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§1. Introduction

Let Eg be the compact, connected, simply connected, simple Lie group of type
E;. Asis well known that Ejg is a closed 248 dimensional manifold which is rational
homotopy equivalent to

S3x S15x §23 x §27 x §35x §39 x §47 x §59,

The mod 2 cohomology ring of Eg was determined by Araki and Shikata as follows:
Theorem (Araki-Shikata [1]). As an algebra over the mod 2 Steenrod algebra

H*(Eg: Fy)=F,[x3, X5, Xo, X15]/(x}3%, x§, x§, x{5)
®A(Xy7, X235 X275 X29),

where deg x;=1i, x5=Sq%x5, Xq=5¢*xs, X;7=Sq%%q, X;3=8¢%x,s5, X37=85¢*x,;
and XZ9=Sq2x27.

They made elaborated calculations of the Bott Samelson K-cycles and so details
of the proof is not published. The purpose of this paper is to give a simple proof of
the above theorem.

First we determine H*(E‘B; F,) for *<31, where Es is the 3-connective fibre
space of Egz. Next we prove that dim H*(Eg; F,)>2'5. Finally using the

~ k
cohomology Serre spectral sequence for the fibering Eg— Eg— K(Z, 3), H¥*(Eg; F,)
is determined. To prove the above theorem, we use the following well known
facts:

Theore 1.1 (Bott [5]). If G is a compact, connected, simply connected Lie
group, then H(QG ; Z) is torsion free.

Theorem 1.2 (Borel-Siebenthal [4]). The group Eg contains a closed, con-
nected subgroup U of local type Ag.

Theorem 1.3 (Cartan [7]). The group Eg contains a closed, connected sub-
group V of local type Dg satisfying
(1) the center of V is of order 2,
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(2) Eg/V is the irreducible symmetric space EVIII.

§2. 3-connective fibre space of E;

From now on the mod 2 cohomology and homology are simply denoted by
H*( yand Hy( ). Foragraded module A=Y A4;over F,,P.S. (4)= 2 (dim Aptie
Z[[t]] and for a graded algebra A over F,, A=A4(x,, X,,..., X,) melazr?s {xgre-xtn:
g=0 or 1} is a basis of the vector space A. If A=A(x,,..., x,), then {x,,..., x,} is
called a simple system of generators of A. If G is a compact, connected Lie group,
then H*(G) has a simple system of generators.

First recall the following fact: Since the universal covering of U is SU(9) and
the center of SU(9) is of order 9, H¥(U) is isomorphic to H*(SU(9)) as an algebra
over the mod 2 Steenrod algebra.

Lemma 2.1. [fi: U—>Eg is the inclusion, then the induced map i*: H¥Eg)—
H3(U) is an isomorphism.

Proof. Since U is a closed connected subgroup of maximal rank and H*(U ; Z)
is 2-torsion free, H*(Eg/U: Z) is 2-torsion free and H*(Ez/U)=0 for 0<*<5
(cf. 13 of [3]). Since Eg/U is 1-connected, Lemma 2.1 follows from the Serre exact
sequence for the fibering U— Eg— Eg/U.

Lemma 2.2 [ft, is a generator of H¥(QEg)=Z/2, then t§#0.

Proof. By Lemma 2.1, t'=(Qi)*(t,) is a generator of H3((QU),), where (QU),
is the connected component of QU containing the constant loop. Moreover
H*((QU),) is isomorphic to H¥*(QSU(9)). Denote a generator of H2(QSU(9)) by t.
Then we need only show t8#0. Consider the fibering

QSU(9) — QSU(w0) — Q(SU(0)/SU(9)),

where SU(o0)=Colim SU(n). The algebra H*(QSU(c0)) is a polynomial algebra

by the Bott periodigity theorem (cf. [6]) and the space SU(0)/SU(9) is 18-connected.
Therefore t8#0.

As is proved in [5], Eg is 2-connected and ny(Eg)=Z. These are easy con-
sequences of Theorem 1.1. Letj: BEg—K(Z, 4) be a map representing a generator
of HBEg; Z)=Z. Then Qj and Q?j are generator of H3(Eg; Z) and H¥QEg; Z)
respectively. There are fiberings

(2.3) BEy — BE, — K(Z. 4)

(2.4 Ey %, Ey . K(Z3)

(2.5) QE; — QEy — K(Z. 2)~CP*
(2.6) K(Z, 1)~S' — QF; —> QE;,

where BE; is the homotopy fibre of j. Note that (2.4) (resp. (2.5)) is a loop (resp
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a double loop) of (2.3) and so Eg is the 3-connective fibre space of Eg and Qﬁs is
the 2-connective fibre space of QF;.

Lemma 2.7 P.S.(HXQEg)=(1+1"*+128)(1+122)(1 +12¢) mod (13").

Proof. Since H*(QE,) is a Hopf algebra, 1§50 implies t}5#0. Moreover there
exists a graded algebra A over F, such that as an algebra

H*(QEg)=F,[1,1®A4

for *<31. Consider the cohomology Serre spectral sequence for the fibering (2.6).

Then we can easily get H *(QI::S)=A for *<30. On the other hand by Theorem 1.1
P.S. (A)=(14+1"%+128)(14+122)(1 +12°) mod (#3') and so the lemma is proved.

(2.8) s2,=0,
(2.9) s?,50.
Lemma 2.10. (1) If s2,%#0, then as an algebra
H*(EB)’:A(alS’ azs, az7)

for x<31, where deg a;=i.
(2) If s3,=0, then as an algebra over the mod 2 Steenrod algebra,

H*(fs)= Fyla,51®4(a,;, a5, a3)
for <31, where dega;=i, a,3=Sq%a,s, a;,=Sq*a,; and a,o=Sq%a,,.
Proof. (1) 1f 53,50, then as an algebra
HX(QE5)=F,[5,1® (522, 536)

for *<30, where degs;=i. Consider the Rothenberg-Steenrod spectral sequence

(cf. [12])
E; =Extyu ok, (Fy. Fy) = E,, =Gr(H*(Ey)).
The E,-term is isomorphic to
Aldys, d3, diq)

for deg <31, where deg a;=i. This spectral sequence clearly collapses for deg <31
by the dimensional reasons. Thus (1) is proved.
(2) If s%2,=0, then as an algebra

H*(QE})=A(514’ $22+ S26+ S28)

for *< 30, where degs;=i. Thus the E,-term of the Rothenberg-Steenrod spectral
sequence is isomorphic to

Fyla)5s1®4(a3s, abq, as)
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as an algebra for deg <31, where dega;=i. Since a}s and a), are elements of
E}1-*, this spectral sequence also collapses for deg <31 by the dimensional reasons.
Therefore as an algebra

H*(Eg)= Fy[a,51®4(az3, a;7. a3)
for *x< 31, where dega;=i. Note that
Sq'Sq*Sq*Sq®a,s=Sq'%a,s=ais#0

by the Adem relations and so a,;=Sq%a,s, a,,=Sqg*a,; and a,,=Sq%a,,.

§3. Proof of Theorem

The following is easily proved:

Lemma 3.1. If G is a compact, connected Lie group and {x,,...,x,} is a
sample system of generators of H*(G), then

(n dim G= il deg x;,

(2) P.S.(H¥G))= Ii’]l (1 + deg xi)
and

(3) dim H¥(G)=2".

Now recall the following fact, which is a special case of Theorem 4.3 of [8]:

Lemma 3.2. Let X be a compact Z|2-space and X?#/% be the fixed point set.
Then dim H*(X)>dim H*(X?%/2).

By Theorem 1.3, Eg has an involution t such that Eg, the fixed point set of T,
is V. Since the local type of ¥V is Dg and the centor of V is of order 2, V is isomor-
phic to §0O(16) or Ss(16). Moreover H*(SO(16)) is isomorphic to H*(Ss(16))
as an algebra and so dim H*(V)=2'5 (cf. [2]). Then using Lemma 3.2 we have
the following:

Lemma 3.3. dim H*(Eg)>2'3
Lemma 3.4. [fs?,+#0, then dim H¥(Eg)<2'4.

Proof. Consider thc cohomology Serrc spectral sequence for the fibering
(2.4). Since as an algebra

H*(K(Z, 3))= F;[u;. us, ug, uy7]

for <32, where deg u;=1i, us=Sq%u3, us=Sq*us and u,;=Sq8u, (cf. Serre [14]).
the E,-term is isomorphic to

Fylus, us, uqg, uy7]®A(a,s, a3, dz7)
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as an algebra for deg <31. Since this spectral sequence is a Hopf algrbra spectral
sequence, 1®a,s and 1®a,, are permanent cycles and a,; is transgressive with
7(a,3)=au$ for some ae F,. Thus the E,-term is isomorphic to E, if a=0 or
E,[(a,;, u8) if a=1for deg <31. There is an element x; € H(Eg) such that k*(x;)=
a; for i=15, 23, and 27 if =0 or i=15and 27 if a=1. Put x3=(Qj)*(u;), I, =
{3, 6, 12, 5, 10, 20, 9, 18, 17, 15, 27} and I,=1,U {23, 24]. Then as an algebra
H*(E,) is isomorphic to 4(x;; iel,) for <31, where x,,=(x;)** and a=0 or I.
Note that 248 —( 2 i)=59 and 248—( Z i)=106. Since the degrees of the

ielo
other elements of the simple system are greater than 31, there is only one other
element if a=0 or there are at most three other elements if ¢ =1 in the simple system

by (1) of Lemma 3.1. Therefore dim H*(Eg)<2'4.

Proof of Theorem. By Lemma 3.3 and Lemma 3.4, s3,=0. Using Lemma
2.10, we can easily show that the cohomology Serre spectral sequence collapses for
deg <31, since it is a Hopf algebra spectral sequence. Thus there is an element
x;s such that k*(x;s)=a,s. Put x;=(Qj)*(u;), xs=Sg%x3, Xo=8g*x;, x,;=
Sq8xg, X23=Sq%x;s5, X27=5q*X3, X29=8¢%x27, X" =(X)2x; and [, =1, U {29, 30}.
Then

H*(Eg)=A(x;; i€ l,)

for *<31. Moreover since ( }: i)=248, {x;; i€ l,} is a simple system of generators

by (1) of Lemma 3.1. Usmg the fact that H*(Eg) is a Hopf algebra, we have the
relations

16— 38—y — 12— b 2 x2 — 2 —
x}e=x8=x5=x{;=xts=x33=x3;=x3,=0

by the dimensional reasons.
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