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1. Introduction.

Let M  be a finitely generated faithful module over a commutative ring A  and let
Mr denote, for an integer r> 0 , the direct sum of r  copies of M .  Let {,x,} 1 6 , ,„  be a
system of generators for M  and consider the A-linear map f :  A  —  M " defined by
f  (a)=(ax i, ax,) for each a E A .  Then f  is a monomorphism and consequently we
see that for every integer r n , the ring A  can be embedded into M r as one of its
subm odules. One may further take r= 1  in certain cases (e.g., if A  is an intergral
domain). However in general, A  is not contained in M  itself (Counterexamples are
easily given, cf. (3.1).).

The purpose of this research is to clarify when a given ring A  can be embedded into
e v e r y  finitely generated faithful module over itself and our conclusion is stated as
follows :

Theorem (1.1). Suppose tha t A  is  a N o e th e rian  rin g . T h en  th e  fo llow in g  tw o
conditions are equ iva len t.
(1) E very  fin ite ly  g en era ted  fa ith fu l A -m odu le con ta in s A  as one of  its  submodules.
(2) dimA tpA  [0 : pA ]-=1 f o r a l l  pEAss A .

P P A P

It follows from Theorem (1.1) that for Noetherian rings A , condition (1) is a local pro-
perty. As an immediate consequence of it one also has the following

Corollary (1.2) ([7], Theorem). L e t  A  denote a N oetherian ring and assum e tha t
A  con ta in s no em bedded  a ssocia ted  prim e id ea ls  of  (0). T h en  th e  fo llow in g  conditions
are equivalent.
(1) E very  fin ite ly  g en era ted  fa ith fu l A -m odule con ta in s A  as one of  its submodules.
(2) T he total quotient ring of  A  is  Gorenstein.

We shall prove Theorem (1.1) in Section 2. The behaviour of property (1) in
Theorem (1.1) under flat base chang is discussed also in Section 2. Typical examples
of rings satisfying condition (2) of Theorem (1.1) may be found in Section 3.
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Throughout this paper let A denote a commutative Noetherian ring.

2 .  Proof of Theorem (1.1).

We begin with the following

Lemma (2.1). A ssum e th a t  e v e r y  f in it e ly  g en e ra ted  fa ith fu l A -m odule con ta in s
A  and  le t S  b e a  m u ltip lica tiv e  sy s tem  i n  A .  T h en  ev e r y  fin ite ly  g en e ra ted  fa ith fu l
S - 1 A -module a ls o  c o n ta in s  S - 1 A  a s on e  o f its  submodules.

P r o o f  Let L  be a finitely generated faithful S 'A -module and choose a finitely
generated A-submodule IV of L  so that L =S - 1 1V. Let

•(o) /( )

E Ass A

denote a primary decomposition of (0) in A .  We put

M =IV ED( A u(p )).pns*0
Then M is a faithful A-module, as

AnnAN=Ker(A S 'A )

=
pn s=0

Hence there is an embedding A M  of A-modules, which induces a required embed-
ding S - 1 .4 L  of S - 1 A-modules. (Notice that S - 1 M =S - 1 N =L .)

Proposition (2.2). Let (A, m) be a  lo ca l r in g and  a ssum e th a t dimAim[0 :nt] 2.
A —

T hen  th ere  ex is ts  a f in i t e ly  g en e r a t e d  fa i th fu l A -m odu le M  w h ich  ca n n o t  co n ta in  A
as on e o f its submodules.

P r o o f  Let F  be a free A-module of rank 2 and let {X , Y } denote a basis of F.
Choose a, bE[0 :In] so that a, b are linearly independent over A/m. Let IV denote the

A
A-submodule o f F  generated by the elements a(X — Y ), (a— b)X  and b Y  . We put
M = F I N .  Then

(i) M  is a faithful A-module.

(ii) [0 : xi n (a, b)210(0) for a l l  x EM .
A

After proving these claims, it is clear that M  is a required example.
Now let A E AnnAM and express

2tX =aa(X — Y )-Fg(a— b)X +yb Y,

A Y =pa(X — Y )-1-a(a— b)X -frb Y

with a , 13, y ,  p, a  and TEA. Then com paring coefficients of X  and Y in both the
above expressions, we get

A---=-(a-1-13)a—Pb-=(—p)a+Tb,
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0=(— a)a-Fyb=(p+a)a— crb.

It follows from equalities OW that a, p , a E m  since a , b  are, by our choice, linearly
independent over A / m .  Therefore by equalities (d ), we see that

A =13(a — b)= b

as a E  [0  :  m ] . Thus by linear independence of a  and b  again, we have PE ni whence
A

A= ( a — b ) = 0 .  This proves claim (i).

We put I = ( a ,b ) A .  Then

IM ..--(A aX +A aY ±A bX 4-A bY )IN

=(A aX +A a(X — Y )+A (a— b)X +A bY )IN

=A aX ,

where aX  denotes the reduction of aX  mod N .  As M  is faithful, I i1 /# (0 )  and hence
we get that Alm, i.e., dim/um/M=1. Let x E M  and consider the A-linear map
g  : 1  1 M  defined by g(c)=cx  for each c E / .  Then since

d im A im  /= 2  >  d im A g n  /M = 1 ,

we get that K er g (0), i.e., [O: x] n /# ( 0 ) .  This finishes the proof of claim (ii).

L e m m a  (2.3). Let denote a  fam ily o f p roper submodules of an A -m odule
M  and assum e tha t th ere ex ist d istin ct p rim e id ea ls pi (1 i5s) of A  su ch  tha t

( i )  pi M c N i  a n d  (ii) ( N i ) p i n  M=-- N i

f o r  a l l  1 i s. T h en

M #  ù N1.

P r o o f ( [2 ] , H ilf s s a tz  1 ) . Assume the contrary and choose s  as small as possible
among such counterexamples. After relabelling pi's we may assume that ps is minimal

3-1
among the ideals p i, p i, Take an element x  of M  so that x E  U N i .  Then

s-t i=1
x E N , clearly. Let y (resp. a) be an element of M  (resp . n pi) such that yE .11T (resp.

t=1
a E p s). Then we get by conditions ( i)  and ( ii)  that a y  E  (n N O \N s ,  whence the

s i=t
element z =x +ay  cannot be contained in U  N i .  This is a contradiction.

i=t

Let M  be a finitely generated faithful A-module. We put

M ( p ) = [ 0  [() : pA]]n M
Mp Ap

for each p E A s s A . Then it is routine to check that the family {M(p)}peit.s A of sub-
modules of M  fulfills all the requirements in Lemma (2 .3 ), and hence we have the
following

Proposition (2.4). M  #L ) M(p).
pEA” A

Now we are ready to prove Theorem (1.1).
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(1) ( 2 )  Let pE Ass A .  Then by (2.1), the local ring Ap also satisfies condition
(1) of Theorem (1.1). Hence the assertion that dimapipa l, [0 : pAp]=1 follows from

Ap
(2.2).

(2) ( 1 )  Let M  be a finitely generated faithful A-module and let
tM ={ x E M  1[0 ]t x]*(0)}

C la im . tM = ( )M (P ).pEA“ A
Let x E t i l i .  Then [0  : x ]A p *(0) for some p E Ass A .  Choose such a prime ideal

A
p of A  so that the height of p is as small as possible. Then [0 : x]A q =(0 ) for a ll q E

A
Ass A  which are properly contained in p, whence we find that the ideal [0 : x]A p of Ap

A
has finite length. Therefore

[0 : x] A p n[o : 1,4 1,] # (0),
A Ap

and so  w e  ge t [0 : x]Ap D [0 : pAp] since dimAp/pAp [0 : pAp] =1 by our assumption.
A Ap Ap

Thus x  EM (p) and the inclusion

Ulf C  )  M ( P )
pEAss A

is estab lished. The opposite inclusion is  clear.
By this claim and (2.4) we get that M * t M .  Let y be an element of M  such that

tM .  Then A  A y c M  and hence we have a required embedding A C , M  of A-
m odules. This completes the proof of Theorem (1.1).

Proposition (2.5). L et B  denote a Noetherian f la t  A -a lg eb ra . T h en  B  sa tisfies
con d ition  (1 )  i n  Theorem (1.1) i f  a n d  o n l y  i f  a l l  t h e  rin g s  A  a n d  Ap/pAp®AB
(p E AssA) sa t is fy  the sam e cond ition .

P r o o f .  Let 13E Ass B .  We put p=13 n A .  Then we see by [3, Theorem] that

dime v /q3Bv [OB: 131313] =dimc_/13c [0 :13Cq3] dimAp/pAp[0 : p.Ap],
'45 13 c 13A p

where C  denotes the ring Ap/pAp0A B. T hus the assertion follows from (1.1).
(Recall that Ass B =L )  Ass s B/pB.)

pEA s A

We close this section with the next two results, both of which immediately follow
from (2.5).

Corollary (2 .6 ). Let B =A [X i, X 2, ..., X d(n>0) denote a  polynom ial rin g . Then
B  sa tisfies condition (1)in Theorem (1.1) if and  on ly  if  so does A .

Corollary (2 .7 ). A ssum e that A  is a lo c al rin g . If the com pletion  A .  of A  satisfies
cond ition  (1) in  Theorem (1 .1), so  d o e s  A .  I n  c a s e  A  i s  a  homomorphie im age of  a
Gorenstein ring, the conv erse is  a lso  tru e .

Remark (2.8). Unless A  is a homomorphic image of a Gorenstein ring, the second
assertion in Corollary (2.7) is not necessarily true. I n  fact let A  be an integral local
domain of d im A  = 1 . Then Â  satisfies condition (2) of Theorem (1.1) if and only if
the total quotient ring of Â  is Gorenstein (cf. (1.2)). The latter condition is equivalent
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to saying that A  is a homomorphic image of a Gorenstein ring (cf. [4] and [6]) and,
on the other hand, there is given by [1 ] an example o f a  one-dimensional integral
local domain A  which is not a homomorphic image of any Gorenstein r in g .  Therefore
the completion .4 of such a local ring A  does not satisfy condition (2) of Theorem (1.1),
while A  obviously fulfills it.

3 . Examples.

(3.1). Let (A , m) be an Artinian local ring and let EA(A/m) denote the injective
envelope of A /m . Then EA (A /m) is a finitely generated faithful A-module. It contains
A  if and only if dimA/m[0 : m]=1, i.e., A  is a Gorenstein ring.

A

(3.2) ([5], Theorem 2). Let s 4 be an integer. Then there exists an Artinian
local ring (A , m) and a finitely generated faithful A-module M  such that dimA/140 : m]

A
= - -S  and /A (M )</A (A ), where /A (M ) (resp. /A (A )) denotes the length o f the A -
module M  (resp. A ) .  Of course M  cannot contain A  in this case.

(3.3). Let k[[zlCi, X2, . X n ]]  be a formal power series ring over a field k  and let

A =4 [X i, X 2 , . . . . ,  X ]]  lx k

denote the idealization. Then Goto showed by direct calculation that A  is embedded
into every finitely generated faithful m odule. This follows also from our theorem,
since the ring A  satisfies condition (2) o f Theorem (1.1).

(3.4). Let d > t 0  be integers and let R =K [X o , X1, X d]] denote a formal
power series ring over a field k. For each integer 0 5 s 5 d — t, we put

i s = (XO 2 , X s - 1  2) + (Xs),

ps -=(X o, X i , . . . ,  Xs).

Ap
This ring A  can be embedded into every finitely generated faithful module.

d—t

Proof. Because H X pE41, and FI xie n the intersection 1 =  n L  is irredun-
s–o

dant. As I s  is an irreducible ideal of R  with ps--,//s, we get assertion (ii) together with
assertion (iii). Hence dim A = d  and depth A 5  in f  dim A / p = t .  On the other hand

peass A
as  X d — t+ 1 , X d  is an A-regular sequence, we see that depth A t  whence
depth A =t .

The last assertion follows from our theorem (1.1).

d—t
Let /= n L  and A = R / I .  Then

s=o
( i ) d im  A = d  a n d  depth A =t .

(ii) Ass A = {p4/1 05s5d— t} .

(iii) dimA tpA  [0  :pA p]=1 for every p E Ass A .P P
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