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Local structure of analytic transformations
of two complex variables, 1

By

Tetsuo UEDA

Introduction.

Let T be a holomorphic mapping defined on a neighborhood V of the origin
O of the space C? of two complex variables into C? which leaves O invariant.
By a local analytic transformation we will mean either such a mapping T or
the germ of T at O. The purpose of the present and the forthcoming papers
is to investigate the structure of these local analytic transformations. Specifically
we will study the following subjects, which are closely related to each other:
(i) description of the behavior of the points near the fixed point O under the
transformation 7" and its iterates T", n=1, 2, ---; (ii) intrinsic characterization
of the structure of T, i.e., a characterization which does not rely on local co-
ordinates around O.

We treat these problems, especially for semi-attractive transformations of
type (1, b);, i.e., transformations which can be expressed in the form (6.1), in
section 6, with the conditions 0<|b| <1, a,#0. The study of transformations
of this type is considered as a generalization of the result of Voronin [19] for
the case of one complex variable.

In Part A (sections 1-5) of the present paper, we recall some known results
and make some additional remarks for general local analytic transformations.
These observations will serve to give a proper perspective of our main subject.
The reader may begin with Part B and use Part A as reference.

In Part B (sections 6-10), a transformation T of type (1, b), is investigated.
We study the structure of the set of points P in the vicinity of the fixed point
O such that the sequence T'(P), T¥P), --- converges to O pointwise or uniformly
in a neighborhood of P. The invariant curve of Poincaré lies on the boundary
of the domain of uniformly convergent points. On this domain we introduce a
system of coordinates so that the transformation T is reduced to a simple form,
i.e., translation. As an application we will give, in section 10, an analogous
result to the example of Bieberbach [2], which shows that there is a proper
subdomain ® in C? which is biholomorphic to C% It may be of some interest
that by the present method ® can be so constructed that the boundary 0® con-
tains a complex line.

In the forthcoming paper I, we will give a complete solution for the prob-

Received November 20, 1984.



234 Tetsuo Ueda

lem (ii) posed above.

A. Classification and general remarks.
1. Classification.

Let T be a local analytic transformation at O=(0, 0)C? We use the
notation P=(x, v), T(P)=(x,, ¥,) to denote any point in the vicinity of O and
its image under 7. The transformation T is expressed by convergent power
series in x, y:

x=f(x, )= 2 ayxtyl,
(1.1) tJ o
y1=8(x, ¥)= iZ]) bisx*y?,

where the constant terms aq,=by=0. If the Jacobian determinant J(O)=a,.b,,
—aub of T at O is not 0, then 7 has an inverse T-1. All the transforma-
tions constitute a semi-group by composition and all the invertible transforma-
tions constitute a group.

Let S:(X,Y)—(x, y) be an invertible transformation and consider 7T'=
S-1.T%S: (X, Y)—~(X,, Y,). This new transformation 7 can be regarded as the
expression of T with respect to the coordinate system (X, Y). When T is thus
regarded, it will be denoted by the same letter 7.

The linear part (differential) of T at O is dT(O)=(ZI‘O° ‘;‘:
denote the eigenvalues of dT(0). We will call T to be of type (a, b). Let us
restrict attention to invertible transformations and classify them according to
the eigenvalues a, b:

I’. T is called attractive if |al, |b]|<1.

1”. T is called repulsive if |a]|, |b]|>1.

II. T is called of saddle type if |a|<1<|b]| (or |b|<1<]al).

I’. T is called semi-attractive if |a|=1, |b|<1 (or |b|=1, |a|<]).

MI”. T is called semi-repulsive if |a|=1, |b|>1 (or |b]|=1, |a|>1).

IV. T is called neutral if |a|=]|b|=1.

The fixed point O will be correspondingly called attractive, repulsive, etc.

). Let a, b

2. Attractive transformations and repulsive transformations.

Let us first mention the cases of attractive and repulsive transformations.
In these cases we can find canonical forms for T, and therefore we have a
complete description of T (as far as the local structure is concerned). To fix
the ideas we assume that the eigenvalues a, b satisfy the condition 0<|a|=<
1b]<1 or 1< [b|=]al.

(@) If b™#a for any positive integer m, then by choosing an appropriate
coordinate system (x, v), the transformation T is brought to the form
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xX,=ax,
2.1)
y1=by.

(B) If b™=a for a positive integer m, then T can be brought to the form
either (2.1) or (2.2):

x;=ax+y™,
(2.2)
y1=by.

We refer to Lattés [10] for the proof. See also Sternberg [17]; and Reich
[15], [16] for the case of many variables.

3. The set of fixed points; invariant curves of Poincaré.

3.1. In studying the intrinsic structure of a transformation 7 it is funda-
mental to find objects which are invariant under T. The simplest of such
objects are the fixed points. We fix a domain of definition V of T with a
coordinate system (x, y). T is expressed in the form (1.1). A point Pin V is
said to be a fixed point of T if T(P)=P. The set of all fixed points in V is
denoted by J. The set J is the common zero of the holomorphic functions
f(x, y)—=x and g(x, y)—y; therefore J is an analytic set in V containing the
origin O. Hence either (i) O is isolated in J, (ii) J is of dimension 1 at O, or
(iii) J=V.

In the case (iii), T is the identity transformation. In the case (ii), letting
g(x, v) be the defining equation of the curve J, the transformation T is written
as

{ x1=x+q(x, y)h(x, y),
3.1)

y1:y+(1(x, y)k(xr y)‘

We see from this expression that, when J is singular at O, T is of type (1, 1).
When J is non-singular at O, we can choose a coordinate system (x, y) so that
qg(x, )=y, i.e. J coincides with the x-axis. T takes the form

{ x1:x+yh(xy y))
yi=y(1+k(x, 3)).

T is of type (1, b), b=1+k(0, 0). Under this situation assume that T is semi-
attractive or semi-repulsive: [b]#0, 1. Then we can find an appropriate coordi-
nate system (x, y) relative to which T takes the form

xlzx »
3.3)
y,=by.

3.2)

For the proof see Nishimura [11].

3.2. Consider a holomorphic mapping F of a neighborhood of the origin 0
of the complex line C into C? satisfying the conditions
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(i) F0)=0;

(ii) T(F(Q)=F(cL), for a constant ¢#0;

(iii) dF/dE0)+0.
By differenciating the equation (ii), we obtain dT(0)dF/dL(0)=c dF/dQ0).
Hence dF/dC(0) is an eigenvector of dT(0) with eigenvalue ¢. We will call F
to be the Poincaré mapping corresponding to the eigenvalue ¢ (relative to the
transformation T at O). We denote by C either the image under F of a neigh-
borhood of {=0 or its germ. C will be called an invariant curve (of Poincaré).
If there exists a Poincaré mapping {—F({), then {—~F(kQ) is also, for any £2=0.
These are the all Poincaré mappings corresponding to the same eigenvalue.
The invariant curve C is uniquely determined.

The following theorem is fundamental in all of our investigations:

Theorem 3.1. (Poincaré [14], see also Lattés [9], Picard [13]). Let a,b the
eigenvalues of dT(0). If lal#1 and a™+b for any integer m=0, then there is
a Poincaré mapping F corresponding to the eigenvalue a.

3.3. Making use of the invariant curves some of the transformations can
be brought to a simpler form.

(a) Attractive or repulsive case: When T is of the form (2.1), the x- and
y-axes are the invariant curves corresponding to the eigenvalues a and b, re-
spectively. There is no other if a#b; all lines x : y=const. are invariant curves
if a=b. When T is of the form (2.2), the x-axis is the only invariant curve.

(B) Case of suddle type: We can take a coordinate system (x, y) so that the
x- and y-axes are invariant curves corresponding to the eigenvalues a and b
respectively, and that T reduces to linear: (x, 0)—(ax, 0), (0, y)—(0, by) on
these axes, namely,

xi;=ax+xyh(x, y),
(3.4) {

yi=by+xyk(x, y).

() Semi-attractive or semi-repulsive case: We can take a coordinate sys-
tem (x, y) so that the y-axis is the invariant curve and that T is linear:

x1:x+xh(xv y) »
|

yi=by+xk(x, y).

If, furthermore, O is a non-isolated fixed point, then T reduces to the form (3.3).

4. Simply convergent points and uniformly convergent points.

4.1. Let T be a local analytic transformation at O=C? As a domain of
definition of T we choose and fix a bounded domain V in C2%. Let P be a point
in V and T(P) its image (consequent) under T. If T(P) lies in V, then the
consequent point T%(P) of T(P) can be defined. If we can continue this process
indefinitely, we will have the sequence
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P, T(P), T¥P), =, T"(P), -+

Such a point P is called stable. A stable point P is called simply convergent if
this sequence T™(P), n=0, 1, 2, ---, is convergent. Obviously every fixed point
is simply convergent and every consequent point of a simply convergent point
is also. A simply convergent point P is called uniformly convergent if there is
a neighborhood W of P in V consisting of simply convergent points on which
the sequence of the holomorphic mappings T*|W, n=1, 2, -+ is uniformly con-
vergent.

Let S, K and U denote the sets of all stable, simply convergent and uni-
formly convergent points in V. Then U coincides with the interior K° of K.
Indeed, it is clear by definition that every uniformly convergent point is in K°;
on the other hand, since the sequence T"|K°, n=0, 1, 2, ---, constitutes a normal
family and is simply convergent, it is uniformly convergent on compact sets in
K° by Vitali’s theorem.

Let T denote the limit of the sequence T"|K; T”(P):Lip;lo T™(P), PeK.

T=(P) is said to be the limit point of P. Obviously T is holomorphic on U.
T= is the identity mapping on the set J of the fixed points. Since TT*=T<,
every limit point is a fixed point. In particular, if O is the only fixed point of
T in V, then T=(K)={0}.

4.2. It should be emphasized that the definitions of stable, simply conver-
gent and uniformly convergent points depend upon the choice of the domain of
definition V. We cannot even define a concept as “the germ of the set of
simply (or uniformly) convergent points”.

However the following properties for 7T are obviously independent of the
choice of V:

(i) O is a uniformly convergent point.

(ii) O is the limit of a uniformly convergent point.

(iii) O is the limit of a simply convergent point other than O.

Let us examine these properties according to the classification given in 1.

() Suppose that T is attractive. We assume that T is of the form (2.1)
or (2.2). If the domain of definition V is sufficiently small, then we can find a
constant 2, 0< k<1, such that |x,|=kl|x]|, |y,|=k|y|. If follows that O is a
uniformly convergent point and the limit of every point in the vicinity of O is O.

(B) Suppose that T is repulsive, and of the form (2.1) or (2.2). Choosing
a sufficiently small V, we can find a constant K>1 such that |x,|>K|x],
|y.|>K|y|. It follows that O is the only stable point in the vicinity of O.

(r) Suppose that T is of saddle type. To fix the ideas we choose a coordinate
system (x, y) and a domain of definition V of T in such a way that

V={lxI<p, |y1<p}

and that T takes the form (3.4) with |a|<1<|b]|.
Obviously the points on the x-axis: y=0 are simply convergent. These are
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the only stable points in V. To show this notice first there is a number K>1
such that |y,|=K|y| for all P=(x, y) in V, by choosing p sufficiently small.
If P is a stable point in V, then T*(P) are all in V and |y,|=K"|y|. There-
fore y=0, i.e., P is on the x-axis. Consequently there is no uniformly con-
vergent point in V.

(0) Suppose that T is semi-repulsive. There is no uniformly convergent
point in a sufficiently small neighborhood V of O. Indeed, since |/+(0)|>1,
there are a neighborhood V and a constant K>1 such that |/r(P)|=K on V.
Let P be any stable point in V. Consider the sequence of Jacobian determinants
Jra(P) of T* n=1,2,-. We have |Jra(P)|=|Jo(T"*(P)) -+ Jo(T(P)]r(P)|
=>K™. Therefore Jro(P) is non-convergent and hence P is not a uniformly con-
vergent point. (P may be a simply convergent point.)

By (B)~(d), we obtain the following

Proposition 4.1. If O is the limit of a uniformly convergent point, then T
is attractive, semi-attractive or neutral.

Proposition 4.2, Suppose that O is a uniformly convergent point. Then T
s either (i) attractive, (i) semi-attractive and the set | of fixed points is a curve,
(¢.e., it can be brought to the form (3.3)), or (iii) the identity.

Proof. Letting a, b, be the eigenvalues of dT(0O), the sequences a®, b",
n=0, 1, 2, ---, are convergent. Consequently (|a|<1 or a=1) and (|| <1 or
b=1). Consider the sequence of the Jacobian determinants Jr.(P), n=0, 1, 2, ---,
which converges uniformly to Jr~(P) on U. Since Jra(P) are non-vanishing,
the limit Jr~(P) is non-vanishing or identically 0. If e=b=1, then Jr~(0)=1
and hence T* is invertible. Therefore a neighborhood of O is covered by the
image under T of U, hence by the set J of the fixed points. Thus T is the
identity. In the other cases Jr«~(O)=0, and hence Jr«(P)=0 identically on U.
Therefore T= is a mapping of rank =1. If (a=l1, |b|<1) or (Ja|<1, b=1),
then 7= is of rank 1 at O and hence on a neighborhood of 0. T>(U) is a
curve which is regular at O. Since T=(U) is contained in /, we get the case
(ii). If |al, |b]<1, then T is attractive by definition. q.e.d.

5. Global transformations.

5.1. Let M be a complex manifold of dimension m and T a holomorphic
mapping of M into itself. We are concerned with the behavior of the points in
M under the iterated mappings 7% n=1,2, ---. A point P in M is called
simply convergent if the sequence of the points T*(P), n=1, 2, ---, is conver-
gent. P is called uniformly convergent if there is a neighborhood W of P such
that the sequence of mappings T*|W, n=1, 2, -, is convergent in compact-open
topology. P is called normal if there is a neighborhood W of P such that the
set of the mappings T"|W is relatively compact in compact-open topology. The
sets of all fixed, simply convergent, uniformly convergent, normal points are
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denoted by I=X(T), K=K(T), U=W(T), R=N(T), respectively. It is obvious
that I, M are open sets and that JCR, UCK, UCSN.
For any integer ¢>0, we have correspondinng concepts for transformation
Te.
(a) It is clear that
NTH=WT), for all ¢ ;

KTHCSK(TT), WTHCSWT?), if ¢’ is a multiple of gq.
(B) The sets J(T9), KT, WT9, N are invariant in the sense: T(H(TY)
CTY, TR(TH)SK(TY, TWTY)SWT), T(N)SN.
(y) We decompose M into connected components : m:kxﬁbg. If D;NT?)

+0, then ©,CW(T?. This an immediate consequence of Vitali’s theorem. In
other words, for every ¢, W(TY is composed of some of the connected com-
ponents of N.

Proposition 5.1. Suppose that WM is a Stein manifold. Then W is a Runge
domain in M. Hence so are all the connected conponents ®; of N. In particular

they are all Stein.

Proof. There are holomorphic functions ¢; j=I1, ---, k, on M such that
(¢)k=; is a holomorphic imbedding of M into C*. Denote by N; the region of
normality of the family of functions {¢(T*(P), n=1, 2, ---}. Then N is the
intersection of the regions M;. By the theorem of Cartan and Thullen [3], each
of M, is a Runge domain; hence N is a Runge domain. (In the original theorem
of Cartan and Thullen, M is supposed to be an unramified domain over the

. space of complex variables C™, m=dim M. This theorem is generalized to the
case M is a Stein manifold, using the method of Docquier and Grauert [4].)

(8) Let T=: &M denote the limit of the sequence T"* Every limit point
T=(P), PR, is a fixed point.

Example. Let I be the product of two Riemann spheres with inhomo-

geneous coordinates x, y:
M={|x|=Z00, |y|Z 00}

and let T be an automorphism of M
{ x;=x+1
y1=by

with 0<|b|<1. There are two fixed points (oo, 0) and (oo, co). The fixed
point (oo, 0) is semi-attractive of type (1, b) and (oo, oo) is semi-repulsive of type
(1, 1/b). Every point in M is simply convergent. The points (x, y) with y+oo
have (oo, 0), and the points (x, o) have (oo, c0) as limit points respectively.
The points (x, y) with x#0co0, y+#oco are uniformly convergent to (oo, 0). The
points (oo, y), y==co, are interior to the set of simply convergent points with
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limit (oo, 0), but they are not uniformly convergent.

5.2. Now we consider the case where M is of dimension 2 and T is an
automorphism of MM having a fixed point O.

Suppose that O is an attractive fixed point. Let ® denote the connected
component of W(T') containing O. Then ® is the set of all simply convergent
points with limit O. Bieberbach [2] showed that this domain ® is biholomor-
phic to C% (See also Kodaira [8].) We note that ® is a Runge domain if M
is Stein by Proposition 5.1. Incidentally, the author does not know whether a
domain ® in C* which is biholomorphic to C? is always a Runge domain.

Now suppose that O is a fixed point such that there is an invariant curve
of Poincaré with center O corresponding to an eigenvalue a, |a|#0, 1. The
mapping F is analytically continued to an injective holomorphic mapping of C
(-plane) into M by means of the functional equation T(F(&))=F(af). The an-
alytic curve €=F(C) is not generally a closed set in M. In view of 4.2. (),
we infer that, when O is a hyperbolic fixed point of type (a, b), |a|<1<]|b],
the curve € is the set of simply convergent points with limit O.

5.3. (Appendix). In connection with the example of Bieberbach, we will
point out a property of the boundary of a domain ® in a complex manifold of
dimension 2 which is biholomorphic to C2

Proposition 5.2. Let M be a complex manifold of dimension 2 and € a sub-
set of M. Assume that, for every point P in G, there exist a parabolic Riemann
surface R and a non-constant holomorphic mapping f of R into M such that Pe
f(R)SEC. Then the set MNE, namely the set of all exterior points of G, is a

pseudoconvex region (if it is not empty). In particular, if WM is Stein, then M\E
1s also Stein.

Corollary. If D is a domain in C* biholomorphic to C®. Then C™\D is a
region of holomorphy. If F is a mnon-constant holomorphic mapping of C into C?
then C*\F(C) is a region of holomorphy.

Proposition 5.2 is a variant of theorems of Suzuki [18, Corollaire au lemme
8] and Nishino-Suzuki [12, Théoréme 1]. The proof is done in the same way:

Consider an open set W in M biholomorphic to the dicylinder {|x|, !y| <1} and
a subset W* of W defined by

Wr={|x|<r, [y|<DU{lx|<L, s<|yI<1},  (0<r, s<1),

such that W*NE=0. The proposition is proved if we show that WNE=0 under
this situation. Suppose that WNE+#0. Then there are a point PEWNE and a
holomorphic mapping f of a parabolic Riemann surface ® into M such that
S~ (W) is a non-empty region in R. Consider the subharmonic function 1/]xef]|
on f-'(W). This function takes the boundary value 1 at every boundary point
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of f-}(W). By the maximum principle for a parabolic Riemann surface (see, for
example, Ahlfors and Sario [1, Chap. IV, §1, 6]), we have 1/|x-f|<1 on
f-1(¥). This contradiction proves the proposition.

B. Semi-attractive transformations and semi-repulsive
transformations of type (1, b),.

6. Reduction of local coordinates.

Let us consider a local analytic transformation of type (1, b), with |b|+0, 1.
With respect to an appropriate local coordinate system (x, v), the linear part
dT(0) of T is diagonalized and T : (x, y)—(x,, ;) takes the form

{ x=f(x, y)=x+ 3 a;x'y,
i+jz2

(6.1) "
3’1=g(X, J’):by-l- 2 bi,-x’y’ .
i+j22

We will first reduce the expression of T as simple as possible by means of
successive changes of local coordinates. If |b|>1, then we consider the inverse
T-!in place of T; and we assume T to be semi-attractive: 0<|b|<1.

(a) We take a coordinate system (x, y) with respect to which the Poincaré
mapping F takes the form {—(x, y)=(0, {). Then T is expressed by the power
series in x:

{ Hn=a,(y)x+a()x*+ -,  (a,(0)=1),
6.2)

y1=by+by(y)x+ -,

where a;(y) and b(y) are holomorphic functions of the variable y on a neigh-
borhood of y=0. (See 3.3, (7).)

() In the expression (6.2) we can assume that a,(y)=1, by choosing an
appropriate coordinate system. To see this we consider a new coordinate sys-
tem (X, Y) defined by

{ x=PY)X, { X=x/P(y),

y=Y, Y=y,

where P(Y) is holomorphic on a neighborhood of Y=0 and P(0)=1. The trans-
formation T of the form (6.2) is expressed with respect to (X, Y) as

1 1
Xi= P(y;) = P(by_l_ ) {al(y)x—|- }
1
= povs oy (aMPI)X )
:al(Y)%X—I-(terms containing X?),

Y ,=bY +(terms containing X).

In order that the coefficient of X=1, the function P(Y) should satisfy the equa-
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tion
PY)/P(bY)=1/a\Y).
This has a unique solution

P(Y):l/fi[oal(b")’).

The infinite product is convergent since a,(0)=1 and |b|<1. This shows our

assertion.

(r) For any integer 1=2, we can choose a coordinate system with respect
to which a,(y), -+, a,(y) are all constants. We prove this by induction. Supopse
that a coordinate system (x, y) is already chosen so that 7' has the form

=x+a,x* - FaixtT ay)xi e, ((22),
We introduce a new coodinate system (X, Y) by
x=X+P,()X?, X=x—P(y)xi+ -,
{ y=Y, { Y=y,
with respect to which T takes the form
Xi=x,—Py(y)x 4
=x4ayx24 - +a;x 7+ {a ()P by) xi+ -
=X+a,X*+ -+ +a; X H{P(Y)+a(Y)—POOY)} X+ -,
1=bY A+ -
We should determine P;(Y) satisfying the equation
P(Y)=P,(bY)=a;(0)—aY).
The solution is given by the convergent series

PAY):éO {a:0)—a(bY)} +(arbitrary constant).

(6) Furthermore, for any integer j=1 we can choose a coordinate system

with respect to which b,(y), --+, bj(y) are all {linear monomials: b,(y)=b,y, -,
bi(y)=b;y. We prove this by induction. Suppose that a coordinate system
(x, y) is already chosen so that T has the form

{ xl:x+a2x2—|— _|_al.xi+ e
yi=by+byx+ - +bjyx? b (y)x'+ -, (GZD).

We introduce a new coordinate system (X, Y) by

{ x=X, { X=x,
y:Y+QJ(Y)X]r Y=y——Q](y)xj+ Tty
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with respect to which T takes the form
X,=X+a, X+ - +a, X+ -,
Yi=y:—Q(y)x/+ -
=by+byx+ - +biyx? - {b(y)—Q by} x I+ -
=DY +b,Y X+ ;Y X {0QAY ) +b,(Y)— QDY )} X+ -
We should determine Q,(Y) satisfying the equation
bQY)—QbY)=b/0)—bsY).
To solve this equation we put
bi(Y)=Bo+ B Y +B.Y2+ -, (B1=b/(0),
QiY)=qo+q.Y +g, Y+ ---.

Then the above equation reduces to
Z 0=t =—Fi= 3 BT

Hence ¢,=p./(b"—b) for n+1, while ¢, is arbitray. The power series thus
determined is convergent since

lgnl=1Bal/10"—bl=|Bal/|b*—bl.

(¢) Remark and definition. Thus we can obtain, for any 7, 7, a coordinate
system (x, y) with respect to which T takes the form

=24 a0+ o Faatt e (a4
(6.3)s;

Y1=by+biyxt o +byxitbia(y)alt i e

When T is of the form (6.3);;, the inverse 7! has a similar form with
respect to the same coordinate system. So our result is valid for any trans-
formation of type (1, b) with |b| 0, 1.

If we admit a change of coordinates by means of formal power series, it is
possible to reduce all a,(y), as(y), --- to constants and all b,(y), by(y), -+ to linear
monomials. However these formal power series are not generally convergent, as
we shall see later.

We will divide the class of all transformations of type (1, b), |b|+#0, 1, into
subclasses. Suppose that T is expressed, relative to a certain coordinate system
(x, ), in the form (6.3);; in such a way that a,= - =a,=0 and a,+,#0
(k+1=<i). Then, for any coordinate system (x, y) which expresses T in the
form (6.3);;, this condition for coefficients is invariant. Such a transformation
T is said to be of type (1, b),. If, for any coordinate system with arbitrarily
large i, we have a,= --- =a,;=0, then T is said to be of type (I, b)e.

In the sequel we treat the case of type (1, b),, i.e., a,#0. This condition
is equivalent to say that a,,#0 in the original expression (6.1).
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({) Finally we make the change of coordinate system

{ x=1/z, { z=1/x,

y=w, w=y,

and regard T as a local analytic transformation defined on a neighborhood of
the point (oo, 0) in the product space

CxC={|z| =00, |w|<oo}.
The expression (6.3);; is brought to the form
{ zy=z+ A+ Ay /24 -,

(6.4)
wy=bw+bw/z+ -,

where Ay;=—a, A;=a,’—a,, -

7. Base of uniform convergence.

7.1. Let us first introduce the concept of bases of convergence in a some-
what general situation. Let T be an invertible local analytic transformation at
O and suppose that O is an isolated fixed point. At first we fix a domain V
of T. An open subset D of V is said to be a base of uniform convergence of
T if it satisfies the conditions:

(i) Every point in D is uniformly convergent to O.

(ii) For every uniformly convergent point P in V, there is a sufficintly
large number n, such that T"o(P) is in D.

(iii) T(D)eD.

This definition does not depend on the choice of V in the sense of (a) of the
following lemma.

Lemma 7.1. (a) Let D be a base of uniform convergence relative to a domain
V, and let V' another domain of T containing D. Then D is a base of conver-
gence relative to V' also. '

(B) If D is a base of uniform convergence, then T(D) is also.

(r) If D, and D, are bases of uniform convergence, then D,\UD, and DN\D,
are also.

Proof. To prove (a), it suffices to verify the condition (ii) relative to V.
Let P be a uniformly convergent point in V’. Then by difinition there is a
number n, such that T*(P)eVNV’ for all n=n,. Then T"(P) is a uniformly
convergent point in V, and consequently T"t**o(P)e D for some n,. Thus (a)is
shown. Assertions () and (y) are obvious.

We have the corresponding concept for simple convergence. A subset
(which need not be open) E of V is said to be a base of simple convergence of
T if it satisfies the conditions:
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(i) Every point in E is simply convergent to O.

(ii) For every simply convergent point P in V, there is a sufficiently large
number n, such that T"(P) is in E.

(ili) T(E)CE.
The properties corresponding to the above lemma hold for E.

7.2. Now we return to the semi-attractive transformation T of type (1, b);.
We use the expression (6.4) with changed notation: T is a transformation

zy=z+a,+a,/z+a(w)/z+ -,
(7.1) {

w,=bw-+byw/z+by(w)/z2+ ---

of a neighborhood of O=(co, 0) satisfying the conditions 0< |b| <1, a,#0. As
the domain of definition of T we specify a neighborhood V of O of the form

V={R'<l|z| =00, |w|<p}.

The domain V is assumed to be so chosen that T is analytically continued to a
neighborhood of the closure of V and injective there, and that there is no fixed
point other than O. By C we denote the portion of the invariant curve in V,
ie.,

C={z=00, |w|<p}.

Our purpose is to construct bases of uniform and simple convergence for T.
Let K,, K, be positive numbers such that

lzi—2z—a,| =|a,/z+a(w)/z*+ - | <K,/|z],
and that
I wl-——bw ] — |b‘w/z+b2(w)/22+ '“I<K2/IZ|

on V. Let a denote the argument of a,=|a,|e’®*. We take and fix a real
number 4 with |§—a|<zm/2. Let R=R(#) be a sufficiently large number such
that
0:=laelcos (—a)—K,/R>0,
and
[blp+K./R<p.

We define the domain D in V by
(7.2) D=Dy r={Re(e"2)>R, |w|<p},

namely, the product of a half plane in the z-plane and a disk in the w-plane.
The invariant curve C lies in the boundary of D.

Proposition 7.2. (i) The domain D is a base of uniform convergence. (ii)
The set D\UC is a base of simple convergence.

We prove this proposition in the steps (a)~(¢).
(a) First we notice the following: If |z2(P)|>R, |w(P)|<p, then
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(7.3) Re (e7"%z,)=Re (e-*?z)+Re (e"*?a,)+Re{e "% (a,/z+ )}
=>Re (¢~%2)+|a,|cos (0 —a)—K,/R

=Re (¢'%2)+0,
and
Jw | Zbw|+K,/RS1blp+K/R<p .

Hence, in particular, if PeD, then T(P)eD; i.e., T(D)SD. Since T(C)CC,
we have T(DUC)c DUC.

(B) Next we show that the sequence T"(P)=(z,, w,), n=1, 2, -, is uni-
formly convergent to O=(co, 0) on D. Suppose that P D. Using the inequality
(7.3) n times, we obtain

Re (e-%z,)=Re (¢-*z)+nd=R+nd .

This proves that z,—co as n—co uniformly on D. To prove that w,—0, we
choose ¢>0 such that |b|+e<1. We claim that, for any integer v>0, there
exists a number n(y) such that if n>n(v) then |w,|<(|b|+¢€)’p. This is shown
by induction on v. For v=0, it suffices to put n(0)=0. Suppose that n(v) is
already determined. We take n(v+1) so large that n(v+1)>n(v) and
K,/((R+(n(v+1)—1)d)<e(|b|+¢€)’p. Then, for n>n(v+1), we have

| wal S 161 |waor| + Ko/ | 201
<1b1(1b+&) 0+ Ko/ (R+(n—1)5)
<(1b]+er*p.

The above assertion is thus shown.

(r) If PeV\C is a simply convergent point, then there exists an integer
n, such that T"(P)eD. Indeed, since z,—oo by hypothesis, there is an »n’
such that if n=n’ then |z,|>R. For |z,| >R, we have by (7.3)

Re (¢ "z,41)=Re (e7%2,)+4 .
Hence
Re (e7%z,)=Re (e "0z, )+(n—n’)d .

Therefore, for sufficiently large n, we have Re (e *z,)>R and hence T™P)=
(2, wa)ED.

(6) It follows from () that every simply convergent point in V\C is also
uniformly convergent.

(¢) Every point on C is a simply convergent point but not uniformly con-
vergent. To see this let us return to the coordinate system (x, y) and the ex-
pression (6.3),; of T :

{ xi=x+ax*tay(y)xt+ -, a,#0,
y1=by+b1(y)x+b2(y)x2+ e

The iterates T", n=1, 2, ---, have the expressions
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{ Xpo=x+na,x*+ -,
Yu=byt e

Every point P=(0, y)eC is simply convergent since T"(P)=(0, b"y). If P were

uniformly convergent, then the sequence of functions x, n=1, 2, ---, would be
uniformly convergent on some neighborhood of P and the sequence 0%2x,/0x%
n=1, 2, ---, would be also. But this is not the case because 0%x,/0x*P)=2na,.

Proposition 7.2 now follows from the observations (a)~(e).

It is impossible to obtain practically the set of all uniformly convergent
points. But the following remarks are important and useful: For every 6
satisfying |0—a|<m/2, there exists a base of uniform convergence of the form
Dy, p. 1f Dy, g, and Dy, g, are bases of uniform convergence, then their inter-
section and union are also.

8. Abel’s functional equation.

Now we shall construct a holomorphic function ¢(P) on a base of uniform
convergence D=D, p satisfying Abel’s functional equation

8.1 e(T(P)=¢(P)+a,.

The coordinate function z satisfies approximately this equation. Among the
solutions of this equation we shall single out the class of solutions which are
approximated by z (cf. Fatou [5, Chapitre II]). Such a function ¢ together
with w will form a coordinate system on D.

8.1. We choose and fix a branch of log z on D. Then
_ Goy N_LGo, ..
log z,—log z=log (1—!— . + )_ S +
is a holomorphic function on V. We put
al a,
8.2) zi——logz;—a,=z——log z+ A(P) .
a, a,

Here A(P) is a holomorphic function on V such that | A(P)|<K/|z|* with a suf-
ficiently large number K. If we replace P=(z, w) by T*(P)=(z,, w,) in (8.2),
then we have

Zoi— B og 21— 0=z~ 2log 2.+ ATP)),  v=0,1,2, .
a, a,
Summation for v=0, 1, ---, n—1 yields
a, a, n-1
(8.3) Za——log z,—na,=z——log z+ > A(T*(P)).
ao ao v=0
This expression converges uniformly on D as n—oo. Indeed, we have, by (7.3),

(8.4) |z,|=Re (e~%z,)=Re (¢-%%2)+1d ;
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and hence

) =)

(8.5) = NATP)I=K X 1/]2.]*

v=0

§K§ 1/(Re (e~ 192)+6)?

IA

K (= d .
ESRe(ew;)_a xch :K/{5(Re(e-wz)_5)}.

Thus we obtain as the limit of (8.3) a holomorphic function on D

T _ 4 _
(8.6) @o(P)= Ll{r; (zn . log z, nao)
—z—Ylog 2+ 3 A(T(P)).
a, y=0

Definition. A function of the form ¢,(P)+constant is said to be an Abel-
Fatou function (A-F function, for short).

There is an arbitrariness of an additive constant in the definition of ¢,
caused by the choice of the branch of log z. This arbitrariness is absorbed into
the constant in the definition of the class of A-F functions.

Proposition 8.1. A-F functions satisfy Abel’s functional equation.
Indeed, we have

Qo T(P)= lim (2001 3" 108 201~ nas)

= lim (2n+1_%i log Zn+1'—(n+1)ao)+ao

:¢0(P)+ Qo ;
hence the proposition is true for every A-F function. q.e.d.

Let ¢(P) be any solution of Abel’s equation (8.1) defined on a base of uni-
form convergence of any form. Then ¢(P) is analytically continued to a single-
valued function on the set U of all uniformly convergent points, by putting

o(P)=¢(T™*(P))—na,,

where n is a sufficiently large integer such that T*(P)eD. In particular, the
A-F functions are defined on U independently of the choice of D=Dg . (It
may however happen that A-F functions are continued analytically beyond the
boundary of U and yield multiple-valued functions.)

By (8.5) and (8.6), every A-F function ¢ has the form

®8.7) go(P):z—%log z4+B(P), P=(z, w)eU,
0
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where B(P) is a holomorphic function which tends to a constant uniformly as
Re (¢~%z)—co for any 6 with |§—a|<=z/2. Since

d _y @l 9B dp 0GB

0z @,z | o0z’ ow  ow '’

we have, estimating Cauchy’s integral representation of B(P),

d¢ d¢
(8.8) E“ —>1 , W —>0 ,
uniformly on the same condition. Further from (8.7) we obtain rough estimates
(8.9) [p(P)—2(P)|=0(12(P)|9),

lo(P)|=0(l2(P)|'*9),
[2(P)|=0(le(P)|**),  for any e>0.

8.2. Let 6, 6, be real numbers with a—=r/2<60,<0,<a+x/2, and ¢ a
positive number <m/2. We take a base of uniform convergence of the form

D:DHI,RUDﬂz,R .

Denoting by z* the intersection point of the lines Re (e~*%1z2)=R and Re (e-%%2z)
=R in the z-plane, D is the product of the angular domain

A=1{0,—r/2<arg (z—z*)<l,+r/2}
and the disk
{lw]<p}.

We choose and fix an A-F function ¢. Taking R sufficiently large, we assume
that ¢ is extended to a continuous mapping of the closure D of D into the
Riemann sphere C=CU{co} and that |arg 0p/0z|<e on D. This is possible by
the estimate (8.8).

We want to show that, for every w (Jw|<p), the mapping ¢, of A into C
(s-plane) defined by z—s=¢,(2)=¢(z, w) is injective. To see this, we examine
the image under ¢, of the contour 0. of the angular domain A. When z
traces the ray arg (z—z*)=60,—x/2 from z* to oo, its image ¢,(z) in the s-plane
traces a simple curve from ¢,(z*) to oo lying in the angular domain

larg (s—¢w(2*)—(0,—7/2)| <e.

This is because the deviation of the direction of tangent to the image curve
from the direction of the ray arg (z—z*)=60,—=/2 does not exceed ¢ at every
point. In the same manner, when z traces the ray arg(z—z*)=60,+xn/2 from
co to z* its image in the s-plane traces a simple curve from oo to ¢,(z*) lying
in the angular domain

larg (s—@w(2*)—(0,+7/2)| <e.

Thus the contour dA traced in the positive sense is mapped to a simple closed
curve ¢,(dA4) on the s-sphere and bounds a domain 4, lying on the left of
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¢@w(@A). This domain 4, contains the angular domain
0,—m/24c<arg (s—,(z*)< 0+ /2—¢

and is contained in the angular domain

(8.10) 0,—rm/2—e<arg (s—u(z¥)<0,+x/24¢.

To show that ¢, maps A injectively onto 4, we rely on the argument
principle. Let L be a sufficiently large number and consider the image of the
contour of JAN{|z|<L}. When z traces the portion of the circle [z|=L lying
in A in the positive sense, its image traces with increasing argument a simple
curve lying in the angular domain (8.10). This image curve tends to oo as
L—oo by (8.9). From this we see that the winding number of the image of the
contour of AN{|z|<L} relative to a point s is 1 or 0 according as s€4, or
se&d,, for sufficiently large L. This shows that ¢, is an injective mapping
of J onto 4,.

Let us consider the mapping (¢, w) of Dy, r\UDy, r into C*

P— (s, v)=(p(P), w(P)).
We know by the above observation that this mapping is injective. Let
0'=0,—rn/2+¢ and 0”=0,+r/2—e. Then we have

a—n<lf'<a<kf’"<a+t+m.

We put
B= N {s€C]f"<arg (s—¢,(z*)< 0"},

1wi<p
which has the form of an angular domain
(8.11) B={sel|f’'<arg (s—s*)<"}.
Since for every w, |w|<p, the image of A under ¢, contains @, the image of
Dy.,r\J Dy, g, under (¢, w) contains BX{|v|<p}. Thus by putting
(8.12) D[ 3]={PeU|p(P)e 8},
(¢, w) is a biholomorphic mapping of D[ 8] onto #X{|v|<p}. We can regard
(¢, w) as a coordinate system on D[ 3]. When we do so, the letters s, v will
be used in place of ¢, w. It is clear that D[ 8] is a base of uniform conver-
gence. The transformation T is expressed with respect to the coordinate system

(s, v) in the form
{ s$;=s+a,,

v,=g'(s, v),

where g’ is the function determined by g’(s(z, w), w)=g(z, w).
8.3. The following proposition characterizes the class of A-F functions:

Proposition 8.2. Let ¢ be a holomorphic function defined on the set U of all
uniformly convergent points and satisfying Abel’s equation (8.1). The conditions
(i), (ii), (iii) are equivalent to one another :
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(i) ¢ is an A-F fnnction.
(ii) iat—(P)—»l, %‘:}—(P)—»O uniformly as Re (e~#0z(P))—oo.

(ili) For every uniformly convergent point P,

2 npy 1, L rrpy >0, a5 oo

Proof. We have seen at the end of 8.1, that (i) implies (ii). Condition (ii)
implies (iii) because Re (e %%z,(P))—oo as n—oco. It remains to show that (iii)
implies (i).

Denoting by s(P) an A-F function and setting =(P)=¢(P)—s(P), the condi-
tion (iii) is equivalent to

(iv) T (INPY—>0  as nooo.

Note that the Jacobian matrix for change of coordinate systems from (z, w)
to (s, v) has the form

0s/0z ds/ow
(8.13) ( )

0 1

and tends to the identity matrix as Re(e~*?z(P))—oco. Hence we may replace
om/0z, on/ow by 0m/ds, 6x/0v respectively in the condition (iv).

(a) If for any PeU, the sequence drx/dv (T™(P)), n=0, 1, 2, --- is bounded,
then m(P) depends only on s(P). Indeed, since #(P) is invariant relative to T,
we have

o(mT )

(P)= —’Z<P>, n=0, 1,2, .

On the other hand, since 0s,/0v (P)=0, we have

o(meT™) _O(meT™Y) ov1
ov (P)= ov
Hence, by induction,
9 )= 2T ()= 5 (e S (P - D TPy (),

The right-hand side tends to 0 as n—oco, because dr/0v(T™(P)) is bounded and
[6v,/ov(T™P))| < |b|+e<1 for sufficiently large n. This shows that dx/dv(P)=0
and that m(P) depends only on s(P).

(B) If moreover 67/0z(T™(P))—0 as n—oo, then w(P) is a constant. This
is because

™)

—(P)_ (P)———(T"(P))

Combining (a) and (8), we know that (iv) implies that z(P) is a constant
and that ¢(P) is an A-F function. Thus Proposition 8.2 is proved.
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9. Coordinates on the fibers of Abel-Fatou function.

To reduce the expression of T on a base of uniform convergence D to a
simpler form, we want to construct an invariant holomorphic function which,
together with the A-F function, will form a coordinate system on D.

9.1. We begin with constructing, on the set U of all uniformly convergent
points, a non-vanishing holomorphic 2-form £ which is invariant relative to T,
i.e., T*Q=0. In view of this invariance relation, it suffices to construct 2
on a base of uniform convergence. To fix the ideas we take a base of uniform
convergence D=D[ 8] equipped with the coordinate system (s, v) as in 8.2. We
use the notations

P=(s(P), v(P))=(s, v),

THP)=(s(T"(P)), u(T™(P)=(sa(P), va(P)), n=0,1,2, .

By (8.13) the Jacobian determinant of T relative to the coordinate system (s, v)
is equal to dv,/dv. If we write 2(P)=&P)dsAdv with a non-vanishing holo-
morphic function &P)=(s, v), then the invariance condition is expressed by

©.1) PN (P)=4P).

We define Q=§(P)dsA\dv by
(9.2) &(P)ZC lim b's(Tn(P))/aOS(T"(P))—blluob av" (P)

a, ) by/agd al)1

___Cb_s(P)/aOS(P)-bxlaob ﬁo{%<l+ S(T"(P))

S (T(PY).

Here, a,, b, b, are the coefficients in (7.1); ¢ is an arbitrary non-zero constant;
bsPrao=exp {—(s(P)/a,) log b} and s(P)-b1/%b=exp{—(b,/a.b)log s(P)} with a
fixed choice of log b and a branch of log s(P). The two expressions in (9.2)
are equivalent, since s(T"(P))=s(P)+na, and

avn ov, Bvl (T(P)) au,

, ()= ~(T7P) - (P).

Besides £ we define a holomorphic 2-form Q:é(P)ds/\dv by

9.3) &P )=,: { (H s(T"(P))

so that the following relation holds:

) by/agh avl (T”(P))}

Q—=c¢ b-s(P)/aos(P)'bllaob.Q .

Let us assume the convegence of (9.2) and (9.3) for a while. We have ob-
viously the following

Proposition 9.1. The 2-form 2 is invariant relative to T. O satisfies the
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equation

- by/agh ~
9.4) T*.Q(P):h( 0 ) ap).

s(P)

There is some arbitrariness in the definition of 2. If we replace log s(P)
by another choice, then the new 2-form differs from the original one by a con-
stant factor, which can be absorbed into the constant ¢. If we replace the
value of log b by log b+2xiv with an integer v, the new form differs from the
original by the factor e-27&¢®/a We will call any holomorphic 2-form 2
which can be expressed by (9.2) a canonical invariant 2-form. £ is determined
up to a constant factor when log b is specified.

On the other hand, § is determined if the A-F function s(P) is determined.
We will call @ normalized 2-form.

9.2. Now we show the convergence of the infinite product (9.3). The con-
vergence of (9.2) follows from this. We put

by/agh avl

nP=5 (1<) S P,

and make an estimate of log n(P). Firstly we have

) bxlaob b1

log (1+ b s(P)+O(|s|2)

s(P)
Next we notice that
Sy _dws_dw, 02w, dw
o ov 0z dv  Ow Ov
and, in view of (7.1), that

w, __baw Ly 0z _
Sh=—AT 4 _O(|z|2>’ =0,
ow, 1 ow

St b+ 2 +0(| I) =1,

It follows that
log <11> aal:)_ - <|zll ).
Therefore, in view of the estimate (8.9), we obtain
log n(P)= 0(I l1) for A>1.
This, combined with (8.4), shows the convergence of
&P)= I n(T"(P)).

Further, this estimate implies that &(P)—1 uniformly as Re (e-i%z)—oco.



254 Tetsuo Ueda

Proposition 9.2. Let §=EP)dsAdv be a holomorphic 2-form on U satisfy-
ing the equation (9.4). The following conditions are equivalent to one another :

(i) O is the normalized 2-form.

(ii) E(P)—1 uniformly as Re (e *?z)—o0,

(iii) For any PeU, &T™(P))—1 as n—oo,

Proof. We have already shown that (i) implies (ii). (ii) implies (iii) because
Re (¢ %9z,)—c0 as n—oco. It remains to prove that (iii) implies (i). By iterating
the equation (9.4) we have

AP=ET )T {%(1+3(T?(0P)))_blla0b G TP}

If (iii) is satisfied, letting n—co we see that @=E&(P)dsAdv is the normalized

1-form. g.e.d.

9.3. Consider the expressions
w=8/ds=&P)dv,
a=0/ds=E&P)dv.

They are regarded as families of holomorphic 1-forms on the fibers of the A-F
function s(P) depending holomorphically on s. Correspondingly to 2 and &,
these 1-forms have the properties T*w=w, T*&@=b(1+a,/s(P))’/*%g, w=
¢ b's(P)/"'OS(P)'bl/“Ob(D.

We define a holomorphic function ¢(P)=¢(s, v) on D[ 8] in the following
manner: For a point P=(s, v) in D[ 8], we denote by P the point (s, 0). We
put

¢(P)=SZQ=S:5<S, v)dv, J(P):S;a:S:é(s, Vdv,

where the path of the integrals is a curve joining P to P on the fiber of the
A-F function s. ¢ and ¢ satisfy the relation

9.5) G(P)=c bs/20s-21/200G(P) |
They behave under T as

HT(P)=¢(P)+x(s(P)),
(9.6)

HTPN=b(1+~ps) " " FPI+ES(PY),

where x(s), #(s) are holomorphic functions on @
/c(S):g:lE(erao, v)dv, E(S)=S:1§(s+ao, v)dv

with v;=v(T(s, 0)).
Let ¢ be a sufficiently small number >0 and assume that @ is so chosen
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that |&(P)—1|<e on D[®]. Consider, for every s in @, the holomorphic map-

ping J, of {|v|<p} into C (éi-plane) defined by J,(v)=¢(s, v). This mapping Ps

is injective and its image contains the disk {|u|<p,}, po=(1—¢)p.
Consequently the holomorphic mapping (¢, ¢) of D[ 8] to C?

Pr—> (s, @)=(¢(P), §(P))

is injective and its image contains the product domain @X{|ii|<p,}. In view
of the relation (9.5), the holomorphic mapping (¢, ¢) of D[ ®] is also injective
and its image contains the domain

{(s, ws€ B, |ul<polcbhsiaos=rriaa|},

Thus we can regard (¢, ¢) and (¢, ) coordinate systems on D[ 8]. When we
do so, the notations (s, u), (s, @) will be used. With respect to these coordinate
systems, the transformation T is expressed as

{ $;=s+a,, { S$1=S$+a,,

u,=u+x(s); ﬁlzb<l+%’)bll%bﬁ+k(s).

We notice that x(s), #(s) have no canonical meanings, since they depend on
the coordinate w=v. The coordinate u is so far canonically determined except
for a factor of the form const. exp (—2nivs/a,) and translations on the fibers
of s=¢. The coordinate u is determined except for translations on the fibers
(when s is fixed). We will later exclude this arbitrariness.

10. Application to global transformations.

10.1. Let M be a complex manifold of dimension 2 and T a holomorphic auto-
morphism of M. Suppose that there is a fixed point O in M of T and that T
is semi-attractive of type (1, b), at O. Let D (resp. &) denote the set of all
uniformly (resp. simply) convergent points whose limit is O. Let © denote the
invariant curve of Poincaré with center O and corresponding to the eigenvalue
b. Under this situation we show a result analogous to the example of Bieber-
bach: The domain ® is biholomorphic to C% More precisely, we prove the
following

Theorem 10.1. There is a holomorphic function ¢: D—C which satisfies the
equation o(T(P))=¢@(P)+1 and induces a structure of fiber bundle over C with
fibers =C. Further there is a holomorphic function ¢* on D which is invariant
under T and induces on every fiber of ¢ a biholomorphic mapping onto C.

The proof is done in the steps (a)~(e).

(e¢) We choose a neighborhood V of O together with a local coordinate
system (z, w) as in 7.2. Here in the expression (7.1) we suppose a,=1, which
is possible by replacing z by a,z.

If D is a base of uniform convergence to O, then T-*(D), n=0, 1, 2, ---, is
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an increasing sequence of domains in M which exhausts D, i.e., D= QOT‘"(D).
e
Similarly, if E is a base of simple convergence to O, then €= k_joT‘"(E).

We take D and E as in 8.2: D=D[®], E=DUC. We notice that, since
C is in the boundary of D and T-" is an automorphism for every »n, T-"(C) is in
the boundary of T-*(D). Therefore § is in the boundary of .

(B) The A-F function ¢(P) on D satisfies the equation

(10.1) o(T(P))=¢(P)+1,
for PeD. By putting
o(P)=(T"(P))—n, PeT™D),

we can extend ¢ to all of ©. The equation (10.1) is then valid for all Pe®.
The differential d¢ of ¢ is an invariant holomorphic 1-form on ®: T*d(P)
=d(p-T)P)=de(P). Since d¢ is non-vanishing on D, it is non-vanishing
everywhere on ®. In other words ¢: ®—C is a mapping of rank 1.
This mapping ¢: D—C is surjective; and for every seC the fiber ¢-'(s)=
{P=D|p(P)=s} is connected and simply connected. In fact, the fiber ¢='(s) is
exhausted by the increasing sequence

e (SNTMD)={PeT *(D)lp(P)=s}, n=0,1,2, -,
each of which is biholomorphic to
¢ N (s+n)ND={PeDlp(P)=s+n}, n=0,1,2, -,

via the automorphism 7™. When n is sufficiently large so that s+n< 4, this
set is non-empty and biholomorphic to the disk |v|<p; hence connected and
simply connected. Therefore ¢~'(s) is also.

(y) We choose and fix a canonical invariant 2-form 2 and the l-form w=
Q/de on D. They can be extended to the whole ® by means of the invariance
relation.

The holomorphic function ¢ on D defined in 9.3. can be extended to ¢='(3)
in the following manner: For a point P with ¢(P)=se 3, let P denote the

point in D with ¢(P)=s, w(P)=0. We define ¢(P) by the integral ¢<P)=Sf:a)
over a path which joins P to P on the fiber ¢~'(s). The relation )
(10.2) HTP)=¢(P)+K(s), s=p(P)eB

remains true for this extended function.

We claim that, for every s€ 3, the restriction of ¢ to the fiber ¢~'(s) is a
biholomorphic mapping of ¢~!(s) onto C. For the proof we consider first the
restriction of ¢ to @' (s)NT (D). We use the relation derived from (10.2):

GP)=p(T™(P)—&(s)—&(s+1)— -+ —r(s+n—1).

Here ¢ '(s)NT-™(D) is mapped by T" biholomorphically onto ¢~'(s+n)N\D,
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which is mapped by ¢ into C injectively and its image contains the disk
{lu]<polb~¢*™(s+n)1/]}. Consequently ¢-*(s)NT-™(D) is mapped by ¢ into
C injectively and its image contains the disk

{lutr(s)+ - +r(s+n—1)] <polb=¢+™(s+n) 7|}

The radius tends to infinity as n—oo. The assertion is proved.
It follows that ¢~'(®) is biholomorphic to #XC via the mapping (¢, ¢).
(0) We denote by 8—n the angular domain in C (s-plane) obtained by the
translation of 8 by —n:

B—n={s—nlseB}={f'<arg (s—s*+n)<0”}.

We consider on the domain ¢ (8—n)=T""(¢ '(8)) the holomorphic function
¢(T*(P)). The pair of functions (¢, ¢T") is a biholomorphic mapping of
¢ (8—n) onto (8—n)XC. This is so because every fiber ¢'(s), s€ 3—n, is
biholomorphic to ¢~'(s+n) via T" and ¢~*(s+n) is biholomorphic to C via ¢.
The collection of the mapping ¢: ®—C, the open covering {B—n}5_, of C,
and the fiber coordinates ¢T™ on ¢~'(8—n) defines on D a structure of com-
plex analytic fiber bundle, with base C and fibers =C. In view of the relation

HTHP)=YT™(P)+rlpP)+m)+ - +alpP)+n—1), nzm,

the structure group is the translations of C.

() This fiber bundle is trivial, i.e., there is a holomorphic function ¢*
on ®, which induces on each fiber a biholomorphic mapping onto C. Further
we can choose as such ¢* an invariant function under T.

We remark that this assertion is equivalent to say that the difference equa-
tion

(10.3) A(s+1)—A(s)=«(s), sEB,
has a solution. Indeed, if A(s) is a solution to (10i3), then we put
PHP)=(P)—Ap(P)), Pep™(3).

by (10.2) and (10.3) we find that ¢*(P) is invariant under T ; and hence ex-
tended to a holomorphic function on all of © with the desired properties.

Instead of solving (10.3) directly, we deduce as follows: Let <T)>={T|neZ}
denote the group of automorphisms of © generated by 7, and consider the
quotient manifold D®/<T)> with the projection @&:D—->D/{T). The function
exp 2nip(P) on D is invariant relative to 7. Hence there is a holomorphic
function ¢ of ®/<T> onto C* such that ¢-a(P)=exp 2xip(P). This mapping ¢
defines on ®/{T) a structure of fiber bundle with base C* and fibers =C. This
fiber bundle is trivial since the first cohomology group of C* with coefficients
in holomorphic functions H}(C*, ©)=0. Therefore there is a holomorphic func-
tion ¢* on ®/(T> which induces on every fiber a biholomorphic mapping onto
C. Then ¢*=¢*-@ has the desired property.

Thus the proof of Theorem 10.1 is completed.



258 Tetsuo Ueda

10.2. We will show that, roughly speaking. the fiber ¢~*(s) converges to
the Poincaré invariant curve € as Re s—-oo,

We extend the A-F function ¢ to DUE by letting p(P)=co for P€C. ¢ is
a mapping onto € (s-sphere). Let us write $=@U{co} and restrict our con-
siderations to ¢~ ($)=¢ '(8)UE. We take the holomorphic function § on D[ 8]
(introduced in 9.3). ¢ can be extended to a holomorphic function on ¢ Y(3B) by
the relation (9.5). We extend § to ¢~'(c0)=C as follows: For PeC=6NU,
we let J(P)=w(P). Then we have, in view of (7.1), (T(P))=bJ(P) for P=C.
Using this relation, ¢ is extended to all of ¢-*(c0). We notice that (#|6)-" is
the Poincaré mapping F: C—@. We have thus a bijective mapping (¢, §) of
¢~ ($) onto $XxC, which maps ¢~(8) biholomorphically onto #XxC.

Theorem 10.2. (i) For any positive number M, the restriction of (o, 53) to
e UBN{IF| <M} is a homeomorphism onto BX{|ii|<M}. (ii) The inverse of
(@, §) is a continuous bijective mapping of X C onto ¢~ (B).

Proof. First we consider the restriction of (¢, ¢) to D[$]=D[$IUC. ¢
is continuous on D[$] as we have seen in section 8. As for ¢, when P ap-

proaches C in D[ @], we have §(P)—1, and hence J(P):S:lé(s, v)dv—v(P)=w(P).

Hence ¢ is continous on D[4].

In the functional equation (9.6) we let #(co)=0. Then & is a continuous
function on $; and the equation (9.6) remains valid for all P in D[$]. For
any M, the set ¢ ($)N{|H|<M} is mapped homeomorphically into D[ 3] by
with sufficiently large n. Therefore, in view of (9.6), the assertion (i) is true.

The assertion (ii) is true, since for every M>0, the inverse of (¢, §) is
continuous on X {|#i|<M}. q.e.d.

Remark. This argument does not imply that (¢, gZ) is continuous on ¢~*(4).
For, the sets ¢~(3)N{|§| <M} may be non-open in ¢ ().

10.3. Now we want to show that not every local analytic transformation
appears as the germ at a fixed point of an automorphism of a complex mani-
fold.

Let us first prove a lemma in a slightly general situation. Let 9 be a
complex manifold of dimension 2 and ® a (schlicht) domain in M. Let (¢, ¢)
be a pair of holomorphic functions on © which yields a biholomorphic mapping
of ® onto C® By analytic continuation of ¢ we get a holomorphic function ¢
in its domain of existence ®. By definition, ® is an unramified domain over M
containing ® in a canonical manner so that ¢|®=¢. Under this situation we
have

Lemma 10.3. D s a schlicht domain in M and DO\D is either empty or an
analytic set of pure dimension 1. Further, if M is a Stein manifold and D is a
Runge domain in M, then ®=%9,
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Proof. Suppose that DD is non-empty. When Pe® approaches any
boundary point of ® in D then ¢(P) tends to a finite value and |@(P)|%+4|{(P)|®
—o0, hence |¢(P)|—oco. Therefore, if we set (P)=¢(P) for PeD and ¢(P)
=co for PED\D, we get a continuous mapping $(P) of ® into the Riemann
sphere €. By Radd’s theorem ¢ is meromorphic. D\D is the set of poles of
¢, therefore an analytic set of dimension 1. Consequently ® is schlicht. The
first assertion is shown. Since any domain of the form (domain)\(non-empty
analytic set) is not a Runge domain, the second assertion follows. g.e.d.

Proposition 10.4. Let T be a semi-attractive local analytic transformation
of type (1, b),. If the analytic continuation of an A-F function ¢(P) yields a
multiple-valeud function, then T is not a germ at a fixed point of a automorphism
of a complex manifold.

This follows immediately from Lemma 10.3. Examples of such local analytic
transformations will be given later.

Proposition 10.5. Let T be a semi-attractive tvansformation of type (1, b),
which has an expression (7.1) with a(w)=0 for all i=1. Then T is not a germ
at a fixed point of an automorphism of a Stein manifold.

Proof. Suppose that T is the germ of an automorphism of a Stein mani-
fold M at a fixed point O. Let D, € and V have the same meaning as in 10.1.
The coordinate z is an A-F function. We can continue z analytically to the
whole ®. Since ® is a Runge domain by Proposition 5.1, ® is the domain of
existence of z. Consequently DNV =V\G. This contradicts the fact that D is
a Runge domain. g.e.d.

We remark that, in the example in Section 5.1, T satisfies the condition of
the proposition but M=C? is not Stein.

10.4. Now let us give some examples of automorphisms of C2:

Example 1.
n=x+f(x+by), xr=x,—f(x:+y1),
T: T 1 1
=by—f(x+by), y=3y1+3f(xl+y1),
where 0< |b| <1, and f(z) is an entire function of a complex variable such that

FO)=7'(0)=0, f”(0)#0. The simplest of such f is z2. The origin O is a semi-
attractive fixed point of type (1, b),.

Example 2.
x :eg(.u»by)x x:e-3(11+y1)xl,
: { ' ' T { 1 1
yl:by+(1_el(1+by))x , y:Fyl_i_?(l_e—g(Irl-Ul))xl’
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where g(z) is an entire function of a complex variable z with g(0)=0, g’(0)+0.
The orign O is a semi-attractive fixed point of type (1, b);. The invariant curve
€ with center O is the y-axis. Therefore, denoting by ® the set of all uni-
formly convergent points with limit O, the y-axis is contained in the boundary
of the domain ®. We can consider ® also as a subdomain of C*xC. (Cf.
Kodaira [8], Nishimura [11].)

Incidentally, the author does not know whether there is an analytic auto-
morphism of (C*)* which has an attractive or a semi-attractive fixed point. It
seems even unknown whether there is a domain in (C*)? which is biholomorphic
to C2
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