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1. Introduction and Results

In this paper we consider a small data scattering problem for the nonlinear wave
equation

(1.1) 0?w— Aw +f(w )=0, (x, t) e R" x R.

Here 2< n <  5, A = ai i  and f(w ) represents a  nonlinearity which satisfies the
i=i

following conditions:

(Al) f e  0 (R ) ,  f(0 )= 0 , f '(0 )=  0 ;

(A2) nsi)— Ps2/1 C (S11 1'
- 2  + IS21P - 2 )1S1 + S21 fo r  s1 , s2 e R.

In (A2) we have to choose p > 2. Moreover, in the following we require a more
stringent condition

n2 +3n —2+ \ /(n 2 + 3 n -2 ) 2 -8 (n 2 —n) < ,, < n+3{

2(n2— n) 1" n - 1

p=2 f o r  n=5.

Scattering theory compares the asymptotic behaviors for t— + co of solutions of
(1.1) with those of the free wave equation

(1.2) a?w— Aw =0, (x, t)e R" x R.

The comparison will be done in the energy space. For s e R  and 1 <p < co, let
Hs , P=Hs , P(Rn) and fis , P= fls , P(Rn) be the Sobolev spaces which are the completion
of q(1?") with norms

II u II = [(1 + 11 2)111( )]

(A3)
f o r  n=2, 3, 4

and
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respectively. Here denotes the Fourier transformation and is its inverse.
BY UIe we mean the energy norm:

•

Now let H = \ / - 4  in L2 , F(s)=5 .
0 f(A)dyl. and

V ={ u; Mullv=suit)( 1 +ItDd llu(t)610-< co}t 

with

(1.3) r =  2' j 2
1

— 2 a n d  d = ( n  1 ) ( 2
1) .n  + 

Then the main results of this paper are the following

Theorem . A ssume that f  satisfies (A1)—(A3).
(a) There exists a (5> 0 w ith the follow ing property : I f

W 9  O le n  { f i n-21 n+r14-i+1, r - 1 x H  2 

n x H 4 1 ,21

and

(1.4) E {110- 1IR"i'
j=0

+110-1111,7-1i+1,2 11 -11H.112

then there exists a unique solution w(t) of  the integral equation

(1.5) w (t)=w -(t)—  co H  sin {H(t—T)} f(w(T))dr f o r t  e  R

4such that w eV, 11Wilv----3-11W and

(1.6) w(t) — w 0  a s  t — co.

H ere w (t) is the solution of (1.2) with initial data

(w - (0), 8 tw- (0 ))= (0 - , 01.

(b) Furtherm ore, there ex ists a unique solution w +(t) of  (1.2) such that
w+(t)e11 1 ,2  and

(1.7) w+ (011e 0  a s  t + 0 .

Thus, we can define the scattering operator

S: (w - (0), 8,w- (0)) (w (0), 01w +(0)) .
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( c )  If  in  addition (0 -  , IV )  E 112 '2 X 111 '2 , then the energy conservation law
holds and the energy of w, w -  and w+ are equal:

(1.8) ÷ 11141(011 + F(w(t))dx= —21 Ilw- (0 )11!=lliw + 0)Ili •

For f  satisfying (Al), (A2) with p> 2, the left side of (1.8) does not in general
give a  definite energy. So we can not always expect (1.1) has a global solution in
tim e. For power nonlineality f (w)= AlwIP - iw with ) < 0, it is conjectured by several
authors that

p ( ) _  n+ 1+,1n 2 + 10n - 7
2(n-1)

should be a  "critical" p o w e r . Indeed, in case n =3 , John [4] has already proved
that most solutions of (1.1) blow up in finite time if 1<p < p(3)= 1 + V2, on the other
hand, global solution exists if p > p(3). The same results for n =2 has been shown in
the recent work [3] of Glassey. In this sense, to develop the scattering theory for
(1.1) it is necessary to assume p > p (n ) . Note that in Strauss [10] is developed the
theory in case

n +2 - 1- ,In2+8n
< p <

n+3
. (n>2),

2(n-1) -  n -  I

and in Klainerman [5] is treated the case

P >
n + \I2n  - 1 (n> 2).

n - 1

Compared with these works, our assumption (A3) slightly weakens the restriction
on p, especially for n=3 and 4, though it still remains some open space between p(n)
and the lower bound in (A3).

2 .  Decay Estimates for the Linear Wave Equation

In this section we present a short proof of a well-known result on the decay of
solutions of the linear wave equation. Similar results can be found in Brenner [2]
and Pecher [7] [8], and our proof is essentially due to  [2].

We begin with defining th e  homogeneous Besov space Èse= Psq •P(Rn) with
s e R, 1 <  p <o o  a n d  1 < q < o o . L e t  C(0=49(2 - i0 (- oo < j<  oo), w here  4e

1 CAR n
) ,  > 0 and supp 1; 2  <11 < 21, be such that

(2.1) 4 0) .
J =

Then /1Se is the completion of C (R") in the semi-norm

= (2.1s11,-1(0.1011Lp)q}14 •
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Lemma 2 .1 .  Let 2<p< co and —
1

+ —
1

= 1 .  Then we have
P

(2.2) f313,P c  L P  a n d  l i s ,P' c ,

where A gB  denotes that A  is continuously embedded in B.

P ro o f . See Bergh-Liifstriim [1], §6.4. q. e. d.

The following lemma can be proved by use of the stationary phase method (see,
e.g., Littman [6]).

Lemma 2 .2 . L et P( )  b e  re a l ,  C  i n  a  neighborhood o f  the  support o f
y e C (T (R n). A ssume that the rank  of  H p(0=(0 2P(0 1 0 W 4 ) is at least y  on the
support of  V. T h e n  f or some M E N (natural num ber),

(2.3) 11F-1[exp(itP)y]l1L- C(1+1t1) E
cci M

Here C depends on bounds of the derivatives of P on supp y and on a lower bound of
the maximum of the absolute values of the m inors of order y  of  Hp on supp y, and
on supp v.

Now let us prove the following

Proposition 2 .3 . L et y> 0, m  E N . T h e n  f o r any tlf  e cgo(R.) the following
estimate holds:

(2.4) exp (itIVn) t-k( 01
L 112 ""

 

w here 1<p '<2<p<oo , 1.1t, ++-3 ,=1, it =n — 1 ( i f  m =1 )  an d =n  ( i f  m >2) and

s (2n —  m1.)(1 — p
i  )—  2my.

P ro o f . We only prove (2.4) for t  =1 .  (2.4) for general t > 0 then easily follows

from a change of variables
Let ( mo be as in (2.1). Putting 2 - - i =11, we have

0.1()]
2 j ( n - 2my)

L "

g • - 1 [   eXP 1(n1212i.My1111M)001)1(2iX)

  

Since In1- 2 '001) E Q°(R .), it follows from Lemma 2.2 that

exp (ini2i2imPT/Im)  00,01(2i x )

1 1
< + 2 i n 9  211 E  aN) II L iIceIsm

where



(2.9) P
LP
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a2ini . n -1 (if m=1)
1.2= ra n k  

arifaiikt  n (if m > 2).

We then have, noting the Hausdorff-Young inequality,

707

(2.5) 1i (0 1
-k(0

L"

< 9 - 1 rexP (il l . , ( 0 ]
L 2m

y

< C2 i ( n - 2 m Y - m P / 2 ) 110111.1 •
On the other hand, since

exp fi2linylm)  oi (o p exp (i12-4/1"9  0001=  su
IL c°  1/2< vni2mYn<2 <

we obtain by the Parseval equality

(2.6) -F- i[ex0 Limoi(otk(0] C2 - 2mh 11011L2.
L 2

  

An interpolation between (2.5) and (2.6) then gives

(2.7) " - - l[exfPymoicot-kol <C2 f  ( 2 " - m A 6 - 2 m Y )  HO II LP',
L P  -

 

w h e r e  = -
1  

- -
1 

1<p'<2<p<oo a n d -
1

+—
I

=1.2 p ' P  1 1 '
Put IT/i =(4)i _ i + C + C + 1 4 .  Since (kJ/ J = 0 ; 1k, we can replace IT/ in (2.7) by

this N e x t  r a i s e  t o  the power g on both sides of (2.7) and sum over j. Then we
obtain

(2.8) Im )i
-k()1

L 112"" < 01011hvhcq.,

 

where s=(2n— mit)(5— 2my, q> 1 and f 3=  1 .  This and Lemma 2.1 imply

and (2.4) is proved for t = 1. q. e. d.

3 . Proof of Theorem

Let r and d be defined by (1.3), and p satisfy (A3).

Lemma 3.1. The following relations holds.

n-1 _n +1
p r - 1 2 r  
r r(3.1)
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n - 1  n + 1(3.2) r > 2  a n d  - <02 r '

(3.3) 0 < d < 1  a n d  dp> 1.

P ro o f . Since p -
( n  + 1 ) r +  2

2n ' we see that (3.1) holds and (3.2) is equivalent to

n+2n + 3(3.2)' <p<----L-in .n

Further, d -
( n 2

 —  

n ) p  - ( n 2  +  n  -  2 )
 and (3.3) is rewritten as2np - 2

(3.3)'
n +  2

 < p ,  (n2 -3 n )p<  n2 + n - 4  andn

(n2 -  n)p 2 - ( n 2 + n -2)p >2n p -2 .

Thus, our problem reduces to verify (3.2)' and (3.3)', which is easy if we remember
(A3).

Lemma 3.2. The following inequalities hold.

1 1 1 — > - -r  -  2 n '

1 1 1 r  - 2  1 1>r p  + 1
>  

 2p
>

 2r(p r n  •

Pro o f . (3.4) is obvious from (3.2). The first three inequalities of (3.5) easily
follow from (A3) and (1.3), since we have

1 1 
-

- (n  -1 )p + n + 3
 a n d  1 r -  2 _  2p - r  

r p  + 1  ( 2 n  p  - 2 ) ( p  + 1 ) 2 p  2 r ( p  - 1 ) -  2 rp (p  -1 ) '

Further, the last inequality is equivalent to

3n +2+,/(3n+2) 2 + 8n(n - 2 )
4n

The right side being not greater than 2, we conclude this to hold ,q .  e .  d.
, n -1  n + 1  r

Lemma 3.3. Let tfr E H 2 r Then we have for Itl > l,

(3.6) 11H-lexP(iHt)till1L-_CItl-d1101t/Y-"-,+-1-,---r-i •

P ro o f . Since r> 2, we can choose p = r , m = 1  and y=1/2 in Proposition 2.3
to obtain (3.6). q. e. d.

Corollary 3 .4 .  L et tP e L .  Then we have for Itl > 1,

(3.7) U V ' sin(HOCID- Cittd110111,f;•

(3.4)

(3.5)
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Proo f . (3.1) and (3.2) imply the embedding LI; ç H 2 "1
;

1 141 • Then (3.7)
follows directly from (3.6). q. e. d.

The proof of Theorem will be based on the following two propositions.

Proposition 3 .5 .  There exists a 3,> 0 with the following property: Let w- (t)e

Vand 11w- lI 1< --(5  . Then the integral equation (1.5) has a unique solution w(t) e V,
— 4

which also satisfies

Pro o f . Put

(3.8) Ou(t)= w-  (0— 1 '  H - 1  sin {H(t — T)) f (u(T))&c.

Then we can apply Corollary 3.4 and the Holder inequality to obtain

II0 a(t) — Ov(t)Ilat.' q _ .  It — ) 1)11(— „V,T„ „Hl'; dt

It — TI - d (1114 (011 + 111) (011V011U(r) - 1 ) (0111110-dt
-oo

C1 It —TI-d(1+1T1)-dPdt(11144-1+-co

_<.C( 1 - 1- It1)- d (Ilullr 1 +11v1r 1 )11u— vIlv•

Here both (Al) and (A2) have been used for the second inequality, and (3.3) for the
last inequality. Thus, we have for u, y e V

(3.9) II0u—OvIlv q111411r1+11/4-1)Ilu—vIly,

and similarly

(3.10)

Now choose (51 to  satisfy  2C61- 1 < 4 ,  and put BOO= {a e V; iltli1V<6 1}.
Then (3.9) and (3.10) show that 0 is a contraction map from BOO to itself, and hence
it has a unique fixed point w e B(5,), which is a solution of (1.5). Furthermore, we
have from (3.8)

This implies and the proof is completed. q. e. d.

Proposition 3 .6 .  Let w (t) and w(t) be as in the above Proposition. For any
s e R the integral equation

(3.11) us(t)= w-  (t) — H- 1  sin (H O  T)} f (us(tpdt
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4 _has a unique solution us (t) eV, which also satisfies < —3 a n d

(3.12) 0  a s  s 0 0 .

If  in addition (w - (0), atw- (0)) e H2 ,2  x H 1 , 2 , we have

(3.13) us(t)E C.(R ; L 2 ) n ; H ''2 ) n Ct (R ; H 2 , 2 ),

and us (t) becomes a unique strong solution of (1.1).

P ro o f . The unique existence of us(t) can be verified by the same reasoning as
in the proof of Proposition 3 .5 . To derive (3.12), we subtract the equations (3.11)
and (1.5). Then

u5(t )-w (0 = H-1 sin {H(t - T)} f f ( u s (r))— f (w(T))}dr

+ 11- 1 sin {H(t - .7)} f (w(t))dx,

and we have

.11us(0— w(t)11w ,  c  It — + ITD- dPch(11wIlr 1 + —usll v

+ C  co I t - ( 1+

<co.+ItIrd(11wW 1 +1114s1r 1)11w- usliy
+C,( 1 +10 - a ( 1 +1s1)- 11w11;

for 8  satisfying 0<e<dp - 1. Since C(lvvIr i + ')<2c6q - i < -1
27 , from this

it follows that

IIu5—wIIv^2C(1+IsI)IwIIÇ. 
- p  0  a s  s -co ,

and (3.12) holds.
Next we show (3 .13 ). For this purpose it is enough to verify

(3.14) f (u s (t)) e Ci (R ; H' ' 2 )

2r(2-1
since us (t) satisfies (3.11). By use of (3.5) we have H i 'r  L  r— P and H' ' r  L 2 P.
Thus,

Ilf(u5(t))11H1,2 11f(us(t))11L2+ E Ilnus(t))a,cus(t)11L2
IŒ1=1

ClItis(t)112P CllUs(t)11
P
L

2 ,1 - p-
2

1) 

<2C' II /4 0

and it follows that f (u(t)) e Hi ' 2 . Note that w - (t)e Ct (R ; H 2 , 2 )  follows from the
condition (w (0), 3 tw- (0)) e H2 ,2  x H 1 '2 . Then
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11 f (us(0)—f(us(e))11 11' 2

< COI 14 s(0111;IV,  ± II 14 s(t )II V ')  s(t) s(t' )11 H

C 4,){11 W V (OM Hi. ,  +1: , 11H- 1  sin {H(t'— ')}f (us(T))11 ch

+5: II [sin {H(t — — sin {H(t' —"0}1f(us(T))11 Fil,rdr}

< C040{11W - ( 0 6 2 , 2 + It' ti - d ( 1d P d rilU 5 1 1 ;

1 1 -1  [sin {H(t — — sin {H(t' — 'O}]f (tt H2.2dr} - * O  (t '.

Here we have used (3.3) and the embedding H2 , 2  q1-11 , " which follows from (3.4).
Summarizing these results, we see (3.14). q. e. d.

Proof of T heorem . (a) W e can write  w (t) as

(3.15) w(t)= cos {Ht}0 -  +H - lsin [Ht}t/J - .

Then applying Lemma 3.3, we obtain for It' >1,

(3.16) i 0 {110-1111V-"1,11-i+1';=

+

On the other hand, by (3.2) we have H4T 1 2 c H1r. Thus, it follow s from  (3.15)
that for Iti <1,

(3.16)' w (t) II Hi ,  C{11 cos {Ht} 0-11H +12 +IIH -1  sin {Ht} H %. +1,2}

, C1114)- 11L2+110- 6 --i+1,2

+1t1110- 42+ 1111—  1 tfr — II
C{110 - 11 t11-1111 12} •

Now choose 6 in (a) to satisfy C6<16 1 , where S i  i s  the constant given in
Proposition 3.5. Then combining (1.4), (3.16) and (3.16)', we obtain

w- (t)e V  a n d  Ilw- Ilv < C 6 < +1 61.

This and Proposition 3.5 show the unique existence of the solution w(t)e V of (1.5)

satisfying This w(t) also satisfies (1.6). In fact, noting Hi,rq

L 2 P and dp> 1, we have
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iiw(t) - w e C  . 11ftw(r))11vdt<c t
œ  iiw(T)112pch

w (T)Urio - dr<C ( 1+ It I) d Iw O

as t -  cc. T h u s, (a) is proved.
(b) We define

+00
(3.17) w ± (t)= w -(t )- 1-1- 1  sin {H(t - t)} f (w(T))dr

-00

Here w- (t)e H 1 ,2  since we have assumed (0 - , x HnT1 '2 ç  H 1,2 x L2 .

On the other hand, we obtain as above

(1— IrI) dtwII
r +0,

< cc.11w+ (t)— w -  (011 e

These imply w +( t) e  R 1 , 2 .  That w±(t) solves (1.2) is now obvious from (3.17).
Finally, (1.7) easily follows from the relation

+00
w+ (t)- w(t)= 1-1-1 sin {H(t - T)} f (w(T))dr,

and (b) is proved.
(c) First we shall show that the equality

(3.18) -1-II w(t) j +  F ( w ( t ) ) d x  = - 11 w- (0 )11i

holds for any t e R. F o r  this aim we apply Proposition 3.6. Recalling (3.5) once
more, we see that Hl ,rqLP+ 1 ho lds. By use of this and (3.12), we have

(3.19) [F (w (t))- F (u s(t))]dx1

w Pcp + + j u5(t) +1) II w(t) - u s(t)II LP + 1

+ - u s lIv 0  as -c c .

On the other hand, by use of the embedding H1 " ç L2P, we have

(3.20) 11 147(0 - us( t) e Ilf(w (T )) f(us( T)) j vdt + 11.ftwer))42ch

Çs (1 + ITI) - d Pch( jwIr l + Ilu5lIV 1)11w- usliv

rs
+ L o ( 1 + rtI) d P dTlIwIlif 0

as s-> - cc. M oreover, us(t) being a strong solution of (1.1), we see that it conserves
the total energy:

(3.21) -121•11141(t)Ili+  F(u s(t))dx = —2
1 II w (s))dx.
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Here

w - (011! =11w
and

F(w - (s))dxl<Cilw - (s)111;ti C(1 +1s1) - d ( P + 1 ) 11w- Ir l

as —c o . (3.19), (3.20) and (3.21) show (3.18) as follows:

II w(t) II +  F(w(t))dx --= L• tts(011 + F(us(t))dx]

slitnco [ -1- 11w- (s)11i +  F(w - (s))dx] = (0)1I! •

Now to complete the proof it is enough to show that

(3.22) + w(0 II! +  F(w(t))dx -12111w + (0 )11! a s  t + co,

which is obvious from (1.7) since we have

F(w(t))dx —+ 0  a s  t +co.

Thus, (c) is proved, q. e. d.

4 .  Final Remarks

A .  In our theorem it is assumed that the initial data (0 - , ip - )  lies in a
neighborhood of 0 in the space

1 r r
(4,1) {H 2 r 'r- 1  x  t i  2 r ' r - 1 }

j = 0

n { H.7-1+1,2 
x

r n - 1  n + 1  r
Note that the embedding LP q1-1 2 r  ' r - 1  holds by (3.1) and (3.2). Then (4.1)
can be replaced by a narrower but simpler space

2 r •  H1. } 2 1 - - -  2(4.2) {H  'P  X  H . P} n {1-1 2.+1x  H . -Fi' }.

The condition (0- , e n '+'  1 +1,2 x is used to give an estimation of
liw- (011,/ ,,r for It' <1 (see (3.16)), and to guarantee that w (t) has a finite energy.

A similar estimate can be obtained for

(4.3) 0--)e1/2,r x H 1 ,r

if we use the following LP — LP  estimate due to Peral [9].

Proposition 4 . 1 .  Let w ( t )  be g iv en  by  (3.15). T hen  w e h a v e  f o r  Iti <1,
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(4.4) Ilw-(t)IlLp_C(114)-11w,p+

where p> 1 is a constant satisfying 1 1
p 2

1 < .— n-1

Now put p =  r. Then the above condition is valid by (3.4). Hence the space
HP:1 1 + 1 .2  x H4 v 2 can be replaced by {H2,r x  H i ,q  n {/11

2 X L2} in  (4.1). Com-
bining this and (4.2), we finally see that (4.1) can be replaced by the space

(4.5) {H2,T; x  H1,
}  n  { H 2 ,  x  1 1 1 1  n  { H 1,2 x L2

}
9

to obtain all the assertions of our theorem.

B .  The method given in this paper can be applied to the scattering problem
for the nonlinear Schradinger equation

iOtw — w 0  (x , t)e x R (1 < n <5)

with f  satisfying (Al), (A2) and

(A3') 1 n (p -1 )  <1 f o r  1<n<5.p 2(p+1)
Let

V = {u ; Ilid v =stu g( 1+ Itl) d ilu(t)61,p ,  <  co} ; d = n O  —p +
1-

1 ) .

Then we obtain the following

Theorem 4 .2 .  For sufficiently small 5 >0, let

(4.6) 110-11niV+1145-14/4,2 6,

where p=min in  + 2
, 21. Then the same conclusions hold as  in  Theorem (a), (b)2

and (c), if  we understand

1114(011!=11114(t)11h1,2.

Note that a more general results has been proved in Strauss [10]. O u r  above
theorem corresponds to his Theorem 9 in case l < n < 3.
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Added in P r o o f . The assertions a) and b) of our Theorem can be extended
to all n > 2 and f  satisfying

f e  0 (R ), f ( 0 ) =0, If'(s)I CIsIP- 1  for all se R;

n2 + 3n —  2 +,1(n 2  +3n —2) 2 —8(n2—n)
p <

 n + 3 <2(n 2 — n) n - 1 '

For this aim we introduce the function space

V= { u(t)e C t (R ; Hsi;dull y  — 11)(1+ it)a Ilu(t)11 H s < oo}

n + 1n - 1with s =   an d  r and d as given in (1.3). If we consider solutions2  '
of (1.1) in this space, an approximate energy method is applicable to obtain a
suitable conservation property of energy, and we can follow the proof of Strauss
[10, Theorem 5 ]  to obtain the desired results. Details of the proof will be
published elswhere.


