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Introduction.

Let G be a locally compact totally disconnected group and X a locally compact
zero-dimensional space. Let G act on X  continuously. We denote by (X ) the
space of compactly supported locally constant functions on X .  We call an element
of the algebraic dual C7(X)* of Cc°3 (X), a  distribution on X .  A distribution T on
X  is called invariant i f  T(f)=  T (f g ) for a ll g e G  and f e C (X ) ,  where f g(x)=
f(g - tx), x e X .  We denote by C7(X)*G the space of all invariant distributions on
X.

Assume that, for each G-orbit 0 in X , there is a non-zero invariant distribution
on X  supported by 6, called a n  orbital distribution associated with C. In the
present paper we treat a  problem of expressing an invariant distribution on X  as a
"superposition" of orbital ones (Orbital decomposition problem).

Let A = G\X be the orbit space of X with respect to the group ac tion . F o r each
orbit A e A, we choose a suitably normalized orbital distribution 7;1 associated with
We define a linear map 0  of C7(X) to the space V of all complex valued functions
on A as follows:

0( f )(A) = T(f ) (A e A, fE C (X )) .

Then the dual 0* of 0  maps V* into Ce"(X)*G.
Our results in this general setting are stated as follows.

Weak Decomposition Theorem (Theorem 1 .8 ) . A ssume that f o r each x E X , the
intersection of  all closed open invariant subsets containing x  consists of  f initely
many orbits (Property ( W ) ) .  Then the space Cœ'c (X)*G of all inv ariant distributions
on X is exactly  equal to the image of the dual 0* of 0.

Strong Decomposition Theorem (Theorem 3 .7 ) .  A ssum e t h a t  the saturation
under G of each compact subset of X  is closed in X (Property  (S)). Then for each
f e Ccœ(X), the function 0 (f )  on A  is locally constant and compactly supported with
respect to the quotient topology on A .  A nd the dual 0* establishes an isomorphism
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of  C (A )* onto Cf(X)*G, that is, an arbitrary  inv ariant distribution T  on X  is
expressed as T (f )=  T ,(f )d t (A )(f  e C '(X ) ) .  Here z is a distribution on A  uniquely
determined by T.

We call a distribution m on X  a  Radon m easure if for an arbitrary compact
subset K  of X , there is a positive constant /UK such that Im(f)1 < M K . I f l  f o r  all
f e C f(X ) with supp (f)c K .  Here 11 f 11 is the supremum norm of f. In the strong
decomposition theorem, the space ...1(A) of the Radon measures on A  corresponds
bijectively to the space .‘(X )G  of invariant Randon measures on X.

Basing ourselves on the above two extreme cases, we inquire further into the
problem for an intermediate case. Suppose the space X is decomposed as a disjoint
union Y u Z with a closed invariant subset Y and an open invariant subset Z. Then
an invariant distribution on X may be decomposed into those on Y and on Z .  This
is treated in  1.3. Applying Weak Decomposition Theorem, we get there the two
exact sequences fo r  th e  spaces of invariant distributions and invariant Randon
measures:

(1) 0 <—  Cc:(Z)*G C ( X ) * G  C ( Y ) * G  4--  0 ,

(2) 0 4 —  ..,g(Z)?„ . , I ( X ) G  4- 0 .

Here ../(Z)?, is a subspace of ./g(Z)G defined by a condition "finite at infinities of Z "
(see Corollary 1.17). The sequence (2) splits canonically. So we have a canonical
isomorphism o f  ." (X )G  onto  .,1(Y)Ge.4'(Z)g. W e assume in addition that the
G-space Z has Property (S ) .  Then, by Strong Decomposition Theorem, we have
an  isomorphism of Cc")(Z)*G onto C(.2°)*, and  an  isomorphism o f  .,K(X)G onto
..,#(Y)GC).4(),„ where 2' is the orbit space of Z, and „K(.2°)„ is a subspace of 4 ' (.2')
corresponding to ..,(z)g.

By a successive use of the above argument, we get in  §3 the following orbital
decomposition theorem.

Theorem 3.9. A ssume that X  has a f inite f iltration X = X 0 X. , ••• X r =0
by closed invariant subsets such that the G-space —X1 ( l<  i< r ) has Property
(S). Then every invariant Radon measure T can be expressed as follows:

T( f )= 1  f  )(IT P.) (f  e  C ",?( X ) ) ,
i=l

w here t i  is a uniquely  determ ined R adon m easure on the  orbit space 2°, cor-
responding to the G-space X i _ X i .

Now let k be a  non-archimedean local field of characteristic z e ro . In  §2, we
prove that the assumption of Weak Decomposition Theorem is fulfilled in the case
that G=GL(n, k) o r its connected semisimple algebraic subgroup defined over k,
and X =G with inner automorphisms.

After establishing Strong Decomposition Theorem in  §3, we prove in  §4 the
existence of a filtration for G= X =GL(n, k). So we get Theorem 4.16, an orbital
decomposition in this case.
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I n  §5 , th e  relationships between our Strong Decomposition Theorem and
Choquet's integral representation theory, in case of Radon measures, are considered.

In the previous paper [8 ], we treated invariant distributions on SL(2, k). An
explicit splitting of the exact sequence (1) is given there for G= X =SL(2, k), Z=
{regular semisimple elements}, and Y= X - Z .  S o  an arbitrary invariant distribution
on SL(2, k) is "strongly -  decomposed into orbital o n e s .  O ur Theorem 4.16 deals
only w ith invariant Randon measures o n  GL(n, k). The strong decomposition
theorem available for all invariant distributions on GL(n, k) is not yet known to the
author.

T he author expresses h is thanks to  P rofessor T . H ira i a n d  Professor N.
Tatsuuma for their kind advices.

§1. Weak decomposition theorem

1.1. Group actions on topological spaces.

We call a  topological space X  an  l-space if it  is  Hausdorff, locally compact,
and zero-dimensional, that is, each point has a fundamental system of open compact
neighbourhoods. We call a topological group G an l-group if it has a fundamental
system of neighbourhoods of the unit element consisting of open compact subgroups.
It can be shown that a topological group is an 1-group if and only if it is an /-space.
Throughout, when we say that "an /-group G acts on an /-space X ", we always mean
a continuous left action.

Definition 1 . 1 .  Let be an /-space. We denote by COE', (X ) the space of all locally
constant complex-valued functions on X with com pact support. We call an element
of the algebraic dual C (X )*  of C (X )  a  distribution o n  X .  N ote that X ( X )
and  CT(X)* are  treated w ithout any topology. I f  fe  C ( X )  a n d  m e C (X )* ,
then the value of in at f  is denoted by I f(x)dm(x).

Definition 1 .2 .  Let X be an 1-space. A distribution in o n  X  is called positive
if m(f )> 0 for each non-negative fe  C", (X ) .  A distribution on X is called a complex
Radon measure on X if it can be expressed as a linear combination of positive ones.

Proposition 1 .3 .  L et X  be an 1 -space . A  distribution m on X  is a complex
R adon measure if  and only  if  for an arbitrary  com pact subset K  of  X , there is a
positive constant MK such that Im(f)I_ M K •ii f  II if supp ( f ) c K .  H e re  I f  i s  the
supremum norm  off .

Definition 1.4. Let G be an /-group, X an /-space, and p: G x X-÷X an action of
G on X .  The saturation of a  subset A  of X  is the subset of X  consisting of all
elements p(g, a) with g e G and a e A , and is denoted by G (A ). When A  is a  one-
point set {x} the saturation of A  is called the orbit of x and is denoted by G(x).
A subset B is called invariant if G(B)= B .  A subset of X is called a dom ain if it is
closed, open, and invariant. A  domain is called a  tube if it is the saturation of a
compact subset of X .
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If A and B are domains (resp. tubes), A u B, A n B, A— B, and A L B  are domains
(resp. tubes).

Definition 1.5. Let p be an action of an /-group G on an /-space X .  A distri-
bution m o n  X  is called inv ariant if it satisfies m (p(g)f)— m (f) (fe Cc:(X) and
g E G), where (p (g )f)(x )= f(p (g - 1 , x)). We denote by CT(X)*G the  space o f  all
invariant distributions on X .

A distribution m on X is invariant if and only if in vanishes on the linear subspace
10 (X ) of C f(X ) spanned by all elements p(g)f — f with f E C f(X ) and g E G.

Definition 1.6. Let an /-group G act on an /-space X .  Let x E X .  If the follow-
ing four conditions are fulfilled, we call the orbit G(x) admissible.

(1) The orbit G(x) is locally closed in X.
(2) The quotient space GIG, with left translation and the space G(x) are

isomorphic as topological G-spaces, where Gx  is the isotropy subgroup of
X.

(3) The G-space G(x) carries a G-invariant Radon measure dm.
(4) The integral Çf  ( y ) d m ( y )  converges for all f e Cf (X).

G(x )
In this case we have an invariant distribution on X  by the integral in (4). Such a
distribution is called the orbital distribution associated with the orbit G(x).

1 .2 .  The following result is fundamental.

Proposition 1.7. Let an I-group G act on an 1-space X  transitiv ely . Suppose
the unique orbit X  is adm issible. L et 111 b e  its  orbital distribution. T hen Ker
(in)=1,(X).

Pro o f . See R. Howe [6] or S. Matsumoto [8].

Let an /-group G act on an /-space X .  We name the following, Property  (W).
Property (W ): F or each x E X , the intersection of all domains containing x

consists of finitely many orbits.
We state our weak orbital decomposition theorem.

Theorem 1.8. Let an 1-group G act on an 1-space X . W e assum e that each
orbit is adm issible and the space X  has Property  ( W ).  Let fe C c' ( X ) .  Then the
following conditions for f  are mutually  equivalent:

(1) fe l , (X ).
(2) f  is annihilated by  all invariant distributions on X .
(3 )  f  is annihilated by  all orbital distributions on X .

This subsection is devoted to prove that (3) implies (1). Implications (1)
(2 ).(3 ) are clear.

First, let us sketch the proof. Given an element f e Cc°, (X ) annihilated by all
orbital distributions. We prove that f e  I ( X ) .  For this purpose it is enough to
show that f  belongs to I G (X ) "locally" in the sense that for each x e X , there is a
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domain Da x such that x i , -fe 1 6 ( X ) .  Here XD denotes the characteristic function
of D .  Because the fact that fe / G (X) follows easily from this by the partition of unity
argum ent. O n the other hand in  order to prove that f  belongs to /,(X ) locally,
we use Property ( W) essentially.

Now we prepare some terminologies and lemmas for our p roof. W e ca ll a
subset of X a complex if it is closed and consists of finitely many orbits. Let 0 be
a n  o rb it . We call the subset 0 — 0 of X  the  boundary  of 0  and denote it by se,
where (9 is the closure of O .  It should be noted that the boundary of an orbit is not
the same as the topological boundary in general.

Lemma 1.9. Under the same situation in Theorem 1.8, f or an arbitrary  orbit,
the closure and the boundary  of  it are complexes.

Pro o f . The conclusions follow from local closedness of the orbit and Property
(W) on X. Q. E. D.

Let 0 be a n  o rb it . We call the number of orbits contained in the closure of 0
the degree of 0, which we denote by deg (0). For a complex K, we define the degree
deg (K ) of K as the highest degree of orbits in K .  For a complex K and a natural
number r, the union of all orbits in K  with deg (0)< r is called the  r-skeleton of
K .  Skeletons are complexes. In fact, if 0 is an orbit and L is a  complex contained
in the boundary of 0, then deg (L)< deg (0).

Lemma 1 .1 0 .  Let 0 be an orbit and F be a closed inv ariant subset of  X  dis-
joint f rom  0 .  A ssume that an  element fe C cx (X ) vanishes o n  th e  boundary  00
an d  is annih ilated  by  the orbital distribution associated w ith 0. Then there
exists an element he/ G (X ) which vanishes on F and coincides with f  on O.

P ro o f . Regard 0 itself as a  G-space. Since f  vanishes o n  00, the restriction
f I, off to the orbit 0 belongs to C (0 ), and is annihilated by the orbital distribution
on O .  So we conclude f ,

 e / (e) from Proposition 1.7. In  other words, f I, can
be expressed a s  a  linear com bination E  ci(p o (g i) f i —fi) ,  where ci e C, g i e G, fi e

t5 i5 r
C (0 ),  and p, is the G-action on the orbit O .  We may assume here each f i i s  the
characteristic function of a compact open subset A i o f  O .  For each A i , we find a
compact open subset Â of X  such that n =A i and g i n F  c k .  Obviously h=
E  coo ik,,,-n-,) has the  required properties, where p  is  the G-action on X .

15iSr
Q. E. D.

Proposition 1 . 1 1 .  L et K c X  be a complex and f  be an element of  Cw, (X ) an-
nihilated by  all orbital distributions supported in  K .  Then there exists an element
he I G (X ) which coincides with f  on K.

Pro o f . We prove the proposition by induction on the degree of K .  We assume
that the proposition is valid for any complex with degree <deg ( K ) .  L et 0 1 , 02 ,...,
Or  be the orbits in K with degree d = deg (K ) .  Then the (d —1)-skeleton of K is equal
to  K—(u 0 1). By virtue of the assumption of induction, we find a n  element f o  E
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I G (X ) such that f —fo vanishes on the skeleton. In particular, f —f, vanishes on each
boundary 00i of 0i, so by Lemma 1.10 there is an element f i e I G (X ) which vanishes
on the closed invariant subset K—O i o f X and coincides with f— fo  o n  e i . Clearly
f =  E  f i on K. Q. E. D.

05i5r

Proof  of  im plication (3) (1) in  Theorem 1.8. Let f  be an  element of C (X )
annihilated by all oribital distributions and 9  be the totality of all domains D such
that xpfe I (X ).  9  is closed under the operation of finite union. In fact, if D 1 ,
D, e 2 , then ;CD, U D2 = xD,- D 2  (xD i •f )+x D 2lE  ID (X )•  Here we use the fac t the
space 10 (X ) is closed under the multiplication by the characteristic function o f a
d o m a in . Next we show th a t 9  is  an open covering of X .  Let x e X .  Then the
intersection K  o f all domains containing x is  a complex, by Property (W ). By
Proposition 1.11, we find a n  element heI G (X )  such that f = h  o n  K .  P u t U=
{y E X ; f (y)= h(y)} and M = supp (f) U supp (h). Then U is an open neighbourhood
of K  and M is com pac t. So it is easily verified that there exists a  dom ain BB X
such that M n U .  Thus Y  f  Y=

our assertion. Q. E. D.

1 .3 .  Open invariant subsets with Property ( W).

Let Y be a closed subset of an /-space X  and Z be the complement of Y in X .
We define the  mappings iz  o f  C C (Z) t o  CT(X ) and py  o f  C (X )  to C (Y )  as
follows: iz ( f )  is the extension o f f  by zero outside Y, and p ( f )  is the restriction of
f  to Y .

Proposition 1.12. The following sequence is exact:

0 C N Z ) C N X ) C N Y ) 0

P ro o f . See [2].

We consider an action on X  of an /-group G .  We assume tha t Y is invariant
with respect to  the group a c tio n . Then the /-group G acts o n  /-spaces Y and Z
naturally.

Proposition 1 . 1 3  A ssume that all orbits contained in  Z  are adm issible in the
G-space X , and the space Z  has Property  ( W) with respect to the G -action. Then
we have the following commutative diagram whose rows and columns are all exact.
H e r e  q, and C are inclusions.

h e /G ( X ) .  These two properties of 9 prove
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0 — >  C (Z )/ 1 G ( Z )  - - +  C (X )/ I (X ) C (Y )/ I (Y )  - - 5 0

O.

The essential part of Proposition 1.13 is exactness at the term / G (X ) in the top
column of the diagram. Proposition 1.13 can be reduced to the following

Proposition 1 .1 4 . Let the situation be as in the previous proposition. Identify
the space Cf (Z) as a linear subspace of  C f(X ) by  zero ex tension outside Z, then
C (Z ) n i G (x)= /a ) .

We prepare an elementary lemma for the proof.

Lemma 1 .1 5 . Let 0 be an orbit in Z . T hen it is adm issible in Z .  The orbital
distribution on X associated with 0 is mapped by i again  to  the orbital distribution
on Z associated with 0.

Proof  of  Proposition 1 .1 4 . Let fe  C (Z ) n i G (x ) . Then f  is annihilated by
a ll orbital distributions supported in  Z . B y v irtue of the weak decomposition
theorem (Theorem 1.8), we conclude fe  / G (Z). Q. E. D.

Corollary 1 .1 6 . B y  dualizing the d iagram  in Proposition 1.13, w e have an
exact sequence

0 Ker (C* ) K er (*) 4--- K er (q*) 4—  O.

This sequence can be written also as the following one

0 4—  C c̀°( Z ) * G C c e ° ( X ) * G  4 - - -  Cc
° ( Y ) * G  4- -  0.

Remark. In Proposition 1.13 the assumption "admissible in X "  on orbits can
not be replaced by "admissible in Z " .  In fact, we have the following simple
example. Let k be a  non-archimedean local field. The unit group G = k* of k
acts on X =k by multiplication. Then the G-space X  consists of two orbits Y= {0}
and Z = k * .  The former is closed and the latter open . Clearly the following
sequence is not exact:

0 /G(Z) — > / G (X ) —> / G (Y ) — > O.

We denote by .-K(Z),, the subspace of ..#(Z) consisting of all complex Radon
measures m such that m ! (A) is finite for all closed open subset A of Z, relatively
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compact in X .  Here I ml is the absolute value of m.

Corollary 1 .1 7 . The following sequence is exact and canonically splits:

0 <—  4 '( Z ) G  n .."(z) b. . , e ( X ) G .„,(Y )G 4--  O.

1 .4 .  Let an /-group G act on an /-space X .  Assume that X  consists of finitely
many orbits, and all orbits are admissible. Then the orbital decomposition theorem
has the following simple form.

Proposition 1 .1 8 . The orbital distributions m l , m2 ,..., in, on X  associated with
all orbits in X  form  a basis of C (X )*G .

P ro o f . We define a  linear map .9-  of  C ( X )  to  C r as  fo llow s: .9- ( f ) =

(tniU D isisr (.f e  C ( X ) ) .  Then the sequence

0 10(X ) C ( X ) Cr

i s  ex ac t. So  0:(X )*G = Im ( T * ) .  Cleraly lm ( T * )  is  the linear span of
We show that (in i ) is linearly independent. Suppose

(*) cimi = 0

is a non-trivial relation. Let g be the maximum of degrees of orbits corresponding
to non-zero coefficients c i . Then we may regard (*) as a linear relation of orbital
distributions on the q-skeleton X q .  Using the exact sequence

0 <—  Cc:(Xq — X q - ')*G<-- C T (X q)*G C(XT-1 )*G <—  0,

we get a non-trivial linear relation of orbital distributions on the G-space Xq —
X q - 1 . But this is a contradiction, for the G-space X q — X q - 1  consists of finitely
many closed open orbits. Q .  E .  D .

§ 2 .  Property ( W) in semisimple groups

Let k  be a non-archimedean local field of characteristic zero, and k its algebraic
closure. Let G be GL (n, k) or its connected semisimple algebraic subgroup defined
over k , and G =G (k )  the group of k-rational points of G .  Then G  is  an /-group
with its natural topology. Denote by X  the underlying /-space of G .  We define a
G-action on X  as follows: G x X n ( g ,  e X .  This section is devoted to
prove the following

Theorem 2 .1 .  ( 1 )  Each orbit in X  is admissible,
( 2 )  X  has Property  ( W).

Pro o f . For the proof of (1), see [ 9 ] .  We shall prove here (2). Take x e X ,
and let F be the intersection of all domains containing x .  We prove that F consists
of finitely many G-orbits by contradiction. Suppose F  consists of infinitely many
G-orbits. Let S  be a  complete system of representatives of these G-orbits. We
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define the continuous map P of G to kn as follows: The image P(y) of y is the coeffi-
cients of the characteristic polynomial of the n x n matrix y , that is, P (y )= (p 1 ,
P2, •••, A), det (y — t/„) = ( — ± p 1 t" 1 + . . . + p„_ i t + p „  (t :  indeterminate). Since
the inverse image of an arbitrary closed open subset of k" is a domain, F is, a fortiori
S is, contained in a fibre of P .  Each fibre of P is, as a subset of GL(n, k), covered by
a finite number of GL(n, k)-orb its. So there is an infinite subset S , of S contained
in a GL(n, k)-orbit C 1 in  GL(n, k). Applying Richardson's theorem (Theorem 3.1
in [10]) to the reductive pair (GL(n, k), G), we know that C 1 n G is a finite union of
G-orbits. Thus we find an infinite subset S2 of S , contained in  a  G-orbit C2.

Since S, is contained in the subset C2 (k) of k-rational points in C2, C2(k) consists
of infinitely many G (k)-orbits. This contradicts to 6.4. Corollaire in [3]. Q. E. D.

§ 3 .  Strong decomposition theorem

3 . 1 .  In this section we treat the orbital decomposition under a stronger assump-
tio n . In this case, the invariant distributions on an /-space correspond completely
to the distributions on the orbit space.

Let X  be an /-space, and G an /-group acting on X .  We name the following,
Property  (S).

Property ( S ) :  The saturation of each compact subset of X  is closed in  X .
If X has Property (S), in particular, each orbit is closed.

Proposition 3 . 1 .  L et an  1-group act on an  1-space X . I f  B is a tube and D
is a dom ain in X , then B n D is a tube.

P ro o f . If B is the saturation of a compact set A , then B n D is the saturation
of the compact set A n D. Q. E. D.

Corollary 3 .2 .  The collection of tubes form s an  ideal, in the sense of Halmos
[4], in the Boorean algebra of domains.

Corollary 3 .3 .  L et an l-group G act on an I-space X . A ssume that the space
X  has Property  (S). Then an  orbit 0 is ex actly  equal to the intersection of  all
tubes containing it. In  particular, Property  (S ) im plies Property  ( W).

P ro o f . Let x e X  be outside of the orbit O .  Since the orbit is closed, we find
a compact open neighbourhood A  of x not intersecting 0 .  Then for an arbitrary
tube B containing (9 the difference B — G(A) is  a tube by Proposition 3.1. This
contains 0 and does not contain the point x. Q. E. D.

Proposition 3 .4 .  L et an l-group G act on an 1-space X . A ssume that X  has
Property  (S) and is a-com pact. Then there ex ists an open subset N of X satisfying
the following two conditions:

(1) For each orbit (9 in X , N neocp.
(2) For each tube B in X , N n B is compact.

P ro o f . Since X  is a-compact, we find a sequence (B1)  of tubes which covers
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the whole space X .  We may assume that the covering is disjoint. L e t  A i b e  a
compact open subset of X  such that G(A )= B i . Then N =U  A i has the required
properties. i Q. E. D.

Now we define the orbit space as fo llow s. Let the notation be as in Proposition
3.4. Assume that each orbit is adm issible. We denote by a" the totality of all orbital
distributions m on X  such that m(z, IN )  = 1 for a tube B containing the orbit corre-
sponding to in. Then there exists a  canonical bijection between the set a n d  t h e
set of all orbits. W e also have a canonical surjection p of X  to  X . W e equip  the
space the quotient topology induced by p. We call this topological space the
orbit space.

We fix the notation G, X , N, .1", and p  in the rest of this subsection. For an
invariant subset C of X , we denote by X(C) the subset of consisting of all orbital
distributions corresponding to orbits in  C .  Then, for a tube B , the subset .2"(B) is
open and closed by definition of the topology on X . Furtherm ore w e have

Proposition 3 .5 .  L e t m e X , and L  b e  th e  totality  o f  a l l  tubes containing
p - 1 (m). Then (1*(B)) 13E2 is  a fundamental system of open compact neighbourhoods
of m.

P ro o f . First we show that .T(B) is compact for a tube B .  Let (S,) ,G, be an open
covering of X (B ). Then (p - 1 (S 1))1c1 is  an open covering of a compact set B n N.
So we may find a  finite subcovering (p - '(S i ))i o . Clearly (SJ ); "  is a  covering of

Let U be an arbitrary open neighbourhood of in. We must find a tube C e 2
such that .T (C )c  U . We fix a tube B, e 2 .  Then open sets U n .2"(30 ) and X(B)c
(B e 2) cover the compact set S(B 0 ), for the intersection of all .S(B) (B e .2) is equal
to p ( m )  by Corollary 3.3. So we find a  finite number of tubes .131 , B 2 ,..., B, G 2
such that .%(B 0 ) Œ (U n .%"(B0 )) .T(Bi)c o r  equivalently X( r )  13i) U n

oist
./V3 0 )c  U. Q. E. D.

For an  element f  e  C (X ), we define a  function o n  th e  orbit space as
follows : g:f (m)= m(f) (m  e s ) .

Proposition 3 .6 .  For an arbitrary  f eC c'(X ), the function .Ff  on  A " is locally
constant and compactly  supported, that is, g:r e

P ro o f . If the support of f  contained in a compact open subset A of X , then
the support of 5:f. is contained in a compact set X (G (A )). Next we show that the
function .9"f  is locally constant. Let m e X, and B be a tube which contains the orbit
0  corresponding to m .  Let h be the characteristic function of the compact open
subset B n N  of X .  Then Y h is equal to the characteristic function of the compact
open subset X (B) of i n  particular it is locally constant. The function =

m (f )Y , vanishes at in. So we may assume that f  itself vanishes at m without
loss of generality. By Proposition 1.11, we find an element f i  e /,(X ) which coincides
with f  on the closed orbit 0 .  By using a similar argument in the proof of implication
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(3) (1) in Theorem 1.8, we conclude that there is a tube B1 containing 0 , on which
f  and f ,  coincide with each other. Thus Y f  vanishes on  a  neighbourhood X (B 1 )
of m, because so does Y f  Q .  E. D.

We state our strong decomposition theorem.

Theorem 3.7. The following sequence is exact:

0 /G (X )---*  Cr(X) MX) 0.

The dual *  of  Y  gives an  isomorphism o f  C 7 (.)*  to C7(X )*G. Furtherm ore
the isomorphism .9- * m aps R adon measures on A " to invariant Radon measures on
X , and preserves lattice structures with respect to positive measures.

P ro o f . Exactness of the sequence at the term C ( X )  is neither more nor less
than weak decomposition theorem. We show that the linear map f  is  onto.
By Proposition 3.5 and Corollary 3.2 we know that an arbitrary element o f  C(.1r)
can be expressed as a linear combination of characteristic functions of subsets of the
f o r m  (B) (B: tube). O n the  other hand, we have already seen in the proof of Prop-
osition 3.6 that the image of Y  contains all such functions.

For the latter half of the theorem, we notice that isomorphisms Y * and .Y* - 1

preserve positivity o f  d is tr ib u tio n s . T h e  sta tem ent fo llow s from  it w ithout
difficulties. Q .  E .  D .

3 .2 .  I n  this subsection w e consider a  generalization o f  our Strong D e-
composition Theorem.

Definition 3 .8 .  Let an /-group G act on an /-space X .  We call a  descending
sequence (X 1)0 , of closed invariant subsets of X  a f iltration of X  if X 0  =X  and
X ,.= 0 . And we call the filtration (X i)0 ,. an S-filtration, if each difference X 1_ 1 —
X i (1 < i < r) has Property (S ) with respect to  the canonical G-action induced from
that on X.

By a successive use of Corollary 1.17, we have the next

Theorem 3 .9 .  L et an l-group G  ac t o n  an  I-space  X . A ssum e that all G -
orbits in  X  are adm issible, and that X  has an S -f iltration (X 1)0 , K r . Then every
invariant R adon m easure T  can be expressed as follows:

T ( f )= À,e3., T 2 ( f ) d t i ( 2 ) (f  E C ( X ) ) ,
1 1

where 2 i  is  a  uniquely  determ ined R adon m easure on the orbit space corre-
sponding to the G-space X ._ 1 —X 1.

§4 . Filtration in GL (n, k)

4.1. In  this section we construct an  S-filtration for the following special G-
space X : X  = G = GL(n, k), where k is a non-archimedean local field of characteristic
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zero. The action of G on X  is given by inner automorphisms.
Throughout we fix the above notations.

Theorem 4 .1 .  There is an S-filtration of X .

In  order to prove Theorem 4.1, it is sufficient to verify th e  following two
propositions.

Let X E X .  We denote by d(x) the dimension of the orbit o f  x .  We may have
d(x )=n 2  — dim, C,(x), where C,(x) is the k-vector space of all n x n matrices commut-
ing with x. Also we denote by v(x) the number of the distinct eigenvalues of x in the
algebraic closure k of k.

Proposition 4 .2 .  Let Y  be a locally closed invariant subset of  X  on which two
functions d  and  y  are  constant. Then Property  (S) is satisf ied on the G-space Y ,
that is, every compact subset of Y  has the closed G-saturation.

Proposition 4.3. There is a f iltration (X ,) 0 K ,. of  X  such that the functions d
and y  are constant on each X ,_, — X i .

4 .2 .  Proof of Proposition 4.2.

We prepare some results on  linear algebra. D enote by M„(k) the  set of all
n x n matrices with entries in k, and k [t] the polynomial ring in one indeterminate t.

Let a E M „(k ). Then there exist two elements q, and q 2  E GL(n, k[t]), and monic
polynomials e,(t), e „ ( t )  in  k [t] such that q i (t.1 „— a)q2 =diag (e l (t), e 2 (t),...,
e (t)) and ei (t)1 e,,,(t) (i =1, 2,..., n - 1 ) .  Here I n  is  the n x n  unit matrix, and we
read e ,(t)I i (t) as "the polynomial ei (t) divides the polynomial ei , „ O r .  The
sequence (e,(t), e„(t)) is uniquely determined by a. We call the sequence
the invariants of a  and denote it by e ( a) .  The next theorem gives fundamental
properties of elementary divisors.

Theorem 4 .4 .  (1) L e t a e M (k ) an d  e (a)=(e i (t), e 2 (t),..., e„(t)). T hen, f or
each i, e 1 (t)e2 (0• ... • e i (t) is equal to  the greatest com m on div isor o f  i-th  minor
determ inants of  the matrix t1„—  a, in particular e 1 (0e 2 (0• ... • e„(t) is equal to the
characteristic polynomial of  a.

(2) Two matrices in M (k) are conjugate if and only if their invariants coincide
with each other.

Corollary 4 .5 .  L et L  be an ex tension f ield of  k . Then, two matrices in M, 1(k)
are conjugate in M (k ) if  and only  if  they are conjugate in M n (L).

Definition 4 .6 .  Two sequences (a,) and (b 1)  in  M„(k) are called conjugate if
a, and b, are conjugate in M„(k) for all i.

Definition 4 .7 .  Let a E M (k ) and L be an extension field of k. If L is a  (not
necessarily minimal) splitting field of the characteristic polynomial o f a, we say
that a splits in L.

Definition 4 .8 .  L et a, a t e M „(k) (i=1, 2 ,...) , a n d  e(a)=(ei(t), e2(t),• • • , 4 0 ) ,
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e(a,)= (e (
i i) (t), e;,i)(t)). Suppose the sequence (a,) converges t o  a. We

say (a i) converges with invariants to a if e(
i i) (0--e i (t)(i—>oo) for all j. Here e(l ) (0 ,-+

e(t) means that the coefficients of e(
i i) (t) converge to the corresponding ones of ei (t).

Proposition 4 .9 .  L et (a l ) be a  sequence in M n (k) convergent to some element
a e M „(k ). A ssume that v (a,)=v(a) f o r every  i, and  that all a i sp lit  i n  k .  Then
there ex ists a  subsequence (cl i p )  of  (a 1)  such that there ex ists a  sequence (c p )  in
M (k ) which is conjugate to (a i ), and converges w ith inv ariants to an  element in
M„(k).

P ro o f . Since the types of Jordan canonical forms are finite, we can choose a
subsequence (a i p ) of (a) for which the Jordan canonical form cp  of a , is  of the same
type for i = 1, 2,.... Put s;,P) the distinct eigenvalues of a i p . By extracting
a suitable subsequence, we may assume that each sequence (s(i P) ) , , ,  is convergent,
without loss of generality. Then the limits s i , s 2 ,..., S r  of the sequences are distinct,
for v (a)=v . Therefore the sequence (c,p )  converges w ith  invariants. Q. E. D.

Theorem 4 .1 0  (Closure relation in M „(k )). L et a, b e M n (k ) splitting in k ,
e(a)=(e i (t),..., e(t)), e(b)=(eat),..., e at) ) . T h e n  a  belongs to the closure of  the
conjugacy class o f  b  if  and  only  if  . . .  •  e „ ( 0 1  . . .  •  e ( t )
f or all j.

Proposition 4 .1 1 .  L e t (a), (1),) be sequences m utually  conjugate in  M (k ).
A ssum e that (a,) converges to  an  element a e M„(k), and  that (b,) converges with
invariants to an element b e M (k ), and that the limits a, b split in k. Then 61(a)c
e(b). Here (9(a) denotes the conjugacy class of a, and e(a) denotes the closure of it.

Pro o f . L e t  e(a)=(e i (t),..., e(t)), e a t ) ) ,  a n d  e(a i)= e(b,)=
e (t)). W e put d .X0= e i (t)e 2 (t) • ... • ei (t), d 'A O= e(t)e(t) • ... • e'f (t)(1<

j < n). By the above theorem, it is sufficient to show d "i (t)I d i (t). Let 111(t) be  a
j-th minor determinant of tl.„—  a. Then there is a  sequence (OP)) convergent to
ifr(t) such that each OP) is a j-th minor determinant of t! —a,. S in c e  d ( t )  divides
OP) for each i, the limit c l( t)  divides O M . So we conclude d ( t ) l di (t). Q. E. D.

Proposition 4 .1 2 .  Let k  be a non-archiinedean local field of characteristic zero
as stated above, and k be its algebraic closure. T hen there are only finitely many
intermediate fields of  k  and k, of given finite degree over k.

P ro o f . It is enough to show that there are only finitely many totally ramified
extensions of k in k of degree equal to a given number r .  It is well known that such
an extension is obtained by adding to k  a root of an Eisenstein equation of degree
r  over k. Put 2  {(a 1 , a 2 ,..., a,); la  <1  for each i  and lar l in i } ,  where it i s  a
primitive element in k. For an element a=(a i , a 2 ,..., a r )e  2, we denote by f a  the
polynomial map of k to k: f„(x)= xr + a i xr- 1  + + a,.  ( x  e k ) .  Let n n .   If /3 e 2 is
sufficiently close to  a, then each element of f  ' (0 ) is close to some element of f  ; 1 (0).
So, by Krasner's lemma (see e.g. [7]), the totality of all fl e 2 satisfying the following
is a neighbourhood of a: the simple extension of k by any element f  i'(0) is of the form
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k(a) for some element a  of f ; 1 (0). By virtue of compactness of 2, there exists a
finite subset WI of 2 such that every totally ramified extension of degree r is of the form
k(a) with a c U f ;  (0) (oc e Q. E. D.

Corollary 4 .1 3 .  There is a f inite extension field K of k such that every element
of  M (k ) splits in K.

Proof of Proposition 4.2. Let A be a compact subset of Y. W e  must show that
the G-saturation G(A) is closed in  Y. Let (b 1) be a  sequence in G(A ) convergent to
b e Y  We select a sequence (a1) in  A  which is conjugate to (b 1). We may assume
that the sequence (a1)  converges to  an element a e A .  By virtue of Corollary 4.5,
it is enough to show that a is conjugate to b in M (K ), for a finite extension K  of k as
stated in Corollary 4.13. By Proposition 4.9, we find a  subsequence (a1p )  o f  (a 1)
and a conjugate sequence (ca ) of (a1 ) in M„(K) such that (ca ) converges with invariants
to an element c e M ( K ) .  Then we have 0 , ( a ) c  K (c) by Proposition 4.11, where
the notation 0 ,(a) means the conjugacy class of a in M ( K ) .  O n the  other hand
we have dimK  K (a) =dim k O k (a)= dimk O k(a i ,) = dimK  OK (a i t ) = dimK  O K (c i )=-dimK

K (C ).  Hence we conclude 0 K ( a ) =  K (c). B y  t h e  sa m e  re a so n  OK (b)=0 K (c).
So we h a v e  K ( a ) =  K (b). Q. E. D.

4 .3 .  Proof of Proposition 4.3.
We prepare a few lemmas for the proof.

Lemma 4 .1 4 . L e t S  be  a  topological space, L  be  a  topological f ield, and
(Ts ),E s be a fam ily  of matrices of  a fixed size whose entries depend continuously on
the param eter s. Then the function on  S  defined by  si-rank(T) is low er sem i-
continuous, and si-nullity (Ts)  is upper semicontinuous.

Lemma 4 .1 5 .  L et k  be a non-archim edean local f ield of  characteristic zero.
Then the function on M„(k) defined by al-v (a) is lower semicontinuous.

P ro o f . It is enough to  show the follow ing. If  (a1)  is  a  sequence in M (k )
convergent to a and v(ai) are all equal to a constant v. T h e n  v(a)< v.

W e prove  th is. Let r (i i)  , r ; , i )  be the distinct eigenvalues of a i in  th e
algebraic closure k of k. By virtue of Corollary 4.13, we may assume all 6i )  belong
to a finite extension K  of k. Since the sequences (r (

i i) ) 1 a r e  bounded, we may also
assume that they are all convergent, without loss of generality. Now the conclusion
follows easily. Q. E. D.

Proof  o f  Proposition 4.3. By th e  above  lem m as, w e  find  tw o  filtrations
(Yi)0 ,. and (Z .1)0 . N , of X  such that the function d  is constant on each Yi - Y i ."
and the function v is constant on each Z - Z j . W e  put X i i  n  (Y, u
(Z;  n Y,) u Z.  T h e n  (X i i ) c , ,. is a descending sequence of closed invariant subsets
from  Z. to Z . i +  a n d  both d  and y are constant on X i i - X i , , , i =(Y i - Y i + i ) n (zi -
z i i .1 ). Now Proposition 4.3 is clear. Q. E. D.
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4.4. Let G=GL (n, k ) ac t on X  =G  by inner automorphisms, where k  i s  a
non-archimedean local field of characteristic zero . Then all G-orbits are admissible
(see Theorem 2 .1 ) . By virtue of Theorem 4.1, we have an S-filtration (X i),,, K , of X.
On the other hand we prove the orbital decomposition theorem for a space with
an S-filtration (Theorem 3.9). So we have

Theorem 4.16. Every invariant Radon measure Ton GL(n, k) can be expressed
as follows:

T ( f )= TA(f)dt1(.1) (f  E C (G L (n . k ))),
1=1 A e f f

where Ti is a uniquely determined Radon measure on the orbit space Y i correspond-
ing to X _ 1 — X .

§5 . Relationships between Strong Decomposition Theorem and Choquet's
integral representation theory

In  th is  section we discuss relationships between our strong decomposition
theorem and Choquet's integral representation theory [1].

Let an /-group G act on an /-space X .  We assume tha t X  has Property (S)
and all orbits are admissible. For simplicity, we assume further that the space X
has a countable base, and there is a compact open subset N  of X  such that G(N)=
X .  Using this open set N , we define the orbit space as  in  §3 . Then the orbit
space X  is a compact /-space. W e denote by E  the space of invariant Radon
measures on X  w ith vague topo logy . W e put E+ ={ m e E; m  is positive} and

E, = {m e E+ dm =1} .

Theorem 5.1. (1) T he topological space E±  is m etriz able an d  separable.
(2) The subset E, of  E  is compact, convex, and furtherm ore is a sim plex  in

the sense of Choquet (28.1 in [1]).
(3) The canonical injection of  .1 t o  E ,  i s  a hom eom orphism  onto the set

S (E,) of extreme points in E l . In particular, 6P(E 1 ) is closed in the convex set E 1 .
( 4 )  For all V ' e E, there is unique 45 e .zgl(S(E,)) such that

W(f)= m(f)deb(m) (fG C (X ) ) .
g ( E I )

H ere  ,e (S (E ,)) deno tes the  se t o f  all probability  R adon m easures o n  g(E
1 ).

The last assertion in Theorem 5.1 corresponds t o  the assertion on Radon
measures in our strong decomposition theorem.
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