A simple extension of a von Neumann regular ring

By

Tomoharu AKIBA

(Received, Aug. 22, 1984)

In this note all rings are commutative rings with units. Let R be a (von Neumann) regular ring (i.e. an absolutely flat ring in Bourbaki's sense) and let $R[\alpha]$ be a reduced simple extension of R. Let R[x] be a polynomial ring of a variable x over R, I the kernel of the canonical homomorphism T of R[x] onto $R[\alpha]$ such that $T(x) = \alpha$.

In this note, first we shall give some conditions on I for $R[\alpha]$ to be quasi-regular. (Following [3], we say that a ring is quasi-regular if its total quotient ring is regular.) And then we shall give some results relating to the dondition (F) in [1]. Throughout this paper, we use the above notation. In particular, I is a semi-prime ideal of R[x] with $I \cap R = (0)$.

We begin with an easy lemma.

Lemma 1. Every maximal ideal of R[x] is of height 1 and contains unique minimal prime ideal of the form mR[x] where m is a maximal ideal of R.

The proof is easy and we omit it.

Corollary 2. Every localization of $R[\alpha]$ at a maximal ideal is an integral domain.

Proposition 3. $R[\alpha]$ is quasi-regular if and only if $R[\alpha]$ is a p.p. ring, that is, every principal ideal of $R[\alpha]$ is projective as an $R[\alpha]$ -module.

Proof. This follows from Corollary 2 and [2].

Remark 4. In the proof of Proposition 1 in [2], it is shown that if a ring R' is a p.p. ring, then every idempotent in Q(R') (= total quotient ring of R') is contained in R'.

For an $f(x) \in R[x]$, we denote by c(f) the ideal of R generated by coefficients of f(x). For an ideal J of R[x] we denote by C(J) the ideal of R generated by $\{c(f)|f(x)\in J\}$.

Theorem 5. Assume that C(I) = R. Then $R[\alpha]$ is regular and is integral over

R. Therefore the pair $(R, R[\alpha])$ satisfies the condition (F) in [1], that is, for any ring R'' between R and $R[\alpha]$, $R[\alpha]$ is R''-flat.

Proof. The regularity of $R[\alpha]$ is clear. Since $R[\alpha]$ is regular, there is an idempotent e in $R[\alpha]$ such that $\alpha + e$ is not a zero-divisor, hence, a unit in $R[\alpha]$. Since R[e] is regular and integral over R and since $R[\alpha] = R[e][\alpha + e]$, replacing R and α with R[e] and $\alpha + e$, respectively, we may assume that α is a unit in $R[\alpha]$. Then it is well-known that α is integal over R (cf. [4]).

The latter part of the theorem follows from Proposition 3.1 in $\lceil 1 \rceil$.

Theorem 6. If C(I) is principal, then $R[\alpha]$ is quasi-regular.

Proof. Let C(I) = eR with $e^2 = e \in R$. By Theorem 5, we may assume $e \ne 1$. Then there is an $f(x) \in I$ such that c(f) = eR. It is clear that we can write $f(x) = e\overline{f}(x)$ with $c(\overline{f}) = R$. Let \mathfrak{M} be a maximal ideal of R[x] containing C(I). Then it is sufficient to show that \mathfrak{M} contains non-zero-divisor modulo I (recall that we assume that $R[\alpha]$ is reduced). Since \mathfrak{M} is maximal, there is a g(x) in \mathfrak{M} such c(g) = R. Then $h(x) = \overline{f}(x)g(x) + e$ is contained in \mathfrak{M} . We need to prove that h(x) is not a zero-divisor modulo I. Let k(x) be a polynomial such that $h(x)k(x) \in I$. Then

$$\overline{f}(x)g(x)k(x) + ek(x) \in I \subseteq C(I)R[x] = eR[x],$$

whence $\bar{f}(x)g(x)k(x) \in eR[x]$, that is, $c(\bar{f}gk) \subseteq eR$. Since $c(\bar{f}) = c(g) = R$, we have $c(k) \subseteq eR$. Hence we can write $k(x) = e\bar{k}(x)$ with $\bar{k}(x) \in R[x]$. Then

$$h(x)k(x) = eh(x)\bar{k}(x) = f(x)g(x)\bar{k}(x) + e^2\bar{k}(x)$$

is in I. Since $f(x) \in I$, $e^2 \bar{k}(x) = k(x)$ is also contained in I which implies that h(x) is not a zero-divisor modulo I.

Corollary 7. If I is finitely generated then $R[\alpha]$ is quasi-regular.

If $R[\alpha]$ is quasi-regular, every idempotent in $Q(R[\alpha])$ is contained in $R[\alpha]$ as stated in Remark 4. In addition, if I is generated by linear polynomials, that is, polynomials of degree 1, then we have the following result.

Proposition 8. Assume that $R[\alpha]$ is quasi-regular. If I is generated by linear polynomials, then every idempotent of $Q(R[\alpha])$ is contained in R.

To prove the proposition, we need the following lemma.

Lemma 9. Let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ be a polynomial in R[x] such that $f(\alpha)$ is integral over R. Then $a_i \in C(I)$ and $a_i \alpha^r$ is integral over R for every i with $0 \le i \le n-1$ and every integer $r \ge 0$.

Proof. Since $f(\alpha)$ is integral over R, there are an integer m and $b_j \in R$ such that

$$0 = f(\alpha)^m + b_1 f(\alpha)^{m-1} + \dots + b_m$$

= $a_0^m \alpha^{mn} + \text{(lower terms of } \alpha),$

that is,

$$a_0^m x^{mn} + (\text{lower terms of } x)$$

is contained in I. Therefore $a_0^m \in C(I)$ and, hence, $a_0 \in C(I)$ and $a_0 \alpha$ is integral over R. Let $a_0 = e_0 u_0$ with $e_0^2 = e_0$ and u_0 a unit in R. Then $a_0 \alpha^r = u_0^{1-r} (a_0 \alpha)^r$ and is integral over R. Since $f(\alpha) - a_0 \alpha^n$ is also integral over R, by induction on i, we have that $a_i \in C(I)$ and $a_i \alpha^r$ is integral over R for every i with $0 \le i \le n-1$ and for every r.

Proof of Proposition 8. By Remark 4, it is sufficient to show that every idempotent in $R[\alpha]$ is contained in R. Let $\phi(\alpha)$ be an idempotent of $R[\alpha]$ with $\phi(x) \in R[x]$. Since $\phi(\alpha)$ is integral over R, setting

$$\phi(\alpha) = a_0 \alpha^n + a_1 \alpha^{n-1} + \dots + a_n$$

we have $a_i \in C(I)$ for every i with $0 \le i \le n-1$ by Lemma 9. Since I is generated by linear polynomials, there is a $b_0 \in R$ such that $a_0x + b_0 \in I$ and $b_0 \in a_0R$. Then

$$\phi(x) = (a_0x + b_0)x^{n-1} + (a_1 - b_0)x^{n-1} + \dots + a_n.$$

Since $a_1 - b_0 \in C(I)$, applying the above process inductively, we see that there is an $e \in R$ such that $\phi(x) - e \in I$. Since $\phi^2(x) - \phi(x) \in I$, e is an idempotent as is easily seen. Hence $\phi(\alpha) = e$ is contained in R.

Corollary 10. If I is a principal ideal generated by ax + b with $a \neq 0$ and $b \in aR$, then $R[\alpha]$ is quasi-regular and the pair $(R, Q(R[\alpha]))$ satisfies the condition (F).

Proof. It is easy to see that I is semi-prime and $I \cap R = \{0\}$. Then by Theorem 6 $R[\alpha]$ is quasi-regular. Since every idempotent in $Q(R[\alpha])$ is contained in R, the pair $(R, Q(R[\alpha]))$ satisfies (F) by Proposition 3.2 in [1].

It is natural to ask under what additional conditions on I (or on C(I)) $R[\alpha]$ is quasi-regular in case that C(I) is not principal. Though we do not have any answer yet, the following proposition reduces the problem in case that I is generated by linear polynomials.

Proposition 11. Let \overline{R} e the integral closure of R in $R[\alpha]$ and let $\overline{R}[x] = R[x] \otimes_R \overline{R}$. We denote by \overline{I} the kernel of the canonical homomorphism \overline{T} of $\overline{R}[x]$ onto $\overline{R}[\alpha]$ (= $R[\alpha]$) such that $\overline{T}(x) = \alpha$. Then \overline{I} is generated by linear polynomials and $C(\overline{I}) = C(I)\overline{R}$.

Proof. It is clear that \bar{I} is generated by linear polynomials of the form $\phi(\alpha)x - \psi(\alpha)$ where $\phi(\alpha)$, $\psi(\alpha) \in \bar{R}$ with $\phi(x)$, $\psi(x) \in R[x]$ and $\phi^2(\alpha) = \phi(\alpha)$, $\psi(\alpha) \in \phi(\alpha)\bar{R}$. Let $\phi(x) = \sum_{i=0}^{n} a_i x^{n-i}$ with $a_i \in R$ and $a_0 \neq 0$. Then by Lemma 9, $a_i \in C(I)$ and $a_i \alpha \in \bar{R}$ for every i with $0 \le i \le n-1$. Then $a_i x - a_i \alpha \in \bar{I}$ and

$$\phi(\alpha)x - \psi(\alpha) = \sum_{i=0}^{n-1} e_i \alpha^{n-i} (a_i x - a_i \alpha) + a_n x + \sum_{i=0}^{n-1} a_i \alpha^{n+1-i} - \psi(\alpha),$$

where e_i 's are idempotents in R such that $a_i = e_i u_i$ with u_1 units in R. Since $a_i \alpha^r$ and, therefore, $e_i \alpha^r$ are contained in \overline{R} for every r by Lemma 9, we see that $a_n x + \sum_{i=0}^{n-1} a_i \alpha^{n+1-i} - \psi(\alpha) \in \overline{I}$. Then it is easy to see that $a_n \in C(I)$. Therefore $\phi(\alpha) = \sum_{i=0}^{n-1} a_i e_i \alpha^{n-i} + a_n$ is contained in $C(I)\overline{R}$ and we have $C(\overline{I}) \subseteq C(I)\overline{R}$. Since the converse inclusion is obvious, we see that $C(\overline{I}) = C(I)\overline{R}$.

Examples 12. Let $\{k_{\lambda}\}_{{\lambda}\in \Lambda}$ be a family of infinitely many fields and let $R=\prod_{{\lambda}\in \Lambda}k_{\lambda}$. We denote by e_{λ} the idempotent of R such that λ -th component is 1 and the others are 0.

- (1) Let n be a natural number and let $f_{\lambda}(x)$ be a square-free polynomial of $k_{\lambda}[x]$ such that $0 < \deg f_{\lambda}(x) \le n$ for every $\lambda \in \Lambda$. Let I be the ideal of R[x] generated by $\{f_{\lambda}(x)\}_{\lambda \in \Lambda}$. It is easy to see that I is semi-prime and $I \cap R = \{0\}$. We show that $R[\alpha] = R[x]/I$ is not quasi-regular. By our assumption, there is a polynomial f(x) in R[x] such that $e_{\lambda}f(x) = f_{\lambda}(x)$ for every λ . Then C(f) = R and $Ann_{R[\alpha]}f(\alpha) = C(I)R[\alpha]$. Since $C(I) = \sum_{\lambda \in \Lambda} k_{\lambda}$ and is not principal, $R[\alpha]$ is not quasi-regular by Proposition 3.
- (2) Let $g_{\lambda}(x)$ be an irreducible polynomial in $k_{\lambda}[x]$ for every $\lambda \in \Lambda$. Assume that for every integer n, the set of λ with deg $g_{\lambda}(x) \le n$ is a finite set. Then the ideal I of R[x] generated by $\{g_{\lambda}(x)\}_{\lambda \in \Lambda}$ is semi-prime and $I \cap R = \{0\}$. We show that $R[\alpha] = R[x]/I$ is quasi-regular. First we remark that $C(I) = \sum_{1 \le A} k_{\lambda}$.

Let M be a maximal ideal of R[x] containing C(I). We need to show that M contains a non-zero-divisor modulo I. There is a g(x) in M such that c(g) = R. Assume that g(x) is a zero-divisor modulo I. Then the set of λ with $g_{\lambda}(x)|e_{\lambda}g(x)$ is a finite set, say, $\{\lambda_1, \ldots, \lambda_r\}$. Then $g(x) + e_{\lambda_1} + \cdots + e_{\lambda_r}$ is a non-zero-divisor modulo I and is contained in M. Hence $R[\alpha]$ is quasi-regular.

INSTITUTE OF MATHEMATICS YOSHIDA COLLEGE KYOTO UNIVERSITY

References

- [1] T. Akiba, Remarks on generalized rings of quotients IV, preprint.
- [2] S. Endo, Note on p.p. rings, Nagoya Math. J., 17 (1960).
- [3] S. Endo, On semi-hereditary rings, J. Math. Soc. Japan, 13 (1961).
- [4] R. M. Raphael, Algebraic extensions of commutative regular rings, Can. J. Math., 22 (1970).