On Galois correspondence between intermediate fields and closed derivation subalgebras

By

Teppei KIKUCHI

(Communicated by Prof. Nagata, Feb. 25, 1982)

Nakai-Kosaki-Ishibashi [2] has proved that if *K* is a purely inseparable field extension of finite exponent of a field *k,* then there exists a bijective correspondence between intermediate fields of K/k and closed subrings of $\mathcal{D}(K/k)$ containing K such that the corresponding field *E* and closed subring a are related by the formulae $E = Z(\mathfrak{a})$ and $\mathfrak{a} = \mathcal{D}(K/E)$, where $\mathcal{D}(K/k)$ denotes the derivation algebra of *K* over *k*, $Z(a)$ denotes the center of a and $\mathcal{D}(K/k)$ is regarded as a topological space by the topology induced by the Krull topology of $\text{Hom}_{k}(K, K)$.

This is a generalization of the theorem of Jacobson-Bourbaki correspondence in the case of purely inseparable finite extension.

In this paper we shall prove that a similar theorem of Galois correspondence still holds if the Krull topology is replaced by the finite topology and *K* is replaced by any field extension satisfying one of the following equivalent conditions (0), (1), (2) and (3).

(0) $\mathcal{D}(K/k)$ is dense in Hom_k (K, K).

(1) $Z(\mathcal{D}(K/k)) = k$.

(2) If x is an element of $K\backslash k$, then there exists a high order derivation D of some order such that $D(x) \neq 0$.

(3) $\bigcap_{n=1}^{\infty} I_{K/k}^{n} = (0)$, where $I_{K/k} = \text{Ker (multiplication } K \otimes K \to K)$.

Not only purely inseparable extension *Klk* of finite exponent but also purely transcendental extension K/k satisfy the conditions above. And there exists an example of a purely inseparable extension, not of finite exponent, satisfying the above conditions.*)

Notation and terminology. We adopt the notation and terminology in [1] and [2]. All rings are assumed to be commutative and have identities. When *k* is a ring and *K* is a commutative *k*-algebra, a q -th order derivation of K/k (or *k*-derivation of *K*) is, by definition, a *k*-homomorphism *D*: $K \rightarrow K$ satisfying the following identity:

^{*)} Moreover, K/k is purely inseparable of finite exponent if and only if, for every intermediate field *E* of K/k , K/E satisfies the above conditions. (cf. Mordeson-Vinograde [5])

282 *Teppei Kikuchi*

$$
D(x_0x_1\cdots x_q) = \sum_{s=1}^q (-1)^{s-1} \sum_{i_1 < \dots < i_s} x_{i_1} \cdots x_{i_s} D(x_0 \cdots \hat{x}_{i_1} \cdots \hat{x}_{i_s} \cdots x_q)
$$

for any set $\{x_0, x_1, \ldots, x_q\}$ of $(q+1)$ -elements in *K*. $\mathscr{D}_0^{(q)}(K/k)$ denotes the totality of q-th order k-derivations of *K* and $\mathscr{D}_0(K/k)$ denotes the union $\bigcup_{q=1}^{\infty}$ which is a K-submodule of Hom_k (K, K) . $\mathscr{D}(K/k)$ denotes the sum (necessarily a direct sum) of *K*-submodules *K* and $\mathcal{D}_0(K/k)$ in Hom_k (*K, K)*, which has a natural structure of k-subalgebra of Hom_k (K, K) . $\mathscr{D}(K/k)$ is called the derivation algebra of *K* over *k.*

For any $D \in \mathcal{D}_0(K/k)$ and $a \in K$, we set $[D, a] = Da - aD - D(a)$ i.e. $[D, a](x) =$ $D(ax) - aD(x) - D(a)x$. *D* belongs to $\mathscr{D}_0^{(q)}(K/k)$ if and only if $[D, a]$ belongs to $\mathscr{D}_0^{(q-1)}(K/k)$ for all $a \in K$.

Always \otimes means \otimes_k (tensoring over *k*). $I_{K/k}$ denotes the kernel of the multiplication map $\mu: K \otimes K \rightarrow K$. We regard $K \otimes K$ as a left K-module by the *K*-operation $a(x \otimes y) = ax \otimes y$.

§1. Preliminaries on the finite topology on $\text{Hom}_{k}(K, K)$

Let *V* and *W* be vector spaces over a field *k*. For any pair of finite ordered sets $\{v_1, \ldots, v_m\} \subset V$ and $\{w_1, \ldots, w_m\} \subset W$, we set $U_k(v_1, \ldots, v_m; w_1, \ldots, w_m) = \{f \in \text{Hom}_k\}.$ $(V, W) | f(v_i) = w_i$ for all i... The whole of the subsets of $\text{Hom}_k(V, W)$ of $U_k(v_i; w_i)$ type forms a basis for a topology on $\text{Hom}_{k}(V, W)$ which is called the finite topology on Hom_k (V, W) . (cf. Jacobson [3], Ch. IX, §6) This is nothing but a topology with the fundamental system of neighborhood of zero consisting of all the subsets of the form $U_k(E) = \{f \in \text{Hom}_k(V, W) | f|_E = 0\}$, where *E* is a finite dimensional subspace of *V*. This topology is discrete if and only if $\dim_k V < \infty$. If $V = W$ and *V* is an algebraic extension field of *k,* the finite topology is identical with the Krull topology. (cf. Nakai-Kosaki-Ishibashi [2])

By definition, next lemma is obvious, which means that the basic open sets $U_k(v_i; w_i)$'s are also closed.

Lemma 1. *Let V and W be vector spaces over a fie ld k ,* a *b e a subset of Hom*_{*k*} (V, W) *and* $\bar{\mathfrak{a}}$ *be its closure in* $\text{Hom}_{k}(V, W)$ *with respect to the finite topology. Let v and w be elements of V and W respectively such that* $f(v) = w$ *for every* $f \in \mathfrak{a}$. *Then we have* $g(v) = w$ *for every* $g \in \overline{a}$ *.*

Now let *K* be any field extension of a field *k.* When M is a K-submodule of the left *K*-module $K \otimes K$, we identify $\text{Hom}_K((K \otimes K)/M, K)$ with a subset of Hom_K . $(K \otimes K, K)$ consisting of the elements *f* such that $f|_{M} = 0$. Then, from the above lemma, we obtain immediately the following.

Corollary 2 . *Let K be any field ex tension of a field k and M be any K* submodule of $K \otimes K$. Then $Hom_K(K \otimes K)/M$, K) is closed in $Hom_K(K \otimes K, K)$ *with respect to the finite topology.*

Next we show the following

Lemma 3. Let K be any field extension of a field k . Then the mapping φ : *Hom*_{*K***}** $(K \otimes K, K) \rightarrow Hom_k(K, K)$ *defined by* $\varphi(f)(x) = f(1 \otimes x)$ *is a homeomorphism***</sub>** *with respect to the finite topology.*

Proof. If we define ψ : Hom_{*k*} $(K, K) \rightarrow Hom_K(K \otimes K, K)$ by the formula $\psi(g)$ $(\sum x_i \otimes y_i) = \sum x_i g(y_i)$, it is clear that $\psi \circ \varphi = id$ and $\varphi \circ \psi = id$, hence ψ is the inverse of φ . Consequently it is obvious that $\varphi^{-1}(U_k(x_i; y_i)) = \psi(U_k(x_i; y_i)) = U_k(1 \otimes x_i; y_i)$ for any (x_i) , $(y_i) \subset K$, which shows that φ is continuous. On the other hand, if $U_K(\xi; 0)$ is any basic open neighborhood of zero in $\text{Hom}_K(K \otimes K, K)$ where $\xi =$ $\sum_i x_i \otimes y_i = \sum_i x_i (1 \otimes y_i)$ $(x_i, y_i \in K)$ and y_1, \ldots, y_n are linearly independent over *k*, then we see easily that $\psi^{-1}(U_K(\xi; 0)) \subset U_k(y_1, \ldots, y_n; 0, \ldots, 0)$. Hence ψ is also continuous, q. e. d.

Remark 4. (Nakai-Kosaki-Ishibashi [2]) Let k , K and φ be as in Lemma 3, and let $I = I_{K/k}$. Then we have $\varphi^{-1}(\mathcal{D}(K/k)) \subset \text{Hom}_K ((K \otimes K)/ \bigcap_{n=1}^{\infty} I^n, K)$, where $\mathcal{D}(K/k)$ denotes the derivation algebra of K over k. (However $\varphi^{-1}(\mathcal{D}(K/k)) \neq$ $\lim_{K \to \infty} ((K \ K)/ \bigcap_{n=1}^{\infty} I^n, K)$ in general.)

Proposition 5 . *Let K be any field extension of a field k , and E be an inter*mediate field between k and K. Then $Hom_E(K, K)$ is closed in $Hom_k(K, K)$ *with respect to the finite topology.*

Proof. The proof is similar to that of [2], Prop. 8. Let f be any element of the closure of $Hom_E(K, K)$ and let $x \in K$ and $a \in E$. Since the neighborhood $U_k(x, ax; f(x), f(ax))$ of f contains an element of Hom_r (K, K) , there exists an element $g \in Hom_E(K, K)$ such that $g(x)=f(x)$ and $g(ax)=f(ax)$. Then we have $f(ax) = g(ax) = ag(x) = af(x)$, which shows that $f \in Hom_E(K, K)$. q. e. d.

Next we characterize the dense subrings of $Hom_k(K, K)$ containing $K (= K \cdot id)$ as follows.

Proposition 6 . *Let K be a field extension of a field k , and* a *be a subring of* $Hom_k(K, K)$ *containing* K . *Then* α *is dense in* $Hom_k(K, K)$ *with respect to the finite topology if* and *only if* $Z(\alpha) = k$ *, where* $Z(\alpha)$ *denotes the center of* α *.*

Proof. The proof of the if part is the same as that of [2], Th. 7. That is, regarding *K* as a left a-module, *K* is a simple a-module. And the commutant of a-module *K* is nothing but Hom_a (K, K) . However, since $Z(\mathfrak{a})=k$, we have $\text{Hom}_{\alpha}(K, K) = k$. Hence the bicommutant of a-module K is $\text{Hom}_{\alpha}(K, K)$. Therefore by the density theorem (Bourbaki [4], ch. 8, §4, n° 2.), α is dense in $\text{Hom}_{k}(K, K)$. Conversely suppose a be dense in $\text{Hom}_k(K, K)$. If $f \in Z(\mathfrak{a})$, $\varphi \in \text{Hom}_k(K, K)$ and $x \in K$, there exists an element $\alpha \in \mathfrak{a}$ such that $\alpha(x) = \varphi(x)$ and $\alpha(f(x)) = \varphi(f(x))$ i.e. $\alpha \in U_k(x, f(x); \varphi(x), \varphi(f(x)))$. Then we have $(\varphi f)(x) = \varphi(f(x)) = \alpha(f(x)) = f(\alpha(x)) =$ $f(\varphi(x)) = (f\varphi)(x)$ i.e. $\varphi f = f\varphi$. This shows that $Z(\mathfrak{a}) \subset Z(\text{Hom}_k(K, K))$. On the other hand it is clear that $Z(Hom_k(K, K)) = k$. Hence we have $Z(\mathfrak{a}) = k$. q. e. d.

Corollary 7. Let K be a field extension of a field k. Then $\mathscr{D}(K/k)$ is dense in *Hom_k* (K, K) *if and only if* $Z(\mathcal{D}(K/k)) = k$.

§2. Galois correspondence

First we shall investigate the condition for $Z(\mathcal{D}(K/k)) = k$.

Lemma 8. Let K be a field extension of a field k, and $x \in K$. Then the fol*lowing conditions are equivalent.*

- (1) $x \in Z(\mathcal{D}(K/k)).$
- *(2) For any* $D \in \mathcal{D}_0(K/k)$, *we have* $Dx = xD$.
- (3) *For any* $D \in \mathcal{D}_0(K/k)$, we have $D(x)=0$.
- **(4)** $\delta(x) = 1 \otimes x x \otimes 1$ *belongs to* $\bigcap_{n=1}^{\infty} I_{K/k}^n$.

Proof. Since $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$ is obvious, we have only to prove $(3) \Leftrightarrow (2)$. Suppose $D(x)=0$ for all $D \in \mathcal{D}_0(K/k)$, and let y be any element in *K*. Then we have

$$
0 = [D, y](x) = D(yx) - yD(x) - D(y)x
$$

= D(xy) - xD(y) = (Dx - xD)y,

which shows that $Dx = xD$. q. e. d.

From this lemma and results in the last section we obtain the following

Theorem 9 . *Let K be any field ex tension of a field k. Then the following conditions are equivalent.*

 $\mathcal{Z}(\mathcal{D}(K/k)) = k$.

(2[°]) *If* x *is* an element of K\k, then there exists a derivation $D \in \mathcal{D}_0(K/k)$ of *some order such that* $D(x) \neq 0$.

$$
(3^\circ) \quad \bigcap_{m=1}^\infty I_{K/k}^n = (0)
$$

Proof. Since it is obvious that $Z(\mathcal{D}(K/k)) \subset K$, the implications $(3^{\circ}) \Rightarrow (1^{\circ}) \Leftrightarrow$. (2°) are clear from the above lemma. Hence we have only to prove (1°) \Rightarrow (3°). (The following proof is essentially the same as that of [2], Prop. 11.) Suppose that $Z(\mathscr{D}(K|k))=k$ and set $M = \bigcap_{n=1}^{n} I_{K/k}^n$. Let φ : Hom_K $(K \otimes K, K) \rightarrow Hom_k(K, K)$ be the homeomorphism in Lemma 3. Then, by Remark 4, we have $\varphi^{-1}(\mathscr{D}(K/k))$ *Hom_K* ($(K \otimes K)/M$, K) \subset *Hom_K* ($K \otimes K$, K). Thus, since $\mathscr{D}(K/k)$ is dense in Hom_k (K, K) by Cor. 7, Hom_K ($(K \otimes K)/M$, K) must be dense in Hom_K ($K \otimes K$, K). On the other hand, $\text{Hom}_K((K \otimes K)/M, K)$ is closed in $\text{Hom}_K(K \otimes K, K)$ by Cor. 2. Hence we have $\text{Hom}_K((K \otimes K)/M, K) = \text{Hom}_K(K \otimes K, K)$, which shows that $M =$ $(0).$

Corollary 10. *Let K be any field extension of a field k such that Klk satisfies (one of) the equivalent conditions of Theorem* 9, *and let E be an intermediate field between k a n d K . Then the ex tension Elk still satisfies the sam e conditions of Theorem* 9. *(K1E does not, in general.)*

Proof. Since we have $I_{E/k} \subset I_{K/k}$, the condition $\bigcap_{n=1}^{\infty} I_{K/k}^n = (0)$ implies $\bigcap_{n=1}^{\infty} I_{E/k}^n =$ $(0).$

Now we can establish a Galois correspondence between special intermediate fields of K/k and closed derivation subalgebras of $\mathcal{D}(K/k)$ provided that K/k satisfies the conditions of Theorem 9, in a similar way as [2].

Definition. An intermediate field *E* of K/k is called allowable if K/E satisfies the conditions of Theorem 9.

Theorem 11. Let K be any field extension of a field k such that K/k satisfies *(one of) the conditions of Theorem* 9, *and endow 9(Klk) with the induced topology from the finite topology of* $\text{Hom}_k(K, K)$ *.*

(1) Let E be any allowable intermediate field of K/k . *Then* $\mathcal{D}(K/E)$ *is a closed subring of* $\mathcal{D}(K|k)$ *containing K, and we have* $Z(\mathcal{D}(K|E)) = E$.

(2) Let α *be* α *closed subring of* $\mathcal{D}(K/k)$ *containing K. Then the center* $Z(\mathfrak{a})$ *of* \mathfrak{a} *is an anllowable intermediate field of* K/k *, and we have* $\mathscr{D}(K/Z(\mathfrak{a})) = \mathfrak{a}$ *.*

Thus there exists a bijectiv e correspondence between allowable intermediate fields of K/k and closed subrings of $\mathcal{D}(K/k)$ containing K such that the *corresponding* field E and closed subring α are related by the formulae $E = Z(\alpha)$ *and* $\mathfrak{a} = \mathcal{D}(K/E)$.

Proof. (1) is obvious from the fact $\mathcal{D}(K/E) = \mathcal{D}(K/k) \cap \text{Hom}_E(K, K)$ and Prop. 5.

(2) Since $a \supset K$, we must have $Z(a) \subset K$, from which we can easily show that $Z(\mathfrak{a})$ is an intermediate field between *k* and *K*. On the other hand, since $\mathfrak{a} \subset \mathcal{D}(K)$ $Z(\mathfrak{a})$ and a is dense in $\text{Hom}_{Z(\mathfrak{a})}(K, K)$ by Prop. 6, a is dense and closed in $\mathscr{D}(K/Z(\mathfrak{a})) = \mathscr{D}(K/k) \cap \text{Hom}_{Z(\mathfrak{a})}(K, K)$. Hence we must have $\mathfrak{a} = \mathscr{D}(K/Z(\mathfrak{a}))$.

q. e. d.

Corollary 1 2 . *Let K be a field ex tension of a field k such that Klk satisfies the* conditions of Theorem 9. Let ${E_1 \mid \lambda \in A}$ be any collection of allowable inter*mediate fields of* K/k *and* $\{a_{\lambda} | \lambda \in \Lambda\}$ *be any collection of closed subrings of* $\mathcal{D}(K/k)$ *containing* K *. Then* we have the following formulae, where \bigcup denotes the generated *object.*

(1) $\mathscr{D}(K/\bigcup_{\lambda} E_{\lambda}) = \bigcap_{\lambda} \mathscr{D}(K/E_{\lambda}).$
(2) $\mathscr{D}(K/\bigcap_{\lambda} E_{\lambda}) =$ the closure of $\bigcup \mathscr{D}(K/E_{\lambda})$ in $\mathscr{D}(K/k)$.

- (3) $Z(\bigcap_{\lambda} \alpha_{\lambda}) = the$ smallest allowable subfield containing $\bigcup_{\lambda} Z(\alpha_{\lambda})$.

(4) $Z(\bigcup_{\lambda} \alpha_{\lambda}) = \bigcap_{\lambda} Z(\alpha_{\lambda})$.
-

Proposition 1 3 . *If K is a field extension of a field k satisfy ing the conditions of Theorem* 9, *then we have the following.*

(1) k *is separably closed in* K . That *is, no element of* $K \setminus k$ *is separably algebraic over k.*

(2) If Klk is algebraic, then Klk is purely inseparable.

286 *Teppei Kikuchi*

Proof. If an element $x \in K\{k\}$ is separably algebraic over *k*, we have $I_{k[x]/k}^2 =$ $I_{k[x]/k}$. Hence we have

$$
(0) \quad \pm I_{k[x]/k} = \bigcap_{n=1}^{\infty} I_{k[x]/k}^{n} \subset \bigcap_{n=1}^{\infty} I_{K/k}^{n},
$$

which proves (1) . (2) follows from (1) . (3) e.e.d.

Proposition 1 4 . *(1) In the following cases, K lk satisfies the conditions of Theorem* 9.

- *(i) Klk is a purely inseparable extension of finite exponent.*
- *(ii) Klk is a purely transcendental field extension.*
	- (2) In the case of (i), every intermediate field of K/k is allowable.*)

Proof. (i) has been already proved in [2] (Th. 2, Th. 3 or Prop. 11) (ii) Let *K* be the quotient field of a polynomial ring $A = k[X_\lambda, \lambda \in \Lambda]$ where X_λ 's are indeterminates. Then by the arguments of [1], Ch. 2, §2 we have $\bigcap_{n=1}^{\infty} I_{A/k}^n = (0)$. On the other hand, if we denote $\{s \otimes s \mid s \in A, s \neq 0\}$ by S, then we have $K \otimes K = (A \otimes A)_{s}$ and $I_{K/k} = I_{A/k}(K \otimes K)$, $I_{A/k}^n$ is $I_{A/k}$ -primary. Hence $\bigcap_{n=1}^{\infty} I_{K/k}^n = \bigcap_{n=1}^{\infty} I_{A/k}^n(K \otimes K) = (0)$. q. e. d.

Examples

(1) An example of purely inseparable extension *Klk,* not of finite exponent, satisfying the conditions of Theorem 9.

Let k_0 be a perfect field of characteristic $p>0$, set $k=k_0(x_1^p, x_2^{p^2},...,x_n^{p^n},...)$ where x_i 's are independent variables over k_0 and set $K = k(x_1, x_2, \ldots, x_n, \ldots)$.

Then we have $I_{K/k} = \bigoplus I_n$ (direct sum of K-modules) where I_{n_i} denotes the *K*-submodule with a basis $\{\prod_{i=1}^{\infty} \delta(x_i)^{n_i} | 0 \leq n_i \leq p-1, \sum_{i} n_i = n\}$ ($\delta(x_i) = 1 \otimes x_i - x_i \otimes 1$). Therefore we have $\bigcap_{i=1}^{n} I_{K/k}^n = (0)$ and exponent $(K/k) = \infty$.

(2) An example of imperfect purely inseparable e

 $\bigcap_{n=1} I_{K/k}^n = I_{K/k}^{\dagger} \div (0).$

Let k_0 be a perfect field and x and y be independent variables over k_0 . Set $k = k_0(x, y)$ and $K = k(y^{p-1}, y^{p-2}, \dots, y^{p-n}, \dots) = k_0(x) k_0(y)^{p-n}$. Then we have $K^{p^{\infty}} = k_0(y)^{p^{-\infty}}$ and $k(K^{p^{\infty}}) = K$, therefore $\bigcap_{n=1}^{n} I_{K/k}^n = I_{K/k}$.

NARA UNIVERSITY OF EDUCATION

^{*)} By the THEOREM of Mordeson-Vinograde [5], K/k is purely inseparable of finite exponent if and only if every intermediate field of *Klk* is allowable.

References

- [1] Y. Nakai, High order derivations I, Osaka J. Math., 7 (1970), 1-21.
- [2] Y. Nakai, K. Kosaki and Y. Ishibashi, High order derivations II, J. Sci. Hiroshima Univ., Ser A-1, 34 (1970), 17-27.
- [3] N. Jacobson, Lectures in abstract algebra, Vol. II, Van Nostrand, Princeton, New Jersey.
- [4] N. Bourbaki, Algèbre, Hermann, Paris.
- (5] J. N. Mordeson and B. Vinograde, On high order derivations of fields, Proc. A. M. S., 32 $(1972), 421 - 422.$