X=GL(n, k). So we get Theorem 4.16, an orbital
decomposition in this case.



Orbital decompositions of invariant distributions 343

In §5, the relationships between our Strong Decomposition Theorem and
Choquet’s integral representation theory, in case of Radon measures, are considered.

In the previous paper [8], we treated invariant distributions on SL(2, k). An
explicit splitting of the exact sequence (1) is given there for G=X=SL(2, k), Z=
{regular semisimple elements}, and Y=X —Z. So an arbitrary invariant distribution
on SL(2, k) is “‘strongly’” decomposed into orbital ones. Our Theorem 4.16 deals
only with invariant Randon measures on GL(n, k). The strong decomposition
theorem available for all invariant distributions on GL(n, k) is not yet known to the
author.

The author expresses his thanks to Professor T. Hirai and Professor N.
Tatsuuma for their kind advices.

§1. Weak decomposition theorem

1.1. Group actions on topological spaces.

We call a topological space X an Il-space if it is Hausdorff, locally compact,
and zero-dimensional, that is, each point has a fundamental system of open compact
neighbourhoods. We call a topological group G an I-group if it has a fundamental
system of neighbourhoods of the unit element consisting of open compact subgroups.
It can be shown that a topological group is an /-group if and only if it is an /-space.
Throughout, when we say that “‘an /-group G acts on an /-space X’’, we always mean
a continuous left action.

Definition 1.1. Let be an /-space. We denote by C?(X) the space of all locally
constant complex-valued functions on X with compact support. We call an element
of the algebraic dual CP(X)* of C®(X) a distribution on X. Note that X2?(X)
and C2(X)* are treated without any topology. If fe C®(X) and me CP(X)*,
then the value of m at f is denoted by [ f(x)dm(x).

Definition 1.2. Let X be an /-space. A distribution m on X is called positive
if m(f)>0 for each non-negative fe C*(X). A distribution on X is called a complex
Radon measure on X if it can be expressed as a linear combination of positive ones.

Proposition 1.3. Let X be an Il-space. A distribution m on X is a complex
Radon measure if and only if for an arbitrary compact subset K of X, there is a
positive constant My such that |m(f)|<Mg-|f| if supp (f)= K. Here |f| is the
supremum norm of f.

Definition 1.4. Let G be an /-group, X an /-space, and p: G x X— X an action of
G on X. The saturation of a subset A of X is the subset of X consisting of all
elements p(g, a) with g € G and a € 4, and is denoted by G(4). When 4 is a one-
point set {x} the saturation of A4 is called the orbit of x and is denoted by G(x).
A subset B is called invariant if G(B)=B. A subset of X is called a domain if it is
closed, open, and invariant. A domain is called a tube if it is the saturation of a
compact subset of X.
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If A and B are domains (resp. tubes), AU B, An B, A— B, and A A B are domains
(resp. tubes).

Definition 1.5. Let p be an action of an /-group G on an/-space X. A distri-
bution m on X is called invariant if it satisfies m(p(g)f)=m(f) (fe C¥(X) and
g € G), where (p(g9)f)(x)=f(p(g™"', x)). We denote by C®(X)*¢ the space of all
invariant distributions on X.

A distribution m on X is invariant if and only if m vanishes on the linear subspace
I4(X) of C®(X) spanned by all elements p(g) f—f with fe C?(X) and g€ G.

Definition 1.6. Let an /-group G act on an /-space X. Letxe X. If the follow-
ing four conditions are fulfilled, we call the orbit G(x) admissible.
(1) The orbit G(x) is Iocally'closed in X.
(2) The quotient space G/G, with left translation and the space G(x) are
isomorphic as topological G-spaces, where G, is the isotropy subgroup of
X.
(3) The G-space G(x) carries a G-invariant Radon measure dm.

(4) The integral SG f(y)dm(y) converges for all fe C®(X).
(x)

In this case we have an invariant distribution on X by the integral in (4). Such a
distribution is called the orbital distribution associated with the orbit G(x).

1.2. The following result is fundamental.

Proposition 1.7. Let an I-group G act on an I-space X transitively. Suppose
the unique orbit X is admissible. Let m be its orbital distribution. Then Ker
(m)=1I4(X).

Proof. See R. Howe [6] or S. Matsumoto [8].

Let an /-group G act on an /-space X. We name the following, Property (W).

Property (W): For each xe€ X, the intersection of all domains containing x
consists of finitely many orbits.

We state our weak orbital decomposition theorem.

Theorem 1.8. Let an I-group G act on an l-space X. We assume that each
orbit is admissible and the space X has Property (W). Let fe CX(X). Then the
following conditions for f are mutually equivalent:

1) felg(X).

(2) fis annihilated by all invariant distributions on X.

(3) fis annihilated by all orbital distributions on X.

This subsection is devoted to prove that (3) implies (1). Implications (1)=
(2)=>(3) are clear.

First, let us sketch the proof. Given an element fe C*(X) annihilated by all
orbital distributions. We prove that fe I5(X). For this purpose it is enough to
show that f belongs to I5(X) “locally’’ in the sense that for each x e X, there is a
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domain D> x such that y,-felg(X). Here y, denotes the characteristic function
of D. Because the fact that fe I;(X) follows easily from this by the partition of unity
argument. On the other hand in order to prove that f belongs to I5(X) locally,
we use Property (W) essentially.

Now we prepare some terminologies and lemmas for our proof. We call a
subset of X a complex if it is closed and consists of finitely many orbits. Let ¢ be
an orbit. We call the subset @ — @ of X the boundary of @ and denote it by 00,
where 0 is the closure of @. It should be noted that the boundary of an orbit is not
the same as the topological boundary in general.

Lemma 1.9. Under the same situation in Theorem 1.8, for an arbitrary orbit,
the closure and the boundary of it are complexes.

Proof. The conclusions follow from local closedness of the orbit and Property
(W) on X. Q.E.D.

Let @ be an orbit. We call the number of orbits contained in the closure of ¢
the degree of 0, which we denote by deg (¢). For a complex K, we define the degree
deg (K) of K as the highest degree of orbits in K. For a complex K and a natural
number r, the union of all orbits @ in K with deg(@)<r is called the r-skeleton of
K. Skeletons are complexes. In fact, if @ is an orbit and L is a complex contained
in the boundary of @, then deg (L) <deg(0).

Lemma 1.10. Let @ be an orbit and F be a closed invariant subset of X dis-
joint from 0. Assume that an element fe C®(X) vanishes on the boundary 00
and is annihilated by the orbital distribution associated with @. Then there
exists an element he l;(X) which vanishes on F and coincides with f on 0.

Proof. Regard 0 itself as a G-space. Since f vanishes on 9@, the restriction
flo of f to the orbit @ belongs to CP(0), and is annihilated by the orbital distribution
on @. So we conclude f|, € 14(@) from Proposition 1.7. In other words, f|, can
be expressed as a linear combination P Z cp,(g)fi—f), where c;e C, g;€G, f;€

C%(0), and p,, is the G-action on the orblt 0 We may assume here each f; is the
characteristic function of a compact open subset 4; of @#. For each A4;, we find a
compact open subset 4; of X such that 4,0 0=4; and 4;n F=¢. Obviously h=
ISZ:S cp(g:)xa,—xs,) has the required properties, where p is the G-action on X.

Q.E.D.

Proposition 1.11. Let K< X be a complex and f be an element of C®(X) an-
nihilated by all orbital distributions supported in K. Then there exists an element
hely(X) which coincides with f on K.

Proof. We prove the proposition by induction on the degree of K. We assume
that the proposition is valid for any complex with degree <deg (K). Let 0, 0,,...,
0, be the orbits in K with degree d =deg(K). Then the (d — 1)-skeleton of K is equal
to K—(\U 0;)). By virtue of the assumption of induction, we find an element f; €
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I5(X) such that f—f, vanishes on the skeleton. In particular, f—f, vanishes on each
boundary 80; of 0;, so by Lemma 1.10 there is an element f; € I4(X) which vanishes
on the closed invariant subset K —@; of X and coincides with f—f, on 0;. Clearly
f= 3 fionKk. Q.E.D.
o<i<r

Proof of implication (3)=(1) in Theorem 1.8. Let f be an element of C%(X)
annihilated by all oribital distributions and 2 be the totality of all domains D such
that ypfelg(X). 2 is closed under the operation of finite union. In fact, if D,,
D, e 2, then xp yp, f=xp,-p, U, )+ xp, f€Ie(X). Here we use the fact the
space I5(X) is closed under the multiplication by the characteristic function of a
domain. Next we show that 2 is an open covering of X. Let xeX. Then the
intersection K of all domains containing x is a complex, by Property (W). By
Proposition 1.11, we find an element hels(X) such that f=h on K. Put U=
{yeX;f(y»)=h(y)}and M =supp (f) U supp (h). Then U is an open neighbourhood
of K and M is compact. So it is easily verified that there exists a domain B3 x
such that M N BcU. Thus xp-f=15-helg(X). These two properties of 2 prove
our assertion. Q.E.D.

1.3. Open invariant subsets with Property ( ).

Let Y be a closed subset of an /-space X and Z be the complement of Y in X.
We define the mappings i, of C®(Z) to C2(X) and py of CP(X) to CX(Y) as
follows: i (f) is the extension of f by zero outside Y, and py(f) is the restriction of
ftoY.

Proposition 1.12. The following sequence is exact:
0 —, C®(2Z) 2z, CP(X) 2, C2(Y) — 0.
Proof. See [2].

We consider an action on X of an /-group G. We assume that Y is invariant
with respect to the group action. Then the /-group G acts on /-spaces Y and Z
naturally.

Proposition 1.13  Assume that all orbits contained in Z are admissible in the
G-space X, and the space Z has Property (W) with respect to the G-action. Then
we have the following commutative diagram whose rows and columns are all exact.
Here &, n, and { are inclusions.
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0 0 0
0—— I4(Z) — LX) —— (YY) —0
I I I

0, C*(Z) —iz, C®(X) _»2r, C°(Y)— 50

l l l

0 — C2(2)/16(Z) — CZ(X)/I(X) — CZ(Y)[I(Y) — O

| l l

0 0 0.

The essential part of Proposition 1.13 is exactness at the term I(X) in the top
column of the diagram. Proposition 1.13 can be reduced to the following

Proposition 1.14. Let the situation be as in the previous proposition. Identify
the space C*(Z) as a linear subspace of CX(X) by zero extension outside Z, then
C2@)n1(X)=14(2).

We prepare an elementary lemma for the proof.

Lemma 1.15. Let O be an orbitin Z. Then it is admissible in Z. The orbital
distribution on X associated with @ is mapped by i% again to the orbital distribution
on Z associated with 0.

Proof of Proposition 1.14. Let fe CX(Z)n Iz(X). Then f is annihilated by
all orbital distributions supported in Z. By virtue of the weak decomposition
theorem (Theorem 1.8), we conclude fe I4(Z). Q.E.D.

Corollary 1.16. By dualizing the diagram in Proposition 1.13, we have an
exact sequence

0 — Ker ({*) «—— Ker (¢*) «—— Ker (n*) «—— 0.
This sequence can be written also as the following one
0 —— C2(Z2)*¢ «— C2(X)*¢ «—— C2(Y)*¢ —0.

Remark. In Proposition 1.13 the assumption ‘“‘admissible in X’ on orbits can
not be replaced by ‘“‘admissible in Z'’. In fact, we have the following simple
example. Let k be a non-archimedean local field. The unit group G=k* of k
acts on X =k by multiplication. Then the G-space X consists of two orbits Y= {0}
and Z=k*. The former is closed and the latter open. Clearly the following
sequence is not exact:

00— I6(Z) — Io(X) — 16(Y) — 0.

We denote by .#(Z), the subspace of #(Z) consisting of all complex Radon
measures m such that |m|(A) is finite for all closed open subset A4 of Z, relatively
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compact in X. Here |m| is the absolute value of m.
Corollary 1.17. The following sequence is exact and canonically splits:

0— A(Z)NM(Z), — M(X)C — A(Y)¢ —0.

1.4. Let an /-group G act on an /-space X. Assume that X consists of finitely
many orbits, and all orbits are admissible. Then the orbital decomposition theorem
has the following simple form.

Proposition 1.18. The orbital distributions my, m,,..., m, on X associated with
all orbits in X form a basis of CX(X)*S.

Proof. We define a linear map J of C®(X) to Cr as follows: J(f)=
(M) i<i<r (fe C*(X)). Then the sequence

0 — I5(X) —> C¥(X) -2 CT

is exact. So CX(X)*¢=Im(T*). Cleraly Im(T*) is the linear span of m;’s.
We show that (im,) is linearly independent. Suppose

(*) Z Cimi=0

is a non-trivial relation. Let g be the maximum of degrees of orbits corresponding
to non-zero coefficients ¢;, Then we may regard () as a linear relation of orbital
distributions on the g-skeleton X4. Using the exact sequence

0 — C2(X1— XoH)¥6— CR(XY*S — CE(XT)*0 0,

we get a non-trivial linear relation of orbital distributions on the G-space X9—
X9e-1, But this is a contradiction, for the G-space X9— X47! consists of finitely
many closed open orbits. Q.E.D.

§2. Property (W) in semisimple groups

Let k be a non-archimedean local field of characteristic zero, and k its algebraic
closure. Let G be GL(n, k) or its connected semisimple algebraic subgroup defined
over k, and G= G(k) the group of k-rational points of G. Then G is an /-group
with its natural topology. Denote by X the underlying /-space of G. We define a
G-action on X as follows: Gx X 3(g, x)—gxg~'eX. This section is devoted to
prove the following

Theorem 2.1. (1) Each orbit in X is admissible,
(2) X has Property (W).

Proof. For the proof of (1), see [9]. We shall prove here (2). Take xe X,
and let F be the intersection of all domains containing x. We prove that F consists
of finitely many G-orbits by contradiction. Suppose F consists of infinitely many
G-orbits. Let S be a complete system of representatives of these G-orbits. We
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define the continuous map P of G to k" as follows: The image P(y) of y is the coeffi-
cients of the characteristic polynomial of the nxn matrix y, that is, P(y)=(p,,
D2seees D), det(y—tl)=(—18)"+pt" ' +...+p,_t+p, (¢t: indeterminate). Since
the inverse image of an arbitrary closed open subset of k" is a domain, F is, a fortiori
S is, contained in a fibre of P. Each fibre of P is, as a subset of GL(n, k), covered by
a finite number of GL(n, k)-orbits. So there is an infinite subset S, of S contained
in a GL(n, k)-orbit C, in GL(n, k). Applying Richardson’s theorem (Theorem 3.1
in [10]) to the reductive pair (GL(n, k), G), we know that C, n G is a finite union of
G-orbits. Thus we find an infinite subset S, of S; contained in a G-orbit C,.
Since S, is contained in the subset C,(k) of k-rational points in C,, C,(k) consists
of infinitely many G(k)-orbits. This contradicts to 6.4. Corollairein [3]. Q.E.D.

§3. Strong decomposition theorem

3.1. In this section we treat the orbital decomposition under a stronger assump-
tion. In this case, the invariant distributions on an /-space correspond completely
to the distributions on the orbit space.

Let X be an /-space, and G an /-group acting on X. We name the following,
Property (S).

Property (S): The saturation of each compact subset of X is closed in X.
If X has Property (S), in particular, each orbit is closed.

Proposition 3.1, Let an I-group act on an l-space X. If B is a tube and D
is a domain in X, then BN D is a tube.

Proof. 1f B is the saturation of a compact set 4, then BN D is the saturation
of the compact set A n D. Q.E.D.

Corollary 3.2. The collection of tubes forms an ideal, in the sense of Halmos
[4], in the Boorean algebra of domains.

Corollary 3.3. Let an I-group G act on an l-space X. Assume that the space
X has Property (S). Then an orbit 0 is exactly equal to the intersection of all
tubes containing it. In particular, Property (S) implies Property (W).

Proof. Let x€ X be outside of the orbit ¢. Since the orbit is closed, we find
a compact open neighbourhood A of x not intersecting ¢. Then for an arbitrary
tube B containing @ the difference B—G(A) is a tube by Proposition 3.1. This
contains @ and does not contain the point x. Q.E.D.

Proposition 3.4. Let an l-group G act on an l-space X. Assume that X has
Property (S) and is 6-compact. Then there exists an open subset N of X satisfying
the following two conditions:

(1) For each orbit 0 in X, Nn 0O+ ¢.

(2) For each tube B in X, N n B is compact.

Proof. Since X is o-compact, we find a sequence (B;) of tubes which covers
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the whole space X. We may assume that the covering is disjoint. Let 4; be a
compact open subset of X such that G(4;)=B;. Then N=\ 4; has the required

properties. Q.E.D.

Now we define the orbit space as follows. Let the notation be as in Proposition
3.4. Assume that each orbit is admissible. We denote by & the totality of all orbital
distributions m on X such that m(yz,y)=1 for a tube B containing the orbit corre-
sponding to m. Then there exists a canonical bijection between the set £ and the
set of all orbits. We also have a canonical surjection p of X to . We equip the
space Z the quotient topology induced by p. We call this topological space Z the
orbit space.

We fix the notation G, X, N, &, and p in the rest of this subsection. For an
invariant subset C of X, we denote by Z(C) the subset of & consisting of all orbital
distributions corresponding to orbits in C. Then, for a tube B, the subset Z'(B) is
open and closed by definition of the topology on &. Furthermore we have

Proposition 3.5. Let me %, and L be the totality of all tubes containing
p~1(m). Then (Z(B))geg is a fundamental system of open compact neighbourhoods

of m.

Proof. First we show that &'(B) is compact for a tube B. Let (S;);c; be an open
covering of &(B). Then (p~(S;));; is an open covering of a compact set BN N.
So we may find a finite subcovering (p~!(S;));;. Clearly (S;);; is a covering of
Z(B).

Let U be an arbitrary open neighbourhood of m. We must find a tube Ce &
such that Z(C)cU. We fix a tube Bye £. Then open sets U n Z(B,) and Z(B)c
(B € Q) cover the compact set Z'(B,), for the intersection of all Z(B) (Be &) is equal
to p~!(m) by Corollary 3.3. So we find a finite number of tubes B,, B,,..., B,e £
such that Z(Bo)<=(UnZ(By) U 13\./9 Z(B;)¢ or equivalently 3’(099 B)c=Un
Z(By)<=U. Q.E.D.

For an element fe CP(X), we define a function J, on the orbit space Z as
follows: 7 (m)=m(f) (meZ).

Proposition 3.6. For an arbitrary fe CX(X), the function I, on & is locally
constant and compactly supported, that is, 7€ CX(%X).

Proof. 1If the support of f contained in a compact open subset 4 of X, then
the support of 7, is contained in a compact set Z(G(A4)). Next we show that the
function 77 is locally constant. Let m € &, and B be a tube which contains the orbit
0 corresponding to m. Let h be the characteristic function of the compact open
subset BN N of X. Then &, is equal to the characteristic function of the compact
open subset #(B) of &, in particular it is locally constant. The function I _,, sy =
I —m(f)T, vanishes at m. So we may assume that f itself vanishes at m without
loss of generality. By Proposition 1.11, we find an element f; € I ;(X) which coincides
with f on the closed orbit @. By using a similar argument in the proof of implication
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(3)=(1) in Theorem 1.8, we conclude that there is a tube B, containing @, on which
f and f; coincide with each other. Thus 7, vanishes on a neighbourhood Z(B,)
of m, because so does J7,. Q.E.D.

We state our strong decomposition theorem.
Theorem 3.7. The following sequence is exact:
00— I4(X) — C2(X) L5 C2(%) — 0.

The dual T * of T gives an isomorphism of CX(Z)* to C®(X)*¢. Furthermore
the isomorphism J* maps Radon measures on & to invariant Radon measures on
X, and preserves lattice structures with respect to positive measures.

Proof. Exactness of the sequence at the term CZ?(X) is neither more nor less
than weak decomposition theorem. We show that the linear map f— 7 is onto.
By Proposition 3.5 and Corollary 3.2 we know that an arbitrary element of C®(%)
can be expressed as a linear combination of characteristic functions of subsets of the
form Z'(B) (B: tube). On the other hand, we have already seen in the proof of Prop-
osition 3.6 that the image of .7 contains all such functions.

For the latter half of the theorem, we notice that isomorphisms .7 * and *-!
preserve positivity of distributions. The statement follows from it without
difficulties. Q.E.D.

3.2. In this subsection we consider a generalization of our Strong De-
composition Theorem.

Definition 3.8. Let an /-group G act on an /-space X. We call a descending
sequence (X;)o<i<, Of closed invariant subsets of X a filtration of X if Xo=X and
X,=¢. And we call the filtration (X;)o<;<, an S-filtration, if each difference X;_, —
X; (1<i<r) has Property (S) with respect to the canonical G-action induced from
that on X.

By a successive use of Corollary 1.17, we have the next

Theorem 3.9. Let an I-group G act on an l-space X. Assume that all G-
orbits in X are admissible, and that X has an S-filtration (X;)o<i<,- Then every
invariant Radon measure T can be expressed as follows:

(=3  Tnanw  (reczx),

1=1J2e

where t; is a uniquely determined Radon measure on the orbit space Z,; corre-
sponding to the G-space X;_,—X,.

§4. Filtration in GL (n, k)

4.1. In this section we construct an S-filtration for the following special G-
space X : X =G=GL(n, k), where k is a non-archimedean local field of characteristic
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zero. The action of G on X is given by inner automorphisms.
Throughout we fix the above notations.

Theorem 4.1. There is an S-filtration of X.

In order to prove Theorem 4.1, it is sufficient to verify the following two
propositions.

Let xe X. We denote by d(x) the dimension of the orbit of x. We may have
d(x)=n?—dim, C,(x), where C,(x) is the k-vector space of all n x n matrices commut-
ing with x. Also we denote by v(x) the number of the distinct eigenvalues of x in the
algebraic closure k of k.

Proposition 4.2. Let Y be a locally closed invariant subset of X on which two
functions d and v are constant. Then Property (S) is satisfied on the G-space Y,
that is, every compact subset of Y has the closed G-saturation.

Proposition 4.3. There is a filtration (X;)o<i<, 0f X such that the functions d
and v are constant on each X;_,—X..

4.2, Proof of Proposition 4.2.

We prepare some results on linear algebra. Denote by M, (k) the set of all
n X n matrices with entries in k, and k[t] the polynomial ring in one indeterminate .

Let ae M, (k). Then there exist two elements q, and ¢, € GL(n, k[t]), and monic
polynomials e(t), e,(?),..., e,(t) in k[t] such that q,(t],— a)q,=diag (e,(?), e,(?),...,
e, (1) and e(t)]e;x,(t) (i=1,2,...,n—1). Here I, is the n x n unit matrix, and we
read ey(?)|e;,,(f) as “‘the polynomial e(f) divides the polynomial e;,,(f)’". The
sequence (e(t), e,(?),..., e,(t)) is uniquely determined by a. We call the sequence
the invariants of a and denote it by e(a). The next theorem gives fundamental
properties of elementary divisors.

Theorem 4.4. (1) Let ae M, (k) and e(a)=(e,(1), e5(1),..., e,(1)). Then, for
each i, e/(t)ey(t)-...-e(t) is equal to the greatest common divisor of i-th minor
determinants of the matrix tl,—a, in particular e,(t)e,(1)- ... -e(t) is equal to the
characteristic polynomial of a.

(2) Two matrices in M, (k) are conjugate if and only if their invariants coincide
with each other.

Corollary 4.5. Let L be an extension field of k. Then, two matrices in M, (k)
are conjugate in M, (k) if and only if they are conjugate in M, (L).

Definition 4.6. Two sequences (a;) and (b;) in M, (k) are called conjugate if
a; and b; are conjugate in M, (k) for all i.

Definition 4.7. Let ae M, (k) and L be an extension field of k. If L is a (not
necessarily minimal) splitting field of the characteristic polynomial of a, we say
that a splits in L.

Definition 4.8. Let a, a;e M (k) (i=1, 2,...), and e(a)=(e,(t), e;(?),..., e,(1)),
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e(a;)=(e(f), eS(1),..., e{(t)). Suppose the sequence (a;) converges to a. We
say (a;) converges with invariants to a if e{)(f)>e() (i) for all j. Here (1)~
e;(f) means that the coefficients of e{)(r) converge to the corresponding ones of ej(%).

Proposition 4.9. Let (a;) be a sequence in M, (k) convergent to some element
ae M, (k). Assume that v(a;)=v(a) for every i, and that all a; split in k. Then
there exists a subsequence (a;,) of (a;) such that there exists a sequence (c,) in

M, (k) which is conjugate to (a;,), and converges with invariants to an element in
M. (k).

Proof. Since the types of Jordan canonical forms are finite, we can choose a
subsequence (a;,) of (a;) for which the Jordan canonical form ¢, of a;, is of the same
type for i=1,2,.... Put s{?,..., s{? the distinct eigenvalues of a; . By extracting
a suitable subsequence, we may assume that each sequence (s‘j"’)lsp is convergent,
without loss of generality. Then the limits s, s,,..., s, of the sequences are distinct,
for v(a)=v. Therefore the sequence (c;,) converges with invariants. Q.E.D.

Theorem 4.10 (Closure relation in M, (k)). Let a, be M, (k) splitting in k,
e(a)=(e,(),..., e,(1)), e(b)=(ei(t),..., €,(1)). Then a belongs to the closure of the
conjugacy class of b if and only if e;, (t)eji () ... e ()| e)i1(D)ejra(D)- ... €,(D)
for all j.

Proposition 4.11. Let (a;), (b;) be sequences mutually conjugate in M, (k).
Assume that (a;) converges to an element ae M, (k), and that (b;) converges with
invariants to an element b e M, (k), and that the limits a, b split in k. Then 0(a)c
0(b). Here 0(a) denotes the conjugacy class of a, and @(a) denotes the closure of it.

Proof. Let e(a)=(e (t),..., e,(1)), e(b)=(ei(?),..., e,(1)), and e(a)=e(b;)=
(€P(0),..., e2(1)).  We put dy(D)=e (ey(t)- ... e,(t), dj()=ej(Des(t)-...-ei(H(1<
j<n). By the above theorem, it is sufficient to show dj(f)|d(t). Let y(t) be a
j-th minor determinant of tI,—a. Then there is a sequence (¥(t)) convergent to
Y(1) such that each y (1) is a j-th minor determinant of tI,—a;. Since d'(¢) divides
Y1) for each i, the limit dj(t) divides Y(t). So we conclude dj(t)|d(t). Q.E.D.

Proposition 4.12. Let k be a non-archimedean local field of characteristic zero
as stated above, and k be its algebraic closure. Then there are only finitely many
intermediate fields of k and k, of given finite degree over k.

Proof. 1t is enough to show that there are only finitely many totally ramified
extensions of k in k of degree equal to a given number r. It is well known that such
an extension is obtained by adding to k a root of an Eisenstein equation of degree
r over k. Put 8={(a,, a,,...,a,); laj<]1 for each i and |a,|=|n|}, where = is a
primitive element in k. For an element a=(a,, a,,..., a,) € £, we denote by f, the
polynomial map of k to k: f(x)=x"+a;x"1+...+a,(xek). Letaecf. Iffelis
sufficiently close to a, then each element of f;1(0) is close to some element of f;1(0).
So, by Krasner’s lemma (see e.g. [7]), the totality of all § € £ satisfying the following
is a neighbourhood of «: the simple extension of k by any element f;1(0) is of the form
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k(a) for some element a of f;1(0). By virtue of compactness of £, there exists a
finite subset M of € such that every totally ramified extension of degree r is of the form
k(a) with ae U f71(0) (xeM). Q.E.D.

Corollary 4.13. There is a finite extension field K of k such that every element
of M (k) splits in K.

Proof of Proposition 4.2. Let A be a compact subset of Y. We must show that
the G-saturation G(A) is closed in Y. " Let (b;) be a sequence in G(A) convergent to
beY. We select a sequence (a;) in A which is conjugate to (b;). We may assume
that the sequence (a;) converges to an element ae 4. By virtue of Corollary 4.5,
it is enough to show that a is conjugate to b in M,(K), for a finite extension K of k as
stated in Corollary 4.13. By Proposition 4.9, we find a subsequence (a;,) of (a;)
and a conjugate sequence (c,) of (a; ) in M,(K) such that (c,) converges with invariants
to an element ce M, (K). Then we have 04 (a)c@(c) by Proposition 4.11, where
the notation @k(a) means the conjugacy class of @ in M,(K). On the other hand
we have dimg Ox(a)=dim, 0,(a)=dim, O\(a;)=dimg Ok(a;)=dimg O(c,)=dimyg
0x(c). Hence we conclude Ok(a)=0k(c). By the same reason 0O(b)=0,(c).
So we have Oy(a)=0x(b). Q.E.D.

4.3. Proof of Proposition 4.3.

We prepare a few lemmas for the proof.

Lemma 4.14. Let S be a topological space, L be a topological field, and
(Ty)s be a family of matrices of a fixed size whose entries depend continuously on
the parameter s. Then the function on S defined by s—rank (T,) is lower semi-
continuous, and s—nullity (T,) is upper semicontinuous.

Lemma 4.15. Let k be a non-archimedean local field of characteristic zero.
Then the function on M, (k) defined by a—v(a) is lower semicontinuous.

Proof. It is enough to show the following. If (a;) is a sequence in M, (k)
convergent to a and v(a;) are all equal to a constant v. Then v(a)<v.

We prove this. Let r{?, ¥, .., ¥{) be the distinct eigenvalues of a; in the
algebraic closure k of k. By virtue of Corollary 4.13, we may assume all r{) belong
to a finite extension K of k. Since the sequences (r{),; are bounded, we may also
assume that they are all convergent, without loss of generality. Now the conclusion
follows easily. Q.E.D.

Proof of Proposition 4.3. By the above lemmas, we find two filtrations
(YDo<i<r and (Z;)o<j<s of X such that the function d is constant on each Y;—Y;,,
and the function v is constant on each Z;—Z;,,. We put X;;=Z;n(Y;UZ;4,)=
(Z;nY)UZ;,,. Then (X;;)ogic is a descending sequence of closed invariant subsets
from Z; to Z;,, and both d and vareconstanton X;;— X;, ;=(Y;— Y4 ) N(Z;—
Z;+1). Now Proposition 4.3 is clear. Q.E.D.
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4.4. Let G=GL(n, k) act on X=G by inner automorphisms, where k is a
non-archimedean local field of characteristic zero. Then all G-orbits are admissible
(see Theorem 2.1). By virtue of Theorem 4.1, we have an S-filtration (X)o<;<, of X.
On the other hand we prove the orbital decomposition theorem for a space with
an S-filtration (Theorem 3.9). So we have

Theorem 4.16. Every invariant Radon measure T on GL(n, k) can be expressed
as follows:

=%  Tnand  gecz@GLe. b,
= €Z

where t; is a uniquely determined Radon measure on the orbit space &, correspond-

ing to X;_,—X;.

§5. Relationships between Strong Decomposition Theorem and Choquet’s
integral representation theory

In this section we discuss relationships between our strong decomposition
theorem and Choquet’s integral representation theory [1].

Let an /-group G act on an /-space X. We assume that X has Property (S)
and all orbits are admissible. For simplicity, we assume further that the space X
has a countable base, and there is a compact open subset N of X such that G(N)=
X. Using this open set N, we define the orbit space & as in §3. Then the orbit
space & is a compact /-space. We denote by E the space of invariant Radon
measures on X with vague topology. We put E*={meE; m is positive} and

E1={meE+;S dm=1}.
N

Theorem 5.1. (1) The topological space E* is metrizable and separable.

(2) The subset E, of E is compact, convex, and furthermore is a simplex in
the sense of Choquet (28.1 in [1]).

(3) The canonical injection of & to E, is a homeomorphism onto the set
&(E,) of extreme points in E,. In particular, &(E,) is closed in the convex set E,.

(4) For all WeE, there is unique &€ #'(&(E,)) such that

w(f)= § m(dem)  (fe CX)).

e(E,
Here #'(&(E,)) denotes the set of all probability Radon measures on &(E,).

The last assertion in Theorem 5.1 corresponds to the assertion on Radon
measures in our strong decomposition theorem.
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