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§0. Let Q(x) be a positive function defined for x=0. We consider the
following boundary-value problem in a strip domain £2=(0, o)X (0, )

(0.1)

{ —(UzzFQ(xX)uy,)=Au in 2
u=0 on d2.

For simplicity, we sometimes denote by A the operator —((@%/0x%)+Q(x)(0%/dy?).
We say that a function f€C*G), if f has continuous derivatives up to order k
in G. If Q(x)eC¥*[0, o)) satisfies

0.2) Q(x)2Q,>0,  lim Q(x)=o0,

then there exists in L*(£2) a complete orthonormal system of eigenfunctions {p,}
and corresponding eigenvalues {4,} satisfying

0.3) App=12ap, in 2, 0,=0 on 0.

Let N(4) denote the number of eigenvalues not exceeding 4. We shall study the
asymptotic behavior of N(1) as 1—oo.

When we regard --Q(x)(0%/0y*) as a self-adjoint operator O(x) with a para-
meter x and u(x, y) as an L*0, x)-valued function U(x), (0.1) is reduced to the
Sturm-Liouville operator problem studied in Kostyuchenko-Levitan [8]

U+ (A—0(x)U=0 for x>0
{0.4) {

U0)=0.

Under certain conditions on QO(x), they obtained an asymptotic formula for N(2)
in the form

©35) No~— B ey,

n=1

where a,(x) is the n-th eigenvalue of Q(x). Note that a,(x)=n2Q(x) in our
case. If we set
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Ux)= 3 pu(x) sinny,
then (0.4) is splitted into the following Strum-Liouville problems

{ on+(A—n2Q(x))pr,=0 for x>0

(0.6)
Pa0=0  (n=1).

Accordingly, our considerations in this article consist in studying the eigenvalues
of the Sturm-Liouville problem (0.6) with particular care on the parameter n.
The eigenvalue problem for A may be interesting in itself, but it also plays
an important role in studying the asymptotic distribution of eigenvalues for the
Laplace operator with Dirichlet condition in an unbounded domain such as

G={(x, y)ER*|0<x <0, 0<y<b(x)}.
{ Au+Au=0 in G

0.7)
u=0 on 0G.

We shall discuss the problem in §4 of this article. Here we only mention that
the large eigenvalues of (0.7) are, roughly speaking, asymptotically equal to the
large eigenvalues of A with Q(x)==n?/b(x):. H. Tamura [10] is the first one
obtaining the asymptotic law of the distribution of eigenvalues in the from (0.5).
In the previous paper F. Asakura [1], we also studied the problem by another
means. In the course of the study, we obtained an asymptotic formula of the
distribution of eigenvalues of A with remainder estimate in the form

0.8) Ny=1 3

T n=1 szrﬂQ(z)

(A—n*Q(x)*dx+0(2"7),

assuming Q(x)eC*([0, o0)) to satisfy

A_Qk _B Q") _C
x T Qx) — x’ Q(x) T x
(0.9)
[Q"(x)| _C
1 W§? for large x.

Note that Q(x)=x?%* satisfies (0.9).

In the present article, we study the asymptotic distribution of eigenvales of
A by different two methods. One is using the zeta function of the eigenvalues
defined as

(0.10) Z(a, A)=n§1 5.

The other is adopting a uniform asymptotic expansion of the solution to the
Sturm-Liouville problem (0.6) in a neighborhood of a turning point, which is
employed in F. Asakura [1] and covers where the zeta function does not work.

In the first place, we review some basic spectral properties of A in a strip
domain £2=(0, c0)X (0, 7). In §2, assuming Q(x) to satisfy
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0.11) | Q'(x) |_ . Q)=@LYy,

we obtain some estmates of the resolvent kernel, which are crucial in studying
the zeta function. We study the analytic extension of Z(a, A) in §3. We may
well expect that the infinite sum (0.10) converges for sufficiently large a. We
shall show that (0.10) converges if and only if the integral

0.12) S:Qm-a“ﬂdx
converges. Throughout this article we assume
(0.13) S:Q(x)‘”zdxzoo .

This corresponds to the condition that the area of G is infinite in the case of
the Laplace operator in unbounded domains (see (0.7)).
Let

a:inf{aeR|S‘:Q(x)-a+1/2dx<oo} (¢=1 by (0.13)).

We obtain the analytic continuation of the zeta function as the following.

Theorem 0.1. Let Q(x)eC?*[0, ) satisfy (0.2), (0.11) and (0.13). Then
Z(a, A) has the analytic continuation across Re a=a of the form

I'a—1/2){2a—1)

(0.14) Z(a, A)= ovr I

["ow)-«redxtha

where I'(a) is the Gamma function, {(a) the Riemann zeta function and h(a) is
holomorphic in Re a>a—0 (6>0).

The form of the singularity of the zeta function with the largest real part
reflects the asymptotic nature of the eigenvalues of A. We shall see later that
Z(a, A) may have various types of singularities at «=o¢. For example when
Q(x)=x*(log x)~% for large x, the singularity is of the form

(a— /c+1) <1+(r/x>)§ 12 m( _ x—i—l) (l ( _ /c—l—l))

n=0j

In such cases we introduce an Ikehara Tauberian theorem of the following form.
Proof of the theorem is put off until §6.

Theorem 0.2. Let N(A) be a non-negative, non-decreasing function. If
Z(@)= S ~adNQ)
ts convergent for Rea>ao and

015 h@=Z@—(a—0) 0 3 3 4, (a—0)(logla—a) (p20)

n=0 j
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can be extended to a continuous function in Re a=a, then N(A) has the asymptotic
form

AOO

29(log )*  as A—oo.

In §4, we turn our attention to the eigenvalue problem of the Laplace operator
in unbounded domains (0.7). We show that if the zeta function of the eigen-
values of A with Q(x)==?/b(x)* has the same form as (0.15), then the asymptotic
formula of the distribution of eigenvalues is described as (0.16).

Our results show by the way that if (0.12) is not finite for any a (for ex-
ample Q(x)=log x), Z(a, A) will not converge for any «, especially the growth
of 2, is slower than any small power of n. In §5, we study these cases where
the zeta functions are of no use in studying the asymptotic distribution of the
eigenvalues. We shall find the methods in F. Asakura [1] still work there and
obtain

Theorem 0.3. Assume Q(x)eC*([0, o)) to satisfy, instead of (0.9)

A _Qw__B @ €
xlogx = Q(x) = xlogx’ Qx)I1=™ x’
€0.17) " c
l ' %’E;; l§; for large x with some constants A, B and C.

Then (0.8) holds for large A.

Under the condition (0.17), we shall get a uniform asymptotic expansion in
2 of the solution to the Sturm-Liouville problem (0.6) using the Airy functions.
For Q(x)=(log x)** we obtain

(018) N(X):«/szIll/k—luk exp (Zl/k)(l_*_o(z—lﬂk)) .

This time, the operator A with Q(x)==%/b(x)? is not a good approximation
of the Laplace operator in an unbounded domain G=G,;\UG, such that G, is
bounded and G,={(x, y)ER?| R<x<co, 0<y<(log x)~*}. Here we can merely
obtain the estimates of N(A) from above and below as the following.

(0.19) G,e“‘“‘””gN(l)nge““””“

for any ¢ with certain constants C;, C,.

In conclusion, I would like to express my hearty thanks to Professor S.
Mizohata and Professor N. Shimakura for valuable advice and incessant encour-
agement.

§1. In this section we shall review some basic spectral properties of the
operator A in a strip domain £2=(0, o)X (0, =), assuming (0.2).
We denote by L*{) the Hilbert space of square integrable (real valued)
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functions in £. In this article we shall work with real Hilbert spaces. Let us
denote

hute={{ urdx dy

E(u)=§$0u§—l—Q(x)u§dx dy.
We denote by Ci{L2, Q) the space of functions defined as
12, Q)={ueC(RNCY2) | u=0 on 2, ||lul?, E(u)<oo}.

The space H{(Q, Q) is defined as the completion of Ci(£2, Q) with respct to
lulf=lul+Ew).
In the first place we show the following inequality

Proposition 1.1. If a function Q(x) defined for x=0 satisfies (0.2), then for

any €>0 there exist wy, -+, oy < LY Q) so that
x
(1.1) lul?= Ei [(wj;, w)|*+eE(u)

holds for any ueHY R, Q).

Proof. We have only to show the inequality for uCi(2, Q). Since u(x, 0)
=u(x, 7)=0 for any x=0, if follows

(1.2 [Tuyx, yrayz{Tuix, yrdy.

Multiplying Q(x) to the both sides of (1.3) and integrating in x from R to in-
finity, we have

ot . : . oo (T 2
[ Sreuyx, »ydy dxzCint QU [ Tutx, yrdy dx.
If we choose R such that inf Q(x)=¢"!, we find

(1.3) szu(x, y)idx dyés“nRQ(x)uf,dx dy

éeSSRRui-I-Q(x)u%dx dy.

On the other hand, since 2N {x<R} is a bounded domain, then for any e there
exist o], -+, oy E LA2N {x<R}) such that

N
(L.4) ngu(x, Widsdys X 1), u)|2+sggmug+g(x)ugdx dy.
Combining (1.3) and (1.4), we get the inequality.

From Proposition 1.1, it follows that any sequence u;€H¥2, @) such that
E(u;)<L has a convergent subsequence in L*(2). Then employing variational
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methods to the form E(u) in Hi2, Q) (see Courant-Hilbert text book), we get a
complete orthonormal system of eigenfunctions {p,} of A such that ¢,=
CHNHL, Q) and corresponding eigenvalues {1,} with

(1.5) Apn=2zp, in 2, ¢,=0 on d2.
Later we shall make use of the boundary-value problem
—(UzzFQ(x)uy,)=Au in 2
(1.6) u=0 for y=0, =
uz=0 for x=0.
Employing the function spaces éé(.Q, Q) and 173(!2, Q) defined as
CyR, Q)= {uel(@NCYD) | u=0 for y=0, z, [u], E(u)<oo},
A2, Q)=the completion of C}(2, Q) with respect to [ul},

we obtain a complete system of eigenfunctions {¢,} of A such that ¢,eC*R)
NHYQ, Q) and corresponding eigenvalues g, with

1.7 Adp=pa¢p, in 2, ¢,=0 for y=0, «, Guz=0 for x=0.

§2. Let R.(x, y, & %, #) be the kernel function of (A+p)"" R, is, in
general, a certain distribution in (x, y, § %) and represented as

i ¢n(xy y)Qn(Ey 1])
Jj=1 (zn‘l"[l)n

using the eigenfunctions {¢,} and corresponding eigenvalues {1,}. We may ex-
pect R, to be a smooth function for large n. In this section we shall obtain
certain estimates of

Rn(x’ y: E: n):

5 on(x, ¥)°

Rn ’ ’ 'y = .
(x, 3. % 9=2 (At "

We seek out the eigenfunctions in the form ¢(x, y)=¢n;(x)sin ny. Then
@, € L%0, oo) and satisfies

{ o FA—n*Q(x))pn;=0  for x>0

SDnJ(O)ZO
Let {¢.;} be a complete orthonormal system of eigenfunctions, {1,;} be corre-
sponding eigenvalues. We observe that {¢,;(x)sinny}7, ;-1 constitutes a complete

orthonormal system in L2%(2) with {1,,;} corresponding eigenvalues.
To proceed further, we assume Q(x) to satisfy (0.11) and (0.13) in addition

to (0.2).

2.1

Remark 2.1. Condition (0.2) guarantees the existence and regularity of
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complete eigenfunctions. If s:Q(x)‘”zdx<OO, spectral properties of A are some-

what very similar to an elliptic operator in a bounded domain. We shall put
aside such cases in the present article.

It is easy to verify the following properties of Q(x).

Proposition 2.2. If Q(x) satisfies (0.11), then there exists a constant A inde-
pendent of n, x and y, such that

2.2) [Q(x+3)—Qx)|=Aly|Qx)  for |yI=1,
(2.3) n*Q(x+y)S Aerv¥e@ 2 for |y|=1.

Proof. Set R(x)=log Q(x). Then it follows by the mean-value theorem

log% =|R(x+y)—R(x)|<L!v!.

Hence

e—LlUISMSel«IUI ,

Qx) —
and then

1< Qx+y)—Q(x) L
e L 1§———Q(x) <elvi—1.

In this way we can choose a constant A so that (2.5) holds.
Since Q(x+y)<Ae'v'Q(x), we shall prove, instead of (2.3), a stronger
inequality

(2.4) n2Q(x)el V1< AemvVe@ iz,
Setting z=n+Q(x), we show that
(2.5) Aev?2=z%LV holds for y=1 and z=2L.
By Taylor expansion of ¢*, we find
Aeyz/z_zzeLy:eLy {Ae(z/Z—L)y_ZZ}

Ze"”{A—i—A(%z— L)y-l— 1—;—(%2— L)Zyz——zz}

el B30y}

Then we can see that there exists a constant A so that (2.5) holds. (2.2) and
(2.3) corresponds to (17.10.3) and (17.10.4) in Chap. XVII of E. C. Titchmarsh [12].
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We now give a brief review of the Fourier sine transformation. Let fe
C(0, o0) satisfying f(0)=0, x*f e L0, o) for 7, =0, 1. We define the Fourier
sine transform as

(2.6) fA($)=S:sian fx)dx .
Then f(x) is expressed by the Fourier inversion formula as
@7 f=2{Tsinxe @t
TJo
Moreover the Parseval formula holds as
.9 [Tirrax=2{"1 ) 1ae.
We set
‘ _2(~ sinx§sinyé
(2-9) En(l, yr ,a)_“ ﬂ'SO (§2+n2Q(x)+ﬂ) dE (#>O)
1

— {e—xnlx—yl_e—xn(z+y)}
2k,

where k2=n*Q(x)+p. Then E.(x, y, p) satisfies

82
2.10 —a—yzEn(x, ¥, )+ Eq(x, ¥, p)=0(x—y)
En(x, 0, 1)=0

where 6(x) is the Delta function.

Remark 2.3. For the equation (1.6), we obtain by separation of variables
o +A—n*Q(x))p=0  for x>0
2.1y ¢'(0)=0
¢, o' € L¥0, o).

In order to study (2.1)’, we adopt the cosine transform instead, then the follow-
ing arguments are the same.

Lemma 2.4. Let ¢n;(x) an eigenfunction of (2.1) with the eigenvalue 2,;.
Then @ni(x) is expressed as

(2.11) ©ns(x) =S:{nZQ(x)—an(y)+2n,-+;t} E.(x, 3, e (3)dy.

Proof. Since ¢,; is an eigenfunction with the eigenvalue 4,; we find

. . f7¢nj(y>+xz¢nj<y>= (1Q()— 12Q(3)+ Ay 2} oni()

©0a;(0)=0, where rz=n*Q(x)+p.
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Substituting y—x for y in (2.3), we have

n2Q(y)< Aem™e@iz-viiz  for y>1+x.
Then if follows

2,nvQ(z) [ Z-y1-2Yn2Q(T)+piz-y|
e

E.(x,y, p)n'Q(y)=

n*Q(x)+p
L AV R@ ey A
=T Qe K5

Hence E.(x, y, #) {n*Q(x)—n*Q(y)+2n;-+p} 0r;(») is integrable in y for all x>0.
Since E.(x, v, p) satisfies (2.10), we have

[7Batx, 30 (= ono) im0} dy

=1 QU= 1Q)+ 2as ) Eulx, 3, pns()dy
=S0nj(x) .
By (2.11), we find

SDnj(x) . *° N
(2.13) p R —SOEn(x, Y, Wea(y)dy

n2
Ayttt

Differentiating m times in g the both sides of (2.16), we obtain

+

[ @0—QUIEL, 3, men)dy.

Lemma 2.5. There exist constants Cni Snch that

(=)™ @n;(x)
(an+.u)m+1

1 S:(%)mEn(x, Y, Wen(y)dy

m!

(2.14)

m l
+3 % Comi

i=0 k=0 (lnj_l_#)m—l+lxﬁl+1

(Knji(x, )= Laju(x, ),
where

Kasalx, 1) =n*s | QU= QU x—y %=V, (5)dy

Loz, p) =n”/cl:S:(Q(x)—Q(y))(x+y)"e"'"‘“”’gonj(y)dy
and k,=r,(x, )=vn*Q(x)+p.

Proof. Recall
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En(x» Y, I‘t): % {e—‘nlx-yl—e_xn(z+y)}'

We observe that there exist constants C;, independent of @ and z such that

(2.15)

0 \ig-:Vatp g~ Varpy 4
(T[;) \/a—l—‘u = (a+p)+ir Eocjkzk(a+#)k/2-

Then by (2.15) together with the Leibniz formula, we obtain the lemma.

Now we carry out the estimates of (2.17). Firstly we settle the estimate of
the first term in (2.14).

Proposition 2.6.

1 o w9 \m 2
(2.16) WE(SO(W) En(xr yy #)gDnJ(y)dy)

_ TCm+3/2) .., e *n%emn R

=ovElGmta) ™ g & Cmalren)

where Cpy are constants independent of x and p.

Proof. Since {pn.;} is a complete orthonormal system in L%*0, o), we find

2 (S:(L)mE"(x’ Y, f‘)%f(y)dy)zzgr‘<%>mEn(x, v, | dy.

= op
Differentiating (2.9) in p m-times, we have
() Bnte, 3, = BT SR 0E .
By the Parseval formula for sine transform, we find
(2.17) —(mlf)zg': (%)mEn(x, ¥ #)Izdy
- 2{1/_(27%2_31—/-!—2)7)“;“"-3 +(2m-1|-1) !<_a%)2’"“(e:';"’) :

Employing (2.15) again, we obtain the proposition.

For the second terms in (2.14), we can readily verify
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[ Kanjr(x, )]
@.18) T oyt
Gn (x, ﬂ) Gn'lz(xy #)
< ik J
___maX{ (2nj+ﬂ)m+l,cn ) (lnj+#)1/2,c%m+2 }
Gajr(x, ) Gaje(x, )
=<max { (an'l'#)m“xn ’ !,t’/ZIC?;m+2 }
where

Gaji(x, p)=n"c}

[@m—eumix—ylte=ron3)dy|.
We shall estimate G,;, in different two ways.

(I) We divide the integral as the following

Gusnlx, 1) S 1Q(0— QW) [x—y | *e = " o (3 d

:nlefl(glz—ﬂlsl—l-jlz—ylZl)

:'GT(ll;k(x; ﬂ)+G1(12;?k(x7 #)-
Employing (2.2) and by the Schwarz inequality, we find
Gi(x, 1)

<AnQE| x—y|te s g (y)ldy

1z-yl

= as(| |x—ylthergtenizvidy) (] o)1)

lz-yls1 l1Zz-yIs1

<A/c}{2 (S:}zkne-ztdt)”z(g Sli@nj(x+z) | zdz)ll2 .

- 121

‘Then we obtain

@19 |G, WIPSCm| | Ignta)*dz.

121

Next applying (2.3), we find

GBilx, p) én?Q(x)fc’%S Emalter i g (y)ldy

lz-y

+nte| QU x—yltem= Y o3 dy

1z-yl

. 1/2
éﬂlfzﬂ(g [z[“e'”"'“dz)
12121

+ei([ | niQutariztetrdz)”
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é,c;lIZ(Sw t2ke—2tdt)1/2

— 1/2
+ Ak (S |z[“gn"Q(z)|z|—2*’n20(x)+mudz>
1zl&1

/2

éxhﬂ(S‘w t2k€_2tdt)ll2+AK;1/2 (S |Z|2ke-xnlzldz>l
n 12121

K

gcx;,w(r t"”‘e““dt)lm.
n

14

Hence for any N, we can choose a constant Cy which may depend on N, such
that

(2.20) |G&u(x, W) |*=Cnez*N 2.
Combining (2.19) and (2.20), we obtain

2.21) |Gusa(x, IPZCra| _ Ignila2)|"dz+Crz 2.
(II) By the Bessel inequality, we find for any J
J Y
5 1Gutx, plSntet |10 —QU)I* x—y|esn=vidy

Then similar computations as in (I) show that

10—t x—y et vy = 4

0 |1z-yIs1 lz-ylal
<Crkp,+Cyrz2V"2.

Hence we obtain

2.22) 5 G, 19|*=Crat Cyrzt .

Employing (2.21) and (2.22), we get the estimate of (A,;+p)™ ™ "V Kpj(x, p)
in the following way

L Kaplx, 0 4o,
j§1 (Ilnj+[1)2(m—l+1) Kn

o8 Galx, p)? . u
§2/cn2j§ Wﬁ’*’zﬂ lﬁn“m“)j:Zl |Grjr(x, p)|?

J 1
<Cp'S -
=C'c" j§1 (an_l_ﬂ)z(mu)

—on-1 L 1
+CNICn2N 4j=1 (znj+#)2(m+1)

S|z|s1l¢"j(x+z)|2dz

'}'C#-llﬁ_{‘m_8+CNﬂ_’K;2N_4m_G.
Then we obtain

Proposition 2.7.
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L Kﬂjk(x’ #)2 —4l-2
(2.23) A (an+;l)2(m'l+“ Kn
J 1
b= (znj_}_”)z(mu)

—2N -4 L 1
+Cwi7 121 i pFm0

<Cpigzimoi 4 Cprt | lontrta)az

Let us come back to (2.14). As before we have

(2.24) | Lnga(x, )] { Hupx, ) Hajalx, ﬂ)}

=max s
(znj+ﬂ)m-l+1x?zl+l (lnj_l_[l)m"’lxn ;1”2IC3,,m+2

where

Haju(x, ) =n’e},

[Tem—eunt+nre g, (ndy].

(IIl) We divide the integral as before

Hap(x, 1) S8 1Q0— Q) (x+9)te 2+ | g, ()] dy

:nglcﬁ(Slx_y|51+Sm_y|=1>

=H%x, o)+H5(x, ).
We find by (2.2)

H)(x, p)éAan(x)x’ﬁXIZ =yl Gt a)te e o (y) | dy

-yl

<aes(|"wryrrrencwdy) (| lpuixtaldz)”

tzis1

o0

1/2

éAIC}/z(S t””e_ndt)llz(gmﬂ Igonj(x+z)|2dz)

TEp

Then we get
(2.25) | HB, pIS Arnene|  Jgaata)|dz
Next applying (2.3), we find

Hx, EWQUIR[ ()t = o ()] dy

lz-yI

—l-x’f.slx 21(x+y)”n?Q(y)e“"‘“”’Ison,‘(y)ldy

-yl

1/2

< jpkt2 2k -2k (Z+Y)
=t ([ ., e e dy)

+15’;L<S (x_l_y)zke—an(z) 1z~ y|—z~/n2Q(x)+p(x+y)dy)1/2
z+yzl
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o 1/2 £ /
tzke-ztdt) +C,C;1/2(S tzke-zdt)l 2 ]
n n

£

< le?zlz(g
Hence we have for any N
(2.26) H5(x, 1)’ <Curz*V*

with a constant Cy depending on N.
Combining (2.25) and (2.26), we obtain

@.27) Hoju(x, /1)2§C/cne"""””gmﬂ | nilx+2)|2dz-+Cyrzti-2 |

(IV) By the Bessel inequality, we find

J 00
g | Hpje(x, ﬂ)l”én“fc?ﬁgo [QUx)—Q(¥)|*(x+y)re 2=t gy,
Repeating the similar arguments as above, we obtain

(2.28) S [ Hagax, ]*SCrae™n" +Crt =

j=

Employing (2.27) and (2.28), we obtain

Proposition 2.8.

A Loju(x, p)*
=1 (lnj—l-pt)z(m"“l’lf;tl”

(2.29)

1
< - e—dm =8 ,-KpT ~1/2,-kpT _— " 2
=Cp ks e +Cpu % Jé oyt )20 SIZISIISDM("‘I'Z)' dz

—2N -2 L 1
+CNICn j=El (an-l—y)z‘"‘“) .

Comparing (2.23) to (2.29), we observe that L,;, has better estimates than
K,;; in the point where e *»* is multiplied to certain terms. But in this article,
we shall gain no advantages from this observation in the following arguments.

We recall (2.14). Square the both sides of (2.14) and set

(ln:j—n;z()):()’i“’ = (ml!)z (S:(@%)mEn(xr Y, ﬂ)§0nj(y)dy)2+anj(xr y .

Then for any ¢ satisfying 0<d<1, we have
o/, 0 \m 2
-0 . I
| Runix, 01 207([[(52) " Eat, 3, 0ns))

) (Knjk(xr ,u)2+Lnjk(x; !1)2) .

=0 (znj+ﬂ)2(m—l+l)x%l+2

l

5 m
+Cpu g‘))
Using Proposition 2.6, 2.7 and 2.8, we find

J
jgl anmj(xy F‘)I
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) o0 a m 2
-3
<0 5 (1, (G) Entx, 3, mgni0d)

+C#—1+6lc;4m—s_|_c‘u1/2+ é 1 S lex|§0nj()€+2)12dz

0, ~2N -2 L 1
+CN/" Kn A (2n1+p)“’"“)

éc(#-6+#—1+6)x—4m—s

J 1
SR WU
+CNE1L é 1

Setting 6=1/4, we have obtained the following lemma which is crucial in study-
ing the zeta function.

J

Lemma 2.9. Assume Q(x) to satisfy (0.11). Then we have

J‘él (Zn::f;(;zjnﬂ) (m 12 é(Sm< a?u ) Enlx, 3, #)¢nj(y)dy>2

J
+ 2 Rumslx, 1),

where Rnmj(x, p) has the following estimate

J
(2.30) 2 | Rumix, )l
écm#—1/4K;(4m+3)
7 -1/4
B0 yaips oy
(en=ru(x, )=vn*Q(x)+p).

{SIZI lons(x+2)] zdz—i—/;-?N}

§3. In this section we study the zeta function defined as (0.10). In our case
Z(a, A= 3 3 173
n=1 j=1
In the first place we show

Theorem 3.1. Let Q(x) satisfy the conditions (0.11) and (0.13). Then

(3.1) S D<o (B>1),

n=1j=

-
_

if and only if

(3.2) S:Q(x)‘ﬂ“’zdx<oo.
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Proof. Firstly assume (3.2). Pick an integer m such that 2m+2=p8. Then
it follows S:Q(x)'“"*’”dx<oo. By Lemma 2.9 and Proposition 2.6, we find

I @ny(x)?
3.3) ZQ-———(R )

-1/4
+C,,,Nj_1r_fp)m{gmﬂ Ison,(x+y)]2dz+x-2N}
Cn J pi 1
S LT B | oo +2 o)
Integrating in x the both sides of (3.3), we have
z. 1
1 —1/4 1 ¥
<C S (n*Q(x)+ p)Pm+ore dx-I-CmJ 1W{l+ n“’S Q(x)- dx}
Hence we find that
(3.4) -1 ¢ " 1 J
' N

holds with a constant C,, depending only on m for sufficiently large p. Recall
the identity

S‘” (p—s) du— I'A+nI'm—ry) 1
s ()™ # (m+1) (ts)m-r

(—1<r<m).
Multiplying (p—s)" with y=2m-+1—8 to the both sides of (3.4) and integrating
in g from s to oo, we find

I'2m+-2—PB)I'(B) & 1 I'Cm+3/2)I'(f— 1/2)5 1

T@m+2) 2 (ats)f =Cm @m+2) Q) T )P 7
F(2m+3/2)['(,3—1/2) 1

s i), QP

Summing up the above expression from 1 to N, we have

dx

IIA

Cn

N J 00
- < — -ﬂ+1/2
5 By SOk, G
Fix s=s, with a large constant s, and let N, J—»oo. Then we obtain (3.1).
Conversely assume (3.1). Pick an integer m such that 2m+2=8. By Lemma

2.9 with J=oco and Proposition 2.6, we find
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= pax)
(3.5 § ot gt

3 r@m+3/2)
T2/ 2mA2)(n2Q(x) - p)Pm e

e-z"c*/n2Q(J:)+/1 2m+1

2 k2
+ Q) F kZ) Crnn(n*Q(x)+p) +Z‘. Rumi(x, 1)

with
i ]anj(x’ ﬂ)l
j=1

S le't—1/4
= (an(x)+#)2m+3/2

o ﬂ—l“ ‘ . 1
Cnv 27 ,,,+g)m+’{g.z.sl oD et T b

Then it follows for x=x,>0

o gon,(x)

> I'(2m+3/2)
= 27rF(2;n-]—2)(112Q(x)+#)2m+3/2

(A~ Crpr™)

—1

o pt , :
o B o AN e s SR

Multiplying (z—s)" (r=2m-+1—p8) to the both sides of (3.6) and then integrating
from s to oo, we find

Tm+2—B)(B) & @nj(x)?
@G T@n12) & (uyts)?
I'@em+-2—pB)(B—1/2) 1 (a4
= 27 2m+2) (n*Q(x)+s)F-12 (1=Cas™)
OB o) lomx R Hde—C : > 4
P52 Qg s)P izisa P P Q) +s)V BT 2

Integrating (3.6) in x from x, to X, we have

1
2y (n°Q(x)+s)3-1/2

Fix s=s, with a large constant s, and let X—oco. Then we obtain (3.2).

(1— Cﬁs 1/4)s dxgcﬁ(1+cﬂs—m)§12;§.

If we are more careful in computing the constants which appear in the
arguments above, we can readily show the following formula.

Theorem 3.2. Let Q(x) satisfy the conditions (0.2), (0.11) and (0.13). Then
it follows



186 Fumioki Asakura

dx as s— oo,

= 1 r(p—1/2) = Sm 1

B8 BB TP oVl 2o O£

Applying the Keldysh Tauberian theorem to (3.8), we obtain the asymptotic
formula of the distribution of the eigenvalues in the form

(39) V N(Z)N%rnglzn?Q(z) (A=n*Q(x))"*dx

(see for the details A.G. Kostyuchenko-B.M. Levitan [8]).

Next we consider the analytic continuation of the zeta function. Recall the
identity

y du— I’'d+nl(m—

- 10 -mir
So (t+pm+ = T'n—+1) t (—1<Rey<m).

(3.10)

Lemma 3.3. Let ¢.(p) and @,(p) be bounded measurable functions satisfying
(1) |eale)| =Dnlp),
(ii) there exists a constant ¢ such that

215:p5¢n(y)dy<oo for all 0=B<o0.

Then F(a)= i}lg::y“gon(y)dy 1s a holomorphic function of a in 0<Rea<a.

Proof. Let us denote
R
Fand@)= proumdp,  Fi=Fuas.
Then F,, g .(a) is an entire function of a. For R>1, 0<e<1, a;<a, we find that

| Fal@)—Fo.r (@) £, O d 4 | gm0
holds for all a such that 0=<Re «=<a,. This shows that F, g . is uniformly con-
vergent to F, for R—co, ¢—0 in 0=Re a«<a, and then F,(a) is holomorphic in
0<Rea<a,. Moreover since

F— S F@|2 2 " peeo,ap
= 5 [Touwapt 5 [ poonmap,

NZZ)iFn(a) converges to F(a) uniformly in 0<Rea=a,. Hence F(a) is holomorphic
in 0<Rea<a;.

Let o¢=inf {aH:Q(x)‘““/de<00}. Now we carry out the proof of Theorem
0.1.
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Proof of Theorem 0.1. Choose an integer m such that 2m-+2>¢. We start
with (3.5). Integrating in x the both sides of (3.5), we have

& 1
(3.12) EI(TMW
__ I'Cm+3/2) S“ 1 i
24/ 7 l2m+2) Jo (n2Q(x)+p)?m+e/2

o e-zz\/n2Q<z)+/x

0 (nZQ(x)+#)2m+3/2

2m+1
+5 Coi| Q)+ ) d x

+ 35|, Rumsx,

Let us denote

m+ © e—2z~/n2Q(x)+,u

(3.13) onlp)= kzo kaSo (n*Q(x)+ )P+t x*(n*Q(x)+p)**d x

+§1So Ramifx, dx,

™ oIVt +p

° (an(x)+[.t)2m+3/2
o 1

0 (an(x)—I—y)a’"”’z
(1 | Q) )

m n Jo j=1 (an+ﬂ)2m+2 ’

For sufficiently large C, we can readily see |@a(¢)|=@.(p). Multiplying g"
(r=2m~+1—a) to the both sides of (3.12) and integrating in ¢ from 0 to co, we
find by (3.10)

I'2em+2—a)l (a) &

dx

(3.14) @ ()=Cu|

dx

+Cm)a““§

(3.15) TOm+2) j=12;;¥
_ I'@CmA2—a)(a—1/2) (= 1 .o
n 2/l 2m+2) So (n2Q(x))a-112 dx+S0 ¢ oalx, wdp.

We want to use Lemma 3.3 to settle the last term of (3.15). Let a be real.

316) | pmn-ed,(dp

=C ® em+i-al e_zm dxd
a mSolJ So (n2G(x)+ p)rm+er2 xap
I@m+2—a—1/HI(a—1/2+1/4) (= 1
+ln I'2m+2—1/2) So (n2Q(x))a- 172+ dx

I'om+2—a—1/HI(a+1/4
I'2m+2)

+cm(1+n%S:Q(x)-~dx) 52wy
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For the first term of (3.16), we find

© eral® e—z\/n2Q(z)+,u
So ¢ So (an(x)_i_#)ana/z

< ® am+t-al” e_xanQO+#
S N

Temt+2—al(e) 1
= I'2m+2) n2eQe

dxdp

Hence
ni;l S:#2m+l+a¢"(#)d#
I'2m+2—a)l(@){(2a)
I'Cm+2)Qg

Iem+7/4—a)l(a—1/){2a—1/2)
I'2m+3/2)

=Cn

+Cn

S Q( ) a+l/4dx

3/4—a)(a—1/4)
I'2m+2)

+Can(1Hc@N) | Q) ax) TEE Z(a+1/4, ).

In this way we have proved

oo

ZS [szﬂ ag (#)d#<oo for o—1/4<a=2m+1.

n=1

Since m is arbitrary, we find by Lemma 3.3 that

way= 2 " pemmepu(udp

n=1

is holomorphic in ¢—1/4<Re a<co.
Now we introduce some examples.

Example 3.5. (i) Q(x)=x%* (0<k=1) for large x

[ I(40)d(5)
Zia, A=) WAL (EEL)(a—EEL)

1 A, _
Sa—1) + @=D +h(a) (x=1),

(i) Q(x)=x*(log x)™*" (0<k<1, r>0) for large x

I'a—1/2) Qay—r+1)¢Q2a—1)
2/ 7 [(a)2ka—r—1)2a7-1+1

Iz (+E)(x)

2(2,6)1+r/x\/——1~( £41 )( ,;2—4,_51)1”/,;

+h(a) (0<k<1),

Zla, A)=

+h(a)
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(B Ala— 50 (o8 (a2 0)) i@,

L and continuous in Rea= £+l .
2K 2K

where f(a) is holomorphic in Rea>

When we know the form of the largest singularity of the zeta function, we
can get the asymptotic form of N(A) via Tauberian theorems. For me, it seems
difficult to describe beforehand what sort of singularity the zeta function has.
But anyhow concerning Example 3.5, we obtain the following by employing
Theorem 0.2. Proof of the Tauberian theorem is put off until §6.

(i) Q(x)=x% (0<k=<1) for large x

N(ZJ I(ze)()

21/24—1/2/: (0<K<1),

— k+1
2vn(x+1)r( == )
%2 log 2 (k=1)

(i) Q(x)=x*(log x) % (0<k<1, r>0)

T
o7 () ()

K

21/2+1/25(log 2)7’/‘7 .

§4. In this section, we discuss the eigenvalue problem for the Laplace
operator in an unbounded domain (see H. Tamura [10] and F. Asakura [1]).
Let G be a domain R%. We consider the following Dirichlet problem

{Au—l—lu:O in G
u=0 on 0G

4.1)

where du=u,,+u,, is the Laplace operator.
We assume G to satisfy the following conditions.

(4.2) (i) G is divided as G=G,\UG, where G, is a bounded domain with C*
boundary and G, has the form

G.={(x, y)ER*| A<x <0, a,(x)<y<ayx)}
with C? functions a;(x) (f=1, 2),

4.3) (ii) ay(x), a,(x) satisfy
(1) b(x)=ay(x)—a(x)—0 as x—oo,
(2) ai(x), as(x)—0 as x—oo,
3) lai(x)], |a%(x)| <M with a constant M,
[b'(x)|
@ o

<M with a constant M,
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©) S:b(x)dxzoo.

We denote by L2%G) the Hilbert space of square integrable functions in G
and HY(G), Hji(G) usual Sobolev spaces of order j. We can show the next pro-
position just in the same manner as Proposition 1.1.

Proposition 4.1. Under the conditions (i) and (ii)-(1), the inclusion map from
HiG) to LXG) is compact.

We regard the Dirichlet integral D(u) as a quadratic form in H}(G). Employ-
ing the variational method (see for example Courant-Hilbert text book), we find
that there exists a complete orthonormal system of eigenfunctions of the Laplace
operator in G with the Dirichlet condition (4.1).

Now let us consider the Laplace operator as a symmetric operator from
CHG)NCYG) to L¥G). We can show that the self-adjoint extension is unique in
certain cases.

Theorem 4.2. Assume the conditions (i) and (ii) and assume b’(x)<0 in addi-
tion. Then the closure of the Laplace operator defined in CHG)NCYG) is a strictly
self-adjoint operator with the domain H¥G)NH(G).

A proof of the theorem is found in F. Asakura [2].
For sufficiently large R we set
G ={(x, y)EG|x<R},
GP={x, y)eG|lx>R}.
For each j let 1%’ the n-th eigenvalue of the problem
du+2u=0 (x, y)eG¥
4.4);
u=0 (x, y)€dGY .
In a similar fashion let 2’ the n-th eigenvalue of the problem
du+2u=0 (x, y)eGE
4.5); u=0 (x, y)€0GP NG
u,=0 (x, y)€0GY with x=R.
We denote
NP @W=*%{n|29 =2

2y
NP@D=*{n|2P =2} .

Then by the Courant mini-max principle, we find

Proposition 4.3. Let N(R) be the number of eigenvalues of (4.1) not ex-
ceeding 2. Then N(2) is estimated as
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4.6) NPD+NPDSNQSNLD)+NPQ) .

Consider the following change of the variables and functions

E=x

b
1=y e, o=

and set G =Gpr, 2r=(R, c0)X(0, 7). Then we find

[§,,utr rdxdy={{, ot nreay.

Moreover denote

DR(u)=SSGRu§+u§dxdy

Extg)=(], et videdy.

Then we obtain

Proposition 4.4. For any small ¢>0, there exist constants R and L such that

4.7 (I1—e)Er(p)— LlelI’=Dr(w)=(1+e)Er(p)+ Llpll®.

Proof is carried out in the same manner as Proposition 3.2 in F. Asakura [1].
Let g, denote the n-th eigenvalue of

“.8) SDee'*‘—b(n&T%n'l'#sD:O (& nelr

=0 (§ n)€ie,

similarly g, the n-th eigenvalue of

2
$Dee+‘bzt—5)7%n+#¢=0 & e

“.9) =0 (¢ pe€dlr with =0,z

pe=0 (& 7)€dRr with £=R,
By virtue of Proposition 4.4, we find employing the Courant min-max principle
(1=e)tn— L=2P <(1+e)fin+L
(I—epn—L=2AP =(1+e)p+L

(4.10)

Let us denote
C=*{n|fF.<a}

CO=*{n| =2 .
We obtain

Proposition 4.5. N(A) is estimated as
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A—L A+L
@.11) —clz+c( e )<N<z)<cgz+c( = ).
) . A+L .
Proof. 1t follows from (4.10) that if 2 <2, then tn= — This shows
N‘”(Z)<C( A+L )
—¢&
Similarly we have
— ~/ A—L
NpnzC(437)

Since G& is bounded, we know that NP (A)=<C.A and N ()=<C,A hold with
constants C,, C,. Hence we obtain the proposition.

Set Q&)= b($)2 . We observe that for large R

(i) QEeCX[R, ),

.. Q%) b'() Ll 2
@ |5z |22 e | =21, A2 oty UM

i) Q@ de= " b r=oo.

2
Let Aggo=——(¢ee+ —b(EE)TgD”)’ Qr=(R, )X (0, ). Thus we have seen that

the operator Ag falls into the previous considerations.

Theorem 4.6. Let N(Z) be the number of eigenvalues of the Laplace operator
in (4.1) not exceeding A. Assume that the zeta function Z(«, Ag) has the analytic
continuation of the form

A [1+p] n

ey 2 2 Anfa—0)(log (a—d)/+gle)

(4.12) Z(a, Ag)= @
(Agp=1, ng)

where g(a) is holomorphic in Rea>¢ and continuous in Re a=¢g. Then N(A) has
the asymptotic form

A
. ~N—— _J0 1 o,
(4.13) N~ iy 22008 2
Proof. By Theorem 0.2, we find
= A
~ ~N—— )0 P .
C(A~C() oT1Tp) 2%(log 2)

Since C(%Isi—) has the asymptotic behavior

o AFL Y~ 4 27(log 2)* ,

1+e al'(1+p)1l+xe)
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then it follows from Proposition 4.6 that

lims N = A
25%P 2(log H)r = (1—e)?al (1+p)
lim inf &> A

1o 2%(log ) — (14¢e)°el'(14+p) °
Since ¢ is arbitrary we obtain
NQ) A

m ollog F — ol i+p) "

§5. In this section we study the distribution of eigenvalues of the operator
(0.1) in certain cases where the integral (0.12) does not converge for any a (for
example Q(x)=(log x)?*). In this case, we can not make use of the zeta func-
tion any more in studying the distribution of eigenvalues. Here we shall adopt
the methods in F. Asakura [1], which is based on a uniform asymptotic expan-
sion of the solution to the Sturm-Liouville problem developped in E. C. Titchmarsh
[11].

We come back to the problem (2.1). Let @,(x, 1) be the solution of

P+ (A—n2 Q) D, =0  for x>0
(5.1) -
So D, (x, Drdx<oo.

We observe that the solution is determined uniquely up to constant multiples.
We also find that 2,; is an eigenvalue of the problem (2.1) if and only if
0,0, 2,,)=0.

Remark 5.1. For the problem (2.1)" we can see that 1,; is an eigenvalue if
and only if @7(0, 2,,)=0. Hence we need uniform asymptotic expansions of
both @,(x, 2) and @,(x, ).

Now, we assume Q(x) to satisfy (0.17). To make the explanations simpler, we
may study the equation (2.1) in the interval (R, co) with the condition o(R)=0
after we shift the interval (0, o) to (R, o) by translation of the variable. Set

Q. (x, 2):”72Q(x). Then @,(x, A) itself satisfies
(5.2) (i) Qulx, HECH[R, ) in x, Qu(x, H>0, Jlﬂlg.} Qn(x, A)=00

A _Qwxd _ B

6.3) (i) xlogx = Qu(x,2) = xlogx for x=R,
Qi(x, A) Qu(x, A) C
oo @) [GEglsy [Gaglsw  for a2R,

where A, B, C are independent of n and A
We observe by (5.3) that
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alax, 4
(5.5) lé%)—)ga‘” holds for 1<a=<a,.
Set P,(x, )=1—Q,(x, ). Then the equation is expressed as
(5.6) QU4+ AP,(x, DD, (x, )=0.

Since P,(x, 1)<0, there exists a unique point x=X,(1) satisfying P,(X.(1), 1)
=0 and P,(x, )<0 for x> X,(2), P.(x, A)>0 for x<X,().
We introduce a function ¢,(x, 2) in the following fashion.

5 a0 D7=]7 (@ult, D—Qu(Xa), Dy
=SX (—P,(t, D)2dt  for x=X,(),

(5.7) 9 4
3 (=8alx, 0= " (QuXaD), D—Qult, D dt

:an(Pn(t, Ayrde - for x=X.(2).

We can readily see that ¢,(x, 4) is class C* in x and satisfies
6.8) $u($h)'=—P, .
Let A/ and Bi the Airy functions defined by

Aiz)= %S:’ cos (% -+t dt

() — 1 (= —t3/3+2¢ H l
Bz(z)-——?g0 e *2t 4 sin ( 3 t3+zt)dt s
which are linearly independent solutions to y”=xy. Set
An(x, D=¢n(x, A)7PAI(2 . (x, 2))

Bu(x, A=¢u(x, H7*Bi(2°¢,(x, ).

Then A, and B, are linearly independent solution of the equation
(5.9) Y”4+2AP,(x, Z)Y—l-% {¢n, x}Y=0

where {@, x} is the Schwarzian derivative of ¢ defined by

9, ii=-27—3(27)".

¢ 2\¢
In our case
1 Py 5 (P, P2
(-10) 7 ¢ =15, _E{E“L(Pn) b

We shall take A,(x, 2) to be the first approximation to @,(x, ) as 2 tends
to oo, Set

Ku(x, t, )=—aA"*[An(x, DB,(t, )—A,¢, )B.(x, A)].



Asymptotic distribution 195

‘Then the equation (5.1) is equivalent to the integral equation

(5.11) D.(x, H=A,(x, 2)——%5:](,,(;(, t, D{dn, t} D, A)dt.

For the solution of the integral equation (5.11), we can show
Proposition 5.1. Assume

6.12) (71w 1111Pat, D1 2dt< L

with a constant L which is independent of n and 2. Then @, has the following
asymptotic forms

©13) (e, DT RAIR G (x, D) {1+0@ )
for xzX.),
©.14) D, (x, D=1 $n(x, D7EAR G (x, D) {1+0Q1)

+O@2Pr(x, ATPBi(A P Pa(x, A)))
for x=X,Q),

as A—oo, which hold uniformly in n.

Proof. We observe that A,(x, 2)#0 for x=X,(4). Set

_ Dux, A
2l D= G
Then Z,(x, A) is the solution of the equation
1 Aq(t, 4)
Za(x, D=1 | Il 1, Do, 1) 0 5 Zatt, D
Employing certain estimates of the Airy functions, we find
Anlt, ) | Cl{¢n t}]

Foltes b D9w 114 G 0 |2 75500, Dlgate, DT

Clign, t|

Then if we assume (5.12), we obtain

Za(x, H=1+0(171"?),
which shows (5.13).
For x=X,(4), inserting (5.13) into (5.11), we find that the equation is ex-
pressed as ’
1

Do(x, )=0L(x, 4) 2

Xp(2)
[ Katx, 1, D16, 01040, D0t
‘where
1 (=
O (x, D=Aalx, D=5 |, Kalx, &, Dign, 1 Onlt, Dl

=Au(x, 0@ An(x, D)+0A"By(x, 2)).
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Set Wa(x, A=142¢|¢(x, D|V)Pn(x, D'*P,(x, 2). Then by the similar discus-
sions as above, we obtain (5.13) (see for the details A. Erdélyi [6] and F. Asa-
kura [3]).

For (5.12) we can show the following lemma which is crucial in our discus-
sion.

Lemma 5.2. Assume Q(x) to satisfv (0.17). Then we have
(5.15) S {@n, 1 [ Pa(t, D] 7172dt=CX, () (log Xn(2))'2
with a constant not depending on n, A

Proof. For simplicity we omit A to denote P,()=P,(t, 1), X,=X,(1) e.t.c.
Pick a,>1. For 1<a=a,, divide the integral as

O
=L AL AT

In the following discussion, we abuse C to denote any constant which is
independent of n and 4.

(I) Estimates of I, (x=aX,)

Recall

(5.16) - (6 1= 1;; %{P—;{JF( I;i )}

—— B ()

We carry out the estimates of (5.16) term by term.

o1 S _’IP |-172d¢
- § QU (Q (1) — Q (X)) d
C (= ) ]
= Sax QL Q()—Qn(Xn)*2dt
§ (Qn(aXn) Q. (X)) 12,

By the mean value theorem, we have

X‘”z QL&) for some X,<(<aX,.
Since by (5.3)’
) , . AQ,&) AQ(X7) C
N n = = =
G618 I QuO= N Flogf = aX,logaX, = X.log X,

we obtain
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(5.19) I, gn TAE usz&ongﬁ,
(5.20) G 1=l Paorigyoar.

Set Cn=—§¢§.’2, then we find &, =(—P,())"? and the integral (5.20) is expressed
as
o ot tdr= g e
axq o V2" 4 =" o
We observe

Eatax =" " (Qutr- QX e

> inf Q(&)“ZS "—X,)Medt

T XpsésaXg

By (5.18), we have
CX,
){ >_ Tt r
Cn(a n)= (log yn)”z .
Hence we find

1/2
G.21) SX (Cllog X,

Xa

P,|-1dt=
¢" | Pnl”

P;

6.22) S

=§ QUQu)—Qu(Xo) o dt

= )?n S QL)Q.()(Q () — QA (X)) 52dt

C

lIA

7, Qu@un—0uxaysrat

X,
¢ e ’ -5/2
+ 5 QX QUOQUO— QX

< (Qul@X) = QulXa) o S (QuaXa)— QulX )

<— 1/2 . , A
=X a8, | O m“gsfle,,@n :
Then it follows from (5.18)
P p gy Cllog X
62 [ B e S5

In this way we have proved
C(log X ,)'/?

L= X,
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(II) Estimates of [, (X.=x=ZaX,).
Integrating (5.7) by parts twice, we find

(5.2) 2 pr=—(=Pyrp) 1+ 2 PUPY P+ S

where S,= Pﬂ< szg (— P2 {PU(P,) 5 —3(P1X(Py) 4 dt

First we show that we can make the magnitude of P/P,(P;)"? and S,
arbitrarily small, if we choose a sufficiently close to 1.

(5.25) | Pa(PR) 2Pyl

=[Q71(Qn) *(Qn(x)—Qn(Xr))

_1Quol Que
= T0m) Qun) FTAR (KasEsaXy)

< C sup Q)

X, Inf Qi(x) X
Since
Qn(aX,) CQ(aXy)

<
(5.26) ,,sseliEx,,Q"(s aniéélixn Elog & = X, log X, ’
we find together with (5.18)

C  QqlaXy)

-2 T (—

(6.27) | PA(P2) Py = X, Q.X) (x—X5)
Then by virtue of (5.5), we find

(5.28)

| PU(PY)*P, |<iu X)=Cla—1).

’”(t) ‘ +‘ Q”(t)

629 1S)ZCQLNQux) = QuXa) ™ ( [/f0)

Q) "%(Q (1) — Qu(Xa))"2dt
n(x)_ Qn(Xn))_ale:nQn(t)—2(Qn(t)_Qn(Xn))wzdt

Il

sup @n()
X2\ inf Qn(8)

QulaX) iy C
( 0.0 ) BT =%

I

) =X 3/2S (t—X,)¥dt

lI/\

(x_Xn)2 .

X3
Hence we have
(5.30) [Sal=Cla—1).

By (5.28) and (5.30) we find

P =—(=P)*(P) ' (146), 0=0(a—1).

If we choose a sufficiently close to 1, we obtain
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63D gr=(—P) (P {1—g PUPD Put-0(S.)+ 0PI P Po)}

Hence we find by (5.31) that the Schwarzian derivative is estimated as

(5.32) [ {@n, x} | SC{PIHP2) *+P73(Pa)*Sy}.
We carry out the estimates of the right side of (5 €2).
(5.33) P ) (Q Xn
(5.34) | Pi2(P7)*Sn| SQa(x)X(Qa(x)—Qn(Xa)"?[ Sal
(sup Qn(x))* , 1 s
=Clint Qagyr C TS

Then it follows from (5.29)

C
| PP Sl S~ Xz°
Hence we obtain

C
X

(5.35 [gn, 511 =
It follows from (5.35)
[ g, 111 Pate)] 20

= Q- Quexay et

< C an 12
="X3(inf QL&) an (t—X,) V2t .

In this way we obtain
C(log X,)'*

X, )

The estimates of I, and I, are carried out just in the same manner as above.
Hence we obtain the lemma.

1| <

Employing Proposition 5.1 and Lemma 5.2, we have shown

Theorem 5.3. The solution @, of the problem (5.1) has the asymptotic form
(5.36) Du(x, D=¢u(x, A7 *{AiR*Pn(x, D)+0A %)}

which holds uniformly in x and n as A—oo,
For the derivatives, we have

Proposition 5.4. Assume, in addition to (5.12)
n

e |1 =M

(5.37)
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with a constant M which is independent of 2 and n. Then the derivative of @,

has the asymptotic form
(5.38) ABgn(x, DVEAI (A Pa(x, {1+0Q M)} for x=X,,
(5.39) @;(x,2)=’ 23Gn(x, VAN (A Pa(x, D){1+0(271%)}
+0(gn(x, D2 Ai(X 2 Ga(x, D)+OQ@ M Bi' (A2 p,(x, )
\ +O0@ 7 2gn(x, DVEBi(APpa(x, X)) for x=Xn.

Outline of proof. Differentiating the both sides of (5.11), we find
GA)  Oulx, D=, D g | Ko, 1, D, 1D, D

Note

A8, D) 4o
e o AR e, )

=3¢ (x, DAV AP (x, D)FOQBAIM 3P a(x, D)} .

An(x, H=2"¢x(x, 2)"2{A2"(2"3¢n(x, -

Inserting (5.13) and (5.14) into (5.40) and estimating the integral, we obtain the
result.

In our case we can show

Lemma 5.5. Assume Q(x) to satisfy (5.3) and (5.4). Then we have

(5.41) $a(x, A) | Cllog X,)'/*

oalx, * 1= X3P

with a constant C which is independent of x, A and n.

Proof. We observe

o 1 17 $a NP
6.42) W T 24 2 p,,) .

Choose a,>1, consider the case x=aX, for 1<a=<a,.

(5.43) 2 gatx, 2= (—Pa) s

= @u—Quta)y at

aX

= inf QZ(G)‘”S "—X)ede

T XpsésaXp x

Then it follows from (5.18)
1 < C(log X))

(5.44)

6.0 = Xa
G5 g hule, W= e (@u= QKR
' 3o X QalD) T
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1 ’ 1/2N)’
éwg}{n@n(t)—a)n(xn» rQy(tdt

=C(x log x)(—Pn(x, ).
Hence we have

(5.46) K__?;:Ei, :22; )léme(log XM
Using this we find
R S ESRENL:
Q@n(x)

=Clx log ) 5 oy 0
< C Qn(x)
=" log 0% Qn(x)—Qn(Xy)

< C Qn(aXn)
= (Xn IOg Xn)2/3 Qn(a'Xn)—Qn(Xn)
- C Qn(aXy) _ CQn(aX,)(log X,)'°
= X3(log X,)** inf Qn(8) T Qn(Xn)X5"® ’
Then it follows from (5.5)
$a \2 Pr_| _ Cllog X,)'°
I(" P, 1T X
In this way we have proved (5.37) for x=aX,. We can proceed in the
same way in the case R<x=<a'X,.
Next consider the case X,<x=<aX,. Recall the proof of Lemma 5.2, then
it follows from (5.24)

$n 1 (2, 50
5.47) o= {5 PuPDPutS}.

and

GA8)  gii=—(P) P (I AP P+ O(S)+ O(PRAPD)PD).

Inserting (5.48) into (5.47), we find

(5.49) (g,n)z =0(P3(Pn) ") +O0(Pr)**P3'Sy)) .
We carry out the estimates of the right side of (5.48).

< C
= xQn(x)?

(5.50)

4 y
\ (P73 H AE
< ¢
=X, inf Q(x)""®
Then by (5.18) we find
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" C(log X,)"/®
(5.51) ' (PDs | = § ¥
(Pr)*3S,, Q'(x)**| Sa|
(5.52) ‘ P, T Q.(x)—Q.(Xy)

<C (St}p Qn(x)** |54l ‘
= (inf Qn(8) (x—X,)
By (5.18), (5.26) and (5.29), we have

C(log X,)'* Qn(aX,)™*

(PR3,
< - —
e e =¢ Al
< C(log X,)'/
= X%/I’!

In this way we have proved (5.40) in the case X,<x<aX,. We can treat
the case a™'X,<x=X, in the same way and then we obtain the lemma.

Employing Lemma 5.5 and Proposition 5.4, we obtain the asymptotic form
of the derivative of @,.

Theorem 5.6. The derivative of the solution to the problem (5.1) has the
asymptotic form

(5.53) Q7 (x, A=A"¢n(x, A {A"(A2Ga(x, ))+OQ 1)},
T'he Airy function Ai(z) has the asymptotic form
2 T
W — o\—m—1/2,-1] =82 7 -
(5.54) Ai(—z)=r"1%z7! “{cos(s 2302 4>+0(z 3’2)}
2 T
M — 5y — —1/25-1/ H - —_ -
(5.55) Ai'(—z)=g"12%z1 “{sm(s Falk 4)-1—0(2 3'2)}

(see A. Erdélyi |6]).
These asymptotic forms say that, for large n, Ai(—z) has one and only one zero
around (%(n—%)n-)m. The next lemma tells that it is really the n-th zero of
Ai(—2).

Lemma 5.7. If n is sufficiently large, Ai(—x) has exactly n zeros in the
A 3 1 2/8
interval 0<x <{—2—(n+z)7c} .

For the proof of the lemma, we notice Ai(—z)=(1/3)z*"2{ J1;5()+ J-1,5Q)},
where J.({) is the Bessel function of order v and {=(2/3)z*/%2. The location of
zeros of z'2{ Ji;5(2)+J-1/5(2)} is well studied in §7.9 of E.C. Titchmarsh [11].
It is known that there exist exactly n zeros in the interval 0<x<(n-+(1/4))x,
for sufficiently large integer n. Then the lemma follows.

Now we well prepared to show the asymptotic formula of the distribution
of the eigenvalues. We can see easily that Theorem 5.3 and Theorem 5.6 toge-
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ther with (5.54), (5.55) and Lemma 5.7 are all of what we need to employ the
arguments in § 7.8~7.10 in E.C. Titchmarsh [11] and §4 of F. Asakura [1].
We just follow the arguments there and then we obtain.

Proposition 5.8. Let N,(A) be the number of the eigenvalues of (2.1) not
exceeding 2. Then we have

(5.56) Nn(l)=%Szn(l—an(x))”?dx+0(1)
as A—oo, where the remainder estimate is valid uniformly in n.

Now we can carry out the proof of Theorem 0.3.

Proof of Theorem 0.3. Let N(A) be the number of the eigenvalues of the
original problem (0.1) not exceeding 4. We observe

NQ)= glN,,(l) .

Since N,()=0 for n=2A"2Q(R)"*/?, the summation is in fact finite and then we
find

[a1/2QRry-1/2]

No="""3%"" N

1 = (Xn
= — 2 S (2_712Q(x))1/2dx+0(2”2) A
4 R

n=1

In this way we obtain the theorem.
For Q(x)=(log x)*, it follows from above

(5.57) N(l)=«/%l”2“/“‘e“’” {1+0@ 120} .

Finally I would like to make an additional remark on the eigenvalues of the
Laplace operator in an unbounded domain. If G=G, UG, where G, is bounded
and G, is represented as

1
— < 2 -
Gz—{(x, P=RR<x <0, 0<y< (og x)k}’

then the large eigenvalues of the Laplace operator with the Dirichlet condition
are expected to behave like the large eigenvalues of the operator considered as
the example above. But in this case we merely obtain

Proposition 5.9. N(2) has the estimates
(5.58) Cie@-2 3 S N(Q) S Coeter 41128

for any € with certain constants C,, C, depending on e.

To show (5.58), we shall follow the notations in the proof of Theorem 4.6.
Set Q(x)==?(log x)**. Then it follows from (5.57)
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(5.59) C_(l)NQ(Z)N,\/‘%ZI/Z‘Iltike;(l/zk‘
Inserting (5.59) into (4.11), we have

21/2—”“eXp((ﬁ)””)(l-l_o(l))

=N@= 2 exp ()" )a+oq).

1—e
Then (5.58) follows.

§6. In this section we carry out the proof of Theorem 0.2. We follow the
proof of the Ikehara Tauberiam in D.V. Widder [13].
A function f(x) defined in (—oo, o0) is said to be slowly decreasing, if

lim inf {f(x+d)— f(x)} =0 (x —00,0—0,0>0).

Let K(x) be a smooth, positive and even function so that the Fourier transform
K" (§) is positive, even decreasing in £=0 satisfying K"(0)=(1/2x), supp K"(§)
c[—1, 1]. Set K;(x)=AK(Ax), then the Fourier transform Kj;(&) of K;(x) is
K~(&/2). We can readily verify

Proposition 6.1 (Theorem 9, Chap. V, D.V. Widder [13]). Let f(x) be
bounded and slowly decreasing satisfying

1imS°_° Kix—0f0dt=A  for al 2>0.
Then
lim f(x)=A.

Let N(¢) be non-negative, non-decreasing function and let
Z(a):S:"t-«dN(t)

satisfy the hypotheses of Theorem 0.2. Without loss of generality we may
assume =1 and N(1)=0. We set t=e*. Since N(e®)=o0(e**) for any a>1, we
find

Z(a)= S:e‘“‘dN(e’)

=are"“‘1\/'(e“)ds .
0
We shall prove the Tauberian theorem of the form

Theorem 6.2 (see D.V. Widder [13], Chap. V, Theorem 17). Let N(x) be
non-negative and non-decreasing. If

®6.1) L(s)= S:e‘”N(x)dx
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converges for Re s>1 and with p=0

1+pl n

(6.2) Ms)= L) —(s— D0 3 %2 A, (s—1)"(log (s— D)

can be extended to a continuous function in Re s=1, then N(t) has the asymptotic
behavior

(6.3) N@) ~

Ao '
F(1+p)et as t—»> 0.

Proof. We may assume p>0. Because we can skip directly to (6.8), if p
=0. For 1<t<A, x>0, we find

0

24 oo

[ eess—yrras={ |

t t 24
=F(p)x"’e‘“—e'“S:_te‘”"u”‘ldu.

We can see that the both sides of above make sense for 1<Ret<A, x>0. Then
we have

1
T(p)
where G4(x, t) is continuous and uniformly bounded in 1<x <oo, 1<Ret<A and
the integral is taken along the path satisfying Re s=Ret. In a similar fashion
we have

(6.4) SjAe‘“(s—t)P"‘ds=x‘f’e‘“+e‘2“GA(x, 1)

1
Ta+p)—1

where H,(t) is continuous for 1<Re¢<A. We find that the integral

- 1 2
(65) TE;))—'StA(S—t)P'I(S—l)‘PPdS: +HA(t) ,

1 24 _ -1 _ n-p-1 — m
6.6) T‘O)St (s—1)7-1(s—1)"-~'(log (s—1))"d's
converges for 1<Ret<A and continuous there, if n=2. When n=1, we can
see that the principal part of (6.6) as t—1 is j_Zl)sz(log(t—l))f. Then we find
(6.6) is expressed as

(6.7) j§2 B;(log ¢—1))74H (),

where H,(t) is continuous for 1=<Ret=<A and B;=0(y=1, 2) for n=2.
For Ret>1, multiplying to (6.2) I'(p)"*(s—?)?~* and integrating from ¢ to
2A, we find

6.8) f(t):‘:e‘“’x'f’N(x)dx

_ Ago
T I'+p)t—1)

where i 4(t) is continuous in 1<Ret<A. Set

+ 3 Callog (t—1)"+h.4(0),

a(t)=e 't e NOX(2),
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AOO
I'(1+p)
where X,(¢) is the characteristic function of the interval (0, c0). Then it follows
from the hypotheses that

A= X0

e tta(t)y=e ML P N(HXL(2)

is a summable function in (—oo, o). Set

1p@={"_Kix—)a)— A®)edt

I

I” (" K3 @etevide)a—Aneds

=" m3@e = ([" (atr— A@ne-++uar) de.

Since

S:(a(t)—A(t))e‘””f‘dt

o . A @ )
— -+ t+idty-p 00 -ct+ibt
—Soe 1P N(@)dt Ti+p) Soe dt

. AOO
I'(1+p)(e—i8)

= 3 Callog (e—i)"+hu(l+e—if)

=f(l+e—1§)

and supp K;(&)c[—4, 2], we find
1p0=(" Ki@e{ B Cullog (c—i&)"+h(1+e—iO)}dé.

We observe that h4(1+e—:&) is uniformly bounded for [&] =2, 0<e<¢, and
h4(1+e—i&) converges to h,(1—i&) as e—0. Moreover, since

[Tog (e—i8)| < 3 llog (c"+8Y |+
= Cmax{log|él, 1},

log (e—?&) is dominated by a summable function which does not depend on .
Then it follows from the Lebesgue dominated convergence theorem

1 . . .
lim fﬁ"(X)ZS KE(E)e'””‘{ > C,,(log(z&))"—l—hd(l—zé)}dé.
e=0 -2 n=1,2
Set I;(x)=lim I{®(x). Then we can express with a summable function @ that

Lix=|" o@e-=tde

=tim | Ki(x—n(a—A@edt.

We observe that
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hmg Ki(x—ta(t)e *dt

=lim 1§2(x)+ —rp e F(1+ ; nmg Ky (x—te-etdt

— I+ F(f‘j: 7 K.

Since K;(x—y)a(t)e st is positive, increasing in ¢ and converging to K (x—t)a(t),
then it follows from the Beppo-Levi theorem

=" o@et=dg

=S°° K(x—1)a(t)— A@)dt .
Employing the Riemann-Lebesgue lemma, we find
lim S” Ki(x—1)alt)— AQ)di=0,

which shows
AOO
I'(1+p)

We can easily verify that a(t) is bounded and slowly decreasing. Then it follows
from Proposition 6.1 that

1img°_° Ky(x—Da(t)dt=

AOO

ltl_l}l 2_3t_PN(t)=[,(l—_+p).
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