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§0. Introduction.

Let R" be the n-dimensional euclidean space (n=2), and set H=H"
={xeR"; x, >0}, then H becomes the n-dimensional hyperbolic space
with respect to the hyperbolic metric p(x) |dx|, where po(x)=x;’. And
let I' be a group of isometries of H, which acts discontinuously on H.
L. V. Ahlfors showed, in his lecture note [5], the weak finiteness theorem :
if I' is finitely generated, then the dimension of a certain class Q(I") of
mixed tensor densities, automorphic under I, is finite, which is an extension
to higher dimensions of analytic parts of his famous finiteness theorem
[1].

Our main aim is to introduce another certain class Q(I") containing
Q(I"), for which the dimension of Q(I') is still finite (Corollary 3). In
order to investigate Q(I"), we shall study a class P(I") of quasiconformal
deformations and derive properties of Q(I") from those of P(I") (Theorems
5 and 6, and Corollary 4).

In §1 we shall define some notations and state Ahlfors’ weak finiteness
theorem. In §2 we shall study quasiconformal deformations, and derive
some new facts (Theorems 3 and 4). In §3 we shall state our main
results, which will be proven in §5, after providing some lemmas in §4.
And in the last §6 we shall state some remarks for the case n=3, particu-
larly that our class Q(I") turns out to be 0-dimensional.

The author wishes to express his deepest gratitude to Professor Y.
Kusunoki for his encouragement and valuable comments, and for bringing
this problem to author’s attention. And the author also thanks to Drs.
M. Taniguchi and H. Shiga, and Mr. M. Masumoto for their advices and
comments during the preparation of this paper.

§1. Notations and Ahlfors’ weak finiteness theorem.

By column vectors we denote the points in R", and by *X the transpose
of a matrix X.
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Let f be an R"-valued smooth function defined on an open subset U
of R", then we define a linear operator §=S, by

(1.1) Suf =4 (Df+(DN)) = - (DI,

where Df is the Jacobian matrix of f, and I, is the unit matrix. We
remark that S,f corresponds to f, (cf. Lemma 6). For any smooth func-
tions ¢ with compact support, each entry v;=(S,f);; of S,f satisfies the
following equality

(1.2) Suvij¢dx= -{ s raprnos -1

n

5;1 kéfkah¢dxs

where by 0, we mean _687’ and 0;; is the Kronecker’s delta.
k

For a matrix X=(x;), we define a norm || || by

(1.3) X =Vtr ( XX) =V 3, «%.
i
It satisfies
(1.4) [|XY|I=||X]| - |Y]l, and [|[X+Y]|<[|X]||+]Y]].

A continuous function f: R*—>R" is called a quasiconformal (q. c.)
deformation of R" if there exists S,f in the distributional sense and [|S, f]|
€L>(R"), that is, if there exist n* elements v;(1=i, j<n) of L~(R",
which satisfy (1.2) for any smooth functions ¢ with compact support.
We remark that the above definition of q. c. deformations is slightly
different from Ahlfors’ original one, but from Theorem 1 and Lemma 2
of Chapter VIII in [5], it can be seen that two definitions are equivalent.

By SM" we denote the set of nXn matrices X such that ‘X=X and
trX=0. Let ¢=(¢;) be an SM"-valued smooth function on an open
subset of R", then we define another linear operator S* =S8} by

(1.5) (S¥e); 2; 005

We remark that Sf¢ corresponds to the complex derivative ¢, of ¢.

Let ., be the group of all Mébius transformations of R*=R"U {oo}
(the one-point compactification of R"). .#, is generated by reflections
with respect to (z—1)-dimensional planes and spheres in R". For re.#,,
its Jacobian matrix 7'(x) (for the elements of .#, we use the notation
7' (x) instead of Dy(x)) can be written with £>>0 and VE0() as

(1.6) 7 (x) =kV,

where k and ¥V may depend on x. We denote this positive number £ by
[7(x)|. Then we get

(1.7) T () = |7 (%) A
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By #,(H) we mean the subgroup of the elements of .#,, which leave
H*" fixed. Then it is known that the hyperbolic metric p(x) |dx|, where
o(x) =x;', is A,(H)-invariant, that is,

(1.8) olrx) |7 (x) | =p(x) for any re,(H).
In particular,
(1.9) |7 (e,) | =te,r(e,) for any ye,(H),

where ‘¢,=(0,...,0,1). We identify, in this paper, R*' with {xER";
x,=0}, then for n=3 it is known that each element of .#, , is uniquely
and canonically extensible to an element of .#,(H), and conversely the
restriction to R*! of each element of .#,(H) becomes an element of .#,_,.
Hence we identify #,_, with #,(H), and use the same letters for their
elements.

Let I' be a subgroup of #,(H), which acts discontinuously on H™.
From now on we assume that I' has this property. By A=A4(") and
Q=02(I') we mean, as usual, the limit set and the set of discontinuity of
I in R respectively. It is known that A is the set of the accumulation
points of I'e,= {y(e,); r€I'} in R", 2=R"—/A is open, andfif 2NR"'+ g
then 2N R* ! is dense in R* .

For ye#, and for an R"-valued function f on an open subset U of
R, we define an R"-valued function f, on y7*(U) N R" by

(1.10) f,=G)Yor.

Definition 1. A continuous function f: R"—— R" is called a gq. c.
deformation of R™ if f is a q. c. deformation of R" and if f, is continuously
extensible to y7!(o0) for some yE.#, such that y(o0) 0o,

Let Q(I) be the set of the SM"valued smooth functions ¢ on H",
which satisfy the next conditions (i)~(iv).

(1) Sre=0 on H"
and by means of some q. c. deformation f of R"* such that ‘e, f=0 on
R™, ¢ can be written as

o=p"S,f on H"
(ii) For any y&I' and all x€H"

(1.1D) [7" () 177" (%) T (re) 7' (%) = (x).
(iii) sup,_ 0" (¥)|lp(x)[|< oo, and
(1.12) [ Jle@lds<oo.
H"/I

(iv) If 2nR* '+ ¢, then ¢ has a smooth extension to 2N R*! and
this extension satisfies
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Qle)p=¢Q(e,)  on 2NR™,
where Q(x) =x'x/|x|%
Remarks. 1) From (1.3), (1.7) and (1.11) we get
o)1= 17" () I'lle(x)|l for any y&T,

that is, |lp(x)||/dx is I'-invariant. Hence the integral of (1.12) can be
taken over any fundamental set.

2) ¢ is said to have a smooth extension to x=oo if for r&.#,(H)
such that y(o0) 0o, [y (x) |7 (x)'¢(rx)7’(x) has a smooth extension to
a neighbourhood of x=77!(0).

3) For n=2, Q(I') is the vector space of anti-analytic functions ¢ on
the upper half-plane such that ¢ are bounded and integrable automorphic
forms of weight (—4) under I', and have the symmetric extension across
2NR.

In [5] Ahlfors showed the following theorem.

Theorem 1. (the weak finiteness theorem) If I' is finitely generated, then
the dimension of Q(I') is finite.

In this paper, instead of Q(I'), we are interested in a certain class
Q(I'), which contain Q(I") and is finitely dimensional for finitely generated
I’ Theorem 1 will be obtained as a consequence of our consideration

of Q(I).

§2. Q. c. deformations and harmonic functions.

The operators S, and S} defined in the previous section have the
following properties.

Lemma 1. For an R™-valued smooth function f and an SM"-valued smooth
Sunction ¢, and for ye M,
2.1 S =0)HESerr,
2.2) SH{Ir "G Heen 't = 1 "G (S o,
and, in particular, for ye #,(H)
(2.3)  SHeS. (DY =1 1"2G) ST (S Y ey

(2.1) and (2.2) are shown in [3] (Lemma 1) and [5] ((2.1) is
Lemma 4 of Chapter VIII, and (2.2) is shown in pp. 127~129.). (2.3)
is a consequence of (2.1), (2.2) and (1.8). We remark that the above
relations hold in the distributional sense.

Proposition 1. Every q. c. deformation f on R* has the following proper-
ties.
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(1) For any yE M, such that (o) #00, f, is continuously extensible to
771 (c0).

(ii)  |f ) /A +|x]?) is bounded on R

(i) For any yrEM,, f, is a q. c. deformation of R

Progf. From Definition 1 there exists some ¢&.#,, o(0) 00, such
that f, is continuously extensible to ¢7'(). Set ¢7'y=7, then we get
fr=@)"Y,om. The right hand side of this equlity is continuously exten-
sible to y71(o0) =%7l¢7(o0). Hence (i) is concluded.

Let J be the inversion with respect to the unit sphere, then we find
that J(x) =x/|x|> and |J'(x) |=|x|"2 Since f; is bounded on {|x|<1}
from (i), and |f;(Jx) |=|f(x) |/|x|% we see that |f(x)|/|x|* is bounded
on {|x|>1}. This implies (ii).

In order to prove (iii), it is enough to show the following equalities:
for any smooth functions ¢ with compact support

2.4 | L2 (8D on 1 1gdx

=, 5 e +(09)

n

85 3 () e,
k=1

Set o= {%(Ef,-+E,-,~) —% 6,,1,,} ¢, where E; is the n Xn matrix with entries
E; u=0,0; Then (2.4) can be rewritten as
2.5) ot isnenreras=={_(seedx.

We assume first that suppe®»7~'(c0), This means that [7'|*(3") ~(@e
77 is an SM"-valued smooth function with compact support, where
n=7"'. Then

WG ORI (LRIt

LG o) THSES) (om) (o) 1 19" ["dx
LSO 19717 (0") T (pon) 7' 1dx

== {5t U 1o (on ) d
(i 115ty end

=~ e 1 stords=={ s 500,

)
!

I

Next we consider the general case. We may assume without loss of
generality that 7y7'(c0) =0. Let 2 be a smooth function such that 0=2=1
on R", 2=1 on {|x|=1}, and suppi={|x|=2}. For >0, set A4(x)=
A(x/9), then we have |grad 2;|=< const.0~%, Since (2.5) holds for
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(I =2 ¢, 6>>0,
el (P e rolds+(1,5vpd]
=1, LG (S en ) s+ 11,5% Gup)de|
<{_ 116D orll Tigliads

+{ 110180 i+l Igrad 4]y dx

=< const. 0"+const. 6",

By letting 60 we see that (2.5) holds for any smooth ¢ with compact
support, q.e. d.

An R*-valued smooth function f on H" is said to be harmonic if
S¥(p"S,.f) =0 on H"

Theorem 2. Let f be an R"™valued continuous function on H"U R".
Suppose that f is harmonic, |f|/(1+ |x|%) is bounded on H" and ‘e, f=0 on
R, Then we have

(2.6) cnf (%) =2"_ISM_1 {IL;? 3?551}@(” d,

where ¢, = —zinn—_Da),, (w,=2a""(n/2) is the (n—1)-dimensional measure of

the (n—1)-dimensional unit sphere.)

The above theorem is shown in Theorem 3 of [3], implicitly. It is
assumed there that f is bounded, but if f; is bounded for T (x) =e¢,+
2(x* —e,)*, where x*=]J(x) =x/|x|% then the proof in [3] is applicable.
It is easily seen that the boundedness of |[f|/(1+ |x|?) implies that of
fr. Hence (2.6) holds.

Let & be an R"!-valued continuous function on R*! such that
[h]/(14 |x]?) is bounded on R*! From Theorem 2 it can be seen that
there exists a harmonic function f on H" such that flnn_1=h, and |f|/
(14 |x|?) is bounded on H", and that such a harmonic function f is
unique. We call such f the canonical harmonic extension of h, and denote
it by Hh.

Corollary 1. Under the same assumption as in Theorem 2,
lim f(x+te,) =f(x) for x€ R,
t=0
and this convergence is uniform on any compact subsets of R

This corollary is shown by the same argument as in the case of the
Poisson integral for the upper half-plane.

Lemma 2. Let U be an open subset of R". For a smooth function f: U
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——R" we define the smooth function h:UN R"™——R' by h=,_, 0)f]

vnr* 1
1 0 O

where (I, 0) is the (n—1) Xn matrix of the form | -« ¢ | Then the
0 1 0

relation between S,f and S,_.h is

—al,_
2.7) Snf:( Sﬂ_lhta o l(n_al)a)a

1

n—1

where a=%{8,kf,,— (trD/z)}, and a is the (n—1)-dimensional vector

with components aj:%(ajf,,+ 0,f,). In particular,

(2.8) 1S, skl =V 2 1ISAAl.

Proof. (2.7) is seen from the definition (1.1) of §,f and §,_,A, and
by simple calculation. And (2.8) is shown from the next estimate.

ISAIP= ([|Sh —al, |l +[lal,]])?
=2(|ISh —al | +lal,|[*)
=2{|ISh —al,_,|*+ (n—1)a?}
<2{||Sh—al,_,|?+2|a [+ (n —1)%a?
=2[|A1P

Lemma 3. Let U be an open subset of R" and f: U——R'. If there
exists a sequence of smooth functions f®: U——R" such that f® converges to
f uniformly on every compact subset of U, and for any k

(2.9) [1S.f®ll= Moo on U,
then there exists S,f on U and we have
(2.10) 1S flISnM on U.

Proof. Let C7(U) be the set of smooth functions with compact support
in U. (We regard Cy(U) as a linear subspace of L!(U).) For any ¢&
Cy(U) we have

(2.11) SU(Sf(k’),.jgbdx

=—{ S U+ 1000} — L0, % f00,dx.
Define linear functionals /,; on Cy(U) by
©.12) 7 01 (#) :SU(Sf(”’),-,-gbdx for $C3 (V).

Then from (2.11) there exist linear functionals /,;; on Cy(U) such that
/(@) =lim 7,,;(¢). From (2.9) and (2.12) we see that /,; are
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bounded, in fact, 17 llccan=M. By the Hahn-Banach theorem, there
exist linear functionals /; on L'(U) such that ||Z;ll;1e, =7 jjllcew, and
Z£i;(9) =7 ;(¢) for ¢&C5(U). Corresponding to /;, there exist elements

y;; of L=(U)=L'(U)* such that ||y;ll. =17;||;1ey and /',-,-(g)=S v;; gdx
U
for geL'(U). By letting k—oo, for any ¢=Cy(U) we get

_ (1 1
[ utde=—{ 10,6+ 500) —0; T fuduis.

Hence, from the definition of §f, we see Sf=(v;). And from |y;|l.=M,
it is seen that ||Sf]|<nM on U.

Lemma 4. Let f be a q. c. deformation of R". Then there exists a
sequence of smooth q. c. deformations f® of R" such that f®—f uniformly on
any compact subsets of R", and

[1S,/®||=< ess sup ||S.fll  for every k.
Rn

Proof. Let 8, be a smooth positive function with support in {x&ER";
|x |<e} such thatS 0.(x)dx=1. And set
Rll

Se(x) =SRn5e(y —x)f(P)dy.
Then we have
00 = =\ @2) G=0f: 0.
So we get from the definition of Sf that

S(fe)ij(X)
= _SR,,% {(38) (9 =) f:(») + (83, (9 —x) £}

_%5,.1. Z (0,0) (9 =) fu ()
:anés(y =) 8N (N D.
Thus
IS(L) () |[2= Z, (SRnBE(y —x) (S ;;(»)dy)?
< ) Sknag(y —x) (SNL)dy

{_ao-olsroir
<ess sup ||SfI%

I

Hence by setting f®=f,, we get a desired sequence.
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The following Theorems 3 and 4 are consequences of Lemmas 2, 3
and 4.

Theorem 3. Let f® be q. c. deformations of R" such that for any k
1S f®|SM<oo on R If f® converges to f uniformly on compact subsets
of R, then f is a q. c. deformation.

Theorem 4. Let f be a q. c. deformation of R" (n=3), and set h=
(L,10)f | gn-1, then h is a q. c. deformation of R™.

Corollary 2. In the above theorem if f is a q. c. deformation of R
(n=3), then h is a q. c. deformation of R\

§3. Main results.

In this section we define two classes Q(F) and P(I"), and state our
main results.

Definition 2. For n=3, by Q(I') we denote the vector space of all
SM"-valued functions ¢ on H”", which satisfy the following conditions (i)

~ (iii).
(i) There is some q. c. deformation % of R™', and by means of
the canonical harmonic extension f=H#h of h, ¢ can be written as

(3.1) o=p"S,.f on H"
(ii) For any yel' and all xe H"
(3.2) 17 () "7 () e (r2) 7 (2) =9 (2).

Gi) If Q) nR*'+# g, then p "¢ has a continuous extension to
(I R, and this extension satisfies

(3.3) 0 "e=0 on 2(I') R

Remarks. 1) In case of (') NR* 'S0, p is said to have a
continuous extension to x=co if (poy) ™ "(y')'(poy)y’ has a continuous
extension to a neighbourhood of x=y"!(c0) for some y=.#,(H).

2) We do not define Q(I") for n=2. For n=3, from Corollary 2, it
turns out that Q(I") c@(I). So Theorem 1, for n=3, comes from Coro-

llary 3 below. In case of n=2, Theorem 1 follows from Ahlfors’ finiteness
theorem [1].

Definition 3. For n=3, by P(I') we mean the vector space of all q.
c. deformations & of R"!, which satisfy the next conditions.

(3.4) Soth= () L(S, L h) o]y for any yer.
(3.5) S,-1h=0 on 2(I"Y R\
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Theorem 5. If I' is finitely generated, then the dimension of P(I") is
finite.

Theorem 6. The linear mapping h——¢ =p"S,(Hh) is a mapping of P(I")
onto Q(I") and the kernel of this mapping is (h&P(I'); S,., h=0 on R*1}.

Corollary 3. If I’ is finitely generated, then the dimension of Q(I') is

finite.

Corollary 4. The following conditions (a) and (b) are equivalent.
(a) If hePI'), then S,_;h=0 on R".
(b) QI ={o}.

The proofs of the above two theorems will be given in §5.

§4. Lemmas.
In this section we state some lemmas to show our main results.

Lemma 5. Let h be a q. c. deformation of R**(n=3), then for y& 4,(H)
=~’”n-l

(4.1 H(h) = (Hh),.

We remark that y in the left hand side of (4.1) is regarded as
rEM,,, on the other hand, y in the right hand side is regarded as
red,(H).

Proof. It follows from (2.3) that (HA), is harmonic. And it is easily
seen that |(HA),|/(1+4 |x|?) is bounded on H" and the boundary value

of (HR), is h,. Hence (HFh), is the canonical harmonic extension of #,,
so (4.1) holds.

Lemma 6. 1) For n=3, S,f=0 on a domain U in R" if and only if f
is of the from

(4.2) f(x) =a+Ax+ Bx+c |x |*—2x'xc on U,

where a and ¢ are constant vectors, A is a constant scalar, and B is a constant
matrix such that B= —'B.

2) S f=0 and |f|/(1+ |x|?) is bounded on R? if and only if f has the
Sform (4.2) on R2

Proof. 1In [5] 1) is shown (see Lemma 1 of Chapter VIIL), so we
show here only 2). By the same argument as used in the proof of 1)
in [5], we may assume that f is smooth. From the definition (1.1), it
is seen that S,f=0 if and only if 0,f;—0,/,=0 and 0,f,+9,f,=0, that is,
F=f4+{—=1f; is an analytic function of z=x,+ | —1x, Since |F|/(1+ |z|?)
is bounded on the complex plane C, we get that F(z) =a+8z+dz% on C,
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where a, B, 6&C. So we have the equality

f<x>=(§§ "+ Re Bt (m ﬁ)(‘l’ - )x
+( _ifl g)IxIZ—Qx’x< —is g)

This concludes the proof of 2).

Lemma 7. 1) If h is of the form (4.2) on R*' (n—1=2), then f=Hh
has the following form on H"UR";

(+.3) ) =<g)+zx+(§ g)x+(8)lx|2—2xfx(g),

where for (n—1) X1 matrices a and ¢, and an (n—1) X (n—1) matrix B by
(g), ((c)) and (g 8) we denote the nX1 matrices and the nXn matrix
obtained by adding zeros, respectively.

2) If f is of the form (4.2) on H"UR" (n—1=2) and ‘e,f=0 on
R, then f has the form (4.3).

Proof. 2) is seen by simple calculation. Let g be the right hand side
of (4.3), then g|g—1=h, | g|/(1+ |x]?) is bounded on H", and g is harmonic
from Lemma 6. Since the canonical harmonic extension is unique, we
get g=f. Hence 1) is proved.

Lemma 8. Let & be a q. c. deformation of R* (n—1=2), and set f=
Hh, and ¢=p"S,f. Then the next three conditions are equivalent.

(a) S,—1(h,) =S,k Sfor any yeI'.

(b) S.(f)=8.f for any yer'.

(c) ¢ satisfies (3.2).

Proof. The equivalence of (b) and (c) comes from (1.8) and (2.1).
Suppose that (a) holds. Then §,_,(h,—h) =0, hence it is seen from Lemma
6 that s, —h has the form (4.2) on R"'. Since, from Lemma 5, f,—f is
the canonical harmonic extension of h,—h, it follows that S,(f,—f) =0.
Thus (b) holds.

Conversely, if (b) holds, then Lemmas 6 and 7 implies §,_,(h,—A) =0,
for t¢,(f,—f)=0 on R*'. Hence (a) holds.

Lemma 9. Let h be a q. c. deformation of R*' (n—1=2), which defines
some o= Q(I"), then heP(I').

Proof. From Lemma 8 and (3.2) we get S(h,)=Sh. Hence (3.4)
holds.

Let U be an arbitrary open subset of R*™!, which is relatively compact
in 2N R* ' Define a sequence of smooth functions A® on U by



736 Hiromi: Ohtake

R® (x) = (I,_, 0) Hh(x +%> for xEU.

From Lemma 2 we have

11, h® (x)lléxﬁllSn(H”)(er e/Q)”'

On the other hand, from (i) and (iii) in Definition 2 we obtain

lim ess sup ||S,,(Hh)<x+ e">||=0-
koo xeU k

Hence, from Corollary 1 and Lemma 3 we see
S,_1h=0 on U.
Thus we have (3.5) from the arbitrariness of U, q.e.d.

By g,, we denote the SM" matrix with entries

(4.4) Oh,i5 =007+ 0730 —%5:';'5“,

and we set

(4.5) Fi(x) = 2|7 {[,—2Q(0) } 01 {1, —2Q.(0)}.
The following lemma is shown in [3] (pp. 91~92), implicitly.

Lemma 10. Let h be a q. c. deformation of R '(n—1=2). Suppose that
[h|/(1+ |x|%) is bounded on R*'. Then for x€ H"

(4.6)  pGYSHD =2+ ) T (| Ta-n b .

Rn
§5. Proofs of main results.

1. Proof of Theorem 5. Suppose that the limit set 4 is of measure
zero, then from Lemma 6 we get the conclusion, for such q. c. deforma-
tions have the form (4.2).

So we assume that 4 has positive measure. For each y&I, and
heP(I'), as in the case of n—1=2, we define the periods p,h of h under
the mapping 7 by p,h=h,—h. This periods satisfy the conditions

¢.1) =) (p ) o+ poh,
and
(5.2) S(p,h) =0.

From (5.2) it follows that p,2 is of the form (4.2) on R"™!. Suppose
that I" is generated by 7,..., 7yv. And consider a linear map p of P(I")
by
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prh—(ph,..., pr .

Then in order to prove Theorem 5, it is enough to show that the dimen-
sion of the kernel of p is finite, for the dimension of image of p is finite.
Suppose h€kerp. Then, from (5.1), for all y€I', p,A=0, that is,

(5.3) h,=h.

It follows from (5.3) and Lemma 5 that the canonical harmonic extension
f=Hh of h satisfies

(. 4) Si=r

Let x be an arbitrary point in AN R"", then there is a sequence of
elements 7, of I” such that lim 7,(¢,) =x. From (5.4) and (1.9) we see

koo

Ifor(e,) 1= Irile) | |f(e) [ ='euri(en) |f (e .

So we have

[ (x) | =lim | fora(e.) | = |f(e) llim ‘e,73(e,) =0.
Hence we get
(5.5) h=0 on AN R

So, in particular, in case of A=R*' the conclusion is true.

The remaining cases are divided into the following three: (1) n—1=2,
(2) n—1=3 and the number of components of 2nR*! is not less than
two, and (3) n—1=3 and 2N R*' consists of only one component. We
show that the dimension of the kernel of p is finite in each case of the
above three.

The case (1). As seen in the proof of Lemma 6, if we identify 4 with
hi+y=Th,, then we see, from Sh|y,,z2=0, that % is an analytic function
of z=x;+{—1x, on 2N C. By this identification and the relation (5.3),
it turns out that Adz ! is I'-invariant on 2N C, that is, £ becomes a holo-
morphic inverse differential on the Riemann surfaces (2nC6)/I'. Thus
k=0 on 2N R%. Hence kerp= {0}. (Under these situations, Theorem 6
is proved in [2], the above proof is the same as Ahlfors’.)

The case (2). Let £ be an arbitrary component of 20 R Via con-
jugation of some element of #, ,=.#,(H), if necessary, we may assume
without loss of generality that 2 is relatively compact in R"!, and 0€&
2. From Lemma 6,

h(x) =a+2Ax+Bx+c|x|>?—2x'xc on 2.

For an arbitrary but fixed i, j (i#j and 1=i, j<n—1), we identify R?
with {xER"; x,=0 (k+#i, )}. Since for x€2'NR?
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hi(x) =a;+ Ax;+ B;jx; +c; |x |2 —2x}xc,
hij(x) =a;+ax;—Bjx;4c; |x |* —2xxc

(we remark that B;=B;;=0 and B;;= —B;;), if we set

z:xi+4jxia a=ai+\/_'_1a.i$ IB:Z_I_J__IBU.
and 0=c¢;+y{ —1¢;,

then g(z) =h;(x) +{—1h;(x) can be written as
8(2) =a+pz—0d2

From (5.5) we get gl, a2 =0, where the boundary is considered in RZ2
Since £’ is relatively compact, (£ N R? consists of more than two points,
thus g=0 on 2N R? that is, a=8=0=0. From the arbitrariness of i and
j, we see that a=¢=0, =0 and B=0. Hence 2|, =0. This means that
h=0 on R™, that is, ker p= {0}.

The case (3). From Lemma 6, 2 has the form (4.2) on 2N R".
Since 2N R™! is dense in R"!, and h is continuous on R"*%, % has also
the form (4.2) on R,;,. Hence the dimension of the kernel of p is
finite. This completes the proof.

2. Proof of Theorem 6. It is obvious that the image of the mapping:
P(I") 5h+—> ¢=p"S,(Hh) contains Q(I"). And the last statement is easily
obtained from Lemmas 6 and 7.

Let & be an arbitrary element of P(['), and set f=Hh and ¢=p"S,f.
Since S,_,(h,)=S,_;h for any y&T', it follows from Lemma 8 that ¢ satisfies
(3.2). Thus if A=R"", then ¢ Q(I"). In contrast with this, if 4=g
then S, ,A=0 on R"' Hence, from Lemmas 6 and 7, we see that p=
0.

It remains to consider the case where 2N R" '+ ¢ and 4= g. We may
assume that co€4. Let £ be an arbitrary component of 2R,

Suppose first that n —1>3. Since §,_;A=0 on £, & has the form (4.2)
on £. Let ¢ be the function of the form (4.2) such that A—g¢ vanishes
on 2. Set g=h—gq, then it is easily seen that g is a ¢. c. deformation
of R*! and |g|/(1+4 |x|?) is bounded on R*' Since S§,,g=8,_.k, it
follows from Lemmas 6 and 7 that o*S,(Hg) =p"S,(Hh) =¢. Hence from
Lemma 10 we get

n—1
(5.6) cp(x) =21 (n+1) k§1 S
From (1.4) and (4.5) we find

a1 I y(x —_)’)gk ()’)Q'J’
R" g/
s (%) ||= const. |x |2 for xeR".

So we get

2
llo (x)||= const. Mdy.
R

g [x—y[*
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Thus for each compact subset K of 2° we have
(%) 7"|le(x)||= const.x? uniformly on KX (0, 1].

This implies that ¢ satisfies (iii) in Definition 2. Therefore o= Q(I).
Finally suppose that n—1=2. Since Sh=0 on 2, AQ)=h() +
V=1h,(») is an analytic function of {=y,+| =19, Let »" be an arbitrary
point in 2. There is a neighbourhood U of »* where 4 can be represented
by a power series converging normally. We may assume without loss of
generality that »’=0 and U is the unit disk. Set V;={|{|<1/(j+2)}
(=1, 2), and define a function g(.,.) on C XV, analytic on 2 XV, by

g, 2 =h© —{E(z)+ d};f) (C—z)+% dﬁ(z)(c z)}
for {eC, and z€V,. Then we find
g, 2) |
MPTEEE S

where the supremum is taken over all {&€C and all zEV,. Since we
have

g, )= 2% djﬁ(Z) €—2)  for L€V, and zEV,
we get
lg (&, z)l
SUp—/F——5— |C |3

where the supremum is taken over all {&V, and all z€V,. It follows
from Lemmas 6 and 7 that for any z€V, g(+,2) defines the same ¢ as
h. For x& H?® we set z=x,+{—1x, and {=x,, Then, from Lemma 10,
we get for xeV,x (0, 1]

[le(x)[|= const. Sc T%dsdﬂ

14+ (¢
< . Bl LY N
= const Sc_v, (1¢— z|2+t2)3ded’7

3
+ const. S (|Clcz—|z-:—t2)_3d§d)7’

where { =6+ —17. The first integral is uniformly bounded for x&V,X
(0, 1] and the second integral does not exceed (l/t)g €13/ C1E 12+ 1)3dédy.
c

Thus p~% has a continuous extension to V, and this extension vanishes
on V,. This implies that ¢ satisfies (iii) in Definition 2. Hence p=Q([),
q. e. d.

§6. Remarks on the case n=3.

In this section we consider the case n=3 and state some remarks.
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We identify R? with €. In this case I' becomes a so-called kleinian
group. It may, however, be of the first kind. (A kleinian group is
said to be of the first kind if 2(I')nC=g.) Our notations can be
rewritten in familiar forms;

Sph=h, [1Shll=V2 |h: |, Sfo=¢, and

) SR o7 = {(h) o7} ;f.

Hence for h&P(I") it turns out that pg=S,h is a Beltrami differential
compatible with I" and supp #cA4(I'). And therefore & becomes a po-
tential for g, that is, & is of the form

_0( 2G-Da®
@ =—2  HEAEE) dedy

+ (a quadratic polynomial of z).

It is known that if I" is finitely generated then the action of I" on
the (topological) limit set 4(/") is conservative, that is, for any measurable
subset X of A(I') with measX >0, #{r&I"; meas (XN yX)>0} = +oo.
(Ahlfors [2], [4] and Sullivan [6]) It is an open question whether or
not the above fact is also true for higher dimensions. Sullivan [6] showed
that there is no Beltrami differential compatible with I" and supported on
the conservative part of the action of I'. Hence we see, from Corollary
4, Q(I')cQ(I'y={0} for n=3. This implies that the situation of 3-
dimensional case is much different from that of 2-dimensional case.
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