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In this paper we study the G-sheaves on an algebraic variety X  endowed with
the action of a finite reductive group G .  We are mainly interested in the case where
X  is a smooth projective curve, but we start with a study of the group PicG  X  of
G-linebundles for a general X , and its relation to K„(X ).

When X  is  a curve we prove an equivariant Riemann-Roch formula of the
classical type (Thm. 5.8), with values in the representation ring of G .  It is not
valid for all G-linebundles, except if G operates freely on X .  The same obstruction
prevents the existence in general of a good Chern class for all G-linebundles with
values in K4( X).

This explains why the classical formula for '< (X ) does not have a straight
forward analogue in the equivariant case, except when G operates freely (Prop. 5.1).
For a general curve X  we give an approximate description of KG(X ) (Thm. 5.12).
which becomes more precise when the quotient curve X IG is  P 1 (Thm. 5.16). In
order to bring about the precision we have to introduce the higher equivariant
K-groups. U ntil tha t point the important technical ingredients were a  careful
study of the case of a finite variety and a thorough use of the Lefschetz trace formulas
from [E-L].

At last we study two examples and give exact formulas for Pic„ X  and K G*(X).
The first one was suggested by P. Baum and is the origin of the paper. It deals with
X = P 1 , G cyclic . The second one treats a hyperelliptic curve X  and GI--.. Z12 is the
group generated by the canonical involution. This case forced the study of K ?
upon us, when all other tricks failed to provide the answers.

The first section recalls some general facts on G-actions, some of which may also
be found in [Moo].

Section 2  studies the relationship between G-invariant divisors and G-line
bundles, the main result being that there is a natural surjection (Div X)G--•Pic„ X
under rather general assumptions (Prop. 2.9).

In section 3 we introduce equivariant determinants by copying the usual defi-
nition as in [M], but it tu rns out as mentioned above that there are no good
equivariant first Chern classes for all G-line bundles with values in K ( X ) .  How-
ever, we have a reasonable additive map e 1 : (Div X)G-+KG,(X).
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In section 4 we study KG(Z) for a finite variety Z. We give an exact description
of the category of G-sheaves when Z is reduced and identify in all cases KG(Z) with a
direct sum of representation rings of subgroups of G . It turns out that the Lefschetz
trace in this case is described via induced representations.

Section 5 is devoted to smooth projective curves X .  Set Y .=XIG and let B c X
and /l c  Y denote respectively the branch locus and the ramification locus for the map
X—+ Y Let Divp (X)G denote the group of G-invariant divisors with support outside
of B .  They generate a subgroup PicS (X ) of Pica  (X).

When B  =0 we show that Ka(X)f.-_, ZOPic a  (X) (Prop. 5.1), the proof of which
is standard and requires none of the machinery developed here. Then we turn to
the case where B # 0 .  First we prove a number of formulas in Ka(X ), some of which
are well-known when G=(1). but only true under certain restrictions in our case.
From these formulas we deduce the existence of an equivariant first Chern class

PicS (X)—, K a(X ) (Cor. 5.7), and an equivariant Riemann-Roch formula for
G-linebundles in Pies (X ) (Thm. 5.8).

The G-sheaves on X  are almost pull-backs of coherent sheaves on Y. In  P ro p .
5.9 we show that the defect of being a pull-back is a torsion-sheaf with support in B
which is a ir - '(4)-Module. This settles the problem of the correct schemestructure
on B for our purposes.

With these preparations we are ready to consider K ( X ) .  In Thm. 5.12 we
define an additive surjection

ZePicS (X)EDK(B) Ka(X ),

where KG(B) is split into a sum of representation rings of inertia subgroups of G.
The map is an isomorphism if B = 0 .  When Y = X IG--11 1 we show that the factor
PicS (X ) may be suppressed. Moreover, we prove that K a(X ) first into an exact
sequence (Thm 5.16)

KG(B) K (X )  Z  0 ,

where r=card (4), which is part of the localization sequence for the higher equi-
variant K-groups K V . We do not go into any details with these. They should be
defined the way done by Quillen and the localization sequence comes by categorical
arguments just as in the usual case.

In the last section we study two kinds of exam ples. At first we assume that
X = P ' and G is cyclic. T h en  w e  have isomorphisms

PicG  (P')= G ED Z , 1Q(13 9:-- R k (G)13) Rk (G),

where the last isomorphism may be chosen Rk(G)-linear.
Next we let X  be hyperelliptic o f genus g  and G  Z I2  generated by the

canonical involution. We obtain isomorphisms

PicG (x ) , z  CEDAX)== ZED(zI2) 2 9+1 ,

KL(X)=. Z 29+4,
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where 2J(K) denotes the group of points of order two on the jacobian of X.
Both types of examples show that the classical formula in Prop. 5.1 does not

hold, when B * 0 .
Notations are standard and compatible with the ones in [E-L] with the following

exceptions. Here Ô will denote the dual group of G, and the regular representation
of G is denoted by  X r g  rather than k [G ].  Since the greek letter x  is used in con-
nection with representations, we have prefered to write rank-map instead of Euler-
characteristic.

At this place we should like to thank a number of collegues in Japan for talks
and discussions about these and related topics. Special thanks go to M. Maruyama
for a correction to the original treatment of torsion sheaves, and also to the Carlsberg
Science Foundation for making the visit to Japan financially possible.

1. G-linearization

Assume first that X  is a noetherian scheme, G a finite group of automorphisms
of X , and Sr a coherent sheaf on X .  A G-linearization of ,F is given by a collection
of Ox -isomorphisms

g: g e G.

subject to the conditions

h g=  h .(4), g, Ii e G.

(An equivalent definition comes by the consideration of the adjoint isomorphisms
and the conditions Î  = id, hg=g*(h)§.)

We shall use the short hand G-sheaf for a G-linearized coherent sheaf. and the
sentence " F  is a G-shear in the statements (1.1)-(1.7) below shall mean that Sr is
provided with a natured G-linearization.

An Or -linear m orphism  -)V  between G-sheaves is called a G-morphism, if it
commutes with the action o f  G .  Similarly we use notions such as G-resolutions.
G-exact sequences, etc., to mean resolutions, exact sequences, etc., in which all in-
volved morphisms are G-morphisms.

From the description of G-linearization the following facts are immediate.
(1.1) 1 f F  and a r e  G-sheaves then

i r g w , g) and A r .91F  are all G-sheaves.
(1 .2 )  If  2  is  a G-line bundle, then so is
(1 .3 )  Let Jr be a G-sheaf and gt c .5r a coherent subsheef. Then /  is a G-sheaf and

the inclusion map V c .ir  a G-morphism if and only if is stable under the
action of G .  Moreover, if this holds, then .F/./ is a G-sheaf and the natural
morphism ."- -..517// is a G-morphism.

(1 .4 )  Conversely, if 9: - . • J f  is an (epimorphic) G-morphism between G-sheaves,
then Ker cp is G-stable. (In this way the category of G-sheaves becomes abel-



778 Knud LOnsted

ian, and the kernels, images etc. are the usual ones endowed with canonical
G-linearization.)

(1 .5 ) In particular, a closed subscheme Yc X  admits a G-action such that the
inclusion map is G-equivariant if and only if the ideal sheaf of Y is G-stable
in Ox .

(1 .6 ) Let g and gr denote locally free G-sheaves of rank r and s. Then the usual
formulas

i=o  
Aid.® A" — i .F ) ;

Ars("0 .0 7 ) = ( A 'of) 5 0( As.F )'

hold between G-sheaves. In particular, if r=1 then

A5 (g0.5r)= (O s®  A.F,

which also holds when F is just coherent.
(1 .7 ) Let o.e,--,••—•8',-4 0 -.0 be a G-exact sequence o f locally free G-sheaves.

Set d i = rk S i . T h e n  one has a canonical G-isomorphism

0  ( Ox.
i=1

(The proofs of (1.6) and (1.7) follow the patterns in the case without a G-action, cf.
[M. p. 104].)

Assume now that X is quasi-projective over a field k and that G gAut, X .  As
mentioned in [E-L] it follows from Kambayashiss theorem that there exists a very
ample G-line bundle 0x (1) on X .  In this case every G-sheaf gr. has a G-resolution
by locally free G-sheaves. Namely, set ir(n).,F00 x (1)0 ", for all n E Z , with the
induced G-action. For n»0, F (n ) is generated by its global sections, and the exact
sequence

exekr(X, .97 (11)) - - .  0

is automatically a G-sequence. if F(X, ..F(n)) is endowed with the canonical G-action.
Twisting by { —  n) yields an exact G-sequence

Ox ( —nle k f(X , F (n )) —i- 0

and Ker ep is a G-sheaf by (1.4). We replace F  b y  Ker (cp .)  and go on as above,
which produces the claimed G-resolution of F .

When X  is also regular. the resolution may be chosen of length 5_dim X , by
(1.4).

1f instead we impose the condition on X  that it be a regular, affine noetherian
scheme, then we have a similar situation with 0x (1) replaced by (the ample sheaf)
ex itself. This may be applied to, say, the case where F(X, O x )  is  a (localization
of a) ring of integers in a number field. We intend to come back to this case at an-
other occasion.

Just as in the case without a group G one has the exact sequence
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(1.8) KG(Y ) ---p K G(U)---, O.

valid for a  closed G-invariant subscheme Y of a noetherian scheme X  with com-
plement U, and a finite reductive group G .  The usual proof carries over.

Here one may choose the reduced structure on Y, because if J is any G-invariant
nilpotent ideal of O r , defining a subscheme Y. then the G-morphism Y'—*Y induces
a bijection

(1.9)

Namely, every G-O r -sheaf has a  finite filtration by G-O r subsheaves, whose suc-
cessive quotients are G.-Or —sheaves. One concludes by general non-sense.

2. G-divisors and G-line bundles

A t first we need n o  particular assumptions o n  X  nor o n  G, so  let X  be a
noetherian scheme. It follows from (1.1) and (1.2) that the set of isomorphisms
classes of G-line bundles on X  forms an abelian group that we shall denote by PicG (X).
This makes Pies  in to  a contravariant functor for G-equivariant morphisms. One
has the forgetful homomorphism

(2.1) PicG X Pic X,

whose image consists of the line bundles that admit some G-linearization. Ker (fl)
may be interpreted as the group of G-linearizations of O .  O n e  has a  canonical
isomorphism

(2.2) Ker Hom g, (G, F(X , O x )*).

So, if X  is proper and geometrically connected over a field k  and Gs Aut k X ,
then one has

(2.3)

where Homg, (G, k*) is the character group (or dual g roup ). In  particular, in
this case any two G-linearizations of a given line bundle on X  differ by a character
on G.

Let us return to the general assumptions on X  and G .  The group acts on the
group of Cartier divisors o n  X , Div (X ), a n d  o n  Pic X .  Denote the invariant
subgroups by (Div X)G and  (Pic X )G . The elements o f  (Div X )G will be called
G-divisors.

Let De Div X  have the local equation ix a t a point x e X .  Then D e (Div X)G
if and only if g(1,c) is a local equation for D at g(x ), for all x e X  and all g E G.
Now, G acts on the (non-coherent) sheaf o f rational functions K x ,  and realizing
0(D) as a subsheaf of K x  we see that if D e (Div (X)) 6 ,  then 0(D) is  G-invariant.
Therefore 0(D) has a natural G-linearization. In this way we obtain a homomor-
phism

(2.4) a: (Div X)G PicGX
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that, composed with /3 in (2.1) yields a homomorphism

(2.5) y: (Div X)G (Pic X)G.

For a positive G-divisor D associated with a codimension one subscheme D of
X , 2(D)=0(D), with the linearization compatible w ith the inclusion 0(— D)c0 x .

We shall now study the maps a and 7.

Proposition 2 .6 .  A ssume that X  is proper and irreducible over an algebrai-
cally closed field k and that G--•Aut, X is reductive and has order n. T hen one has

(i) Coker (y) is a finite group with n-torsion.
(ii) If  G is cyclic, then y is surjective.

Pro o f . Let K  denote the field of rational functions on X .  We have an exact
sequence

(Div X)G —7-4 (Pic X)6 W ( G ,  K * I k * ) .

which is part of long exact sequence of group cohomology associated with the exact
sequence o f G-modules, 0--, K*Ik* ,  Div X--*Pic X — b0. From the exact sequence
1 K *. K *  Ik *  1 we obtain 1-1 1(G, K */k*)c H 2 (G, k*), since ING, k*).= 0 by
Hilbert's Satz 90. As n is prime to char (k), we have another exact sequence 0--+1.1„--,

k*-4*--40, where js,  Z /n is the group of n'th root of unity in k * .  This implies
that H 2 (G, k*) is a subgroup of H 3 (G, Z / n ) .  Multiplication by n on the latter
group is zero. and it is finite since Z/n is finitely generated abelian.  This proves (i).

I f  G  is c y c l i c ,  t h a t  i s .  G--x Zln, t h e n  H 2 (G, k *I(k in---,(1), so
H l(G . K *Ik *)=0. This proves (ii).

Remark 2.7. W e do not know if 7 is always surjective. but A. Thorup has
shown us that H 3 (Z /px  Z ip, Z )* O . In  th is  w a y  one may produce an example
with H'(G, K *Ik*)+0.

W e shall now turn to the map cc.

Lemma 2.8. A ssume that X  is proper and geom etrically  irreducible over a
f ield k . T hen lm  (a) contains C.

Pro o f . Let K  denote the field of rational functions on X . and let V be a I-
dimensional representation of G over k. Then Or 0 V belongs to Im (2), if we can

find a rational function f e  K \k  such that k l i s  a G-invariant k-subspace of K isomor-
phic to V. From the exact sequence of G-modules 0--■k*—■ K * K * I k* we deduce
an exact sequence

0 k* (K*)G (K*Ik*)G — 74 ---■ 0,

where we have used that (k*)G = k*, = !N G, k *) and IN G . K * )=0 . Since (5 is
surjective we may pick an f e  K *  whose image in (K*/k*)G maps onto V. and this
f  can be used above.

It is plausible that y is surjective under the hypothesis in Lemma 2.8. However.
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we have only been able to show the following somewhat weaker result.

Proposition 2.9. A ssum e that X  i s  a pro jectiv e  irreducible an d  reduced
v ariety  ov er an  algebraically  closed f ield k, an d  th at Gg Aut, X  is reductive.
Then the m ap 2 in (2.4) is surjectiv e. Moreover, K er =(K*)G1k*.

Pro o f . L et Y= XIG denote the quotient variety and n: X •-•Y the  canonical
morphism. Notice first, that under the sole assumption that X be quasi-projective,
there exists a  very ample G-line bundle in  Im (7). Namely, pick any very ample
G-line bundle 2  o n  X .  T h e n  0  g*29  will d o .  A  different way to see this is to

g e G

pick any very ample line bundle e y (1) on Y. T h e n  rr* Oy (fl) can be used for n»O.
Since 19y (n ) is very am ple  on  Y  for n > 0 . w e m ay  thus assume that c ( l ) =
n* Oy (1) e Im (7).

For an arbitrary 2' E PiCG  X we claim that 2 (n ) has a G-invariant global section
s+ 0 if n »O . Assume this for a moment. Then we obtain a G-injection (9x -*2 (n)
which, tensored by 2 -  '( - n) yields an exact G-sequence

0 2 - '( - n) Ox , , O.

where De (Div X) 6 . Hence, 29 (n)=Œ (D). Since lm (t) i s  a  subgroup o f  PicG X
we conclude that 2  E im (a).

The existence of s E 2(n))\{0} follows from the formulas for the Lefschetz
trace in [E-L]. W h e n  X  is a smooth curve, we may use the formula in [E-L . Thm.
3.8] which gives

1LG ,x (2 ')=  w  • deg 2' • x„,+ A,

where b e g  denotes the regular representation of G and A  is a  universally bounded
combinations of the irreducible representations of G .  Replacing 2 ' by 2 (n ) gives
us deg .2 + n deg OA I )  instead of deg2. H e n c e ,  th e  triv ial 1-dimensional re-
presentation of G must occur for n »O.

For general X  there is no similar ready formula in [E-L], but we shall depart
from the much cruder one, ([E-L, Lemma 2.2]). It tells the following. Let Sr be
a  G-sheaf o n  X . D efine  the functor 4 by  7T,j, ( S F ) .  (.F )G . L et V denote an
irreducible G-representation. The V occurs x(rr,;, (F ®  V)) times in LG ,y (.9-- ). Here

y  is  the  usual Euler-Poincré characteristic. O u r  V is  the  triv ia l 1-dimensional
representation, .11 7 =2 9 (n) and  we have trg(2(n))=n, k (2 ')(tir '=  itg (2 )(n). Since
(9x (1) and 9 r (1) are very ample. L G ,x (2 (n)) reduces to [H°(X, 10 (n))] and x(4 2 (n ))
to dimk 4 ( 2 ) ( n ) ) ,  f o r  n »O . S o , w e  have t o  show  th a t  H°(Y‘ 4 (2 )
(n))* 0 for n »O . S ince  ng (2 )* 0, this again follows from the ampleness of 01 (1).

The assertion about Ker 7 is left as an exercise.

The following general lemma is useful in computations.

Lemma 2.10. A ssume that X  is m i integral k-scheme of finite type and that
GcAut k X  acts adm issibly  on X . Denote the quotient scheme XIG by  Y  and let
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71: X-■ Y be the canonical morphism. Then one has a commutative diagram

Div Y (Div X)G

1 12
Pic Y —* Pic G X.

where the non-defined maps are the obvious ones.

P ro o f. The diagram is fi rst of all commutative up to  the action of G on the
elements in PicG X .  Now, two divisors on Y are linearly equivalent if they differ
by div(f), where f  is a rational function on Y. T h e i r  inverse images in (Div X)G
then differ by div (e f) ,  and 7r*f is a G-invariant rational function on X .  Therefore
they have the same image in PigG X.

3. Equivariant determinants and Chern classes

In this section X  will be a smooth projective connected variety defined over an
algebraically closed field k, and we shall assume that G  A u t k X .  Set d=dim X.

Lemma 3.1. Every G-sheaf Sr on X  has a G-resolution

----■ — . 8  - - . —1. O.

where the S i  are locally free G-sheaves and r<d.

Proof. See section 1.
This lemma is the main point in the proof of the isomorphism K ( X ) K ? ( X ) ,

providing the inverse map.
We shall now construct a homomorphism

(3.2) detG : KG (X)---■  P ic G (X),

that we call the eguivariant determinant.

Let Sir be a G-sheaf and let

be a G-resolution ofF by locally free G-sheaves 8, of rank d i . W e  set

detG (gr) =( A 4o€0 )0 (

where the linearization is provided by (1.1). The independence of the choice of the
resolution is proved easily. Let us indicate the case where one has r=  1 . Let

r be another G-resolution of F . C o n s tru c t the following G-diagram
with exact rows and columns.
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o g o —  g o

f f i

S 2  - - - >  8 0  0  s6

    

The unexplained maps are the obvious ones. The map a is the sum of the given ones,
= Ker (2) and fi is defined as a composition. It follows from the diagram that

o n e  has G-isomorphisms Arn"(82)= Am "(80)0 Am "(80.  A m " ( S o e d e )=
Amax80 0 AmaxSO (use 1.6) and ( 1 .7 ) .  So, finally

Am1x(dr
0

e 6 , ) 0 A m a x 4 )0 (  A rn a x 8 D -1

In this formula we may excange S 'o  and by  S o and  S p  w i th  the sam e S 2,

which proves the assertion about det G  (Jr).
Similar arguments show that det G  is additive on short exact G-sequences. Con-

sequently it extends to a homomorphism as written in (3.2).
We shall now pass to the first Chern class. Since X  is smooth every De Div X

has a unique representation as a Weil divisor D= E fl aw,. For g eG one has g*D=
E n1g*W1, so De (Div X)G if and only if D may be written

(3.3) D =E  n i Df , e Z .

where each D =  E  g*114. for some closed irreducible subvariety Wi of codimension I,
g eG / I I

with decomposition subgroup H. Call a divisor of the type Di  an orbit divisor.
The decomposition in (3.3) is unique. The support of an orbit divisor Di  will

be denoted by the sam e letter. It is a G-invariant subscheme of X .  Hence, the struc-
ture sheaf 0 , i  is a G-sheaf. We define a map

(3.4) e ,:  (Div X)(i K4(X)

by setting e i (D)= Z n i [ 0 „ ) .  It follows that e, is a homomorphism.

Lemma 3.5. T he composition detG
 o (  Div X)° --+PicG X  coincides with the

canonical map x.

Proof. It suffices to prove a(D)=det G (E,(D)) for an orbit divisor D .  This
follows immediately from the definitions and the exact sequence 0-40( —

In case G = (1) the map e ,  vanishes on K e r . a, hence factors through a homo-
m orphism  c1 : Pic X --.K . ( X ) .  Furthermore, for a ll effective divisors D  and D',



784 Knud LOnsted

one has e1(D-I-D')=[0 0 + 0 .]. This is no longer true for general G .  The last
equality only holds for orbit divisors whose support is disjoint from the fixed point
loci of the elements in G.

W e shall pursue the study o f this problem  only w hen X  is  a  curve, in
the following section. Here we finish by noting that one has an additive rank-
homotnorphism rk : lq (X ).-.Z  with an inverse that takes I o n to  [Ox ]. In this
way Z  embeds into KL(X), and we have

(3.6) Z n emDiv xy;)=(o).

4. KG.(Z) for a finite k-variety Z.

Let k be an algebraically closed field and let Z  be a k-variety whose underlying
topological space IZI is a nonempty finite discrete set of points. Assume that the
subgroup G gAut, Z is reductive.

Now. 1:11 may be written as a disjoint union of G-orbits

1z1=1z1 1 u u 141,

where each Z. denotes a closed subset o f Z  with the reduced scheme-structure.
Then Z. has a natural G-action. Pick a point Pi  E  Z i in each orbit and denote the
inertia subgroup of G at P1 by H i .

Theorem 4.1. Notations as above.
a) The category  of  G-e z ,-sheaves Ls naturally  equiv alent to the category

of kUld-modules. In particular, one has a canonical isomorphism

f ( ( Z i ) R k ( H , ) .

b) If  F11=(1), then every  G-&,-sheaf  is of  the f o rm  lioDke z i ,  w here V is  a
f inite-dim ensional triv ial k-representation of G . In  th is  case the isomor-
phism in (a) becomes KG.(Zi )z Z ,  and it is induced by  the m ap V-+dim

c) Under the isomorphism in (a) the Lefschetz trace on K (Z 1) turns into the
induced representation map

12* (111) 7Tc
-
1. k (G ).

d) The embedding Z i U •-•U Z r a Z  induces an isomorphism

Rk(H ,)® ••eR ku -io .

Pro o f . In the proof of (a) we assume Z=Z ; in order to simplify the notation.
Set P =P i and H=1-I1. The choice of P defines an identification IZI =G M  and Z
is the spectrum of a k-algebra A. isomorphic to k6 1 11 as a G-k-algebra, where G
acts trivially on k and by translation on the index set GIII.

To any given G-Oz -sheaf we may associate its fiber V over P .  Then V is  a
k[H]-module. This is one way of the equivalence. Conversely, let Vbe any finite-
dimensional k[H]-module. We define an equivalence relation —in Vx G by setting
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g) — (h( ;), gh -  '), all h E H.

Set 17 =(1/x G)1 • • . Then we define a map cp: by c1(.::, g)--■cl(g). Let E
denote the set of sections to  rp. Then E has a natural G-A-module structure: so it
corresponds to a G -9 -sh e a f . This yields the other way of the equivalence.

lf H = ( I), then 17 = Vx G/!-I above, with the obvious G-action. This implies ( b).
The Lefschetz trace of a G --sheaf corresponding to a G-A-module E, is  E

itself viewed as a k[G]-module, which is just the induced representation ind g(v)
in the notation a b o v e . This proves (c).

Finally, (d) is an immediate consequence of (a) and the isomorphism (1.9).

Note that (a) in the theorem above is a discrete analogue of the characterization
of homogeneous vector bundles over a homogeneous space. (We are greatful for a
convincing discussion with N. Vigand Petersen on this point.)

It may also be viewed as a special semi-local version of the computation of K?
for a regular local k-algebra, which follows from [E—L, Lemma 3.4].

5. On the structure of KG.  for curves

Throughout this section we assume that X  is a smooth connected projective
curve defined over an algebraically closed field lc. and that G  A u t h (X ) is reductive.
Then we let Y = X IG be the quotient curve and Tr: X — ,  Y be the canonical morphism.
The branch locus of it is denoted by B. Here B c X  is a finite set of points. The
scheme structure will be settled later.

First consider the case when B is empty.

Proposition 5.1. A ssum e that G  o p e rate s  f re e ly  o n  X . T h e n  one has an
isomorphism

K G (X )  Z e  P ic G  X.

P ro o f . W e shall not need the previous computations. It is a general fact,
that when G operates freely, then the morphism i t  is  étale. Hence it induces an
equivalence between the category of all coherent sheaves on Y and the category of
coherent G-sheaves on X .  In particular one gets an isomorphism K G* (X)z.,. Y).
Since we have K.( Ze(Pic Y and Pic Y PCG  X  by the equivalence just men-
tioned, the assertion follows.

By inspection of a few commutative diagrams it follows that the isomorphism
above is given by rk x det G , and the inverse is based upon an equivariant Chem class

PicG  X -4 Q (X ).
Let us return to the case when B may be non-empty. Then we have a disjoint

decomposition

B =B t u  u  B ,.

where the Bi are the G-orbits on X  consisting of strictly less than IGI points.
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Proposition 5 .2 . Notations as abov e . Let B have any  schemestructure which
m akes it a closed G-invariant k-subscheme o f  X . P ic k  points P i e B, ...... P, e B,

and denote the inertia groups at these points by  H, ...... H r . T h e y  are  all non-
trivial cyclic groups and we have a canonical isomorphism

RAH ,) $•••EDRk (H,.).

Pro o f . B satisfies the conditions of Z in Thin. 4.1.

Definition 5 .3 . Define the subgroups Diva (X )c  Div (X)and Pier;  (X)c Pic G (X)
as

D iv  (X)=  {De D iv (X)I supp (D) n B=0}

PicSI(X)= z(DivB (X)G)

and denote the restrictions of e, and a to D iva (X ) by Ef and aa.

W e proceed w ith som e techn ica l lem m as on  com pu ta tions in  K e,*(X ) .  We

identify Z with Z[O x ] in  K(X)•

Lemma 5.4. Let D denote a G-orbit on X , endowed with the reduced scheme-
structure, and also the associated G-divisor, and let H be the inertiagroup of some
point P in D .  Let z be the representation of H on the tan gentline to X at P .  Then
we have

(1) T he m ap of  KG.(D):-_- Rk (H ) into K ( X )  induced by  the inclusion D X
is injective.

(2) For any  natural num ber n the equality

[Onni=ind5( xi) v.]
holds in IQ (X ).

(3 )  If  H = (I) then ConA=n[op] .
Pro o f . As Dc X is a closed embedding, the Lefschetz trace LG comments with

the induced map KG(D)-4KG(X). By Thm. 4.1(C), L G  is injective on KG(D). This

implies (1).
Le t Doo  denote D  w ith  the scheme-structure defined by th e  id ea l C (—  nD).

W e m ay replace D by D ( )  in  the  considerations above. Thus. it suffices to prove
the equality in  (2) after applying LG  to  both  s ides. Hence, the equality follows if

we can show the equality

Conn] = ( I

in  KG(D( )). Th is one is  an  easy computation based on  the  filtra tion  0( — tiD)c
0(— (n-1)D)c •-• c 0(—D)c x .

The assertion (3) is a special case of (2).
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Lemma 5.5 . Let E, F a Div (X) 6  be two effective divisors with supp E n supp F
= 0 .  Theo one has a G-isomorphism

O D + L  7-
" 4- O D @  19 1.•

Pro o f . Localizing around supp(E+F) we may replace X  by a serai-local prin-
cipal ideal domain A with a G-action. The G-O x -ideals 0( — E). 0( — F) and
0(—E—F) correspond to G-invariant ideals I, J and I • J  in A .  The claim follows
because the canonical map

A A ll ® AIJ

is surjective and has kernel I n J.

Lemma 5.6. Let 3 ,  .  e Pic(  (X) and let D e Div° (X) 6  be an effective divisor.
Let 1= [3 ], in =[...W] in IQ (X ) .  Then we have

(1) /* [CA = [ea]•

Assum e furtherm ore that either PiCt (X )  o r  e lse  th a t 2 = 0 5 (E), .A1 = O (F ) ,
where E. Fe Div(X)G satisfy supp E n supp F = 0 .  Then

(2) (1-1)(m-1)=0,

Moreover, if E a Div° ( X 
) G ,  we have

(3) 0(E)=[OE8(E)]-1.

P r o o f .  By lemma 5.5 and lemma 5.4 (3) we may assume that D is an orbit
divisor in (1). Then 20, x 0D is a free G-Op-module of rank one and by Thm. 4.1
(b) we have = [OD ]  in KG(D). Now push forward to IQ(X).

Assume now that (2) has been proved when 3 and .41 are both associated with
effective divisors. I n  the general case, we then have / =/ , / ;',  ni=tn i m i',  where
a, —1) (mi — 1)=0. Then

(1-1) (m -1)= (1,-1 2 )(m 1 —m2 )/i'mii

=((I, —1)—(12 -1)) ((m, —1)—(m 2 -1))1Vmi'

=O.

Remains the effective case. We have =0 5 (E), -1=0 5 (F), with effective G-
divisors E and F .  Assume first that FE Dive (X ) .  We have an exact sequence

0 ex .4' .4' OF  - - , 0

which, tensorized with 3. becomes

O- 3 - - - Sr 0.41019F O.

This implies, by (1),

/ • m =1+[O F ]=1+ m —1,
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which is equivalent to (2).
Assume next that supp E n supp F = 0 .  B y lemma 5.5 we get [Co+ E] = [On] +

[O E ]. Exact sequences. similar to the ones above, translate th is in to  I —/ - Int -  =
I —1-  ' + I — m- 1 , which again is equivalent to (2).

In  o rde r to  p rove  (3 ) w e  w rite  E=E + — E_ w ith  E + , E_eD iv 8 (X)G both
effective. From lemma 5.5 and lemma 5.4 (3) we get

el(E)= [6E.] — [(9E_]=(l —/;1)—(1-11- .)=L■

where we have set =[ct 8 (E ± )]. S o . w e  m ust show  th a t / : 1 —  =  I — 1.

This is equivalent to (1, —1) (/:' — 1 ;')= O, which follows from (2) above.

C o ro lla ry  5 .7 . The m ap ef in  Def. 5.3 facto rs  th rough Pic k ; (X ) and gives rise
to an injective homomorphism

c?: P icE(X)--. K G
- (X),

which may be thought of as an equivariant Chern class.

P r o o f .  It follows from lemma 5.4 (3) and lemma 5.5 that det G oef=x8. Hence

it suffices to prove that ef vanishes on Ker (1 8 ). T h i s  follows from lemma 5.6 (3).

A  first application of the computations above w ill be an equivariant Riemann-

Roch formula.

Theorem 5 .8 .  Let 2' E Pict' ( X ). T h e n

L 0 (2')= L 6 (0x )+deg(2).

P r o o f .  L e t  .2r'=a,B(D), D  D iv B  (X ) .  I f  D  i s  e ffective w e  h a v e  [0 0 ] .

[2 ]  [0 , )] .  [ 2 1  — 1 .  Now , L 6 (0 0 )=degD, by lemma 5.4(3). lemma 5.5 and Thin.

4 .1  (b ). So, the claim  follows in this case.
In  general, D = D — D _  w i t h  D ,  and  D _  bo th  e ffective . Se t l + =2 8 (D ).

From  lem m a 5 .6  (2 ) w e ge t 0= (/.4. -1)(1—/= 1 ), o r ,  /,/:'=/+ —(1 —1: 1 )= 4  —

Apply L , and use the previous case.

Proposition 5 .9 .  F o r  a l l  G-e x -sheaves S r .  th e  q u o tie n t .4=,Fln* n * d ' i s  a

1r l (4)-Module, where A  c Y  is  th e  ra m ifica tio n  lo c u s  fo r n, w ith  the reduced

scheme structure, and n - '(LI) is the scheme-theoretical inverse image of LI.

P r o o f .  .*" above has a 2-step G -reso lu tion  by loca lly  free G-sheaves. The

functor ir* is exact because n is flat. and 71 is exact because n is affine and G is re-

ductive. Therefore it suffices to prove the lemma in the case when .5F is locally free.

Let P E X  be a  branch po int for n and set Q = n(P). The inertiagroup G p a t P

is  isom orph ic to  Zle, where e is  the ram ification index a t  P .  The  c la im  in  the

proposition is that R F, is a O p ,x /olf.. x -module, that is Ann  (Rp)D  nicp. x . We shall

give a  proof of this which is very close to the proof of the Lefschetz formula (3.7)

in  [E -L ].
S in ce  R ), has  f in ite  le ngh t, w e  m ay  com p le te  w ith  respect t o  the  m c" -

adic to p o lo g y . So, let A . 6 Q ,y , p,x and C . - 4 4 0 A .  T h e n  C  is  a  complete
e y
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semi-local ring isomorphic to  /7i5e .,x , when P ' runs through 7t -  1 ( Q ) .  Also, C has
a natural G-action, B  has a Ge -action. and /3" = CG = A .  Moreover, .5r gives rise
to a free G-C-module F, .i  to  a G-C-module R, and the exact sequence

0 n*rl(4..117 - - 4  - - 4  0

corresponds to an exact sequence

(5.10) 0 - - •  F G  C F O.
4

Localizing (5.10) at P we get

(5.11) 0 Ft; C  03) B F  B R B - - 4  O.
1 C

Here FGOCOB =F('OB -z -_-(FeB )GPOR . Picking a uniformizing parameter u in
.4 C AC A

B we have an isomorphism k[[u ]]. We choose u  so that a generator a of Ge

acts on u by multiplication with an r-th root of unity t.,". The inclusion A  B identifies
A with k[[ile]]. By Lemma 3.4 in [E-L] the free Ge -B-module FOB is isomorphic

to B O V, for a uniquely determined k[G e ]-module V, and the sequence (5.11) may be
rewritten

0 ,  ( 1 3 0 V ) G P O B B O V  - - 4 R B  - 4 0.
k A

As Ge  is cyclic, V decomposes into a direct sum of 1-dimensional Ge -modules, and
R B  decomposes accordingly. In our proof we may, and shall, therefore assume that
dim V= I, that is, B O V = k[[ti]] • w h e r e  i s  a k-basis for V. The action of Gp

is given by

a(u)= C-u, c r ( ç )= ( r •g : ,  0<r <e.

An easy computation shows that (BO V)6 P=tie - rk [[u]] • We have to  show the
k

inclusion

tte•B 0  V c ( B  V ) ° P  0  B.
A

This holds, even with tie replaced by II as we see from the above. T his ends
the proof.

Theorem 5.12. Notations as above. Le t the subgroups II H , o f G  be

defined as in P rop . 5 .2 . Then one has an additive surjection

ZOPicg (X)e 3tR k(11 ,)(1). • -ED Rk(H K (X).

P roo f. We define 1,/, by defining its restriction to  the various factors. Set
t/J(1)=[0 x ], ( X ) =c f ,  and the restriction t o  the representation rings is
defined by the isomorphism in Prop. 5.2 and the covariance of K ? for the (proper)
inclusion B c X .  Here B  has the scheme-structure it - 1 (4) as in Prop. 5.9.

For 2  e  P ies (X ) one has [2] =cf(2)+[(90 by lem m a 5.6 (3), so w e only
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need to show that ti c (X) is generated by the elements of the following two types
(a) [ 2 ].e  Pict' (X ).
(b) a G-(9-, ( 4 ) -sheaf.
First of all K ( X )  is generated by locally free G-Ox -sheaves, and by Prop. 5.9

it suffices to take sheaves of the form 7r 8 ,  with d' locally free on Y, together with (b).
On the curve Y every 6° is a successive extension of invertible sheaves. Therefore,
since m is flat , it suffices to take n*S  with e invertible. Let D. E E Div ( Y) satisfy
(supp D) n  = 0, supp E  S =t9 1 (D +E ) . Set I =- P t* (0 (D ) ) ] a n d  m =
[n * (0 (E )]. By lemma 2.10 1r*(t91 (D)) belongs to PicE (X ). so by lemma 5.6 (2)
we get [7r*(ef)]= I  n i =I  + m -1 . Write E as a difference between effective divisors,
E =E + — E_, both with support in 4 . Then we have exact sequences

0 01(E) (9)(E+) 0

0 ...- y  - 0  y  ( EA.) ey(E+)(gley19E. 0

A P 2

Using the flatness of it we deduce

(5.13) »1= I + Pr* (.11.2)] — [n * (•iii)i•

so

[n*(6°)]=1+[irsCA-21]—Dr*Cfri)i.

Now. 1=[..r] for e P ic  (X) an d  n*(.4;) are n - 4,d)-modules. This finishes the
proof.

Using the rank-map on K ( X )  it is easy to see that Ker (0)g. Pied (X )EDK(B),
but we have not been able to write an explicit useful form ula  for it. W hen Y=P 1

the situation simplifies, and we shall see below that the introduction of the higher
K ? shed more light on the situation. The reason is that (1.8) becomes right-split,
but this does not hold in general.

Proposition 5 .1 4 . N otations a s  abov e . A ssum e th at  G =( I )  an d  that the
quotient curve Y =P' T h e n  o n e  h as  a surjection

ZEDItk (H i )(0•••(1)Rk (H,) --,

Pro o f . W e just need to show that the factor Pies (X ) may be suppressed in
Thm . 5.12. We saw in the proof of Thm. 5.12 that K (X )  is generated by elements
of the form [ir*(8)], with e invertible on Y , and [a i l .  w ith 7r-  ' (4 )-sheaves .4e.
Since Y= P i ,  G *(1 ) w e have 4 + 0 .  So every et' i s  o f  th e  form  1 5 ( 4  with
suppE c4.  T h e n  [lr*(S)] takes the form of m in (5.13), which proves our claim.

The result above may be viewed from a  different ang le . S e t U=X — B ,Y =
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P' - 4 .  Denote the higher equivariant K-groups by K ?, defined in  Quillen's way.
Since the m ap U-01/ is finite étale , we have isomorphisms K i(V )=K?(U),
(cf. the proof of Prop. 5.1). The sequence (1.8) is part of the localization sequence
for the K V . The functor 71* gives rise to a commutative digram of abelian groups

••• K?(U) - - . K (X )  — s K G(U) 0

(5.15)

•••K i (V ) K .(A ) ---+ K .(Y ) K  ( V )  - - •  0

(This holds for any Y. not just when Y =13 1 .) Since Pic ( 1/) = 0 we have K.(V).- - Z.
the isomorphism being given by the rank-map. So is the composed map K G(X )+Z
deduced from (5.15). Let rr: K (U )-K G (B ) denote the map in  (5 .1 5 ) . Then we
have

Ker t/J=1m(n)

in Prop. 5 .1 4 . The ramification locus 4 consists of r points, so w e have V =A ' -
{Q1 ,..., Q,_ 11 .  Using the localization sequence in usual K-theory one easily proves
by  induction on r  tha t K ,(V )-- k*eZ r - 1 . The factor k *  i s  the im age by the
determinant map and also sits inside K ,( Y ). Therefore it goes to zero in  K.(4)
and in K G ( B ) . I n  this way we obtain the following amplification of Prop. 5.14.

Theorem 5 .1 6 .  N otations and assumptions as  abov e. T here is an  exact se-
quence of  abelian groups.

r - 1 R k ( H , ) e ) • • • e R k ( H , ) - - - .  K (X ) Z 0.

6 .  Examples

Consider first the case X =P '.  G  a  finite cyclic reductive g r o u p . We shall
prove that the map in Prop. 5.14 fits into a split-exact sequence of abelian groups

0 Z  - Z  EDR (G)(19R (G)-Tc. K 0 (P 1 ) — + 0,

with v(Z)= Z • (Z r e g ,Z r e d •  Consequently. there is a n  abstract isomorphism of
abelian groups

(6.1) R(G) R(G) K (P1)

We shall show that ti/ may be chosen (almost canonically) to be R(G)-linear.
By the result in section 2  the map f i in (2.1) yields an isomorphism PicG  (1")

-- GQ31Z. Therefore we only have K G*(13 1-)f-2- Z6f)PieG (P')  if G=(1).
In order to prove the assertions above we choose a generator a for G .  It has

two fixed points on 13 1  and we select coordinates so they become 0 and co. T h e n  a
acts on the affine coordinate by multiplication with a  primitive n 'th  root of unity,
n  =IG I. Denote the corresponding character on G by x0 . The G-line bundles 0({0})
and 0({ oo}) are both 0(1), but with different G-actions. With the help of the exact
sequences
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0 —x) ----■ (9p, --• 0,

for x = 0  and x= oo, and the Thm. 4.1 (a). one checks th a t  0 ( 1  1)=7.00k0({0})
Now let ri)e R(G) R(G) and assume that

• [Ctol] +Pi . [et .,]= 0 .
Using the above this may be rewritten as

+11=U+n• -,6 1 )•16(—{0})]•

Since 0( — 1) has no cohomology and LG ( •  I )=-. w e  deduce  tha t n =O. Fur-
thermore P9( — (OM is invertible, so • XV =O. From this it follows that Z=
—7/ =in • b eg, for some m E  Z .  This proves the inclusion Ker Z • (x . — z„,),
and the other inclusion is immediate.

Let us now define the map kfr in (6.1) by letting its restriction to the first factor
be the ringhomomorphism corresponding to the structure map P'—■(pt;, and the
other restriction be equal to the restriction of i// to either of the two copies of R(G).
F.ex. ti) = ' • 1+ q• [Om ]. Then it is easy to see that II/ is surjective and since
both sides are finite free Z-modules of the sam e rank, is an isomorphism.

Next we assume char (k )+ 2  and consider a hyperelliptic curve X  of genus
g Let G be the group of order two generated by the canonical involution a.
Then Y= P' and the branch points P,   P 29 4 2  E  X for n: X - 4  Y are the hyperelliptic
points of X  (c.f. [L— K]). Let us first compute PicG  X  and (Pic X )G . Since G is
cyclic and On-- Z/2 it follows from section 2 that we have an exact sequence

0 Z/2 P ic , X  --• (Pic X)6 O .

For any P e X  we may consider the divisor P+ a(P) on X . which is independent of
P .  As a: (Div X) 6  —' Pic, X  is  surjective it follows that Pic G  X  is generated by
Ox(Pi) , •••• i9 x(P19 + 2 ) . The sam e is true for (P ic X )G. forgetting the G-action.
Fix a hyperelliptic point, say P , .  Then (Pic X)6  is generated by Ox (P,), e x (P 1 — Pi ),
1=2,..., 2 g  + 2 . But the subgroup of Pic X  generated by C (P ,— Pi ), all i, is isomor-
phic to the group of points of order 2 on the jacobian of X, 2 J(X ), and one has
2 J(X )--(Z /2) 2 g. These considerations provide a splitting of the exact sequence

0 ,J(X ) — + (Pic X ) .  dcs  Z - 1 0 .

Hence (Pic X ) G  Z ( Z /2 ) 29 .
The group Pic, (X ) is an extension of (Pic X)G b y  6 =Z /2 ,  which is trivial,

since every 2' e Pic, X  is a G-subsheaf of the sheaf of rational functions on X.
Therefore we have PicG X  Zi9(Z/2)2 9 +1.

At each point Pi the inertiagroup Hi equals G. We have R ( H i)=Z -e ,
Z • el, where el (resp. ef) is the 1-dimensional trivial (resp. non-trivial) representation
of Hi . Set A =R A(H i )49---ORk(H2,+2). Then el , el   e2 9 4 2 , e29 4 2 °  is  a  Z-
basis for A .  Set 2 '0 = [0 x (P +aP )], fo r P e X .  T h e n  [6  p+ .12]= 1 - [..9" ]  is
independent of P, and by lemma 5.4 (2) we see that

[(9 2p,]=( + X 0[0,3
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is  independent o f the  index i. Consequently, - ef)-= i + e p , all i , j .  Let
A' g  A denote the subgroup generated by the elements

-  e i -  el. 2g +2.

It is immediate to check that A ' is a free direct summand of A  of rank 2g + I. The
exact sequence in Thm. 5.16 is

Z 2 g+' A IQ (X ) Z 0,

and we have seen that A' .G 1 m ( p ) .  It follows easily that we have an equality, A =
Im (p ), so that

(6.2) Q (X ) Z2q+4

As we have seen earlier the map II,: A->KG.(X) is Rk (G)-linear and so is the one
Z---•KGAX), 1-4 0 x ]. However, we do not know whether A ' is a  Rk (G)-submodule
of A , so we do not know whether the isomorphism (6.2) can be made Rk (G)-linear
with a suitable structure on the right-hand side. Of course, this would follow if all
the K? were Rk (G)-modules and the connecting homomorphism R k (G)-linear.

It seems worth while noting, that because of the G-action, one classical relation
has disappeared. Namely, for any numbering of the hyperelliptic points one has a
linear equivalence

P  + Pe+2+ ••• +P2 g +2.

In K .(X ) this translate into the equality

[ op,]+ --+ [ op,.,]=-- Lcr ]+•-•+ [C p , ] .

However, in 1 ( (X )  the relation becomes

Cop,1+ • • • +  [op „ . ]  = '•' [ 6 P2.+2])

which is nonlinear. The induced linear relation is a  consequence of the ones pre-
viously considered.
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