On unitary representations and factor sets of covering groups of the real symplectic groups

Dedicated to Professor Hisaaki Yoshizawa on his 60th birthday

By

Tôru Umeda

(Received October 21, 1982)

Introduction.

In an attempt to get the metaplectic groups of "higher degree", Kubota presented a Weil type representation for $SL(2, \mathbb{C})$ in the papers [7]-[10]. A similar construction of the covering groups of $SL(2, \mathbb{R})$ was obtained by Yamazaki [16]. Briefly speaking, they replaced the role of the Fourier transformation in the construction of so-called Weil representation [14] by that of the Fourier-Bessel transformation. In the present paper we treat the case of the real symplectic group $Sp(m, \mathbb{R})$, using the Bessel functions of matrix argument defined by Herz [5]. We start from a certain family of unitary operators defined on an open dense subset of $Sp(m, \mathbb{R})$. Then this family determines a projective unitary representation of $Sp(m, \mathbb{R})$. For a closer investigation of matters, we introduce a factor set for the universal covering group of $Sp(m, \mathbb{R})$, which can be computed explicitly. The purpose of the present paper is to study such a family of unitary operators in connection with the factor set.

Let us explain our results in more detail. Let $S_m(\mathbf{R})$ be the space of all $m \times m$ real symmetric matrices and P_m the space of all $m \times m$ positive definite real symmetric matrices. For $\delta > -1$, we denote by $L^2_{\delta}(P_m)$ the Hilbert space of square integrable functions on P_m with respect to the measure $(\det x)^{\delta}dx$, where dx is the restriction of usual Lebesgue measure on $S_m(\mathbf{R})$. We denote three types of elements in $Sp(m, \mathbf{R})$ by $d(a) = \begin{pmatrix} a & 0 \\ 0 & t_{a^{-1}} \end{pmatrix}$, $t(b) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, $d'(c) = \begin{pmatrix} 0 & -t_{c^{-1}} \\ c & 0 \end{pmatrix}$ for $a, c \in GL(m, \mathbf{R})$ and $b \in S_m(\mathbf{R})$. Corresponding to these elements, we define three types of unitary operators on $L^2_{\delta}(P_m)$ as follows. For $\varphi \in L^2_{\delta}(P_m)$,

$$\begin{aligned} d_{\delta}(a)\varphi(x) &= \varphi({}^{t}a \, x \, a) |\det a|^{\delta+p} & (a \in GL(m, \mathbf{R})) \\ t_{\delta}(b)\varphi(x) &= \varphi(x) \operatorname{etr}(\sqrt{-1}b \, x) & (b \in S_m(\mathbf{R})), \\ d_{\delta}'(c)\varphi(x) &= \varphi^*(c^{-1}x^tc^{-1}) |\det c|^{-\delta-p} & (c \in GL(m, \mathbf{R})). \end{aligned}$$

Here p=(m+1)/2, etr(a)=exp(tr(a)), and φ^* is the Hankel transform of φ defined by

$$\varphi^*(x) = \int_{P_m} \varphi(y) A_{\delta}(x y) (\det y)^{\delta} dy$$

with the Bessel function A_{δ} of Herz [5]. On the other hand, put

$$\Omega = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp(m, \mathbf{R}) ; \det c \neq 0 \right\}.$$

Then any element σ in Ω is uniquely decomposed in the form $\sigma = t(b_1)d'(c)t(b_2)$. Using this decomposition for $\sigma \in \Omega$, we define a unitary operator $\mathbf{r}_{\delta}(\sigma)$ on $L^2_{\delta}(P_m)$ by $\mathbf{r}_{\delta}(\sigma) = \mathbf{t}_{\delta}(b_1)d'_{\delta}(c)\mathbf{t}_{\delta}(b_2)$. Let us now state our first theorem :

Theorem 3.2. Let $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\sigma' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, $\sigma'' = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}$ be three elements in Ω such that $\sigma'' = \sigma \sigma'$. Then it holds that

$$r_{\delta}(\sigma)r_{\delta}(\sigma') = r_{\delta}(\sigma'')e_{\delta}(\operatorname{sgn}(c^{-1}c''c'^{-1})),$$

where $e_{\delta}(\zeta) = \exp\left(\sqrt{-1} \frac{\pi}{2}(\delta + p)\zeta\right)$ and sgn b $(b \in S_m(\mathbf{R}))$ is the index of inertia of b.

From this theorem, we see that r_{δ} determines a projective unitary representation of $Sp(m, \mathbf{R})$, so that we obtain a unitary representation of the universal covering group of $Sp(m, \mathbf{R})$. To investigate this representation, we describe the universal covering group of $Sp(m, \mathbf{R})$ using an explicit factor set, which we denote by $A(\sigma, \sigma')$, $(\sigma, \sigma' \in Sp(m, \mathbf{R}))$. For example, we have an expression

(5.1)
$$A(\sigma, \sigma') = \frac{1}{4} \{ \operatorname{Sgn}(c) - \operatorname{Sgn}(c'') + \operatorname{Sgn}(c') - \operatorname{Sgn}(c^{-1}c''c'^{-1}) \}$$

for σ , σ' , σ'' in Theorem 3.2. (For the definition of Sgn, see § 5). Now, for a positive integer q, we consider the central extension G_q of $Sp(m, \mathbf{R})$ by \mathbf{Z} with the factor set $qA(\sigma, \sigma')$. Here G_q is a group with the underlying set $Sp(m, \mathbf{R}) \times \mathbf{Z}$ and the group operation $(\sigma, n)(\sigma', n')=(\sigma\sigma', n+n'+qA(\sigma, \sigma'))$. Then G_1 for q=1 is by definition the universal covering group of $Sp(m, \mathbf{R})$. For the structure of G_q , we see in Proposition 6.1 that G_q is a semidirect product of G_1 and $\mathbf{Z}/q\mathbf{Z}$. Further in Proposition 6.2, we determine the normal subgroups of G_q . For the representation of G_q , from Theorem 3.2 and (5.1), we obtain the following

Theorem 6.3. For $\delta > -1$, there exists an irreducible unitary representation $U_{q,\delta}$ of G_q on the Hilbert space $L^2_{\delta}(P_m)$ such that for $(\sigma, n) \in G_q$ with $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Omega$,

$$U_{q,\delta}((\sigma, n)) = r_{\delta}(\sigma) e_{\delta}\left(-\frac{4}{q}n - \operatorname{Sgn}(c)\right).$$

By virtue of the explicit factor set, we can specify the group of operators on $L^2_{\delta}(P_m)$ generated by the set $\{r_{\delta}(\sigma); \sigma \in \Omega\}$ as $U_{4,\delta}(G_4)$ for m odd, and $U_{2,\delta}(G_2)$ for m even (Proposition 6.6).

The equivalence of the representation $U_{1,\delta}$ to relative holomorphic discrete series representation of the universal covering group of $Sp(m, \mathbf{R})$ is given by the Laplace transformation. Therefore $U_{1,\delta}$ is found to be essentially the same as that obtained in Yamada [15, Th. 3.5].

The contents of each section are as follows. §1 is a preliminary and §2 is a summary of the necessary facts about the Bessel functions of Herz. In §3, we compute the factor associated with the family of operators $\{r_{\delta}(\sigma); \sigma \in \Omega\}$. In §4, we define and compute an explicit factor set $A(\sigma, \sigma')$, and describe the universal covering group of $Sp(m, \mathbf{R})$ by it. Gathering these results in §§3-4, we obtain unitary representations of the universal covering group of $Sp(m, \mathbf{R})$ in §5. §6 is devoted to study of the group G_q . §7 is a remark on the relation to relative holomorphic discrete series representations. In Appendix, we give a sufficient condition that the commutant of a certain set of operators on $L^2(X)$ is the algebra of multiplication operators.

The author wishes to express his thanks to Professor T. Hirai for his constant encouragement and various advices.

§1. Notations and preliminaries.

1.1. We denote by Z, R, and C, respectively, the ring of integers, the real number field, and the complex number field. Also we use the notation $M_m(F)$ and GL(m, F) for the total matrix algebra and the general linear group of degree m with entries in F, where F=R or C. For a matrix a, ta is the transposed of a. We denote by 1_m or 0_m the unit matrix or the zero matrix of degree m. For $z \in M_m(C)$, Re z or Im z denotes the real or the imaginary part of z: Re z, Im $z \in M_m(R)$, $z=\text{Re } z+\sqrt{-1}$ Im z. The group of real or complex orthogonal matrices and the group of unitary matrices of degree m are denoted by O(m, R), O(m, C), and U(m) respectively. Moreover we use the following spaces of matrices :

 $S_m(\mathbf{R})$: the space of all $m \times m$ real symmetric matrices,

 $S_m(C)$: the space of all $m \times m$ complex symmetric matrices,

 P_m : the space of all $m \times m$ positive definite real symmetric matrices,

 \mathfrak{F}_m : the Siegel upper half space of degree m, $\mathfrak{F}_m = \{z \in S_m(C) ; \operatorname{Im} z \in P_m\}$.

For $a \in S_m(\mathbf{R})$, we write a > 0 if a is positive definite. As usual det a or tr a means the determinant or the trace of a. Following Herz [5], we write $\operatorname{etr}(a) = \exp(\operatorname{tr} a)$.

1.2. Throughout this paper, we fix an integer m > 0 and use the letter p for (m+1)/2 consistently, p=(m+1)/2.

On the vector space $S_m(\mathbf{R})$, we define the measure dx as $\prod_{i \le j} dx_{ij}$. Here the coordinate x_{ij} is taken from the components of $x=(x_{ij})$, and dx_{ij} is the Lebesgue measure on \mathbf{R} .

Let $GL(m, \mathbf{R})$ act on $S_m(\mathbf{R})$ by $x \mapsto^t a x a = x^a$ ($x \in S_m(\mathbf{R})$, $a \in GL(m, \mathbf{R})$). Then P_m is an open orbit. It is easy to see that the module of the linear transformation $x \mapsto x^a$ with respect to the measure dx is $|\det a|^{2p}$, i.e., $dx^a = |\det a|^{2p} dx$. So we have a $GL(m, \mathbf{R})$ -invariant measure $(\det x)^{-p} dx$ on P_m .

On the other hand, every element $x \in P_m$ is diagonalized by an element in $O(m, \mathbf{R})$. Using the eigenvalues of x, we can write the measure dx in the form

$$dx = \prod_{i < j} |t_i - t_j| dt_1 \cdots dt_m du.$$

Here $x = {}^{t}utu$, $t = \text{diag}(t_1, \dots, t_m)$, $u \in O(m, \mathbf{R})$, and du is a Haar measure on $O(m, \mathbf{R})$. Since $O(m, \mathbf{R})$ is compact, the absolute convergence of an integral with respect to dx depends only on the part $\prod_{i < j} |t_i - t_j| dt_1 \cdots dt_m$. For example, the integral

$$\int_{P_m} (\det(x_0 + \sqrt{-1} y))^{-\alpha} dy$$

is absolutely convergent if $\operatorname{Re} \alpha > m$ for a fixed $x_0 \in P_m$.

1.3. As in Herz [5], we make the following convention.

A complex analytic function f on $S_m(C)$ is called symmetric if it satisfies $f({}^tuzu)=f(z)$ for all $u \in O(m, C)$. A symmetric function f(z) is actually an analytic function of m elementary symmetric functions of z, $s_1=\operatorname{tr} z$, s_2, \dots, s_m =det z. Using this fact, for a symmetric function f, we extend its domain of definition from $S_m(C)$ to $M_m(C)$ naturally. Then we see $f({}^tz)=f(z)$ and f(zw) = f(wz). Moreover, it is useful to note the following. Let $x \in P_m$ and $x^{1/2}$ be the positive definite square root of x. Then $x^{1/2}zx^{1/2} \in S_m(C)$ for $z \in S_m(C)$, and we have $f(xz)=f(zx)=f(x^{1/2}zx^{1/2})$.

§2. Bessel functions of matrix argument.

In this section we summarize some results of Herz [5].

2.1. Definition of the Bessel functions.

Let δ be a complex number with $\operatorname{Re} \delta > p-1$. The Bessel function $A_{\delta}(x)$ $(x \in S_m(C))$ is defined as

(2.1)
$$A_{\delta}(x) = (2\pi\sqrt{-1})^{-mp} \int_{\substack{\text{Re } z = x_0 > 0 \\ z \in S_m(C)}} \operatorname{etr}(z - xz^{-1}) (\det z)^{-\delta - p} dz.$$

Here the integral should be understood as

$$(2\pi)^{-mp} \int_{\mathcal{S}_m(R)} \operatorname{etr}(z - xz^{-1}) (\det z)^{-\delta - p} dy ,$$

with the variable $z=x_0+\sqrt{-1} y$ for a fixed $x_0 \in P_m$, and we take the branch of the function $(\det z)^{-\delta-p}$ for Re z>0 determined by $(\det 1_m)^{-\delta-p}=1$. Since $\operatorname{etr}(z-xz^{-1})$ is bounded in $z=x_0+\sqrt{-1} y$, the integral (2.1) converges absolutely for Re $\delta > p-1$. And by the Cauchy's theorem, (2.1) is independent of $x_0 \in P_m$. Moreover we can see that for any fixed $x_0 \in P_m$, $\operatorname{etr}(z-xz^{-1})$ is uniformly bounded in $z=x_0+\sqrt{-1} y$ whenever x varies in a compact subset of $S_m(C)$. Therefore $A_{\delta}(x)$ is an entire function in x and analytic in δ for Re $\delta > p-1$. In addition, for Re $\delta > p-1$, $A_{\delta}(x)$ is bounded in $x \in P_m$ and vanishes at infinity.

The analytic continuation in δ of $A_{\delta}(x)$ is carried out by the differential recurrence formula:

(2.2)
$$D((\det x)^{\delta}A_{\delta}(x)) = (\det x)^{\delta_{-1}}A_{\delta_{-1}}(x),$$

where $D = \det\left(\eta_{ij} \frac{\partial}{\partial x_{ij}}\right)$, $\eta_{ij} = 1$ if i = j, and $= \frac{1}{2}$ if $i \neq j$. It can be shown that A_{δ} is analytically continued to all $\delta \in C$, so that $A_{\delta}(x)$ is entire in δ and x simultaneously.

For Re $\delta > p-1$, (2.1) shows that $A_{\delta}(x) = O(\operatorname{etr}(|x|))$, and the same estimate holds also for all derivatives of $A_{\delta}(x)$. Here |x| is the positive definite hermitian matrix which satisfies $|x|^2 = {}^t \bar{x}x$.

From the definition (2.1), we see that $A_{\delta}(x)$ is symmetric. So we can extend the function $A_{\delta}(z)$ for all $z \in M_m(C)$.

The very important formula A_{δ} is the Laplace transform of (2.1):

(2.3)
$$\int_{P_m} \operatorname{etr}(-xz) A_{\delta}(xy) (\det x)^{\delta} dx = \operatorname{etr}(-yz^{-1}) (\det z)^{-\delta-p}.$$

This converges absolutely for all $y \in P_m$, Re z > 0, and Re $\delta > -1$. Formulae in the following subsections 2.2 and 2.3 are essentially based on (2.3).

Remark. For m=1, the relation of $A_{\delta}(x)$ to the ordinary Bessel function $J_{\delta}(x)$ is given by $J_{\delta}(x) = A_{\delta}\left(\frac{1}{4}x^2\right)\left(\frac{x}{2}\right)^{\delta}$. (c.f. Watson [13, 6.2])

2.2. The Hankel transform. Let δ be a real number greater than -1. We denote by $L^{\circ}_{\delta}(P_m)$ the Hilbert space of all square integrable functions on P_m with respect to the measure $(\det x)^{\delta} dx$. Let us consider the linear transformation with integral kernel $A_{\delta}(xy)$:

(2.4)
$$\varphi^*(x) = \int_{P_m} \varphi(y) A_{\delta}(xy) (\det y)^{\delta} dy.$$

Proposition 2.1 (C.f. Herz [5, Theorem 3.1]). The transform $\varphi \mapsto \varphi^*$ on the space of continuous functions with compact supports can be extended on the whole $L^2_{\delta}(P_m)$ as a unitary operator, and $\varphi^{**} = \varphi$. The integral expression (2.4) is valid for $\varphi \in L^2_{\delta}(P_m)$ whenever it is absolutely convergent.

2.3. Weber's second exponential integral. For Re $\delta > -1$, $a, b \in P_m$, and Rez > 0, we have an integral formula which converges absolutely (Herz [5, (5.8)]).

(2.5)
$$\int_{P_m} \operatorname{etr}(-xz) A_{\delta}(ax) A_{\delta}(bx) (\det x)^{\delta} dx$$
$$= \operatorname{etr}(-(a+b)z^{-1}) A_{\delta}(-az^{-1}bz^{-1}) (\det z)^{-\delta-p}$$

Here the branch of $(\det z)^{-\delta-p}$ for $\operatorname{Re} z > 0$ is determined by $(\det 1_m)^{-\delta-p} = 1$.

§3. Weil type factor of a family of unitary operators.

3.1. Let δ be a real number greater than -1. On the analogy of Weil [14], Kubota [9], and Yamazaki [16], we define the following three types of unitary operators on $L^2_{\delta}(P_m)$. For $\varphi \in L^2_{\delta}(P_m)$,

$$\begin{aligned} d_{\delta}(a)\varphi(x) &= \varphi({}^{t}a \, x \, a) |\det a|^{\delta+p} & (a \in GL(m, \mathbf{R})), \\ t_{\delta}(b)\varphi(x) &= \varphi(x) \operatorname{etr}(\sqrt{-1} b \, x) & (b \in S_m(\mathbf{R})), \\ d'_{\delta}(c)\varphi(x) &= \varphi^*(c^{-1}x^tc^{-1}) |\det c|^{-\delta-p} & (c \in GL(m, \mathbf{R})). \end{aligned}$$

Here φ^* is defined in 2.2.

In the following we often denote these operators as d(a), t(b), and d'(c) without the parameter δ in case there is no fear of confusion.

Proposition 3.1. Let $b \in GL(m, R)$ be symmetric. Then we have

$$(\boldsymbol{d}_{\boldsymbol{\delta}}^{\prime}(-b^{-1})\boldsymbol{t}_{\boldsymbol{\delta}}(b))^{3} = \exp\left(\sqrt{-1}\,\frac{\pi}{2}(\boldsymbol{\delta}+\boldsymbol{p})\,\operatorname{sgn}\,\boldsymbol{b}\right).$$

Here $\operatorname{sgn} b$ is the index of inertia of b, i.e., the dimension of positive eigenspace of b minus that of negative one.

Proof. We show the equality

$$(d'(-b^{-1})t(b))^2 = t(-b)d'(b^{-1})\exp\left(\sqrt{-1}\frac{\pi}{2}(\delta+p)\operatorname{sgn} b\right).$$

Let us compute $I = (\mathbf{d}'(-b^{-1})\mathbf{t}(b))^2 \varphi(x)$ for a continuous function φ on P_m with compact support. Put

$$\begin{split} \varPhi(x_1, x_2) = \varphi(x_1) \operatorname{etr}(\sqrt{-1} bx) A_{\delta}(x_1 b x_2 b) (\det x_1)^{\delta} \\ \times \operatorname{etr}(\sqrt{-1} b x_2) A_{\delta}(x_2 b x b) (\det x_2)^{\delta}. \end{split}$$

Then we see formally

$$I = |\det b|^{2p+2\delta} \int_{P_m} \left(\int_{P_m} \Phi(x_1, x_2) dx_1 \right) dx_2 dx_2.$$

To be precise, we consider the integral I_{ε} with convergence factor $etr(-\varepsilon x_2)$, $\varepsilon > 0$,

$$I_{\varepsilon} = |\det b|^{2p+2\delta} \int_{P_m} \left(\int_{P_m} \operatorname{etr}(-\varepsilon x_2) \Phi(x_1, x_2) dx_1 \right) dx_2.$$

Then by Fubini's theorem,

$$I_{\varepsilon} = |\det b|^{2p+2\delta} \int dx_1 \int \operatorname{etr}(-\varepsilon x_2) \Phi(x_1, x_2) dx_2$$

= $|\det b|^{2p+2\delta} \int \varphi(x_1) \operatorname{etr}(\sqrt{-1} bx_1) (\det x_1)^{\delta} dx_1$
 $\times \int \operatorname{etr}((-\varepsilon + \sqrt{-1} b)x_2) A_{\delta}(x_2 b x b) A_{\delta}(x_1 b x_2 b) (\det x_2)^{\delta} dx_2$

By the Weber's second exponential integral (2.5), integral $\int dx_2$ is equal to

$$\operatorname{etr}(-b(x+x_1)bz_{\varepsilon}^{-1})A_{\delta}(-bxbz_{\varepsilon}^{-1}bx_1bz_{\varepsilon}^{-1})(\operatorname{det} z_{\varepsilon})^{-\delta-p},$$

where $z_{\varepsilon} = \varepsilon - \sqrt{-1} b$. Therefore,

$$I_{\varepsilon} = |\det b|^{2p+2\delta} \operatorname{etr}(-bxbz_{\varepsilon}^{-1})(\det z_{\varepsilon})^{-\delta-p} \\ \times \int \varphi(x_{1}) \operatorname{etr}(b(\sqrt{-1}-z_{\varepsilon}^{-1}b)x_{1})A_{\delta}(-bz_{\varepsilon}^{-1}bxbz_{\varepsilon}^{-1}bx_{1})(\det x_{1})^{\delta}dx_{1}.$$

Letting ε tend to zero, we have

$$I = |\det b|^{2p+2\delta} \varphi^*(bxb) \operatorname{etr}(-\sqrt{-1}bx) \times \lim_{\varepsilon \to 0} (\det z_\varepsilon)^{-\delta-p}$$
$$= t(-b)d'(b^{-1})\varphi(x) \times |\det b|^{\delta+p} \lim_{\varepsilon \to 0} (\det z_\varepsilon)^{-\delta-p}.$$

Recalling the choice of the branch for $(\det z)^{-\delta-p}$, we can easily compute the factor:

$$\lim_{\varepsilon \to 0} |\det z_{\varepsilon}|^{\delta + p} (\det z_{\varepsilon})^{-\delta - p} = \exp \left(\sqrt{-1} \, \frac{\pi}{2} (\delta + p) \, \operatorname{sgn} b \right).$$

Thus we obtain the assertion.

3.2. Let us consider the real symplectic group of degree m in the usual form,

$$Sp(m, \mathbf{R}) = \{ \sigma \in GL(2m, \mathbf{R}) ; {}^{t}\sigma J\sigma = J \}, \quad J = \begin{pmatrix} 0_{m} & -1_{m} \\ 1_{m} & 0_{m} \end{pmatrix} \in M_{2m}(\mathbf{R}).$$

We write $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ using the $m \times m$ block components $a, b, c, d \in M_m(\mathbf{R})$, and denote $c = c(\sigma)$. We put

$$\Omega = \{ \sigma \in Sp(m, R) ; \det c(\sigma) \neq 0 \}.$$

Moreover we define three types of elements in Sp(m, R) as follows:

$$d(a) = \begin{pmatrix} a & 0_m \\ 0_m & t_a^{-1} \end{pmatrix}, \quad t(b) = \begin{pmatrix} 1_m & b \\ 0_m & 1_m \end{pmatrix}, \quad d'(c) = \begin{pmatrix} 0_m & -t_c^{-1} \\ c & 0_m \end{pmatrix},$$

for $a, c \in GL(m, \mathbb{R})$ and $b \in S_m(\mathbb{R})$.

It is easy to see that every $\sigma \in \Omega$ can be written uniquely in the form

(3.1)
$$\sigma = t(b_1)d'(c)t(b_2), \quad b_1, b_2 \in S_m(\mathbf{R}), \quad c \in GL(m, \mathbf{R})$$

In fact, for $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we have $b_1 = ac^{-1}$ and $b_2 = c^{-1}d$. Using the decomposition (3.1) for $\sigma \in \Omega$, we define a unitary operator $r(\sigma) = r_{\delta}(\sigma)$ on $L^2_{\delta}(P_m)$ by

(3.2)
$$\mathbf{r}_{\delta}(\sigma) = \mathbf{t}_{\delta}(b_1) \mathbf{d}_{\delta}'(c) \mathbf{t}_{\delta}(b_2) \,.$$

Let us put $e_{\delta}(\zeta) = \exp\left(\sqrt{-1}\frac{\pi}{2}(\delta+p)\zeta\right)$ for $\zeta \in C$.

Theorem 3.2. Let σ , σ' , σ'' be three elements in Ω such that $\sigma'' = \sigma \sigma'$. Then it holds that

$$r_{\delta}(\sigma)r_{\delta}(\sigma')=r_{\delta}(\sigma'')e_{\delta}(\operatorname{sgn}(c^{-1}c''c'^{-1})),$$

where $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\sigma' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, $\sigma'' = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}$.

For the proof of Theorem, we prepare a computational lemma.

111

Q.E.D.

Lemma 3.3. Let ${}^{t}f = f$, c, $c' \in GL(m, \mathbb{R})$. Then we have

(3.3)
$$d'(c)t(f)d'(c') = t(f_1)d'(cfc')t(f_2'),$$

(3.4)
$$d'(c)t(f)d'(c') = t(f_1)d'(cfc')t(f'_2)e_{\delta}(\operatorname{sgn} f),$$

where $f_1 = -tc^{-1}f^{-1}c^{-1}$ and $f'_2 = -c'^{-1}f^{-1}tc'^{-1}$.

Proof. It is easy check the following equalities.

(1)
$$d(a_1)d(a_2) = d(a_1a_2), \quad d(a)^{-1} = d(a^{-1}),$$

(2)
$$t(b_1)t(b_2) = t(b_1+b_2), t(b)^{-1} = t(-b),$$

(3)
$$d'(c_1)d'(c_2) = d(-{}^tc_1^{-1}c_2), \quad d'(c)^{-1} = d'(-{}^tc),$$

(4) $d(a)t(b)d(a)^{-1} = t(ab^t a),$

(5)
$$d(a)d'(c) = d'({}^{t}a^{-1}c), \quad d'(c)d(a) = d'(ca).$$

By a simple computation we see that there hold the equalities in which d, t, d' are substituted by d, t, d' respectively.

(1')
$$d(a_1)d(a_2) = d(a_1a_2), \quad d(a)^{-1} = d(a^{-1}),$$

(2')
$$t(b_1)t(b_2) = t(b_1+b_2), t(b)^{-1} = t(-b),$$

(3')
$$d'(c_1)d'(c_2) = d(-{}^tc_1^{-1}c_2), \quad d'(c)^{-1} = d'(-{}^tc),$$

(4')
$$\boldsymbol{d}(a)\boldsymbol{t}(b)\boldsymbol{d}(a)^{-1} = \boldsymbol{t}(ab^t a),$$

(5')
$$\boldsymbol{d}(a)\boldsymbol{d}'(c) = \boldsymbol{d}'({}^{t}a^{-1}c), \quad \boldsymbol{d}'(c)\boldsymbol{d}(a) = \boldsymbol{d}'(ca).$$

Moreover, recalling the equality $(d'(-f^{-1})t(f))^3 = 1$, or

$$t(f) = d'(f^{-1})t(-f)d'(f^{-1})t(-f)d'(f^{-1}),$$

we get by $(1)\sim(5)$

$$d'(c)t(f)d'(c') = d'(c)d'(f^{-1})t(-f)d'(f^{-1})t(-f)d'(f^{-1})d'(c')$$

= $d(-^{t}c^{-1}f^{-1})t(-f)d'(f^{-1})t(-f)d(-fc')$
= $t(-^{t}c^{-1}f^{-1}c^{-1})d(-^{t}c^{-1}f^{-1})d'(f^{-1})d(-fc')t(-c'^{-1}f^{-1}c'^{-1})$
= $t(f_{1})d'(cfc')t(f'_{2}).$

This proves the equality (3.3). The second equality (3.4) can be obtained in a parallel way. In fact, instead of $(d'(-f^{-1})t(f))^3=1$, we have only to use the equality $(d'(-f^{-1})t(f))^3 = e_{\delta}(\operatorname{sgn} f)$, which was shown in Proposition 3.1.

Q.E.D. for Lemma 3.3.

Proof of Theorem 3.2. Let the decomposition of σ , σ' , σ'' be $\sigma = t(b_1)d'(c)t(b_2)$, $\sigma' = t(b_1')d'(c')t(b_2')$, $\sigma'' = t(b_1'')d'(c'')t(b_2'')$. We have $b_2 + b_1' = c^{-1}c''c'^{-1}$, because c'' = ca' + dc', $b_2 = c^{-1}d$, $b_1' = a'c'^{-1}$. Put $f = b_2 + b_1' = c^{-1}c''c'^{-1}$. Then f is symmetric and

Covering groups of the real symplectic groups

$$\sigma'' = \sigma \sigma' = t(b_1)d'(c)t(b_2)t(b'_1)d'(c')t(b'_2)$$

= $t(b_1)d'(c)t(f)d'(c')t(b'_2)$.

So by (3.3), we get

 $\sigma'' = t(b_1 + f_1)d'(cfc')t(f'_2 + b'_2)$,

where $f_1 = -tc^{-1}f^{-1}c^{-1}$ and $f'_2 = -c'^{-1}f^{-1}c'^{-1}$. The uniqueness of the decomposition shows that $b''_1 = b_1 + f_1$, $b''_2 = f'_2 + b'_2$, and c'' = cfc'. So by definition,

 $r(\sigma'') = t(b_1 + f_1)d'(bfc')t(f'_2 + b'_2).$

On the other hand, we have

$$\begin{aligned} \mathbf{r}(\sigma)\mathbf{r}(\sigma') &= \mathbf{t}(b_1)\mathbf{d}'(c)\mathbf{t}(b_2)\mathbf{t}(b_1')\mathbf{d}'(c')\mathbf{t}(b_2')\\ &= \mathbf{t}(b_1)\mathbf{d}'(c)\mathbf{t}(f)\mathbf{d}'(c')\mathbf{t}(b_2') \,. \end{aligned}$$

Then by (3.4), we get

$$\begin{aligned} \mathbf{r}(\sigma)\mathbf{r}(\sigma') &= \mathbf{t}(b_1)\mathbf{l}(f_1)\mathbf{d}'(cfc')\mathbf{l}(f_2')\mathbf{t}(b_2')\mathbf{e}_{\delta}(\operatorname{sgn} f) \\ &= \mathbf{t}(b_1 + f_1)\mathbf{d}'(cfc')\mathbf{t}(f_2' + b_2')\mathbf{e}_{\delta}(\operatorname{sgn} f) \\ &= \mathbf{r}(\sigma'')\mathbf{e}_{\delta}(\operatorname{sgn} f) . \end{aligned}$$

Hence the theorem.

§4. A factor set for the universal covering group of Sp(m, R).

In this section we describe the univarial covering group of $Sp(m, \mathbf{R})$ using a factor set, which is convenient for our purpose. We give some explicit computations for the factor set, too.

4.1. We introduce the following notations.

(1) For $\zeta \in C$, $\zeta \neq 0$, we choose the principal value of its argument as $-\pi \leq \operatorname{Arg} \zeta < \pi$.

(2) For $a \in M_m(C)$, we put

$$\operatorname{Arg}(a) = \sum_{\mu} \operatorname{Arg} \mu$$
,

where the summation is taken over all non-zero eigenvalues μ of a with multiplicities.

Remark 1. For $a \in S_m(\mathbf{R})$, we have

$$\operatorname{Arg}(a) = \frac{\pi}{2} (\operatorname{sgn}(a) - \operatorname{rank}(a)).$$

2. If $a \in M_m(\mathbf{R})$, then $\operatorname{Arg}(a) \in \pi \mathbf{Z}$.

4.2. A decomposition for elements in Sp(m, R).

Following Weil [14, Ch. V, n^{os} 46-47, Prop. 6, Cor's 1 & 2], we explain a "normal" form for $\sigma \in Sp(m, \mathbf{R})$, which generalizes the expression (3.1) for elements of Ω .

Let $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in M_m(\mathbf{R})$, and $\operatorname{rank}(c) = r$. Let V be the space of row vectors of dimension m. Let $V_1 \subset V$ be the range under right multiplication by c, and V_2 the orthogonal complement of V_1 in V. We choose orthonormal basis u_1, \dots, u_r of V_1 and u_{r+1}, \dots, u_m of V_2 . And we make a matrix u by arranging u_1, \dots, u_m in m columns in this order. Then $u \in O(m, \mathbf{R})$. Moreover we put

(4.1)
$$e_1 = \begin{pmatrix} 1_r \\ 0_{m-r} \end{pmatrix}, e_2 = 1_m - e_1 = \begin{pmatrix} 0_r \\ 1_{m-r} \end{pmatrix}, E_r = \begin{pmatrix} e_2 & -e_1 \\ e_1 & e_2 \end{pmatrix}.$$

In this situation, σ can be written in the form

(4.2)
$$\sigma = d(u^{-1})t(g)d(t\lambda^{-1})E_rt(h)d(u),$$

where g, $h \in S_m(\mathbf{R})$, $e_1he_1 = h$, $\lambda \in GL(m, \mathbf{R})$. Moreover for a fixed u, the decomposition is unique.

Next let us look over how g, h, λ change in case u is replaced. If we choose another orthonormal basis of V_1 and V_2 and make the matrix u' as above, then $v=u'u^{-1}$ is of the form

$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, v_1 \in O(r, \mathbf{R}), v_2 \in O(m-r, \mathbf{R}).$$

So we see $v^{-1}e_1v=e_1$, $v^{-1}e_2v=e_2$, $d(v^{-1})E_rd(v)=E_r$. Using this, we get easily

(4.3)
$$g = v^{-1}g'v, \quad h = v^{-1}h'v, \quad \lambda = v^{-1}\lambda'v$$

where $\sigma = d(u'^{-1})t(g')d(t\lambda'^{-1})E_rt(h')d(u')$ is the decomposition corresponding to u'.

4.3. For $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp(m, \mathbb{R})$ and $z \in \mathfrak{H}_m$, we put $J(\sigma, z) = cz + d$. It is well known that $J(\sigma, z)$ is invertible. It can be written in terms of the decomposition (4.2) as

$$J(\sigma, z) = u^{-1}\lambda(e_1(uz^tu+h)+e_2)u,$$

because $c = u^{-1}\lambda e_1 u$, $d = u^{-1}\lambda (h + e_2)u$.

Now we define, using (4.2),

(4.4)
$$AJ(\sigma, z) = \operatorname{Arg}(\lambda) + \operatorname{Arg}(e_1(uz^t u + h) + e_2)$$

Recalling (4.3), we see easily that this does not depend on the choise of u, so that $AJ(\sigma, z)$ is defined as a function of σ and z.

Let $\sigma \in \Omega$, i.e., rank(c) = m. Then, from the decomposition (3.1), we can choose $u = 1_m$, and get

(4.5)
$$AJ(\sigma, z) = \operatorname{Arg}(c) + \operatorname{Arg}(z + c^{-1}d).$$

Let c=0, i.e., $\sigma = \begin{pmatrix} a & b \\ 0 & \iota_{a^{-1}} \end{pmatrix}$. Then we can also choose $u=1_m$ and get $AJ(\sigma, z) = \operatorname{Arg}({}^{\iota}a^{-1}) = \operatorname{Arg}(a^{-1})$.

The important property of $A f(\sigma, z)$ is the following.

Proposition 4.1. For a fixed $\sigma \in Sp(m, \mathbb{R})$, the function $AJ(\sigma, z)$ of z is continuous on \mathfrak{H}_m .

Proof. Let us write $uz^t u = \begin{pmatrix} z_1 & * \\ * & * \end{pmatrix}$, $z_1 \in S_r(C)$. It is easy to see $z_1 \in \mathfrak{F}_r$. Since $e_1he_1 = h$, the matrix h is of the form $\begin{pmatrix} h_1 \\ 0_{m-r} \end{pmatrix}$, $h_1 \in S_r(R)$. Then we have

$$e_1(uz^tu+h)+e_2=\binom{z_1+h_1}{0} + \binom{z_1+h_1}{1} + \binom{z_1+h_1}{1} + \binom{z_1}{1} + \binom{z_1+h_1}{1} + \binom{z_1}{1} + \binom{z_1}{$$

Therefore we have only to consider the eigenvalues of z_1+h_1 . Since $z_1+h_1 \in \mathfrak{F}_r$, its eigenvalues are in the complex upper half plane \mathfrak{F}_1 . By definition, whenever μ is in \mathfrak{F}_1 , the map $\mu \mapsto \operatorname{Arg} \mu$ is continuous. Thus the continuity of the map $z \mapsto \operatorname{Arg}(z_1+h_1)$ is verified, because the roots of a polynomial depend continuously on its coefficients. Q. E. D.

4.4. Let us put $j(\sigma, z) = \det J(\sigma, z)$. Then we see

(4.6)
$$j(\sigma, z) = |j(\sigma, z)| \exp(\sqrt{-1} A J(\sigma, z)).$$

On the other hand, for σ , $\sigma' \in Sp(m, R)$, $z \in \mathfrak{F}_m$, we have

(4.7)
$$J(\sigma\sigma', z) = J(\sigma, \sigma'z) J(\sigma', z) \text{ and } j(\sigma\sigma', z) = j(\sigma, \sigma'z) j(\sigma', z).$$

Here the action of $Sp(m, \mathbf{R})$ on \mathfrak{H}_m is given by

$$\tau z = (az+b)(cz+d)^{-1}, \quad \tau = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Sp(m, \mathbf{R}).$$

Now we consider

(4.8)
$$A(\sigma, \sigma'; z) = \frac{1}{2\pi} (AJ(\sigma, \sigma'z) - AJ(\sigma\sigma', z) + AJ(\sigma', z)).$$

From (4.6) and (4.7), we see that $\exp(2\pi\sqrt{-1}A(\sigma, \sigma'; z))=1$, so that $A(\sigma, \sigma'; z) \in \mathbb{Z}$. On the other hand, by Proposition 4.1, $A(\sigma, \sigma'; z)$ is continuous in z. Therefore we find that $A(\sigma, \sigma'; z)$ does not depend on $z \in \mathfrak{H}_m$. So we write it by $A(\sigma, \sigma')$ instead.

By a simple computation, the following cocycle condition for $A(\sigma, \sigma')$ is verified:

$$A(\sigma\sigma', \sigma'') + A(\sigma, \sigma') = A(\sigma, \sigma'\sigma'') + A(\sigma', \sigma'').$$

Now using this factor set $A(\sigma, \sigma')$, we construct a central extension G_1 of $Sp(m, \mathbf{R})$ as follows. As an underlying set, we take $G_1 = Sp(m, \mathbf{R}) \times \mathbf{Z}$. The group operation in G_1 is given by

$$(\sigma, n)(\sigma', n') = (\sigma \sigma', n+n'+A(\sigma, \sigma')).$$

Proposition 4.2. The group G_1 is the universal covering group of Sp(m, R).

Proof. This can be seen by restricing the factor set on the maximal compact subgroup $K = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in GL(2m, \mathbb{R}); a + \sqrt{-1} b \in U(m) \right\}$. But we give here

another proof in order to mention the topology on the covering group.

Let us realize the universal covering group $Sp(m, R)^{\sim}$ of Sp(m, R) as in Kashiwara-Vergne [6, (3.5)]: $Sp(m, R)^{\sim} = \{(\sigma, L_{\sigma}) ; \sigma \in Sp(m, R), L_{\sigma} \in \mathcal{L}_{\sigma}\}$ endowed with the group operation $(\sigma, L_{\sigma})(\sigma', L_{\sigma'}) = (\sigma'', L_{\sigma'})$ with $\sigma'' = \sigma \sigma'$ and $L_{\sigma'}(z) = L_{\sigma}(\sigma'z) + L_{\sigma'}(z)$. Here L_{σ} is an element of a family \mathcal{L}_{σ} of functions on \mathfrak{H}_m given as follows. For any fixed $\sigma \in Sp(m, R)$, $L_{\sigma}(z) = \log j(\sigma, z)$, where the values of logarithm are taken in such a way that we get a univalent continuous function on the simply connected domain \mathfrak{H}_m . Note that L_{σ} is determined by its value at $z = \sqrt{-1}$, and that the topology on $Sp(m, R)^{\sim}$ is given as the induced topology from $Sp(m, R) \times C$ to $\{(\sigma, L_{\sigma}(\sqrt{-1}))\}$. Now, we put for $\sigma \in Sp(m, R)$, $s(\sigma) = (\sigma, \log |j(\sigma, z)| + \sqrt{-1} A f(\sigma, z))$. Then Proposition 4.1 shows that $s(\sigma) \in$ $Sp(m, R)^{\sim}$, so that s gives a cross section from Sp(m, R) to $Sp(m, R)^{\sim}$. It is easy to see that $s(\sigma\sigma')^{-1}s(\sigma)s(\sigma') = (1, 2\pi\sqrt{-1} A(\sigma, \sigma'))$. Thus the factor set $A(\sigma, \sigma')$ determines the universal covering group of Sp(m, R).

Let Ω' be the set of $\sigma \in \Omega$ such that $c(\sigma)$ has no negative eigenvalues. Then we see from (4.5) that the cross section s is continuous on Ω' , so that the topology on the subset $\{(\sigma, n) \in G_1; \sigma \in \Omega', n \in \mathbb{Z}\}$ is the direct product topology of Ω' and \mathbb{Z} . Q. E. D.

4.5. A computation of $A(\sigma, \sigma')$ for a generic case.

Here we compute $A(\sigma, \sigma')$ for the case that $\sigma, \sigma', \sigma'' = \sigma \sigma' \in \Omega$. The idea is simple. In the definition (4.8), we specialize z as $\sqrt{-1}\infty$.

As before, we write $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\sigma' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, $\sigma'' = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}$. In the formula (4.5) for $\sigma \in \Omega$, put $z = \sqrt{-1}t$ (t: positive real number) and let t tend to infinity. Then we get $AJ(\sigma, \sqrt{-1}\infty) = \operatorname{Arg}(c) + \frac{\pi}{2}m$, whence

(4.9)
$$-AJ(\sigma'', \sqrt{-1}\infty) + AJ(\sigma', \sqrt{-1}\infty) = -\operatorname{Arg}(c'') + \operatorname{Arg}(c') + \operatorname{Arg}(c')$$

There remains to compute $AJ(\sigma, \sigma'(\sqrt{-1}\infty))$. We see that $\sigma'(\sqrt{-1}t) = a'c'^{-1} + \varepsilon(t)$ with $\varepsilon(t) \in \mathfrak{H}_m$ and $\lim_{t \to \infty} \varepsilon(t) = 0$. Therefore by (4.5),

$$AJ(\sigma, \sigma'(\sqrt{-1}t)) = \operatorname{Arg}(c) + \operatorname{Arg}(a'c'^{-1} + \varepsilon(t) + c^{-1}d)$$
$$= \operatorname{Arg}(c) + \operatorname{Arg}(c^{-1}c''c'^{-1} + \varepsilon(t)).$$

The following lemma leads us to the conclusion.

Lemma 4.3. Let
$${}^{t}h = h \in GL(m, \mathbb{R})$$
. For $\varepsilon(t) \in \mathfrak{H}_{m}$ with $\lim_{t \to +\infty} \varepsilon(t) = 0$, we have
$$\lim_{t \to +\infty} \operatorname{Arg}(h + \varepsilon(t)) = -\operatorname{Arg}(h).$$

Proof. Since $h + \varepsilon(t) \in \mathfrak{G}_m$, its eigenvalues are in the complex upper half plane. On the other hand, the eigenvalues of h are non-zero real numbers, to which the eigenvalues of $h + \varepsilon(t)$ tend as $t \to +\infty$. According as the eigenvalue of $h + \varepsilon(t)$ tends to a positive or negative real number, its Arg tends to 0 or π respectively. By definition, Arg of a positive real number is 0 and that of a

negative one is $-\pi$. Therefore we see that $\operatorname{Arg}(h+\varepsilon(t))$ tends to $-\operatorname{Arg}(h)$. Q. E. D.

From this lemma, putting $h = c^{-1}c''c'^{-1}$, we see that $AJ(\sigma, \sigma'(\sqrt{-1}t))$ tends to $\operatorname{Arg}(c) - \operatorname{Arg}(c^{-1}c''c'^{-1})$ as t tends to infinity. Gathering this and (4.9), we get the following.

Proposition 4.4. Let σ , σ' , $\sigma'' = \sigma \sigma' \in \Omega$. Then

$$A(\sigma, \sigma') = \frac{1}{2\pi} \left\{ \operatorname{Arg}(c) - \operatorname{Arg}(c'') + \operatorname{Arg}(c') - \operatorname{Arg}(c^{-1}c''c'^{-1}) \right\}.$$

4.6. In the remainder of this section, we make preparations for §§ 5-6. First we give a computation of $AJ(\sigma, z)$ by reduction to lower dimensional case, when σ and z are written in the form of a direct sums of lower dimensional ones. Next we compute $A(\sigma, \sigma')$ for σ, σ' in the maximal compact subgroup of $Sp(1, \mathbf{R})$.

Let $\sigma^{(i)} = \begin{pmatrix} a^{(i)} b^{(i)} \\ c^{(i)} d^{(i)} \end{pmatrix} \in Sp(m^{(i)}, \mathbf{R})$, and $z^{(i)} \in \mathfrak{H}_{m^{(i)}}$ (i=1, 2). We put $\sigma^{(1)} + \sigma^{(2)} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a = a^{(1)} \oplus a^{(2)}$, $b = b^{(1)} \oplus b^{(2)}$, $c = c^{(1)} \oplus c^{(2)}$, $d = d^{(1)} \oplus d^{(2)}$. Here $a^{(1)} \oplus a^{(2)}$ means the direct sum of matrices $\begin{pmatrix} a^{(1)} & 0 \\ 0 & a^{(2)} \end{pmatrix}$.

Proposition 4.5. It holds that

$$AJ(\sigma^{(1)} + \sigma^{(2)}, z^{(1)} \oplus z^{(2)}) = AJ(\sigma^{(1)}, z^{(1)}) + AJ(\sigma^{(2)}, z^{(2)}).$$

Corollary 4.6. Let $\sigma_j^{(i)} \in Sp(m^{(i)}, R)$ (*i*, *j*=1, 2). Then

$$A(\sigma_1^{(1)} + \sigma_1^{(2)}, \sigma_2^{(2)} + \sigma_2^{(2)}) = A(\sigma_1^{(1)}, \sigma_2^{(2)}) + A(\sigma_1^{(2)}, \sigma_2^{(2)}).$$

Proof of Proposition 4.5. Let $r^{(i)} = \operatorname{rank}(c(\sigma^{(i)}))$ (i=1, 2), and put $m = m^{(1)} + m^{(2)}$, $r = r^{(1)} + r^{(2)}$. We denote the matrices appearing in the decomposition (4.2) for $\sigma^{(i)}$ by the suffixed letters such as $u^{(i)}$, $g^{(i)}$, $h^{(i)}$, $\lambda^{(i)}$. Similarly we use the notations $e_j^{(i)}$ (i, j=1, 2) for the matrices that define $E_r^{(i)}$ in (4.1). Then we have

$$\sigma^{(1)} + \sigma^{(2)} = d(u_0^{-1})t(g_0)d(t\lambda_0^{-1})Ft(h_0)d(u_0),$$

where $u_0 = u^{(1)} \oplus u^{(2)}$, $g_0 = g^{(1)} \oplus g^{(2)}$, $h_0 = h^{(1)} \oplus h^{(2)}$, $\lambda_0 = \lambda^{(1)} \oplus \lambda^{(2)}$, and $F = E_r^{(1)} + E_r^{(2)}$. Let $v \in O(m, \mathbb{R})$ be a permutation matrix such that $v(e_1^{(1)} + e_1^{(2)})v^{-1} = e_1$, then we have $v(e_2^{(1)} + e_2^{(2)})v^{-1} = e_2$ and $d(v)Fd(v^{-1}) = E_r$. Here e_1 , e_2 are as in (4.1). Hence

$$\sigma^{(1)} + \sigma^{(2)} = d(u^{-1})t(g)d(\lambda^{-1})E_rt(h)d(u)$$

with $u = vu_0$, $g = vg_0v^{-1}$, $h = vh_0v^{-1}$, $\lambda = v\lambda_0v^{-1}$. It is easy to verify that this gives the decomposition (4.2) for $\sigma^{(1)} + \sigma^{(2)}$. So by definition (4.4), we get

$$AJ(\sigma^{(1)} + \sigma^{(2)}, z^{(1)} \oplus z^{(2)}) = \operatorname{Arg}(\lambda) + \operatorname{Arg}(e_1(u(z^{(1)} \oplus z^{(2)})^t u + e_2)),$$

and for the first term in the right-hand side

$$\operatorname{Arg}(\lambda) = \operatorname{Arg}(\nu(\lambda^{(1)} \oplus \lambda^{(2)})\nu^{-1}) = \operatorname{Arg}(\lambda^{(1)}) + \operatorname{Arg}(\lambda^{(2)}),$$

and similarly for the second term. Therefore

$$A f(\sigma^{(1)} + \sigma^{(2)}, z^{(1)} \oplus z^{(2)}) = A f(\sigma^{(1)}, z^{(1)}) + A f(\sigma^{(2)}, z^{(2)}).$$
 Q. E. D.

Put
$$k(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 and
 $B(\theta, \theta') = \frac{1}{2\pi} (\operatorname{Arg} e^{\sqrt{-1}\theta} + \operatorname{Arg} e^{\sqrt{-1}\theta'} - \operatorname{Arg} e^{\sqrt{-1}(\theta + \theta')}).$

Then we see for $-\pi \leq \theta$, $\theta' < \pi$,

$$B(\theta, \theta') = \begin{cases} 1 & \text{if } \pi \leq \theta + \theta' \\ 0 & \text{if } -\pi \leq \theta + \theta' < \pi \\ -1 & \text{if } \theta + \theta' < -\pi. \end{cases}$$

Proposition 4.7. $A(k(\theta), k(\theta')) = B(\theta, \theta')$.

Proof. It suffices to show $AJ(k(\theta), \sqrt{-1})=\theta$ for $-\pi \leq \theta < \pi$. For $\theta=0$ or $\theta=-\pi$, this equality is obvious. For the case $-\pi < \theta < \pi$, $\theta \neq 0$, we have the decomposition (4.2) for $k(\theta)$ with r=1, u=1, $g=\cot \theta$, $h=\cot \theta$, and $\lambda=\sin \theta$. Then by definition (4.4), we get $AJ(k(\theta), \sqrt{-1})=\operatorname{Arg}(\sin \theta)+\operatorname{Arg}(\sqrt{-1}+\cot \theta)$ $=\theta$. Hence the proposition. Q. E. D.

Put $k(\theta_1, \dots, \theta_m) = k(\theta_1) + \dots + k(\theta_m)$. Then from Corollary 4.6 and Proposition 4.7, we see

Proposition 4.8. It holds that

$$A(k(\theta_1, \cdots, \theta_m), k(\theta'_1, \cdots, \theta'_m)) = \sum_{i=1}^m B(\theta_i, \theta'_i).$$

Corollary 4.9. We have $A(E_r, E_r) = r$, especially for r = m, A(d'(1), d'(1)) = m. Moreover we have $A(-1_{2m}, -1_{2m}) = -m$.

§ 5. Representations of the universal covering group of Sp(m, R).

First we recall a general proposition about generators of a group and their relations, which is found in Weil [14, Lemme 6].

Lemma 5.1. Let G be a group, and U a subset of G such that the condition $U^{-1} \cap Ua \cap Ub \cap Uc \neq \emptyset$ holds for arbitrary elements a, b, c in G. Let G' be a group and η a map from U to G' satisfying the relation $\eta(uu')=\eta(u)\eta(u')$ for $u, u', uu' \in U$. Then η is uniquely extended as a group homomorphism from G to G'.

Note that the condition for U is satisfied when U is an open dense subset of a topological group G.

Let us introduce a notation. For $a \in M_m(C)$, we put

$$\operatorname{Sgn}(a) = \frac{2}{\pi} \operatorname{Arg}(a) + \operatorname{rank}(a).$$

If a is real symmetric, Sgn(a) coincides with Sgn(a) as in Remark 1 in §4. Note that $\text{Sgn}(a) \in \mathbb{Z}$ for $a \in M_m(\mathbb{R})$.

Using this notation Sgn, we can rewrite the formula in Proposition 4.4 as follows.

(5.1)
$$A(\sigma, \sigma') = \frac{1}{4} \{ \operatorname{Sgn}(c) - \operatorname{Sgn}(c'') + \operatorname{Sgn}(c') - \operatorname{Sgn}(c^{-1}c''c'^{-1}) \}$$

We describe the universal covering group of $Sp(m, \mathbf{R})$ as the group G_1 defined by the factor set $A(\sigma, \sigma')$ as in Proposition 4.2.

Theorem 5.2. For $\delta > -1$, there exists a unitary representation U_{δ} of G_1 on the Hilbert space $L^2_{\delta}(P_m)$ such that for $(\sigma, n) \in G_1$ with $\sigma \in \Omega$,

$$U_{\delta}(\sigma, n) = r_{\delta}(\sigma) e_{\delta}(-4n - \operatorname{Sgn}(c(\sigma))).$$

Here $\mathbf{r}_{\delta}(\sigma)$ is defined in (3.2).

Proof. By Lemma 5.1, it is enough to see that $U_{\delta}(\sigma, n)U_{\delta}(\sigma', n')=U_{\delta}(\sigma'', n'')$ for $\sigma, \sigma', \sigma''=\sigma\sigma'\in\Omega$, and $n''=n+n'+A(\sigma, \sigma')$. We write $c=c(\sigma), c'=c(\sigma')$, and $c''=c(\sigma'')$. Now by definition,

$$U_{\delta}(\sigma, n)U_{\delta}(\sigma', n') = r(\sigma)r(\sigma')e_{\delta}(-4n-4n'-\mathrm{Sgn}(c)-\mathrm{Sgn}(c')).$$

We have $r(\sigma)r(\sigma')=r(\sigma'')e_{\delta}(\operatorname{Sgn}(c^{-1}c''c'^{-1}))$ by Theorem 3.2, and $4A(\sigma, \sigma')=\operatorname{Sgn}(c)-\operatorname{Sgn}(c'')+\operatorname{Sgn}(c')-\operatorname{Sgn}(c^{-1}c''c'^{-1})$ by (5.1). So we get

$$U_{\delta}(\sigma, n)U_{\delta}(\sigma', n') = \mathbf{r}(\sigma'')\mathbf{e}_{\delta}(-4n - 4n' - 4A(\sigma, \sigma') - \operatorname{Sgn}(c''))$$
$$= \mathbf{r}(\sigma'')\mathbf{e}_{\delta}(-4n'' - \operatorname{Sgn}(c'')) = U_{\delta}(\sigma'', n'').$$

This representation is strongly continuous, because it is continuous on the subset $\{(\sigma, n); \sigma \in \Omega', n \in \mathbb{Z}\}$. Q. E. D.

Proposition 5.3. The representation U_{δ} ($\delta > -1$) of G_1 is irreducible.

Proof. We show that a bounded linear operator T on $L^2_{\delta}(P_m)$ commuting with every $U_{\delta}(\sigma, n)$ is a scalar operator. Since T commutes with t(b) for all $b \in S_m(\mathbf{R})$, T is written in the form $T\varphi(x) = f(x)\varphi(x)$ ($\varphi \in L^2_{\delta}(P_m)$) for some essentially bounded function f(x). (For its proof, see Appendix.) On the other hand, T commutes with d(a) for all $a \in GL(m, \mathbf{R})$. So the function f(x) satisfies the condition that $f(x) = f({}^taxa)$ for all $a \in GL(m, \mathbf{R})$. Since $GL(m, \mathbf{R})$ acts transitively on P_m by $x \mapsto {}^taxa$, the function f(x) must be a constant.

Q. E. D.

Let us determine the kernel Ker U_{δ} of this representation U_{δ} . Note that a normal subgroup of $G_1 \cong Sp(m, \mathbb{R})^{\sim}$ is either equal to G_1 itself or contained in the centre, and that the centre of G_1 is $\{(\pm 1, n); n \in \mathbb{Z}\}$. Since Ker U_{δ} is normal, we have only to compute $U_{\delta}(1, n)$ and $U_{\delta}(-1, n)$. From Corollary 4.9, we see (-1, n) = (d'(1), n-m)(d'(1), 0), so that

$$U_{\delta}(-1, n) = U_{\delta}(d'(1), n-m)U_{\delta}(d'(1), 0)$$

= $d'(1)d'(1)e_{\delta}(-4n+4m-m)e_{\delta}(-m) = e_{\delta}(-4n+2m).$

Moreover, we see also from Corollary 4.9, (1, n) = (-1, n+m)(-1, 0), so that

$$U_{\delta}(1, n) = U_{\delta}(-1, n+m)U_{\delta}(-1, 0)$$
$$= e_{\delta}(-4n - 4m + 2m)e_{\delta}(2m) = e_{\delta}(-4n).$$

Thus we have the following.

Proposition 5.4. The kernel of the representation U_{δ} of G_1 is given as

Ker
$$U_{\delta} = \{(1, n); (\delta + p)n \in \mathbb{Z}\} \cup \{(-1, n); (\delta + p)(n - \frac{m}{2}) \in \mathbb{Z}\}.$$

Let G_{δ} be the image of G_1 under U_{δ} . Since the representation U_{δ} is irreducible, the image of the centre of G_1 under U_{δ} coincides with the set of all scalar operators in G_{δ} . We see that G_{δ} is generated by the set of operators $\{r_{\delta}(\sigma)e_{\delta}(-\operatorname{Sgn}(c(\sigma))); \sigma \in \Omega\}$, because G_1 is generated by the set $\{(\sigma, 0); \sigma \in \Omega\}$. In the next section we determine the group generated by the set of operators $\{r_{\delta}(\sigma); \sigma \in \Omega\}$.

§ 6. Certain central extensions of Sp(m, R) and their representations.

6.1. Let q be a positive integer. In this section we study the central extension G_q of $Sp(m, \mathbf{R})$ by \mathbf{Z} with the factor set $qA(\sigma, \sigma')$ $(\sigma, \sigma' \in Sp(m, \mathbf{R}))$. Here G_q is by definition a group with the underlying set $Sp(m, \mathbf{R}) \times \mathbf{Z}$ and the group operation $(\sigma, n)(\sigma', n') = (\sigma\sigma', n+n'+qA(\sigma, \sigma'))$. As we see in Proposition 4.2, G_1 is equal to the universal covering group of $Sp(m, \mathbf{R})$. To avoid any confusion, we denote an element in G_q by $(\sigma, n)_q$ throughout this section.

In case q devides q', consider the natural injection $j_{q,q'}$ from G_q to $G_{q'}$ defined by $j_{q,q'}(\sigma, n)_q = \left(\sigma, \frac{q'}{q}n\right)_{q'}$. Then through $j_{q,q'}$, we can (and do) identify

 G_q with a normal subgroup of $G_{q'}$ of index q'/q.

Proposition 6.1. The group G_q is isomorphic to a semidirect product of G_1 and $\mathbb{Z}/q\mathbb{Z}$.

Proof. It is enough to find a subgroup H_q of G_q such that $H_q \cong \mathbb{Z}/q\mathbb{Z}$ and $G_1 \cap H_q = \{(1, 0)_q\}$. Put $k_q = k\left(\frac{2\pi}{q}, 0, \dots, 0\right)$. (See 4.6 for notation.) Then from Proposition 4.8 we see

- (i) $A(k_2, k_2) = -1$,
- (ii) for $q \ge 3$ and $1 \le l \le q-1$,

$$A(k_q, k_q^l) = \begin{cases} 1 & \text{if } l = q_0 \\ 0 & \text{if } l \neq q_0 \end{cases}$$

Here we put $q_0 = \frac{q}{2} - 1$ for q even, and $q_0 = \frac{q-1}{2}$ for q odd. Now, let H_q be the subgroup of G_q generated by κ_q with $\kappa_q = (k_q, 1)_q$ for q=2 and $\kappa_q = (k_q, -1)_q$ for $q \ge 3$. Then from (i) and (ii) we see that H_q is of order q, and that κ_q^l is of the form $(k_q^l, l')_q$ with $l' \ne 0 \mod q$ for $1 \le l \le q-1$. Therefore H_q satisfies the required conditions, and we have proved the proposition. Q. E. D.

We give here some remarks. If m is odd, then G_2 is isomorphic to the direct product group $G_1 \times \mathbb{Z}/2\mathbb{Z}$. In fact, put $H = \{(1, 0)_2, (-1, m)_2\}$. Then by Corollary 4.9, H is a subgooup of G_2 of order 2. Clearly H is contained in the centre of G_2 . In case m is odd, we have $G_1 \cap H = \{(1, 0)_2\}$, whence $G_2 = G_1 H \cong G_1 \times H$.

In general, the centralizer of G_1 in G_q is the centre of G_q , which is given as $\{(\pm 1, n)_q; n \in \mathbb{Z}\}$. It is easy to see that the centre of G_q contains a nontrivial element of finite order if and only if qm is even. And when qm is even, $(-1, qm/2)_q$ is the only non-trivial element of finite order contained in it. Therefore G_q is expressed as a direct product of G_1 and a subgroup of G_q if and only if m is odd and q=2.

6.2. Normal subgroups of G_q . Here we determine the normal subgroups of G_q .

Proposition 6.2. Let N be a normal subgroup of G_q . Then we have the following two cases: (i) $N=G_l$ for some divisor l of q, or (ii) N is contained in the centre of G_q .

Proof. Put $N_1 = N \cap G_1$. Then N/N_1 is canonically isomorphic to the image of N under the projection of G_q to $G_q/G_1 = \mathbb{Z}/q\mathbb{Z}$. Therefore N/N_1 is a cyclic group. Let l be the order of N/N_1 . Take a $\xi \in G_q$ such that ξN_1 is a generator of N/N_1 . Then we have $N = \bigcup_{i=0}^{l} \xi^i N_i$. On the other hand, since N_1 is a normal subgroup of $G_1 \cong Sp(m, \mathbb{R})^{\sim}$, we have two cases: (i) $N_1 = G_1$, or (ii) N_1 is contained in the centre of G_1 . In case (i), we have $N = G_l$. In fact, since N/N_1 and G_l/G_1 have the same order in the cyclic group G_q/G_1 , they coincide with each other. It follows from this that $N = G_l$, because N and G_l contain $N_1 = G_1$.

Let us consider the case (ii). It suffices to show that ξ is in the centre of G_q . As N is normal, we see $\alpha \xi \alpha^{-1} \in N = \bigcup_{i=0}^{l-1} \xi^i N_1$ for $\alpha \in G_1$. So we can write it as $\alpha \xi \alpha^{-1} = \xi^{i(\alpha)} \nu(\alpha)$ with $i(\alpha) \in \mathbb{Z}$, $0 \leq i(\alpha) < l$ and $\nu(\alpha) \in N_1$. Consider $\beta \alpha \xi \alpha^{-1} \beta^{-1}$ for $\beta \in G_1$. Then we obtain $\xi^{i(\beta\alpha)-i(\beta)i(\alpha)} = \nu(\beta)^{i(\alpha)} \nu(\alpha) \nu(\beta\alpha)^{-1} \in N_1$, so that $i(\beta\alpha) = i(\beta)i(\alpha) \mod l$. Therefore the map $\alpha \mapsto i(\alpha) \mod l$ is a group homomorphism of G_1 to $(\mathbb{Z}/l\mathbb{Z})^{\times}$. On the other hand G_1 is equal to its commutator group. So we see $i(\alpha) \equiv 1 \mod l$ for all $\alpha \in G_1$. From this and $0 \leq i(\alpha) < l$, we find that $i(\alpha) = 1$ for all $\alpha \in G_1$. At the same time we have proved that $\nu(\beta\alpha) = \nu(\beta)\nu(\alpha)$ for $\alpha, \beta \in G_1$. Now, let us write $\nu(\alpha) = (\nu_0(\alpha), n(\alpha))_q$. Since $\nu(\alpha)$ is in the centre of $G_q, \nu_0(\alpha) = \pm 1$. Then we have $\nu_0(\alpha) = 1$ for all $\alpha \in G_1$ by the same reason above. Gathering these, we see $\alpha \xi \alpha^{-1} = \xi \nu(\alpha)$ with $\nu(\alpha) = (1, n(\alpha))_q$. Consider the *l*-th power of this equality. Then noting that ξ^l is in the centre of G_q , we get

 $(1, 0)_q = \nu(\alpha)^l = [(1, ln(\alpha))_q, \text{ whence } n(\alpha) = 0.$ Consequently $\nu(\alpha) = (1, 0)_q$ for all $\alpha \in G_1$. Thus we see that ξ commutes with all elements in G_1 , so that ξ is in the centre of G_q . Q. E. D.

6.3. Representations $U_{q,\delta}$. Now, we consider representations of G_q similarly as in Theorem 5.2.

Theorem 6.3. For $\delta > -1$, there exists an irreducible unitary representation $U_{q,\delta}$ of G_q on the Hilbert space $L^2_{\delta}(P_m)$ such that for $(\sigma, n)_q \in G_q$ with $\sigma \in \Omega$,

$$U_{q,\delta}((\sigma, n)_q) = r_{\delta}(\sigma) e_{\delta}\left(-\frac{4}{q}n - \operatorname{Sgn}(c(\sigma))\right).$$

This is proved quite similarly as Theorem 5.2. Moreover similarly as computations for Proposition 5.4, we can show $U_{q,\delta}((-1, n)_q) = e_{\delta}\left(-\frac{4}{q}n+2m\right)$ and $U_{q,\delta}((1, n)_q) = e_{\delta}\left(-\frac{4}{q}n\right)$, because $(-1, n)_q = (d'(1), n-qm)_q(d'(1), 0)_q$ and $(1, n)_q = (-1, n+qm)_q(-1, 0)_q$. So we have

Proposition 6.4. The hernel of the representation $U_{q,\delta}$ of G_q is given as

$$\operatorname{Ker} \boldsymbol{U}_{q,\delta} = \left\{ (1, n)_q ; (\delta + p) \frac{n}{q} \in \boldsymbol{Z} \right\} \cup \left\{ (-1, n)_q ; (\delta + p) \left(\frac{n}{q} - \frac{m}{2} \right) \in \boldsymbol{Z} \right\}$$

Remark. The representations $U_{q,\delta}$ are compatible with the inclusion $j_{q,q'}$: $G_q \rightarrow G_{q'}$, namely $U_{q,\delta} = U_{q',\delta} \circ j_{q,q'}$.

6.4. In the following, we determine the group generated by the operators $r_{\delta}(\sigma)$, $\sigma \in \Omega$. Note that $r_{\delta}(\sigma) = U_{4,\delta}((\sigma, -\operatorname{Sgn}(c))_4)$ with $c = c(\sigma)$ for $\sigma \in \Omega$. So we determine the subgroup of G_4 generated by the set $\{(\sigma, -\operatorname{Sgn}(c(\sigma)))_4; \sigma \in \Omega\}$.

Proposition 6.5. The subgroup of G_4 generated by the set $\{(\sigma, -\text{Sgn}(c(\sigma)))_4; \sigma \in \Omega\}$ is equal to G_4 if m is odd, and equal to G_2 if m is even.

Proof. Let G be the subgroup of G_4 generated by the set $\{(\sigma, -\text{Sgn}(c(\sigma)))_4; \sigma \in \Omega\}$. Put $u_r = k(\theta_1, \dots, \theta_m)$ (see 4.6) with $\theta_1 = \dots = \theta_r = 2\pi/3$, $\theta_{r+1} = \dots = \theta_m = -2\pi/3$. Then $u_r \in \Omega$ and $\text{Sgn}(c(u_r)) = 2r - m$, whence $(u_r, m - 2r)_4 \in G$. On the other hand, using Proposition 4.8, we get $(u_r, m - 2r)_4^3 = (1, 2r - m)_4$. Therefore G contains $(1, 2r - m)_4$. In case m is odd, taking r with 2r - m = 1, we have $(1, 1)_4 \in G$. This shows that $G \supseteq (1, n)_4$ for $n \in \mathbb{Z}$, so that G contains all elements of the form $(\sigma, n)_4$ with $\sigma \in \Omega$ and $n \in \mathbb{Z}$. Therefore $G = G_4$ for m odd.

In case *m* is even, since $\text{Sgn}(c(\sigma))$ for $\sigma \in \Omega$ is even, we have $G \subset G_2$. On the other hand, putting $r = \frac{m}{2} + 1$, we see $(1, 2)_4 \in G$. So *G* contains all elements of the form $(\sigma, 2n)_4$ with $\sigma \in \Omega$ and $n \in \mathbb{Z}$. Therefore $G = G_2$ for *m* even. Q. E. D.

Let $G_{q,\delta}$ be the image of G_q under the representation $U_{q,\delta}$. Then we have

 $G_{q,\delta} \cong G_q/\text{Ker} U_{q,\delta}$. From Proposition 6.5, we obtain the following.

Proposition 6.6. The group generated by the set of operators $\{r_{\delta}(\sigma); \sigma \in \Omega\}$ on the Hilbert space $L^{2}_{\delta}(P_{m})$ is equal to $G_{4,\delta}$ if m is odd, and equal to $G_{2,\delta}$ if m is even.

§7. Relation to relative holomorphic discrete series representations.

For $\varphi \in L^2_{\delta}(P_m)$, we define the Laplace transform $\check{\varphi}$ of φ as

$$\check{\varphi}(z) = \int_{P_m} \varphi(x) \operatorname{etr}(\sqrt{-1} xz) (\det x)^{\delta} dx$$
.

This integral converges absolutely for every $z \in \mathfrak{F}_m$, so that $\check{\varphi}$ is a holomorphic function on \mathfrak{F}_m . We denote by \mathscr{H}_{δ} the image of $L^2_{\delta}(P_m)$ under the Laplace transformation. By the isomorphism $\check{}: L^2_{\delta}(P_m) \to \mathscr{H}_{\delta}$, we transfer the operators $d_{\delta}(a)$, $t_{\delta}(b)$, $d'_{\delta}(c)$, and $r_{\delta}(\sigma)$ from $L^2_{\delta}(P_m)$ to \mathscr{H}_{δ} , which we denote by $\check{d}_{\delta}(a)$, $\check{t}_{\delta}(b)$, $d'_{\delta}(c)$, and $\check{r}_{\delta}(\sigma)$ respectively.

It is easy to see that

$$\begin{split} \check{\boldsymbol{d}}_{\delta}(a)\check{\varphi}(z) &= |\det a|^{-\delta - p}\check{\varphi}(a^{-1}z^{t}a^{-1}), \\ \check{\boldsymbol{t}}_{\delta}(b)\check{\varphi}(z) &= \check{\varphi}(z+b). \end{split}$$

From the formula (2.3), we see

$$\check{\boldsymbol{d}}_{\delta}'(1)\varphi(z) = \left(\det\frac{z}{\sqrt{-1}}\right)^{-\delta-p} \check{\varphi}(-z^{-1}).$$

So we have

$$\check{\boldsymbol{d}}_{\delta}'(c)\check{\varphi}(z) = |\det c|^{-\delta-p} \left(\det \frac{z}{\sqrt{-1}}\right)^{-\delta-p} \check{\varphi}(-c^{-1}z^{-1}c^{-1}),$$

because $d'_{\delta}(c) = d_{\delta}(c^{-1}) \tilde{d}'_{\delta}(1)$.

Let us consider an anti-automorphism of $Sp(m, \mathbf{R})$ defind by $\sigma \mapsto \sigma = l^t \sigma l$, where $I = \begin{pmatrix} 0_m & 1_m \\ 1_m & 0_m \end{pmatrix}$. We see $\sigma = \begin{pmatrix} t d & t b \\ t_c & t_a \end{pmatrix}$ for $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Note also that $\sigma = J_1 \sigma^{-1} J_1$, where $J_1 = \begin{pmatrix} 1_m & 0_m \\ 0_m & -1_m \end{pmatrix}$. Then we have for $\sigma \in \Omega$,

$$\dot{r}_{\delta}(\sigma)\check{\varphi}(z)\boldsymbol{e}_{\delta}(-\mathrm{Sgn}(c(\sigma)))=j(\circ\sigma, z)^{-\delta-p}\check{\varphi}(\circ\sigma, z).$$

Here $j({}^{\circ}\sigma, z)^{-\delta-p} = |j({}^{\circ}\sigma, z)|^{-\delta-p} \exp(-\sqrt{-1}(\delta+p)AJ({}^{\circ}\sigma, z))$. It turns out from this that our representation U_{δ} of $G_1 = Sp(m, R)^{\sim}$ in Theorem 5.2 is essentially identical with that constructed in the paper of Yamada [15, Th. 3.5], in which $Sp(m, R)^{\sim}$ is treated in more abstract manner than the present paper (see the proof of Proposition 4.2).

We note here that the formula (2.3) is a key in deducing the properties of the Bessel function A_{δ} . So we implicitly used the realization of the representation on the space \mathcal{H}_{δ} . If we work on \mathcal{H}_{δ} not on $L^2_{\delta}(P_m)$, the proof of Theorem 3.2 is reduced to a computation on $j({}^{\circ}\sigma, z)^{-\delta-p}$, which follows from Proposition 4.4.

Appendix. On commutant of a certain set of operators on $L^2(X)$.

Let (X, \mathfrak{B}, μ) be a measure space, and put $\mathfrak{B}_0 = \{B \in \mathfrak{B}; \mu(B) < \infty\}$. In this Appendix, we assume that the measure space is localizable. Here (X, \mathfrak{B}, μ) is said to be localizable if it satisfies the following. Let $\{\varphi_A; A \in \mathfrak{B}_0\}$ be a family of functions such that φ_A is a measurable function on A and that $\varphi_A(x) = \varphi_B(x)$ holds for almost all $x \in A \cap B$, then there exists a locally measurable function φ on X such that for every $A \in \mathfrak{B}_0$, $\varphi(x) = \varphi_A(x)$ holds for almost all $x \in A$. Note that any σ -finite measure space is localizable.

We denote by $L^{\infty}(X)$ the set of all locally measurable functions f on X such that ess. $\sup |f(x)|$ is bounded for $A \in \mathfrak{B}_0$. For $f \in L^{\infty}(X)$, we denote by M_f the multiplication operator on $L^2(X)$ defined by $M_f \varphi = f \varphi$ ($\varphi \in L^2(X)$).

Theorem. Let \mathcal{A} be a linear subspace of $L^{\infty}(X)$ satisfying the following condition:

(C) every $f \in L^{\infty}(X)$ can be approximated on any $B \in \mathfrak{B}_0$ by elements in \mathcal{A} in the sense of convergence in measure.

If a bounded linear operator T on $L^{\mathfrak{g}}(X)$ commutes with M_{φ} for all $\varphi \in \mathcal{A}$, then T is a multiplication operator.

Proof. We devide the proof into the following two steps.

(1°) If T commutes with M_{φ} for all $\varphi \in \mathcal{A}$, then T commutes with M_f for all $f \in L^{\infty}(X)$.

(2°) If T commutes with M_f for all $f \in L^{\infty}(X)$, then T is of the form M_h for some $h \in L^{\infty}(X)$.

The step (2°) is a well-known fact that $\{M_f; f \in L^{\infty}(X)\}$ is a maximal abelian subalgebra in the algebra of all bounded linear operators on $L^2(X)$. So we prove here the step (1°) only.

Let us prove (1°) by contradiction. Suppose there exist an $f \in L^{\infty}(X)$ and a $\psi \in L^{2}(X)$ such that $\alpha = \|(TM_{f} - M_{f}T)\psi\|_{L^{2}(X)}$ is positive. Let ε be a positive number. Then there exists a $B \in \mathfrak{B}_{0}$ such that

$$\|(TM_f - M_f T)\psi\|_{L^2(B)} \ge \alpha - \varepsilon, \quad \|\psi\|_{L^2(B^c)} \le \varepsilon, \quad \text{and} \quad \|T\psi\|_{L^2(B^c)} \le \varepsilon.$$

Here B^c denotes the complement of B in X. On the other hand, by the absolute continuity of indefinite integral, there exists a $\delta > 0$ such that $\|(TM_f - M_f T)\psi\|_{L^2(e)} \leq \varepsilon$, $\|\psi\|_{L^2(e)} \leq \varepsilon$, and $\|T\psi\|_{L^2(e)} \leq \varepsilon$ hold for arbitrary $e \in \mathfrak{B}_0$ with $\mu(e) \leq \delta$. We fix these B and δ . By the condition (C) on \mathcal{A} , there exist $\varphi \in \mathcal{A}$ and $e \subset B$ such that $\sup_{x \in B \setminus e} |f(x) - \varphi(x)| \leq \varepsilon$ and $\mu(e) \leq \delta$. Put $B_1 = B \setminus e$. Let χ_1 be the characteristic function of B_1 . We put $\psi_1 = \psi \chi_1$ and $\psi_2 = \psi - \psi_1$. Then we have $\|\psi_2\|_{L^2(\mathcal{X})} \leq 2\varepsilon$. Hence on one hand,

$$\|(TM_f - M_f T)\psi\|_{L^2(B_1)} \ge \|(TM_f - M_f T)\psi\|_{L^2(B)} - \|(TM_f - M_f T)\psi\|_{L^2(e)}$$

$$\ge \alpha - 2\varepsilon .$$

On the other hand, since $TM_{\varphi} = M_{\varphi}T$, we see $TM_f - M_fT = TM_{f-\varphi} - M_{f-\varphi}T$. Therefere we have

$$\begin{split} \|(TM_{f}-M_{f}T)\psi\|_{L^{2}(B_{1})} &\leq \|(TM_{f}-M_{f}T)\psi_{1}\|_{L^{2}(B_{1})} + \|(TM_{f}-M_{f}T)\psi_{2}\|_{L^{2}(B_{1})} \\ &\leq \|(TM_{f-\varphi}-M_{f-\varphi}T)\psi_{1}\|_{L^{2}(B_{1})} + 2\varepsilon\|TM_{f}-M_{f}T\| \\ &\leq \|TM_{f-\varphi}\psi_{1}\|_{L^{2}(B_{1})} + \|M_{f-\varphi}T\psi_{1}\|_{L^{2}(B_{1})} \\ &+ 2\varepsilon\|TM_{f}-M_{f}T\|. \end{split}$$

Note that $||M_{f-\varphi}\psi_1||_{L^2(X)} \leq \varepsilon ||\psi_1||_{L^2(X)} \leq \varepsilon ||\psi||_{L^2(X)}$, because ψ_1 is zero outside B_1 . Note also $||M_{f-\varphi}T\psi_1||_{L^2(B_1)} \leq \varepsilon ||T\psi_1||_{L^2(B_1)} \leq \varepsilon ||T|| ||\psi||_{L^2(X)}$. Consequently we get

 $\|(TM_f - M_f T)\phi\|_{L^2(B_f)} \leq 2\varepsilon(\|T\|\|\psi\|_{L^2(X)} + \|TM_f - M_f T\|).$

Since $\varepsilon > 0$ can be chosen small enough, this gives a contradiction. Q.E.D.

Corollary. Let \mathcal{A} be a linear subspace of $L^{\infty}(X)$ satisfying the condition (C). Let \mathfrak{A} be the algebra generated by \mathcal{A} and the complex conjugate of \mathcal{A} . Then \mathfrak{A} is dense in $L^{\infty}(X)$ with respect to the weak* topology.

Proof. Recall the theorem of Fuglede: if N and T are bounded operators on a Hilbert space and N is normal, then TN=NT implies $TN^*=N^*T$ (see e.g. Strătilă-Zsidó [11, 2.31]). From this and $M_{\varphi}^*=M_{\bar{\varphi}}$, we see that a bounded operator T on $L^2(X)$ commutes with M_{φ} for all $\varphi \in \mathfrak{A}$ if T so does with M_{φ} for all $\varphi \in \mathcal{A}$. Then Corollary follows from von Neumann's double commutant theorem.

Q. E. D.

Remark. In the condition (C), the family \mathfrak{B}_0 can be replaced by a subfamily \mathcal{K} of \mathfrak{B}_0 satisfying the following (*).

(*) For any $B \in \mathfrak{B}_0$, there exist a countably many $K_n \in \mathcal{K}$ and a locally null set N such that $B \subset N \cup (\bigcup K_n)$.

For example, in the case where μ is a Radon measure on a topological space X, the family \mathcal{K} of all compact subsets of X satisfies (*).

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

References

- [1] T. Asai, The reciprocity of Dedekind sums and the factor set for the universal covering group of SL(2, R), Nagoya Math. J., 37 (1970), 67-80.
- [2] S.S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Lecture Notes in Math., 530, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- [3] K.I. Gross and R.A. Kunze, Bessel functions and representation theory I, J. Functional Analysis, 22 (1976), 73-195, II, ibid., 25 (1977), 1-49.
- [4] M. Hashizume, Local zeta functions attached to certain holomorphic discrete series representations of the real symplectic group, preprint.

- [5] C.S. Herz, Bessel functions of matrix argument, Ann. of Math., 61 (1955), 474-523.
- [6] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Inventiones Math., 44 (1978), 1-47.
- [7] T. Kubota, A generalized Weil type representation and a function analogous to e^{-x²}, Bull. Amer. Math. Soc., 81 (1975), 902-903.
- [8] T. Kubota, On an analogy to the Poisson summation formula for generalized Fourier transformation, J. reine angew. Math., 268/269 (1976), 180-189.
- [9] T. Kubota, On a generalized Weil type representation, in "Algebraic Number Theory," Int. Symp., Kyoto, 1976, pp. 117-128.
- [10] T. Kubota, On a generalized Fourier transformation, J. Fac. Sci. Univ. Tokyo, 24 (1977), 1-10.
- [11] S. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, 1979.
- [12] T. Suzuki, Weil type representations and automorphic forms, Nagoya Math, J., 77 (1980), 145-166.
- [13] G.N. Watson, Theory of Bessel functions, Cambridge, 1922.
- [14] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111 (1964), 143-211.
- [15] H. Yamada, Relative invariants of prehomogeneous vector spaces and a realization of certain unitary representations I, Hiroshima Math. J., 11 (1981), 97-109.
- [16] T. Yamazaki, On a generalization of the Fourier transformation, J. Fac. Sci. Univ. Tokyo, 25 (1978), 237-252.