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§1. Introduction

The purpose of this paper is to improve the second part of Theorem 1 of the
previous paper [2]. Namely, we like to give a more precise information on the
existence of the poles of the scattering matrix &(z). The result we want to show in
this paper is

Theorem 1. Suppose that O satisfies the same conditions as in Theorem 1 of
[2]. Then there exists at least a pole of #(2) in {z; |z—z;/ < C(|j|+1)7'/?} for all
large | j|. '

As remarked in [2], in order to show Theorem 1 it suffices to prove

Theorem 2. The operator U(u) which is defined in Theorem 2 of [2] has at
least a pole in {u; |p—u;l S C(| jl+1)"1/2} for all large |j|.

The plan of the proof of Theorem 2 is as follows. First we shall construct an
asymptotic solution u(x, t; k) of the problem
Ou=0 in QxR
(1.1) u=m(x,t; k) on I'xR
suppucQ x {t; t>0}
for an oscillatory boundary Aaté
(1.2) m(x, t; k)=eik(@=x- g‘(x)m(t)

following the process of [2], where ¢, is a phase function introduced in §3 of [2],
and g(x)e C¥(I'y), m(t)eCo(R). Then the Laplace transform da(x, u; k) of
u(x, t; k) becomes an approximation of m(u+ ik)U(u)(e’*?=(g(-))(x), and we
estimate A¢,1(A(lo), u; k;) for A(lo) a point on the segment aja,, Cy={u; |u—pl =n}
(n>0) and k;= —jn/d, where Acfi denotes the variation of arg i along the contour
C. - _
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It should be remarked that z;=ico+jn/d, j=0, +1, +2,... are nothing but the
pseudo-poles a,,, 7, =0 of Bardos, Guillot and Ralston [1] (c.f. Definition 8).
Our Theorem 1 shows that the pseudo-poles «,,; for =0 approximate the
actual poles.

§2. On the Laplace transform of asymptotic solutions

Let ¢(x) be a phase function introduced in §3 of [2], and let m(x, t; k) be an
oscillatory function on I'; x R of the form

2.1) m(x, t; k)=e'*(@=(=0 f(x )

where fe C3(S,(5,) x (0, d/2)). Denote by u(x, r; k) an asymptotic solution for an
oscillatory data m(x, t; k) which is constructed following the method of Proposition
7.2 of [2]. Then its Laplace transform

2.2) a(x, u; k)=§°° e u(x, 1; k)dt
converges for Re u> —cq, and by virtue of Proposition 7.2, (i) and Proposition 8.3
of [2] have the following:

A(x, w3 k)=2(u)~"Fo(x, p; k)+Fo o(x, u; k)

+ ﬁ:l k=r{ PG Fox, s k) + B ofx. 1 K)

+3 3 (Aemmiy ¥ Py~ OF, L x s K)Y
h=11=0 i=0 :

where
P(u)=1—Ale~2nd

and F,, F,,,; and F,, are C*(Q)-valued holomorphic function in 2= {u; Re u>
—co—c;}. Moreover they verify the following estimates for all pe 2,={u; Re u>
—co—¢y+e} (6>0)

SUP lDf:Fr(x- l‘; k)lSCr.m,R,ck"‘Bm+2(N+N')
|1B|<m xeRr

Z z SUP |D£Fr,h.l,j(x' AU: k)’ S Cr.m,R.ekmalIr_th+2(N+N’)*

i=0 |B|Sm xeNr

B,= ¥ sup |Df,f(x. 1,

|Bl<m I'1 xR

which are derived from (7.12) and (7.13) of [2]. :
Let {¢,}5-0 be a sequence of phase functions defined for ¢ following the process
in §2 of [2]. When ¢(x)=¢(x) it follows from Remark 2 of §3 of [2] that

024(X) = (x)+2qd
¢2q+ l(x) = (,TJ@(X) + (2q + l)d

(2.3)
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for ¢=0, 1, 2,..., and if we use (2.3) in the definition of U,, we see easily that the
second term appeared in the definition of U, is identically zero, that is,

f]r_.: {etk(P20=0) 7, " eik(®2q41-0) 3 q}f.—.o-
In this case the estimate (7.14) can be replaced by
l Ur‘ Mar,m -<— Cnr,rkmBm-l-Zr’
which implies

wzs S"})p ngFr,O(xa I’y k)l SCI",R,’,Bk"'Bm+Z(N+N') for all He ge'
m xeSdr

Therefore if we set
Foux, i )= 3. 3 P(uyi(ile-2wdyiF,
1=0 j=0
Fo(x, ps k)=Fo(x, u; k)+ P(u)Fo o(x, p: k)

FAx s Y= F i, 1 K0+ 32 Frploe, s K+ 20y o, s K)
for r=1,2,...,N,
F(x, u; k), r=0, 1, 2,..., N, are holomorphic in 2 and satisfies an estimate

2.9 | Y sup |DEF(x, 1t; K< Cprpik™Bus2n+ns. . forall pea,.

Blsm xeQr

Evidently we have
(2.5) a(x, p; ky=2(u)"YFo(x, 1t; K)+ (k@) 'F(x, u; k)+ -
v+ (kP(W) " NFp(x, i k).

Concerning the boundary value of & it follows from (ii) of Proposition 7.2 and
Propostion 8.3 that

eIk () fix, H+ik)+ kNP NGy (x, g k) on I,

(2.6)  fi(x, ys k)= :
K=N2(u) NGy a(x, 1 k) on I,

where Gy ;, j=1, 2, are C*(I';) valued holomorphic functions in 2 satisfying

(2‘7) |GN,j(' L] ,ll: k’)lm(rj)sCN,m,ekmBm+2(N+N’) for a“ H € @tz'

Thus we have

Lemma 2.1. Let ¢ (x) be a real valued C™ function introduced in §3 of [2],
and let f(x, e CE(S,(6,)% (0, d/2)). Then there exists a C*(Q) valued function
a(x, u; k) defined in @ ={u: Re u> —cqo—c,} which has the form (2.5) and satisfies
(2.4), (2.6) and (2.7), and

2.8) (u2 = ADa(x, p; k)y=0 in Q
forall pe 2 —{pu;; j=0, £1, £2,...} and ke R.
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§3. An explicit representation of Iﬂ,(x, 5 k) on the segment aldz
Denote by v, the solution of the transport equation
Tvoo=0 in wxR
vo=f on S(6,)x R

in the sense of Definition 6.2 of [2] where f={f,. f,}=0, fo=Ff, f,=0 for all g > and
fq=0 for all g>0. Then Proposition 5.6 shows that v, is decomposed as

Vo=Wo+2Zo, Wo€K(0), zoeM(0).
Set
A(h=a,+l(a,—a,)/|la,—a,|, 0LI<d.
About the functions and the constant appearing in Proposition 5.6 we have from (2.3)
a(A(l))=(det [I+1X" ,(0)])"1/2/A
a(A(D)=(det [I+(d—1)of L(0)])~1/2/A
Jo(AD)=1. jo(AD)=d =1,
Apg=a,, by=1, d,¢=0.
Then we have for all g >0
w(A(D), H=(A)3(det [I + 1 (0)])~'/2f(a,, t—2qd —1)
G0 [ WA, )=(AD)aA(det [ +(d — A (0)])"13f(a,, t—(2q+2)d —1).D)
Substituting x = A(I) and (2.3) into (5.9) of [2] we have
3.2) v (A(D), )=w(A(D), 1), DA, H=w (A(l), ) forall ¢.»
Recall that 2(u)~1Fo(x, u; k) is

o QO
S . et Zo {elk(‘qu(x)—l) UO,q(x» I) _elk(¢24+|(x)"” 50"1(_,‘;, t)}dl,
- 4=

where we set vg=1{0y . Do 4} q=0- Then it follows from (3.1) and (3.2)

e Ht {eik(‘pw(x)"l) Wo(x, t)
@

(3 Fo(A(. s k=] {*

— k(== 5 (x, t)}dt:I .
Ax=A)

Note that
P(AD) =1, G (AD)=d—I.

1, 2) Since we adopt now Definition 6.2, wq, W, and vy, 5, correspond to Wy, Wagey and vy, 344 in
Proposition 5.6 of [2] respectively. : - R ‘
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Then we have from (3.1)
wo(A(), D=R(f(ay, t=1)
wo(A(D), D=R(D)f(a, t—(2d— )2

where we set

(3.4) R(l)=(det [1+ ¢ ,,(0)])~"/?
(3.5) R(ly=(det [ +(d = oA (0)])~1/2.

Substituting these relations into (3.3) we have
Fo(A(D), u; k)
=Sw e {eiki=0 R(I)f(ay, t—1)—etkd=1+d=0 R(]) f(a,, t—(2d — D)A}dt

=e ' R()f(ay, p+ik)—e=@4=Du R(Df(a,, u+ik)A,
where »
Fox w={"_emmge, .
Thus we have | | |
Lemma 3.1. For all ue C, ke R, 1€(0; d) it holds that
Fo(A(D, p: ky=em R(D{1 —e=2@=1u 2R(D/R(D} f(ay, p+ik),
where R(I) and R(l) are given by (3.4) and (3.5) respectively.

§4. Existence of the poles of U(z)

Lemma 4.1. There exists |, € (0, d), and positive constants &g, o such that
(4.1) le=#to R(l) (1 — e~2(=lom R(Ig)R(lo) = A)| > 2¢0
Jor all pe{p; |[Re p—(—co)l <no}.

Proof. Since e*=h¢o is a holomorphic -function of /e C, and R(I)*R(l)~22
is rational but not holomorphic in the whole -plane, they are not identical in C.
Therefore it does not holds that

e*td-Deo = R(1)2R(I)~2A2 for all le(O, d).
This assures that there exists /o € (0, d) such that
e4(dflo)co#R(IO)ZR(IO)—ZJ'Z“
This implies that _ ‘
| | |~ =261 RUR(Lg)™ 4] %0
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holds for all Re u= —c¢,. Set the absolute value of the left hand side =4e¢,, ¢,>0.
Since

A (2410 RUR (o)1)

is uniformly bounded in {u; Re u> —co—n} for g fixed, it holds that
|1 —lem2¢d=tom R(Io)R(lo)" 121122, if |Rep—(—co)l<no

for n, sufficiently small. Note that R(ly)>R(d)>0. Set go=R(ly)e'otco=nolg
Then we have for |[Re p—(—cq)| <nq

le o R(lo) (1 —e~2@=low R(I5)R(lo)~ ' A)|
> eloteo=10) R(Ig)[1 — 210 R(Ig)R(Ip)~ 141 | > 260,
which is the desired estimate. Q.E.D.

Let m(t) be a function of CF(0. d/2) such that

m(t)>0, Sw ‘ m(t)dt=1.

Then, since fi( —cy) = r‘ e m(t)dt> 1, we have for some n, >0

4.2) (=1 forall fu—(—co)l<n;.
Let g(x) be a function in CF(S,(3,)) verifying
4.3) gla,)=1.
Set
m(x, t; k)=elk@==0 g(x)m(t)
and denote by i(x, u: k) the one in Lemma.2.1 for this m(x, t; k). Set
n=min {ny, n,. nfdd} .
Di={u; =l <nyy Ci=1{p; lp—pl=nj.

Recall that U(pu) exists on C; for large | j| by virtue of Theorem 2 of [2]. Then from
relations (2.6) and (2.8) it follows that

4.9 UG (e*e~=Cg (- )mlp + ik)) (x)
= fi(x, ;1;.kf)—- U(u)('k“'-"ﬂ(u)"”"(},,(-. ius k) (x) for all peC,,
where Gy is a function on I deﬁned'by . |
Gn(x, p; k)=Gy f(x, pu; k) on fj,j=1, 2.

Suppose that U(u) is holomorphic in D;. Then U(u)(e'*®=(*)g(.)) is holomorphic
in D;. Therefore we have - :
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(4.5) %—ACJ(U(u)(e““"w("yL)m(u+ik))(x)20 for all xeQ.
Set

k;=—jd/n.
Then for ye D; we have
putik;=—co+1e’, 0<t<n and 0<6<2m

Therefore (4.2) implies
(4.6) [+ ik;)| > 1 forall peD;.

By using (2.7) and the estimate of U(y) of Theorem 2 of [2] we have

4.7 [UG (G- gz kY (AN < CLIT forall neC;
Note that |

(4.8) |2(u)| >ae>0 forall pecC;

Since

Fo(A(lo), u: k)= e 1o R(lo) (1 —e~2=1o% R(l)R(lo)~ IA)rﬁ(p+ ik;)
follows from Lemma 3.1 and (4.3), the estimates (4.1) and (4.6) imply
(4.9) Sk Ac,Fo Allo), s k) =0.
On the other hand we have from (4.1), (4.6) and (4.8)
|2(p) = F o(A(lo), 105 k| =05 ' 280, forall pecC;

and by using (2.4), (4.7) and (4.8) we have for all g€ C;

20 T (kP G0) T FAAUo). 1 k)

— U (kNP6 a5 k) (A(L))]
< Cog ' 2 laoky| =+ 1kl =Mk}

where C is a constant independent of j. Therefore for large | jl

N
| 2(1)~ ' Fo(A(l), ps kI >12(n)~! §=ZI (k;2(1))~"F(A(lo), u; k)l

+UW) (k=N 2N 1Gp( -, 13 k) (A))]

holds for all e C;. This shows that

3= Ac{6(AU), 13 k)= U@ (KF¥2() V16l 3 k) (A1)

=_2L7[—AC19(”)—1F0(A(IO)9 M kj)'

801
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Taking account of (4.9) we have
5 Ac,P(0) " Fo(All). 5 k)= 5 Ac,P() 1+ 5 Ac, Fo(Allo), s k= —1.

Then it is proved that the variation of the argument along C; of the right hand side
of (4.4) at x=A(l,) is equal to —2x for large |j|. This contradicts with (4.5). Thus
U(y) is not holomorphic in D; for large | j|, which prove Theorem 2.
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