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1. Introduction.

First of all we will recall a controlled stochastic differential equation (CSDE
in short) and its Hamilton-Jacobi-Bellman equation (H-J-B eq. in short). [2, 4,
6, 131.

Let I" be a compact subset of R*. Let B be a d-dimensional Brownian
motion. A I'-valued process is called an admissible control, if it is progressively
measurable with respect to B. U denotes the totality of admissible controls.

Consider CSDE for U,

@y { dé=a®), UW)ABM)+7rE®), UWM)dt

§0)=x.
Under the mild conditions, we have a unique solution &=&(-, x, U) of (1.1).

Define a pay-off function V(t, x, ¢, U) by

(1.2) Vi, x, 9, U)=ES:e's3”5“’”’(0”“.}"(8(5), U(s)ds
+e- 50 OO A0 (E(1))

where &(t)=£&(, x, U). We want to maximize its value by a suitable choice of
Uuey.

(1.3) Vi, x, ¢)=supV(, x, ¢, U)
e

is called a value function.
The operator V(¢) defined by

(L4 Viyg(x)=V({, x, ¢)

becomes a semigroup on a Banach lattice of BUC(R?)(=totality of bounded and
uniformly continuous functions on R?). Its generatory & is given by

(1.5 @¢:su¥(A(u)¢—e(x, w)p-+f(x, u), for smooth ¢,
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where A(u)= Za,,(x U)——i— o 3 +Zrl(x u)a and a(x, u)=%a2(x, u) [2, 9,
13]. Moreover V(#)¢(x) is a v1sc051ty solution of H-J-B eq. [10],

VE D) oAV e 0—clx, WVE 1)+ f(x 1), in ©, T)X R
(1.6) ot wel

V0, x)=¢(x), xeR?.

Further smoothness of coefficients and non-degeneracy of a produce more
regularity of solution [3, 7, 11].

Recently N.V.Krylov [7] and N.S. Trudinger [15] investigated more gen-
eral Bellman equations, namely they extended A(u) V——c(x w)V+f(x, u) to some
non-linear elliptic operator F*(Vy, i-j=1, ---d, V;, i=1, ---d, V, x). Assuming
uniform ellipticity and some regularity conditions, they showed the existence

of a unique classical solution V of the following parabolic (or elliptic) Bellman
equation,

(v . . .0 &V . v .
T fF ( dxax, , 1, j=1--4d, x i=1--4d,V, x)
in (0, T)XR¢
V0, x)=¢(x), on R¢.

In this article we will discuss control problems associated with the following
simple case of F*

FY(Vy, i, j=1, - d, Vii=1, ---d, V, x)=Aw)V —c(x, u)V+f(x, V, u) where
A(u) is a second order elliptic operator which may be degenerate. Namely we
deal with the following H-J-B eq. (1.7) by the probability method.

—a—I;=supr)(A(u)V—c(x, wV4f(x, V, u))
ue

(1.7) 0
in (0, T)X R¢
vV, x)=¢(x) on R¢,

Recalling the relation between (1.3) and (1.6), a solution of (1.7) seems to turn

out the value function defined by the integral equation (1.8).

(1.8) Vi, x)=sup Eg:e‘ﬁ“‘f“’"”“’”d"f(é(S), Vit—s, &(s), U(s))ds

4o-Sieco . von WE()) .

In §2, we will show the existence of a unique solution of (1.8). Using the
routine of stochastic control, we can prove the Bellman principle and the
solution V of (1.8) provides a semigroup with generator (1.7), [Theorems 2 & 3].
Moreover V becomes a viscosity solution of (1.7) [Theorem 4].

If f(x, v, u)=Au) gopk(u)v” with p,(u)=0, p,(x)=0 and Zk)pk(u)=1 and

c(x, w)=Au)>0, then A)V—Aw)V+f(x, V, u) is the generator of branching
diffusion. Therefore we can construct a solution of (1.7), using a stochastic
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control for branching diffusions, besides the value function V of (1.8). More-
over we have a semigroup W(t) with generator of (1.7), by the routine of time
discrete approximation. Then W(t)gﬁ(x) and V (¢, x) coincide under mild condi-
tions. In §5, we assume that 2 and p, do not depend on u. Applying the
same method as [8], we can see that the viscosity solution of (1.7) belongs to
W2 under the conditions of complementary non-degeneracy and smoothness of
coefficients [Theorem 7].

2. Stochastic control associated with (1.8).

Let I' be a compact subset of R* called a control region. B(f), t=0
denotes a d-dimensional Brownian motion, defined on a probability space
(R, F, P). Put F,=o¢-field generated by B(s), s<t (=0¢,B)). By an admissible
control we mean a [ -valued F,-progressively measurable process. U denotes
the totality of admissible controls.

Let @ be a dXd symmetric matrix valued function on R?X[’, and y and
¢ R* and R'-valued functions on R?X[I respectively. We assume the following
conditions

(Al) glx, u)eBUC(R?XT"), g=a;j; 74 ¢
say, |g(x, u)|<b, g=a, v, and c(x, u)=1>—co.

(A2) sup [g(x, u)—g(y, wI=Klx—yl, g=a 1, ¢,
Suppose that feBUC(R%X R'x ") satisfies (A3)

Suglf(x, v, W)—f(y, w, WI=K|x—y|+h|lu—wl,
ue

(A3)
sup | f(x, v, u)| =b.

By virtue of (Al) and (A2), CSDE(l.1) has a unique solution &(t)=¢&(t, x, U)
which is F,-progressively measurable.

Theorem 1. Eq. (1.8) has a unique solution VeBUC([0, T]x R%) for any
T>0.

Proof. For simplicity we put

2.1) F@, x, ¢, g, U)

=B e Tieco 0o e, gu—s, &), UG

_[_e—ﬁ c§®),Us) ds¢(f(t))

where £(t)=§&(, x, U) and sub x of FE, means the starting point of & Define
Vi £=0,1, 2--- as follows,
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2.2) Vilt, x)=¢(x)

(2.3) Vit x)=supF(@, x, ¢, Vi-y, U), k=1, 2, -
vex

Putting [¢|=supremum value of [¢], we get

Lemma
. l—e-?
(1) Vilt, D=1 l—— +lgle*
1—e ¥
where 2 stands for t when 2=0.
(ii) V,.=BUC(O0, TIXR%  for any T>0

Proof (i) is clear by (Al).
(ii). Put &@)=&¢, x, U) and n®)=£(, v, U).
Recalling the following evaluations

(2.4) EIEO—n® S x—y[%®F (say |x—y[*g*(®)
and

(2.5) E|&(t+0)—E®) 2 =2b%(0+6%)

we have

(2.6) |F(t+0, x, ¢, g, U)—F(t, 3, ¢, g, U)|

(et flds+ B oK 1805) =75
+h|gt+0—s, §(s)—glt—s, n(sNlds

+Egt | PRk c€O),U®)d0__ o= cn® U] Js|| £||
0

+E|e (z)+0 c(e(s,_vm)ds_e_séc(r,(s).v(s))dsl “¢“
+eME[GER+0))—d(nt)]

Using (2.4)‘ and (2.5) we can easily prove (ii) by induction.
Now we will prove Theorem. From the definition of V,, we see
t
2.7 [Vien(t, ©)—=V.(t, x)lésupES eS|V (t—s, &G, x, U))
Uen 0

—Vieoalt—s. &G, x, UNlds
Putting o,(1)=IV({, )—Ve-:lt, I, (2.7) turns out

pkﬁ(t)gs:e‘“hpk(t—s)ds=hS:e' =9 g,(s)ds
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(2.8) e pin®=h] i)

ett—1
p

Since e“pk(t)§[|f|[ +1¢l, by Lemma (i), (2.8) implies

hktk

U i),

2.9 0 n(t)S

553

Therefore 2} (Stlggpk(t))<00, for T>0. So, V, converges uniformly on [0, T]
X R4, as k—oo. Put V=lkimV,,. Then VeBUC([0, T]x R%) by Lemma (ii).

Moreover
(2~10) IF(ty X, ¢; Vk) U)—F<t5 X, ¢; V} U)[

§hS:e‘“lle(l‘—S, D=V(t—s, -)lds

0

<3 upp-(ﬁ)gte"“ds
Y J 0 ’

Jj=k Ost
Hence, as k—oo, we have

sup“F(t} b ¢y Vlz) U)_F(t: b ¢» V; L])”_é 0.
ved

So, we see
supF(t, x, ¢, V, U)=V(t, x)
Uved
i.e., V is a solution of (1.8).
Let VeBUC([0, T1X R%), for any T3>0, be a solution of (1.8).
the same argument as (2.9), we have
hktk

176, )=V, s

Hence V=V. This completes the proof of Theorem.

3. Semigroup V().

Firstly we recall the following Bellman principle. Define W by -

3.1) wt, x)zgggEzgze‘ﬁc@(m'”“’”“gu—s, &(s), U(s))ds

te-Siec@.uwdn Wb (E(1))

Ve, )=ve, ll,  for k=1,2, .

Then, by

where geBUC([0, T]X R?) for any T>0. Then the Bellman principle holds,

i.e.

(3.2) W(t+s, x)=£s}:gE;S:e'ﬁ“““””“’”“"g(t—l—s——z, &2), U(z))dz

+e-53c<e<o>.v(omow(s, E@).
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Putting g(t, x, w)=/f(x, V,(t, x), u), we apply (3.1) and (3.2). Then we have

33 Vil s, x>=3upE,S'e-Sé“f(”"vwwf'f(&(z), V(i4s—z, &), U@)dz

eqA 0
+e-fé CEOUOOY (s ().

Tending k to oo, we can see Bellman principle for V, i.e.

(3.4)  V(+s, x)=3ugEIS'e-58”e“”’”w”d*’f(s(z), Vt+s—z, &@2), U@)dz
(=

0

fe- Sl vonany (s &),

Stressing the dependency on the initial value ¢, we will denote a unique
solution V(t, x) of (1.8) by V(t, x, ¢). Put

3.5) Vt, x, §)=V(t+s, x, §).

Then (3.4) turns out

(3.6) V@, x, g)=supFt, x, V(s, ), V(-, -, @), U).
Uedt

This means that ¥ is a solution of (1.8) with the initial value Vs, -, é).
Therefore, by the uniqueness of solution, we have

3.7 V(t+s, x, )=V, x, V(s, -, §)).
Now define V(¢) by

(3.8) V=V, -, 9)

Then V() is a transformation on BUC(R%) by Theorem 1.

Theorem 2. V(t) has the following properties
(i) V(0)y=identity

(ii) V(+s)=V OV (s)

(i) IV@®d—e¢l—0 as t—0

(iv) IVOe—=V Ol <e™Vtg—gl

(v) V(¢ is Lipschitz continuous, if ¢ is so.

Proof. (i) is clear and (ii) is nothing but (3.7). Since V(t)¢(x) is uniformly
continuous on [0, T]1X R¢, (iii) holds.

(3.9 [V (O)$(x)—V ()p(x)]
égléglF(f, x, ¢, V(, 8), )—F x, ¢, V(-, ¢), U]

gsupgte' BRE | V(I—)$EE)) =V (E—s)pEs)|ds+e lg—¢|

veuso

Put p)=IV()é—VB)¢I. Then p is continuous and (3.9) implies
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(3.10) pO=h[ et —s)ds+em g~

So we have (iv).

Lip(A) denotes the totality of Lipschitz continuous functions on R¢ with
Lipschitz constant A. Let geBUC([0, T] X R?) for any T>0 and g(¢, -)€Lip(A4),
¢<€Lip(B). Using (2.4) and (2.6) we have

(3~11) |F(t’ X, ¢: 8, U)_F(t, Y, ¢’ 8 U)l

é[S:e-“(K+hA)q(s>ds+||f ||S:e'“KS:q(0)d0ds

+Bq(t)e‘“]lx—y| ,
where ¢(t)=e%¢/2, Taking 6 such that

0 -2s _l
(3.12) W e qs)ds=7,
we have, for =0,
A
B13)  F x ¢ g U)—F( 3, 6, g U)I<(Bptr+75) x—5

where p and r do not depend on g and ¢. Now putting g({, x)=¢ and A=B,
we have

(3.14) Vi@, -)ELip(Bp+r+%) for t<6.

VA=A RY) 1y\* .
Suppose V ,(t, -)eLlp( j2=30 (7> (Bp+r)+(7) B), for t<6. Then recalling (3.13),
we see

IF(t; X, ¢; Vkv U)_F<ty Y, ¢; Vk’ U)

<[sp+r+5 (2 () Brent(5) B)] 1551

i.e.

@15 Viatt, JeLin( 3 (5) Botn+(3)"B),  for 1s0.

=
Since V, converges to V uniformly on [0, ] X R¢, we see
(3.16) ViypeLip@2(Bp+r))  for t<6.

Repeating the same computation for V()}V (0)¢), we have
(3.17) V(+0)p<Lip(2(B,p+r))  for (<6

where B;=2(Bp-+r). This means that V()¢ is Lipschitz continuous whenever
t=<20. Repeating this argument, we can conclude (V).

Theorem 3. Let & be the strong generator of V(t). Then
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618 2®)>lpeBUCRY; 22, T _cpucke, i j=1, -, di=9)
i 10X

and
3.19) @¢=§gg(A(u)¢—c(x, we+f(x, ¢(x), uw), for ¢€9.

Proof. We apply Ito’s formula for ¢=9. Then
(3.20) F@, x, ¢, Vit)p, U)—(x)
=EIS:e'S3”e‘o"”w”dg(A(U(S))¢($(S))— c(&(s), U(s)P(E(s))
+£(E(s), V(E—3)gE(s), U(s)ds.

By the uniform continuity of a, 7, ¢, ¢ and V, we have
t
3.21) V(¢)¢(X)-¢(x)=lslggESOA(U(S))¢(x)—C(x, U(s)g(x)
+f(x, ¢(x), U(s))ds+o()
where o(¢) is small uniformly in U and x. On the other hand

(3.22) the main term of rigth side of (3.21)
<[ sup AGP(n)—c(x, WD)+ (x, $(2), Wi

t
<sup E| AU©)$0)—c(x, UG+ (x, $(x), Us)ds
Therefore < turns out =. Thus we can complete the proof.

Theorem 4. V(1)¢(x) is a unique viscosity solution of (1.6) in BUC([0, T]
X R for any T>0, if suplay(-, Wlwera, <oo, ij=1--, d.

Proof. Put V(t, x)=V({)¢(x). Then VeBUC([0, TIXR? and we can
approximate V by a smooth bounded function W,, so that
(3.23) |V, x)—W,(t, x)|>27* for any (¢, x)e[0, T]XR?.

Define W, by
G24) Wi, 0=supEL] e SO0 @t e(s), Witt—s, §(s)), Uls)ds

Le-fiec® vON BE(H)).

Then, as k—oo, W, converges to V uniformly in [0, T]X R?¢ by (3.23). More-
-
over W, is a unique viscosity solution of (3.25),

a—w=supA(u)W——c(x, WWHf(x, W, x), w), in 0, T)XR?
(3.25) ot  uer

WO, )=g¢.
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Since f(x, W,(t, x), u) converges to f(x, V(t, x), u) uniformly in [0, T]XR¢
XTI, as k—oo, V is a viscosity solution of (1.6), by virtue of stability of viscosity
solution.

Let WeBUC([0, T]1X R%) be a viscosity solution of (1.7). Putting g(t, x, u)
=f(x, W, x), u), geBUC([0, T]XxR2XI') and W is a unique viscosity solution
of (3.26)

O up AW —c(x, WW+g(t, x, u) in (0, T)X R¢
(3.26) 0t uer
WO, )=¢.

By the uniqueness of viscosity solution of (3.26), W is expressed by value
function of stochastic control, that is,

(3.27) W(t, x)=sup EIS:e“-W cC@.UMdbg(t—s, £(s), U(s)ds

Je-Jico ven W E(H)).

This turns out the following equality,

(3.28) W, x)=supF(t, x, ¢, W, U).
ved

Namely, W is a solution of (1.8). Therefore W=V. This completes the proof.

Remark. V(t), 1=0 satisfies the following condition, for ¢ and ¢=9,

(3.29) ltilrox%(V(t)(¢+tgb)—¢)(x)=</)(x)+@¢(x), for xeR¢,

Proof.
(3.30)

Eu[[le-Siccov0w fe(s), V- s)g+1)E(s), US)ds
+ef “5“’"”“”"“’(¢(E(t))+t9b($(t)))—¢(x)]
=, [ e Tieco 00w £(e(5), V= )gE), UN+ATUSSES), UNGES)) ds
e Jhec oo i )]
B | S0 v 08 £(E(s), Vit 9(gH1g)E, U(s)

— FE(S), V(t—)p(E(s)), U(s))ds]
By Theorem 2(iv), we have

(3.31) |the 3rd term of right side| <hte™*|¢].
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So, using the same argument as (3.19), we can derive (3.26).
Besides (Al)~ (A3) we assume

(A4) v=w= f(x, v, WS f(x, w, u) for any x, u.

The condition (A4) clearly implies the monotonicity of V(¢), i.e.,

(3.32) VsVt if ¢=¢.

The following can be shown in the same way as [12].
Proposition. Suppose that (A1)~ (A4) hold. Let sug[laij(-, u) |l weray <00 and
ue

S(t), t=0, be a strongly continuous semigroup on BUS(R?), whose generater satisfies
(3.18) and (3.19). If S(t) has the properties (3.29) and (3.32), then
SH=V(), for any t=0.

Concerning a classical solution of H-J-B equation corresponding to a family
of quasilinear operators, we can find neater results in [7], [15].

4. Controlled branching diffusion.

This section is concerned with stochastic control for branching diffusions.
We assume the following conditions besides (Al) and (A2).

(AD) c(x, u)=4a>0
(A6) flx, v, =2 2 pavt

where p,=0, p,=0 and éOPJFI-

(A7) M= ,,20 R'py<co,  and put m= ki_jo Epy.

Let B be a d-dimensional branching Brownian motion on [0, 7], [1, 5, 14].
Z(t) denotes the number of Brownian particles at {. Let 7, be the 1st branching
time with the following distribution,

4.1) Pt >t/ Z(0)=1)=e"*
and
4.2) P(Z(t)=k/ZO)=1)=p,, k=0,1,2, ---.

Namely each Brownian particle has an exponentially distributed branching time
and creates at that time independent (2—1) Brownian new particles with pro-
bability p,., £=2, 3, --- and disappears with probability p,. Hereafter we assume
Z(0)=1. Since each Brownian particle has its ancestor, we connect each new
born particle with its ancestor and get Brownian motion up to its life time.
Let 0 be a trap. When a Brownian particle B disappears at r, we put B(t)=0
for t=7r. Namely a particle moves on R%*U{d}. Let Z* be the number of
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Brownian particles on R¢U{5} of B(T). Then (B, w), -, Bz, o),
0<t<T, can express B. Moreover, under the condition Z*=i, B; is expressed
as follows, before its life time (;,

Bi()=§& ()X, o) O+t +Ez(t—z'1))xtr,, e+ -
+(E &uma—ri- ) Healt—tn D ey e®, i Ci=T

where 7, is the kth branching time of B and &, &, --- are suitable independent
Brownian motions (may depends on 7). Hence
P(Bi(tk)EAkr k:]., Ty l/Tlr Z(rl)v ) ij Z(Tj): ) Cl)
=P(Bit,)E Ay, k=1, -, [/E)
Put L(, t, w)=min{s; B, w)=B,({t, w) for Ys<t}. Namely B(-, w) and
Bj(+, w) have the same ancestor before ¢. Define z by
z2(t, w)={L@,t, w); {;>t}.

Then, the number of elements of z(t)=Z(t). For example, if t<z,, then
B,#t)=B,@) and {,=7, for any k. So L(, ¢, w)=1 and z(f)={l}. Z({#)=0 for
t=s whenever Z(s)=0. Moreover Z(t) is a Galton-Watson process and

@3 EZy=e0,

M+l ez(m—l)lt_e(m—l)lt fOr 711;&1
(4.4) Var(Z(@)={ m~1

(M+1)at for m=1.

So there exists a constant 4 such that
EZ}t)<e.

Finally we can easily see that, for any 7, B;(t), 0=¢t<{;, is a Brownian motion
under the condition z(t)={Jy, -*-, J&!}-

Now we consider controlled branching diffusion starting at x= R¢, in the
following way. Let U; [0, T)XC([0, T)»R?%—I" be progressively measurable
with respect to the ¢-field on C([0, T)—R¢%). U is called an admissible control
and A denotes the totality of admissible controls.

Consider the following CSDE, for Ue¥

{ dX,O=a(X(1), U, B))dBy+r(X:(t), Ult, By))dt
Xi(0)=x

(4.5)

under the condition Z*=k.

Using the successive approximation, we can easily see the existence of a
unique strong solution X,=X,(-, x, U). Moreover X, has the same law as X,
up to its life time &, and X(t, w)=(X;(t, w), j€z(t, w)) has the same branching
law as B. Let £&=&(-, x, U) be a non-branching part of X, that is
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{ dét)=a(é@®), U(t, B))dB+r®), Ut, B)dt
£0)=x.

When U is a constant function, say uel’, X is a branching diffusion with
generator G(u),

(4.6)

0° 0 d
4.7) ®<u)¢:§ a;(x, “)a—«c,a'xf_g ri(x, u)a—i—2¢+l Eop,,gb”.

Put C={¢=BUC(R?); 0<¢$=<1 on R?. Then C is a convex closed subset
of BUC(R%). For ¢=C we define a pay-off function W as follows

(4.8) W, x, ¢, U):Eiell)g’)(Xi(t, x, U))
where ilélmgb:l for z(t)=@ (=empty set)
4.9) Wi, x, ¢)=ls]u§W(t, x, ¢, U).

According to [5], we denote E];L)gb(Xi(t, x, U)) by &(Xt, x, u). Using (2.4)

and (2.5) we see the following proposition.

Proposition 4.1. Put p=(n—1)2 and q(t)=e**""".

(i) W, -¢, Uy eCNLip(ae?'q@®) if ¢=CNlLip(a).

(ii) W, -¢)eCNLip(ae?iq(t)), if ¢=CNLip(a)

(iii) W@, x, ¢, U) is uniformly continuous in x, uniformly in U, whenever
¢eC.

(iv) W@, -¢)eC, if pC

(v) IWe, -$)—W(, - PIIg—dler

(vi) SgSIIW(t, -¢, U)—W(s, - ¢, U)II-0 as t—s,

(vii) W, -@)—W(s, -0, as t—s.
Proof. 1t is enough to show (i) (iii) (v) and (vi).
(i> |W(t; X, ¢; U)_W(t’ Y, ¢: U)l

éEiEzZ(t)|¢(Xi(t) X, U))—‘¢(X1,(t, Y, U))l

—EE( 3 16Xt x, D)=g(Xu(t, 3, UNI/2(0)

1€z (L)

Il
Ms

RE|$E, x, UN—¢Et, y, UNIP(Zt)=k)

k

= 3 kalx—ylgP(ZWO=k)=agder* | x—yI.

(iii) and (v) are proved in the same way.

(vi) W, x, ¢, U)=W(s, x, ¢, Ul



Stochastic control 561

(4.10) <E| IT g(Xilt, x UN— TT §(Xi(s, %, D)
<E(] I ¢(Xult, x, U)— TT $(Xi(s, %, UNI ;
no branching timee&[s, t])—l—P(abranchIng timee[s, t])

éE( > )|¢(X,~(t, x, U)—d(Xi(s, x, U))|>+P(3branching timee (s, t]).

i€z (s

Since, for >0, there exists 6=d(¢)>0 such that

lp(x)—d(y)| <e if |x—y|<d, we see

4.11) 1st term of right side§eEZ(s)+Eie22<s)X(am)(lXi(t, x, U)
_Xi(sy X, U)')
(4.12) 2nd term of right side of (4.11)

EE( S Yom(I Xilt, %, U)=Xi(s, x, U))/a.(B))
=E P Xi(t, x, U)—Xi(s, x, U)| >8/a4(B))

1€z (s)

20%(t—s+(t—s)?)

< 3 P(Z(s)=k)k '
i=1 0

Combining (4.11) and (4.12) with (4.10), we can complete the proof of (vi).
Next we will prove the Bellman principle for W.

Proposition 4.2.

4.13) Wt+s, x, g)=W(t, x, W(s, -¢))
Proof.
4.14) Wt+s, x, ¢, U=E@(X(t+s, x, U))

=EE($(X(t+s, x, U)/o(B))

Since, under the conditional probability P(-/a,(B)), B(8+t), =0, becomes Z(¢)
independent branching Brownian motions, say B,;/€z(t), we see

(4.15) E@(X(t+s, x, UN/odB)S T W(s, Xlt, ¥, U)), ¢)
=W(s, X, x, U), ¢)

Hence we have, from (4.14) and (4.15),

(4.16) Wt+s, x, g)SW@, x, W(s, -, @)

For the converse inequality, we recall the regularity of W in Proposition 4.1
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and take e-optimal control as follows. For ¢>0 there exists 6=4(¢), such that
if |x—y|<d then

(4.17) [W(s, x, ¢, U)=W(s, vy, ¢, U)| <e for any U

and
[W(s, x, )—W(s, y, §)|<e.

Let D;, i=1,2 --- be a Borel partition of R?¢ such that diameter of D;<9d,
i=1, 2, ---. Fix x,;€D; arbitrarily and take U,€¥U so that

(4.18) W(s, xi, §)—e<W(s, x4, @, Uy).

Then we have, for yeD;

(4.19) W(s, 3, §IKW(s, x;, @)+e<W(s, x;, ¢, U)+2¢
<W(s, v, ¢, U)+3e.

Namely U; is a 3¢-optimal for any yeD,.
Define an admissible control U : [0, TYXC([0, T)»>R*)—I" as follows,

w0 5o w):{ U, w o<t
SU(0—t, w(-+O)—wthp(P(w)) 0=t
where @=0, , ,: C([0, t]>R%)— R, so that,
(4.21) D(w)=£&(t, w)=solution of (4.6) for B(-, w)
Putting [4(0, w)=U(0—t, w(-+1t)—w(t)), we have
(4.22) Wt+ts, x, ¢, N=EE@Xt+s, x, 0)/a/(B)
and
(4.23) E($(X(t+s, x, U)/a.(B))
=1 il E@Xu(s, Xut, x, U), Utp (X.t, x, U))

= I1 W(s, Xut, x, U), )—3e)V0
lez(t)

where aVvb=max(a, b). Taking the expectation of both sides, we have
W(t+s, x, ¢, (=W, x, W(s, -, $)—3¢)V0, U)

Hence

(4.24) W(t+s, x, $)=2W(, x, W(s, -, $)—3e)V0, U)

As ¢ 10, we see, from Proposition 4.1 (v),

(4.25) W@+s, x, )=W(t, x, W(s, -, ¢), U).

Since U is arbitrary, (4.25) derives the required one and completes the proof.
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Define W(t); C—C by
(4.26) Wt)p(x)=W(t, x, @)

Then we have the following theorem, from Propositions 4.1 and 4.2.

Theorem 5.

(i) W(0)=identity W(t-+s)=W(@W(s)

(i) Wo=Witp if o=¢

(i) IWHG—Wtpl<e™ D4 g—¢|l

(iv) Let ® be the strong generator of W(t). Then 9(@)DdNC

and

.27 Gg=sup A(u)g—Ag+2 épkw, for ¢eaNC.

Proof of (iv).
W, x, ¢, U)—o(x)
=FE(¢(X,(t, x, U))—¢(x); no branching time in [0, t])
+E(¢(X(t, x, U))—g(x); *branching timee [0, ¢])
=E(@(X\(t, x, U))—¢(x)—E(§(X,(t, x, U); *branching timee[0, t])
+E($(X(t, x, U); *branching time< [0, ¢])

Again using the regularity of a, 7, ¢ and W, we can see in the same way as
Theorem 3

(4.28) Wi, x, ¢)—o(x)
:t(gglgA(u>¢—z¢+z s Dag)+old).
This completes the proof.

Theorem 6. V(t, x)=W(t)@(x) is a viscosity solution of (4.29),

—aK—SUpA(u)V—}—XV—X i p:Vi#=0, in (0, T)XR®
(4.29) 0t  uwer =0

V0, x)=¢(x), on R°.

Moreover, if WeBUC([0, T1X R?%) is a viscosity solution of (4.29) and |W(t, x)|
=1 then V=W, under the condition suglla”(-, Wllweray <00, 7, j=1, -+, d.
ue

Proof.. Let ¢eBUC(0, T)XR?* be a smooth function such that

9 94 ¢ a _
A x, and Tx 07, belong to BUC((0, T)X R?). Suppose that V—¢ has a

strict maximum at (¢, x,)€(0, T)X R%. Now we will show
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(4.30) aa—(f(tm x,,)—su;;A(u)gb(tw x0)+AV (ty, x0)—2 ki DRV Et, x0=0
ue =0

For the proof of (4.30) we may assume

(4.31) ¢(t0v x0)=V (to, X0)
Therefore
(4.32) 0V, x)S(@PAD, x), in 0, T)XR<.

We apply a similar argument as (4.27)
(4.33) Vite, x0)=W(t)@(x)=W(0)V ({E,—8, -)(x0)
=sup EV(ty—0, X(6, x0, U)SSup E@AL(t—0, X(, %0, U)

Ueld

=sup E(¢AD(t,—8, Xi(0, xo, U))

Ued
—E{(@ADE—0, Xi(6, x,, U); *branching time< [0, 6]}
A~ —

+E{(@AD(t,—8, X(8, x,, U); *branching timee [0, 671}

(4.34) 2nd term of right side=—(¢AL)(to, x0)A0+0(6)
3rd term of right side= 20 DRl @A L (o, x0)A0+0(8)

where 0(8) is small uniformly in Ue¥U. Recalling (4.31) we see (@A L), x0)=
V(te, x,). Moreover Ito’s formula tells us
(4.35) E(¢Al)(to—0, X0, xo, U))—Gb(to’ Xo)

§E(¢(to'—0: Xi(0, xo, U))—¢(to: Xo)

=E50—%‘f’—(zo—t, Xu(t, xUN+AUDOW(ta—t, Xi(t, x, U))dt

0

Thus, combining (4.34) and (4.35) with (4.33), we have

%
ot

0
OésupESo— (to—t. Xu(t, xor UN+AUD)E—1, Xi(t, %o, U))dE

=Vt 20+ 2 24V 4t x0)20+0(6)

:(—aaif—(to’ xo)Fsup A(u)d(to. xo)—AV (o, x0)+4 i 2V (o, xo))0+0(0)
uel’ k=0

This derives (4.30).
In the same way we can show that, if V—¢ has a strict minimum at
(tOr xO)’ then

a o
—agtb_(to: Xo) —ig?/{(uﬁ/l(tm x)+AV (o, x9)—2 k2=0 PV ¥ (o, x0)20.
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This concludes the former half of Theorem.

Put g(v)=2 ki::o pev*. Then |g’w)|<im whenever |v|<L
putting fw)=g(—1Vv)Al), we see
[fW)—fON | Sdm|v—r'|
Now Theorem 4 implies the uniqueness of viscosity solution of
|4 . B
—at—=supA(u)V—2V+f(V), in (0, TYXR
(4.36) uel’
V{0, x)=¢(x) on R<?.
This concludes the later half of Theorem.
§5. Regularity of W(f)¢(x).
In this section we assume (AS8) besides (Ab5)~ (A7)
(A8) g, e for any uel’ and suplg(-, u)|cecra)y <o

565

Therefore,

where g=ay;, 74,7, =1, =+, d.

This condition implies that the solution & of (4.6) depends on its starting point
x smoothly, that is, there exist B-adapted square integrable processes Y;; and

Z ;s such that

.1) (Sl zt0en Db 2 D)y 4 5 1) —0
as 6—0, where ¢; is the unit vector (0, -0, 1, ---, 0)
5.2 E( Yit, x. Gey, ,;J)—Yij(t, x, U) —Zinlt, %, U))2 —0
as §—0.
Namely Y, x, U):a&(’é—xxj*m_ and Zi4(t, x, U):-afg(—;’ja’;’—f]l in the

sense of L*-derivatives.

Proposition 5.1. If¢cCAD, then W(t, -, ¢, U)esDAC. Moreover

(5.3) sup|[W(t, -, ¢, U)llcecray <0
Ued

Proof. We apply the routine arguments. By (5.1) we have

(5-4) Tx—(t) X, ¢t U)

I ) 0¢ 0X; ,
=2 E ¥ TII ¢(Xit x, U))a_xq(Xi(tv x, U))W(l‘» x, U)

=1 lez(t) i€z (L)
¢ EEY)

Hence
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(5.5) M, (T)= max sup

j=1+d tsT,UEY

ow
'é‘;;(t, < 0, U)H<°°-
In the same way we have

(5.6) MZ(T)=j max

sup
,k=1,-d tsT,U€

ey O D<o

This completes the proof.

From (5.3) we have, for any unit vector X& R¢

(5.7 W, x+0X, )+W(t, x—0X, §)—2W(t, x, ¢)
>supW(t, x+01, ¢, U)+W(t, x—0X, ¢, U)—2supW(t, x, ¢, U)
ved ved

zli/gng(t, x+0%, ¢, U)+W(t, x—0%, ¢, U)—=2W(t, x, ¢, U)

=>—0°M,(t).
Consequently
o'w e e .
(5.8) W(t’ x, @)= — M,(t) in distribution sense.

Proposition 5.2. For ¢€9NC, there exists M,(t) such that
(5.9) ts}ug”W(t"'e’ b} ¢y U)_W(t! *y ¢’ U)”éMs(t)0°
(S

Proof. Fix x and U arbitrarily and put X;({t)=X(t, x, U)
(5.100 W@—#0, x, ¢, U =W, x, ¢, U)
=E( TT $(X:(¢+0)— TI (Xi(t))
i€z (t) i€2(L)
—E(iel;Imgﬁ(Xi(t-}-ﬁ))—iel:[mgﬁ(Xi(t))); 3pranching timee[t, t4+61])
+E($(X(t+6))—$(X (1)) ; *branching timee [t, t+6])
(5.11) |2nd term|-+|3rd term|<2P(®branching timee[t, {+6])
§202e“"‘““ .
On the other hand, using Ito’s formula we see

(5.12) |1st term| §suIQ||A(u)¢110e‘m-l)“
ue
Putting MAt):(su;}aﬂIlA(u)gbll—|-22)e""'”“, we can conclude the proof.
ue

Now we can show the following regularity according to [8].

Theorem 7. For ¢=9DNC, we have
(i) W( -, $)eWL((0, T)XR%)
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Moreover AW, +, )€ Lo(R?) and

(5.13) supsup|| AW (t, -, @) <oo.
tsU uel

(ii) Suppose the following complementary non-degeneracy,
(A.9) >0 such that, for any xER? there exist n, uy, -, u,cl” and 6;=(0, 1)

i=1, -, n such that 21 6,=1 and

(5.14) él éé)kan(x, up)é§;=zv|€|?,  for any EeRC.
Then W(- -, §)eWL((0, T)X R%).

Since W is a viscosity solution of (4.29), Theorem 7 (ii) means

(5.15) %ZSEI}A(“)W"XW“L SpWt aein O xR

W, x, §)=¢(x) on R¢,
6. Controlled branching semigroup.
Put S=R? and S= Q S™  We endow an usual topology on S.
22

Let Y(t, x, u), t=0, be a branching diffusion on S starting at ¥€S. Suppose
that its branching system is {p,(u), k=0, 1, 2, -}, i.e.

(6.1) P=0, pyw=0, and 3 p,(w=1.

and its non-branching part is a diffusion with the following generator A(u),

ij=1

a;(x, ”)Waiax—, + Fil 7i(x, u) gfl —A(u)¢

(6.2) Awg= 35

for a smooth function ¢.
Besides (Al) and (A2) we assume two conditions,

(A10) 0< inf A(u)=<supA(u)=C< o,
uel’ uel’
and
(A11) po(u)=0 for Yuel and sungpk(u)<00.
ue

Namely Y(-, x, u), x€S has an exponentially distributed branching time and at
that time independent (k—1) new diffusions are created with probability p,(u).
For £=(x,, -+, x,)€S", we have Y(, %, w)=(Y,(t, x5, u), -, Ya(l, xn, 0) with
independent branching diffusions Y, starting at x;€S, i=1, -, n. By (All),
the number of diffusion particles is an increasing Galton-Watson process and
no explosion occurs.

In this section we will construct a non-linear semigroup on a suitable Banach
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space of continuous functions defined on S, which has a branching property
and gives a viscosity solution of H-J-B eq. for (6.1) and (6.2).

Set pa(%, )= 2 |xi—3:| for F=(xi, -, %) and F=(y;, =, y)=S" and
|1@]l,= sup |P(%)| for a real valued function @ defined on S™. Put
zeSn

Lip(a)={® ; S—R' such that (i) @®/s» is a symmetric bounded function,
n=1,2, -, (ii) lipll|¢/sn||=0, (i) [9E)—D(F)|=Zap.(x, 5 for %, y=S*,

n=1,2, -} and £=\>jLip(a). We endow the supremum norm on .£ and
a>0

denote its completion by C. Then C is a Banach lattice with supremum norm
and usual order. Put D={®; S—R! satisfies the following condition; N such
that |@],=0 for n=N and @/s.=BUC(S"), symmetric, and derivative €BUC(S")
for n<N}. Then Dcr and D is dense in C.

For ®=C we define T, us, -+, u,)® by

(6‘3) T(tr Uy, ** un)Q(x)':Ed)()—/l(t' X1 u)y Tty 7n(t) Xn» un))

for ¥=(xy, -+, x,)&S™ where Y,, ---, Y, are independent branching diffusions
and Y,(, x;, us) is a copy of Y(t, x4, uy), x;€S. Put A=2-% and define J=/y
by

(6.4) JO(x)= superT(A, Uty oy Un) D(F) for xeS".
up

Proposition 6.1. Put m(u)= g}l kpy(u) and y:sup](u)(m(u)—l)-{—%[{_

(1) T uy s un)@E)=T(, uy, -, u)PF) | Zaet p,(X, 5) whenever @
eLip(a).
() T wy s ua) @l =supl Oll,

(i) JOeLip(aer?), if ®eLip(a)
Gv) JjoeC, if ®eC
() 1JO—JUISIO—V| and 1O~V Ssupl 0L,

(vi) J@,/J® at each point, if @,/ D at each point.

Proof. For x=(x,, -, x,) and 5=(y,, >+, yn)
(65) |T(t, Uy *t un)m(xlr R xn)_T(t! Ugy un)@(ylr Sty yn)[
§E|¢()71(t' X1 ul)r ttt }_/n(t, Xn» yn))_m(}_/l(tr Vi ul)r Sty )_/n(tv Yans un)l

<a :21 E|Y(t, xs, u)—Y2, Vi, U]

IIA

n
a ;;l |xi—y:lett=ae p,(%, ¥)

(ii) For zeS=, (YVi(t, x1, uy), -, Yolt, xn, u,)ES" for some [=n. This
derives (ii).
(iii) is clear by (i) and (ii).
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(iv) For @C we can take ¥eL so that |0—¥|<e.
(6.6) |Jg(2)—J¥ ()] éusggan(A, U, o, u(@—=U)D)| =0T
So J@ can be approximated by J¥(.r).

(v) 1is clear.
(vi) Since 0,<0,,=0, J®, is increasing and

lim J@,(X)<]P(%).
On the other hand, the convergence theorem tells us

T(A) Uyy *o un)d)(-f)zlkl_r:n T(A’ Ugy *o un)Qk(x)
élkim]@k(f)-

Taking the supremum with respect to u,, ---, u,€1I, we have

JOD=lim JOu(3).
This derives (vi).

Now we will successively define J*; C—C, by
JHO=](*D).

Proposition 6.2. J* has the following properties

(1) J*OsJ*, if OV

(ii) J*®@,/J*® at each point, if ©,/ D at each point

i) 1J*0—TI<10— V) and 10—, Ssupl 0¥,

(iv) J*@eLip(aet*d), if deLip(a)

(v) |J*O—@|<kAAD) for DeD

where A(@)=sup sup ||AQu, -, uy)@|,+2(C| D]
nsluy-upel

1

if |@ln=0 for m=I, putting

A(ulr Tt un)®(x1: R xn): g A(ui)@(xh oy Xi-1 0y Xk Y xn(xi)-

Proof. (1i)~(iv) are clear from Proposition 6.1.

(6.7) 1] 0—0I= 35 JP 0] 0| < kI JO— 0]
For x=(x,, -+, x,)E€S™ we have
(6-8) T(A: Uys oy un)¢(x)_@(f)

:E@(YI(AJ X1, ul)) Sty Yn(A: Xns un))_d)(xlr Tty xn)
—E@Y (A, x1, uy), =+, Y,(A, x,, u,)); branching times<A)
+E@(Yy(A, x1, wy), -+, Ya(A, X, u,); branching times<A)
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where Y, is the non-branching part of Y;. By Ito’s formula we have
(6.9)
1st term of right Side:SjA(ul, e U O (L, x4, Uy), o, YValt, x5, ugn))dt
Moreover
(6.10) |2nd term|4]3rd term| §2llq)|l(l— i[l e‘“"i"')
s|®(naC

So combining these computations with (6.7) and (6.8) we can get (v).

Define Wy(t); C—C by

(6.11) Wyt)y0=J4®  for t=k27V

Then

(6.12) Walt+s)=Wx@OWx(s)  for t=k27%, s=j52°%
and

(6.13) Wy ) OSW @)@  for t=k27V+

Since Wx(®)® is increasing, as N—oo, we can define W(t) by

(6.14) W(t)(D(JE):IlViEn Wy®)®(x)  for binary ¢.

Then we can easily see
| W@ (x)—Wn¥ (R)| I 07|
1P| 2 <supl 1.

W)@ <Llip(aer®), if @e<Lip(a).
Therefore, W)®@eC if ¢<C.
Proposition 6.3. For binary t, W(t); C—C has the following properties
(i) Wnoswew, if o=<¥

(ii) |W)@—®|<tA®) for @D
(i) |WOO—-WOPI<IO-Y] and |We)O—WO¥|.Zsup|O—¥ |,

(iv) W(t+s)=Wt)W(s), W(0)=identity
(v) |W)@—d|—0 as t—0.

Proof. We prove only (iv) and (v).
(6.15) W(t+s)(15=llvimWN(t—i—s)(D:I{,i_mWN(t)WN(s)@

< }rizn Wx@OW(s)®< W) W(s)D.

For t=2"?Pk, s=2"?k and p=n=N,
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WaOW ()P =W y(t)W ()P =W (t+35)D.
As N—oco, we see, from Proposition 6.2 (ii),
WO W(S)O=W(t+s)D.

Tending n to oo, we get the converse inequality of (6.15). This completes the
proof of (iv).
Since D is dense in C, we can take ¥eD so that |@—¥|<e. Hence, by
(i),
W) —@| < | WP —-WOF|+|WEF T |+ ¥ — D[ <2e+tADP)
This concludes (v).

Using (iv) and (v) we can extend W() on t€[0, co0), that is, W();C—C
is defined by

(6.16) W)@ =1im W(t,)® whenever binary ¢,—t.
Then we have
Proposition 6.4. (i)~ (v) still hold for W(t), t=0.

Next we will show the branching property. Let ¢=BUC(S) and 0<¢<1—e.
Then ¢C, where ¢ is defined by

é(xh Sty xn): é ¢(xi) on S*.

(6.17) T, wiy s G, s %)= 3 EHTi(A, xi0 )
Hence, taking the supremum with respect to u,, .-+, u,, we see

2 n " —
]¢(xlr St xn): glfb(xi):(jé)ls(xl’ Tt xn)-

Repeating this argument, we have
- - — CA\\ _——
JRo=J(JP)=J((J$)15)=(J(Jp)18)1s=(J?P)s5.

Thus we have
L TT—
Wa@)d=Wxt)d)s
ie. WaOdxs, - x)=TT WO (x)
As N—oo, we see, for binary ¢

(6.18) WOG(xss -+, xn)= ;11 HOEED

Since W(¢) is continuous in ¢, (6.18) holds for any ¢{=0. This means the branch-
ing property.
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Now we will show that W() provides a semigroup which turns out a
viscosity solution of H-J-B eq. Fix p=(0, 1) arbitrarily and put

C={¢=BUC(R%); 0=¢<p}.
Then C is a convex closed subset of BUC(R?%). Define W@t); C—C by
(6.19) Wit)p(x)=WDd(x) for geC.
Theorem 8. Under the conditions (Al) (A2) (All) and (Al2), W(t), =0, s
a non-linear semigroud on C with the generator ®;

(6.20) Gg=supG(u)g  for 6eCno

where G(u)p=A(u)gp—A(uw)d-+A(u) ’i‘,zp,,(u)gb". Moreover W(t)¢ 1S a viscosity
solution of (6.21). )

W _cop®@W  in (0, T)XR?
(6.21) 0t  uer
W, )=¢ on R¢.

If suplla;i(+, u)|were, <00, then its viscosity solution is unique.
Proof. The semigroup property is derived from the branching property of
W(). That is

~ T
(6.22) WOV (s)g(x)=WE)(W(s));5(x)
= W) W(s)$(x)=W(t+5)$(x)
=W(t+s)p(x).

By the routine we can show (6.20).

Next we will prove that W(, x):W(t)¢(x) is a viscosity solution of (6.21).
Let ¢=C5((0, T)X R*)(=bounded smooth functions with any bounded derivatives).
Suppose that W—¢ has a strict maximum at (4, x,). We may assume W(,, x,)
=¢(t, x,). Hence W=¢.

First we assume that z<¢=<p—z with some z>0. For he(0, t,), we have
e(h) such that

(6.23) Plto—h, )=, x>~h%9f—(to, x)+he(h) on R,

and e(h)—0 as h—0.
Denote the right side of (6.23) by ¢(x) (=¢(x; h)). On the other hand, for
e€(0, z/2), there exists veCy(R?) such that

(6.24) W(to—h, ‘)éU(‘)éW(to—h, ')+5-
Put V=¢ on S, =9 on S*, k=2. Define @; S—R! by
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[ sup f} II v(x)®(u,)v(xy), on S*, n=2
(6.25)  D(xy, =+, xp)=1 ¥17un k=l izk
su;;@i(u)gb(x) on S.
ue

Then ®=C. Let T(t, u) be the transition semigroup of Y(¢, u). Then the
generator G(u,)X -+ X&(u,) of T{, u,)X -+ XT(t, u,) satisfies
(6.26) B(u)X -+ XGun)d(%y, -+, ) =O(F)
where (%, *-+, ¥,)€8* and ¥=(%,, ---, £,)=S. Hence we have
T@, uy, -+, ug)d(X)—0(X)

:T(tv ul)x ot XT(tv un)i)(xly Tty xn)_ﬁ(xlr t xn)

=S:T(S, U)X - XT(s, un)( @)X o X@un)d(xy, -+, Xn)ds

=S:T(s, e un)<D(x)ds§S:I_V(s)¢(f)ds

Taking the supremum w.r. to u;, ---, u,, we get, on S\S,

6.27) R UOLIE

where A=2"% and J=/y. Hence, recalling the definition of @ on S, we see
(6.28) v=v=[moods on s.

Putting V,=JV—V, we have

(6.29) JPV=Jv=s]J(Jv=V)=]V,.

(6.30) T@, sy s )V ST@, w, o, 1) )0

=S:T(A, "y e un)W(s)wsgS:W(AJrs)q)ds

:SiAW(s)d)ds, on S.
Therefore we have
]ZV—jV§SZJW(s)<Dds.
Repeating the same evaluations, we get

4 —
pv=ovslT | Weods.
(k-1)d
Consequently we get

6.31) WV —v éS:ms)@ds .

So, we have
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(6.32) O(te, x)=W(ty, x0)=W(h)W(to—h, +)(x,)
=W(/1)V(xo)§V(xo)+S:W(S)d)(xo)ds
This implies
'%gté—(to’ xo)gs(h)‘f“-;l—gz W(s)fb(xo)ds.

Tending ~ to 0, we conclude that W is a subsolution of (6.21).
Let (), x,) be a strict minimum point of W—¢. We may assume W(t,, x,)
=¢(ty, x0). So W=¢. For he(0, t,) we can choose e(h), such that

(6.33) dta—h, 2)=¢(t, x)—h%—‘f(to, x)+he(h), on S

and e(h)—0 as h—0. Denoting the right side of (6.33) by ¢(x) (=¢(x; h)), we
apply the similar evaluations. Choose v=Cy(R?) so that

(6.34) 0=W(to—h, )—v(-)<e
and put
S
V(f):{ ¢ on
(%) on S\S.
Then Ve d(®(u)). Moreover, from (6.33) and (6.34), we see
(6.35) o, x0)=W(to, x0)=W(R)Wito—h, +)(xo)
=W (h)V (x,).
and

W)V {(x)—V(x)=T(h, u)V(xe)—V(x,)
=S:T(s, WGV (xo)ds .

Therefore, recalling (6.33), we have
o)
ot

Taking the supremum w.r. to ul, we can show that W is a supersolution

of (6.21). Hence W is a viscosity solution of (6.21).
For a general ¢, we can choose an approximate ¢,, so that

(to, 20)Z&WP(ts, x0).

1 1 1
—_—< <ph——- —_ -
n =¢n:p n and "¢n ¢”< n A

Put W,(t, x)=VT/(t)¢n(x) and W(t, x):W(t)gb(x). Then W, tends to W uniformly
on [0, TIXR% Let (, x,) be a strict maximum point of W—¢. Then there
exists a maximum point (¢,, x,) of W,—¢, which converges to (£, x,), as n—co.
Since W, is a viscosity solution of (6.21) with the initial value ¢,, W is a
viscosity solution of (6.21) with the initial value ¢, by the stability of viscosity
solution.

Since the uniqueness part is derived from Theorem 4, this completes the
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proof of Theorem 8.

Remark. If 4 and p, are independent of u and p,=0, then we have two

viscosity solutions V()¢ and W(t)¢ in §4 and §5 respectively. Using the time
discrete approximation of an admissible control, we can show that V(t)¢=ﬂ~/(t)¢.
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