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Nakai-Kosaki-Ishibashi [2] has proved that if K is a purely inseparable field
extension of finite exponent of a field k, then there exists a bijective correspondence
between intermediate fields of K/k and closed subrings of 2(K/k) containing K
such that the corresponding field E and closed subring a are related by the formulae
E=Z(a) and a=2(K/E), where 2(K/k) denotes the derivation algebra of K over k,
Z(a) denotes the center of a and 2(K/k) is regarded as a topological space by the
topology induced by the Krull topology of Hom, (K, K).

This is a generalization of the theorem of Jacobson-Bourbaki correspondence
in the case of purely inseparable finite extension.

In this paper we shall prove that a similar theorem of Galois correspondence
still holds if the Krull topology is replaced by the finite topology and K is replaced
by any field extension satisfying one of the following equivalent conditions (0), (1),
(2) and (3).

(0) 2(KJk) is dense in Hom, (K, K).

() Z(2(K[k)=k.

(2) If xis an element of K\k, then there exists a high order derivation D of some
order such that D(x)=0.

0
(3) N I%,=(0), where I, =Ker (multiplication K ® K— K).
n=1 k
Not only purely inseparable extension K/k of finite exponent but also purely
transcendental extension K/k satisfy the conditions above. And there exists an

example of a purely inseparable extension, not of finite exponent, satisfying the
above conditions.®

Notation and terminology. We adopt the notation and terminology in [1] and
[2]. All rings are assumed to be commutative and have identities. When k is a ring
and K is a commutative k-algebra, a g-th order derivation of K/k (or k-derivation
of K) is, by definition, a k-homomorphism D: K—K satisfying the following identity:

*) Moreover, K/k is purely inseparable of finite exponent if and only if, for every intermediate
field E of K/k, K/E satisfies the above conditions. (cf. Mordeson-Vinograde [5])
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4
D(xoxl"'xq)= Zl(—l)‘s_1 z xil-..x‘.sD(xO...xil...ﬁis...xq)

i1 <o <ig

for any set {xo, xy...., x,} of (q+ 1)-elements in K. 2{P(K/k) denotes the totality
of g-th order k-derivations of K and 2,(K/k) denotes the union U 2{9(K k),

which is a K-submodule of Hom, (K, K). 2(K/k) denotes the sum (necessarlly a
direct sum) of K-submodules K and 24(K/k) in Hom, (K, K), which has a natural
structure of k-subalgebra of Hom, (K, K). 2(K/k) is called the derivation algebra
of K over k.

For any De 2,(K/k) and ae K, we set [D, a]=Da—aD— D(a) i.e. [D, a](x)=
D(ax)—aD(x)—D(a)x. D belongs to 2{P(K/k) if and only if [D, a] belongs to
2{-(K[k) for all ae K.

Always ® means ®, (tensoring over k). Iy, denotes the kernel of the multi-
plication map u: K®K—->K. We regard K®K as a left K-module by the
K-operation a(x®y)=ax®y.

§1. Preliminaries on the finite topology on Hom, (X, K)

Let Vand W be vector spaces over a field k. For any pair of finite ordered sets
{v1,ccs OtV and {wy,...,w, W, we set Uy(vq,..., 0y Wyseo., w,)={fe Hom, -
(V, W)|f(v))=w; for all i}. The whole of the subsets of Hom,, (V, W) of U(v;; w;)
type forms a basis for a topology on Hom, (V, W) which is called the finite topology
on Hom, (V, W). (cf. Jacobson [3], Ch. IX, §6) This is nothing but a topology with
the fundamental system of neighborhood of zero consisting of all the subsets of the
form U(E)={feHom,(V, W)|f|g=0}, where E is a finite dimensional subspace
of V. This topology is discrete if and only if dim, V<oo. If V=W and Vis an
algebraic extension field of k, the finite topology is identical with the Krull topology.
(cf. Nakai-Kosaki-Ishibashi [2])

By definition, next lemma is obvious, which means that the basic open sets
U(v;; w;)’s are also closed.

Lemma 1. Let V and W be vector spaces over a field k, a be a subset of
Hom, (V, W) and @ be its closure in Hom, (V, W) with respect to the finite topology.
Let v and w be elements of V and W respectively such that f(v)=w for every fea.
Then we have g(v)=w for every gea.

Now let K be any field extension of a field k. When M is a K-submodule of the
left K-module K®K, we identify Homg (K®K)/M, K) with a subset of Homy -
(K®K, K) consisting of the elements f such that f|,,=0. Then, from the above
lemma, we obtain immediately the following.

Corollary 2. Let K be any field extension of a field k and M be any K-
submodule of KQK. Then Homy (K®K)/M, K) is closed in Homg (K®K, K)
with respect to the finite topology.

Next we show the following
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Lemma 3. Let K be any field extension of a field k. Then the mapping ¢:
Homg (K®K, K)-»Hom, (K, K) defined by o(f)(x)=f(1®x) is a homeomorphism
with respect to the finite topology.

Proof. If we define : Hom, (K, K)-»Homy (K®K, K) by the formula ¥(g)
(2 x;®y)= 2 x;9(y;), it is clear that o =id and @oy =id, hence V is theiinverse of

. Consequently it is obvious that @ YU (x;; y)=¥(Ug(x;: y)=U(1®x;; y;)
for any (x;), (y))= K, which shows that ¢ is continuous. On the other hand, if
Ug(&; 0) is any basic open neighborhood of zero in Homg (K®K, K) where {=
> xi®y;i=2 x(1®y;) (x; y;€K) and y,,..., y, are linearly independent over k,
tilen we sele easily that Y~ ' (Ug(&; 0)cUy1se--s Yu3 0,..., 0). Hence ¥ is also
continuous. q.e.d.

Remark 4. (Nakai-Kosaki-Ishibashi [2]) Let k, K and ¢ be as in Lemma 3,
and let I=Ig,. Then we have ¢ '(2(K/k))cHomy (K®K)/ /\ I", K), where
2(K/k) denotes the derivation algebra of K over k. (However (o Y2(K k)=
Homg (K K)/ 51 I", K) in general.)

Proposition 5. Let K be any field extension of a field k, and E be an inter-
mediate field between k and K. Then Homg (K, K) is closed in Hom, (K, K)
with respect to the finite topology.

Proof. The proof is similar to that of [2], Prop. 8. Let f be any element of
the closure of Homg (K, K) and let xe K and aeE. Since the neighborhood
U(x, ax; f(x), f(ax)) of f contains an element of Homg (K, K), there exists an
element g € Homg (K, K) such that g(x)=f(x) and g(ax)=f(ax). Then we have
f(ax)=g(ax)=ag(x)=af(x), which shows that fe Hom (K, K). q.e.d.

Next we characterize the dense subrings of Hom, (K, K) containing K(=K - id)
as follows.

Proposition 6. Let K be a field extension of a field k, and a be a subring of
Hom, (K, K) containing K. Then a is dense in Hom, (K, K) with respect to the
finite topology if and only if Z(a)=k, where Z(a) denotes the center of a.

Proof. The proof of the if part is the same as that of [2], Th. 7. That is,
regarding K as a left a-module, K is a simple a-module. And the commutant of
a-module K is nothing but Hom, (K, K). However, since Z(a)=k, we have
Hom, (K, K)=k. Hence the bicommutant of a-module K is Hom, (K, K). There-
fore by the density theorem (Bourbaki [4], ch. 8, §4, n°2.), a is dense in Hom, (K, K).
Conversely suppose a be dense in Hom, (K, K). If fe Z(a), ¢ € Hom, (K, K) and
x € K, there exists an element a € a such that a(x)=¢(x) and o f(x))=p(f(x)) i.e.
ae Uylx, f(x); @(x), o(f(x)). Then we have (¢f) () =p(f () = f(x)) =/ (@(x)) =
fo(x)=(fp)(x) i.e. of=fp. This shows that Z(a)cZ(Hom, (K, K)). On the
other hand it is clear that Z(Hom, (K, K))=k. Hence we have Z(a)=k. q.e.d.
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Corollary 7. Let K be a field extension of a field k. Then 2(K/[k) is dense in
Hom, (K, K) if and only if Z(2(K|k))=k.

§2. Galois correspondence

First we shall investigate the condition for Z(2(K/k))=k.

Lemma 8. Let K be a field extension of a field k, and xe K. Then the fol-
lowing conditions are equivalent.

1) xeZ(2(K/k)).

(2) For any De 2y(K|k), we have Dx=xD.

(3) For any D e 94(K/k), we have D(x)=0.

@) 8(x)=1®x—x®1 belongs to I s

n=1

Proof. Since (1)<>(2)=>(3)<>(4) is obvious, we have only to prove (3)=(2).

Suppose D(x)=0 for all D e 2,(K/k), and let y be any element in K. Then we have

0=[D, y1(x)=D(yx)— yD(x)— D(y)x
=D(xy)—xD(y)=(Dx—xD)y,
which shows that Dx=xD. q.e.d.

From this lemma and results in the last section we obtain the following

Theorem 9. Let K be any field extension of a field k. Then the following
conditions are equivalent.

1°) Z(2(K/k)=k.

(2°) If x is an element of K\k, then there exists a derivation De 2y(K/k) of
some order such that D(x)=0.

() N k=)

Proof. Since it is obvious that Z(2(K/k))= K, the implications (3°)=(1°)<
(2°) are clear from the above lemma. Hence we have only to prove (1°)=>(3°).
(The following proof is essentially the same as that of [2], Prop. 11.) Suppose that
Z(2(K[k))=k and set M= N I%;,. Let ¢: Homg (K®K, K)-»Hom, (K, K) be

n=1
the homeomorphism in Lemma 3. Then, by Remark 4, we have ¢ '(2(K/k))<=
Homy (K® K)/M, K)cHomy (K®K, K). Thus, since 2(K/k) is dense in
Hom, (K, K) by Cor. 7, Homy ((K®K)/M, K) must be dense in Homg (K®K, K).
On the other hand, Homy ((K®K)/M, K) is closed in Homg (K®K, K) by Cor. 2.
Hence we have Homy (K® K)/M, K)=Homy (K®K, K), which shows that M =
(0). qg.e.d.

Corollary 10. Let K be any field extension of a field k suchthat K|k satisfies
(one of) the equivalent conditions of Theorem 9, and let E be an intermediate field
between k and K. Then the extension E[k still satisfies the same conditions of
Theorem 9. (K/E does not, in general.)
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0 0
Proof. Since we have I, < Iy, the condition N I}/, =(0) implies f\l It =
n=1 n=
0).

Now we can establish a Galois correspondence between special intermediate
fields of K/k and closed derivation subalgebras of 2(K/k) provided that K/k satisfies
the conditions of Theorem 9, in a similar way as [2].

Definition. An intermediate field E of K/k is called allowable if K/E satisfies
the conditions of Theorem 9.

Theorem 11. Let K be any field extension of a field k such that K|k satisfies
(one of) the conditions of Theorem 9, and endow 2(K|k) with the induced topology
from the finite topology of Hom, (K, K).

(1) Let E be any allowable intermediate field of K/k. Then 2(K|E) is a
closed subring of 2(K|k) containing K, and we have Z(2(K|/E))=E.

(2) Let a be a closed subring of 2(K/k) containing K. Then the center
Z(a) of a is an anllowable intermediate field of K|k, and we have 2(K|Z(a))=a.

Thus there exists a bijective correspondence between allowable intermediate
fields of K|k and closed subrings of 2(K[k) containing K such that the
corresponding field E and closed subring a are related by the formulae E=Z(a)
and a=2(K|E).

Proof. (1) is obvious from the fact 2(K/E)=2(K/k)n Homg (K, K) and
Prop. 5.

(2) Since a> K, we must have Z(a)< K, from which we can easily show that
Z(a) is an intermediate field between k and K. On the other hand, since ac 2(K/
Z(a)) and a is dense in Homy,, (K, K) by Prop. 6, a is dense and closed in
2(K|Z(a))= 2(K/[k) n Homg,, (K, K). Hence we must have a=2(K/Z(a)).

q.e.d.

Corollary 12. Let K be a field extension of a field k such that K[k satisfies
the conditions of Theorem 9. Let {E,| e A} be any collection of allowable inter-
mediate fields of K[k and {a,| A€ A} be any collection of closed subrings of 2(K/k)
containing K. Then we have the following formulae, where \U denotes the generated

A
object.
() 2K E)=NI(KIE).
(2) 2(K/NE,)=the closure of \U2(K|E,) in 2(K/k).
A A
3) Z(Q a,)=the smallest allowable subfield containing \U Z(a,).
P
@ Z(Ja)=1Z(a).

Proposition 13. If K is a field extension of a field k satisfying the conditions
of Theorem 9, then we have the following.

(1) k is separably closed in K. That is, no element of K\k is separably
algebraic over k.

(2) If K|k is algebraic, then K|k is purely inseparable.
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Proof. 1If an element x € K\k is separably algebraic over k, we have IZ,,,=
Ly Hence we have

<] [=e}
0 =Lpan= ”f__\l Ik < 'Ql I% ks

which proves (1). (2) follows from (1). q.e.d.

Proposition 14, (1) In the following cases, K[k satisfies the conditions of
Theorem 9.
(i) K/k is a purely inseparable extension of finite exponent.
(i) K/k is a purely transcendental field extension.
(2) In the case of (i), every intermediate field of K|k is allowable.®

Proof. (i) has been already proved in [2] (Th. 2, Th. 3 or Prop. 11) (ii) Let

K be the quotient field of a polynomial ring A=k[X,;, A€ A] where X,’s are indeter-
minates. Then by the arguments of [1], Ch. 2, §2 we have ;0\ 14,,=(0). On the
other hand, if we denote {s®s|se A4, s#0} by S, then we have K®K=(A®A)s
and Iy, =1,(K®K), 1% is 1,,-primary. Hence m I = f\ I (K®K)=(0).
q.e.d.

Examples

(1) An example of purely inseparable extension K/k, not of finite exponent,
satisfying the conditions of Theorem 9.

Let k, be a perfect field of characteristic p>0, set k=ko(x?, x2°,..., x2",...)
where x;’s are independent variables over ko and set K=k(x;, X5,..., Xpp... )

Then we have Iy, = (-B I, (dlrect sum of K-modules) where I, denotes the
K-submodule with a basns {1’[5(x )hl0sn;<p-—1, Z n,=n} (O(x)=1®x;,—
x;®1). Therefore we have /\ I K,k—(O) and exponent (K/k) 0.

(2) An example of 1mperfect purely inseparable extension K/k such that

0

Qx I =TI (0).

Let ko, be a perfect field and x and y be independent variables over k,. Set
k=ko(x,y) and K=k(yr™', yp7%.., yp ",...)=ko(x) ko(y)»"". Then we have

KP™ =ko(y)?™" and k(KP™)=K, therefore ;'.\ I p=1Ig
n=1

NARA UNIVERSITY OF EDUCATION

*) By the THEOREM of Mordeson-Vinograde [5], K/k is purely inseparable of finite exponent if
and only if every intermediate field of K/k is allowable.
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