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1. Introduction.

Let A/ be a finitely generated faithful module over a commutative ring 4 and let
M denote, for an integer »>0, the direct sum of » copies of 4. Let {xi}15ics be a
system of generators for A and consider the 4-linear map f: 4—M" defined by
f(@)=(ax, ..., ax,) for each a€A4. Then fis a monomorphism and consequently we
see that for every integer »=#, the ring 4 can be embedded into A/" as one of its
submodules. One may further take »=1 in certain cases (e.g., if 4 is an intergral
domain). However in general, A4 is not contained in A7 itself (Counterexamples are
easily given, cf. (3.1).).

The purpose of this research is to clarify when a given ring 4 can be embedded into
every finitely generated faithful module over itself and our conclusion is stated as
follows:

Theorem (1.1). Swuppose that A is a Noetherian ring. Then the following two
conditions are equivalent.
(V) Every finitely generated faithful A-module contains A as one of its submodules.
(2) dimAp/pAp[OA:ppAP]=1 Sfor all pEAss 4.

It follows from Theorem (1.1) that for Noetherian rings A4, condition (1) is a local pro-
perty. As an immediate consequence of it one also has the following

Corollary (1.2) ([7], Theorem). Let A denote a Noetherian ring and assume that
A contains no embedded associated prime ideals of (0). Then the following conditions
are equivalent.
(1) Every finitely generated faithful A-module contains A as one of its submodules.
(2) The total quotient ring of A is Gorenstein.

We shall prove Theorem (1.1) in Section 2. The behaviour of property (1) in
Theorem (1.1) under flat base chang is discussed also in Section 2. Typical examples
of rings satisfying condition (2) of Theorem (1.1) may be found in Section 3.

The author wishes to thank Prof. Goto for his helpful guidance during this research.

* Partially supported by Grant-in-Aid for Co-operative Research.



462 Kikumichi Yamagishi

Throughout this paper let 4 denote a commutative Noetherian ring.

2. Proof of Theorem (1.1).
We begin with the following

Lemma (2.1). Assume that every finitely generated faithful A-module contains
A and let S be a multiplicative system in A. Then every finitely generated faithful
S-14-module also contains S—1A as one of its submodules.

Proof. Let L be a finitely generated faithful .S—1.4-module and choose a finitely
generated 4-submodule &V of Z so that L=S"1V. Let

0= | | Z(p)
pEAss 4

denote a primary decomposition of (0) in 4. We put

M=ND( @ AlIp).
pNS+#e

Then M is a faithful 4-module, as
AnnaN=Ker(4d —> S~14)

Hence there is an embedding 4 & M of 4-modules, which induces a required embed-
ding S-1 4 & Z of S-' 4-modules. (Notice that S~LM=S"1N=L.)

Proposition (2.2). Zet (A, w) be a local ring and assume that dima,m[0 ; m] = 2.
Then there exists a finitely generated faithful A-module M whick cannot contain A
as one of its submodules.

Proof. Let F be a free 4-module of rank 2 and let {X, ¥V} denote a basis of 7.
Choose a, 6&[0 ; m] so that @, & are linearly independent over 4/m. Let /V denote the
A-submodule of # generated by the elements a(X —Y), (a—8)X and 4Y. We put
M=F|N. Then

(i) M is a faithful 4-module.
(ii) [0;x]ﬂ(a, 5 A+(0) forall xEM.

After proving these claims, it is clear that 47 is a required example.
Now let AEAnns M/ and express

AX=aa(X— Y)+Bla—b) X+v5Y,
AY=pa(X—Y)+ola—b)X+6Y

with a, B, y, p, 0 and TE4. Then comparing coefficients of X and ¥ in both the
above expressions, we get

(#) A=(a+B)a—Pb=(—p)a-+1s,
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(4#) 0=(—a)a+yb=(p+o)a—ab.

It follows from equalities (4%) that o, p, aEm since «, 4 are, by our choice, linearly
independent over 4/m. Therefore by equalities (%), we see that

A=B(a—b)=rb
as a€[0 ; m]. Thus by linear independence of & and 4 again, we have SEm whence
A=PB(a—84)=0. This proves claim (i).
We put /=(a, 4)A4. Then
IM=(AaX+AaY+AbX+AbY)|N

—(daX+AadX—Y)+A(@—b5)X+AbY)|N

=AaX,
where X denotes the reduction of ¢X mod V. As M is faithful, 7+ (0) and hence

we get that /M= A4[m, i.e., dima/m/M=1. Let xEM and consider the A-linear map
g 17— IM defined by g(c)=cx for each ¢€/. Then since

dima/m 7=2 > dima/m /M=1,
we get that Ker g # (0), i.e., [0 :x]N7%#(0). This finishes the proof of claim (ii).
A

Lemma (2.3). LZet {Ni}igiss denote a family of proper submodules of an A-module
M and assume that there exist distinct prime ideals p; (1S1=s) of A such that

(i) piMCN; and (i) W)y NM=N;
for all 1<i<s. Then
M+ 'L—lei'

Proof ([2], Hilfssatz 1). Assume the contrary and choose s as small as possible
among such counterexamples. After relabelling p;’s we may assume that p; is minimal

among the ideals pi, b2, ..., ps. Take an element x of M so that x¢& U N. Then
xEN; clearly. Lety (resp a) be an element of A/ (resp. ﬂ p ) such that y(—;E N; (resp.
aép;). Then we get by conditions (i) and (ii) that ay E (ﬂ NI\ NV, whence the
element z=x-ay cannot be contained in Ul A;. Thisisa contradlctlon

Let A/ be a finitely generated faithful 4-module. We put
M(p)=[0:[0:p4,]INM
Mp Ap

for each pEAss 4. Then it is routine to check that the family {47 (p)}peass 4 of sub-
modules of A fulfills all the requirements in Lemma (2.3), and hence we have the
following

Proposition (2.4). A7+ \ ) ar (v).
peAs; A

Now we are ready to prove Theorem (1.1).
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(1) > (2)  Let pEAss 4. Then by (2.1), the local ring 4p also satisfies condition
(1) of Theorem (1.1). Hence the assertion that dimay/pay [0 ; pAp]=1 follows from
(2.2). P

(2) > (1) Let M be a finitely generated faithful A4-module and let
tM={xEM|[OI;x]#=(0)}.

Claim. tm=\__Jm ).

EAss A

Let xEtM. ’;‘hen [02 x]Ap #(0) for some pEAss 4. Choose such a prime ideal
p of A so that the height of p is as small as possible. Then [0 : x]4¢q=(0) for all &€
Ass A which are properly contained in p, whence we find that t}fe ideal [0 : x]A4p of Ap
has finite length. Therefore .

[ij]Apﬂ[O;pPAv]?&(O),

and so we get [0 ; x]ApD[0 ; pAp] since dimap/pap [0 : pAp]=1 by our assumption.
p Ap
Thus x € M(p) and the inclusion

t/’/Ck ) M (p)
pEAss A .

is established. The opposite inclusion is clear.

By this claim and (2.4) we get that #M/#tM. Let y be an element of 4 such that
y&tM. Then A=AycM and hence we have a required embedding AC—M of 4-
modules. This completes the proof of Theorem (1.1).

Proposition (2.5). LZet B denote a Noetherian flat A-algebra. Then B satisfies
condition (1) in Theorem (1.1) ¢f and only if all the rings A and Ap[pApQ4sB
(pE AssA) satisfy the same condition.

Proof. Let BEAss B. We put p=PNA. Then we see by [3, Theorem] that
dimB‘B/qsgqg[OB:‘BﬂSqu]=dimc$/$c%[00;;43c‘3] dimAp/pAp[OA:ppAp],

where C denotes the ring Ap/pAp®a B. Thus the assertion follows from (1.1).
Recall that Ass B= Ass .
(Recall that Ass p\e 53.4} sspB[pB.)

We close this section with the next two results, both of which immediately follow
from (2.5).

Corollary (2.6). Let B=A[X1, X, ..., X»] (n>0) denote a polynomial ring. Then
B satisfies condition (1) in Theorem (1.1) if and only if so does A.

Corollary (2.7). Assume that A is a local ring. If the completion A of A satisfies
condition (1) in Theorem (1.1), so does A. In case A is a homomorphic image of a
Gorenstein ring, the converse is also true.

Remark (2.8). Unless 4 is a homomorphic image of a Gorenstein ring, the second
assertion in Corollary (2.7) is not necessarily true. In fact let 4 be an integral local
domain of dim4=1. Then A satisfies condition (2) of Theorem (1.1) if and only if
the total quotient ring of A4 is Gorenstein (cf. (1.2)). The latter condition is equivalent
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to saying that 4 is a homomorphic image of a Gorenstein ring (cf. [4] and [6]) and,
on the other hand, there is given by [1] an example of a one-dimensional integral
local domain 4 which is not a homomorphic image of any Gorenstein ring. Therefore
the completion A4 of such a local ring 4 does not satisfy condition (2) of Theorem (1.1),
while 4 obviously fulfills it.

3. Examples.

(3.1). Let (4, m) be an Artinian local ring and let £a(4/m) denote the injective
envelope of 4/m. Then £a(A4/m)is a finitely generated faithful 4-module. It contains
A if and only if dima/m[0 : m]=1, i.e., 4 is a Gorenstein ring.

A

(3.2) ([5], Theorem 2). Let s=4 be an integer. Then there exists an Artinian
local ring (A4, m) and a finitely generated faithful 4-module 47 such that dima,m[0 : m]
=s and /a(M)<<la(A4), where [4(M) (resp. /la(A4)) denotes the length of the A-
module A7 (resp. 4). Of course M cannot contain A4 in this case.

(3.3). Let &[[X1, X3, ..., Xu]] be a formal power series ring over a field £ and let
A=A[[X1, Xe, ...., Xa]] X £

denote the idealization. Then Goto showed by direct calculation that 4 is embedded
into every finitely generated faithful module. This follows also from our theorem,
since the ring A satisfies condition (2) of Theorem (1.1).

(3.4). Let d>¢=0 be integers and let R==4[[Xo, X1, ..., Xa]] denote a formal
power series ring over a field 4. For each integer 0Ss<d—¢, we put

Ii=(Xo? ..., Xe=19)+(Xs),
ps=(Xo, X1, ..., Xi).
Let 1=jrj;1s and 4=R|Z. Then
(i) dimAd=d and depth 4=z.
(ii) AssA={p;[/|0=s=d—¢}.
(iii) dilnAp/pAp[OA!ppAp]=1 for every pEAssA.
This ring 4 can be embedded into every finitely generated faithful module.
Proof. Because '_I;I: X:e¢ 1, and ;2 X:e '_I;l 7;, the intersection /= jl;—](: /: is irredun-
dant. As 7, is an irreducible ideal of £ with p;=47Z,, we get assertion (ii) together with

assertion (iii). Hence dim 4 =4 and depth 4 < inf Adim A[p=¢. On the other hand

PEAss
as Xda—t+1, Xd—t+2, ..., Xa is an A-regular sequence, we see that depth 4=¢ whence

depth 4=:.
The last assertion follows from our theorem (1.1).
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