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Local structure of analytic transformations
of two complex variables, I

By

Tetsuo UEDA

Introduction.

Let T  be a  holomorphic mapping defined on a neighborhood V of the origin
0  of the space C2 o f  two complex variables into C2 which leaves 0  invariant.
By a local analytic transformation we will mean either such a  mapping T  or
th e  germ  o f  T  a t  O .  T he purpose of the present and the forthcoming papers
is to investigate the structure of these local analytic transform ations. Specifically
we will study the following subjects, which are closely related to each other :
( i)  description of the behavior of the points near the fixed point 0  under the
transformation T  and its iterates Tn, n=1, 2, •-• ; (ii) intrinsic characterization
of the structure of T, j .  e .,  a  characterization which does not rely on local co-
ordinates around O.

We treat these problems, especially for semi-attractive transformations of
type  (1, b)„ i .  e ., transformations which can be expressed in  the  form (6.1), in
section 6, w ith the conditions 0 <  b I <1, a 2 0 * 0 .  T he study of transformations
of this type is considered a s  a  generalization of the result o f  Voronin [19] for
the case of one complex variable.

In  Part A  (sections 1-5) of the present paper, we recall some known results
a n d  make some additional remarks for general local analytic transformations.
These observations will serve to give a  proper perspective of our main subject.
The reader may begin with P art B and use Part A  as reference.

In Part B (sections 6-10), a transformation T  of type (1, b), is investigated.
We study the structure of the set of points P  in  the vicinity o f the  fixed point
0  such that the sequence T (P ), T 2 (P), ••• converges to 0 pointwise or uniformly
in  a  neighborhood of P .  The invariant curve of Poincaré lies on the boundary
of the domain of uniformly convergent points. On this domain we introduce a
system of coordinates so that the transformation T  is reduced to a simple form,
i. e., translation. As an application we will give, in  sec tion  10, a n  analogous
re su lt to  th e  example o f  Bieberbach [2], which shows that there is a  proper
subdomain in  C2 w hich is biholomorphic to  C2 . It m ay be of some interest
that by the present method can be so constructed that th e  boundary ÔT con-
tains a  complex line.

In the forthcoming paper II, we will give a  complete solution for the prob-
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lem (ii) posed above.

A. Classification and general remarks.

1. Classification.

L e t  T  b e  a  lo c a l analytic transformation a t  0=(0, O)E C . W e  use the
notation P=- (x , y ), T ( P ) = ( x 1 ,  Y i) to denote any point in the vicinity o f  0  and
i t s  im age under T .  The transformation T  is expressed by convergent power
series in  x , y

x i= f (x , y )= E a o x iy i ,

1. y i -=g(x , y )= E bo x iy j,

where the constant term s a 0 0 =140 = 0 . If the Jacobian determinant JT (0)=a 1 0 b0 1

—a o i bi o  o f  T  a t  0  is not 0, then  T  h as an inverse T - 1 . A ll th e  transforma-
tions constitute a  semi-group by composition and a ll th e  invertible transforma-
tions constitute a group.

L e t S : (X, Y),—>(x, y ) b e  a n  invertible transform ation and conside r 7=
S -1 .T .S  : (X, Y )-4(X 1 , Y 1 ). This new transformation t  can be regarded as the
expression of T  w ith respect to the coordinate system (X , Y ).  W h e n  is  th u s
regarded, it will be denoted by the same letter T.

T h e  linear p a r t  (differential) o f  T  a t  0  i s  dT(0) =\b
rio a b ).ao i) . Let a, b

oi

denote the eigenvalues of d T (0 ) . We will call T  to be o f  ty p e  (a, b). Let us
restric t attention to  invertible transformations and classify them according to
the eigenvalues a, b:

I'. T  is called attractive if a  I ,  lb <1.
I". T  is called repulsive if I al, Ib l>1.
II. T  is called of saddle type  if lal<1<lbl (o r Ibl<1<lal).
III'. T  is called sem i-attractive if al=1 , Ib l<1  (or l b1=1, 1 al<l).
III". T  is called semi-repulsive i f  lal=1 , Ib l>1  (or lb 1=1,
I V .  T  is called neutral i f  la l= lb! =1.

The fixed point 0  will be correspondingly called attractive, repulsive, etc.

2."'Attractive transformations and repulsive transformations.

Let us first mention the cases of attractive and repulsive transformations.
I n  these cases w e can find canonical form s for T , and therefore we have a
complete description of T  (as fa r as the local structure is concerned). To fix
the ideas we assume tha t the eigenvalues a, b  sa tisfy  the condition 0<
Ibl<1 or 1<lb1-51al.

(a )  I f  bm #a fo r  a n y  positive integer m, then by choosing an  appropriate
coordinate system (x , y), the transformation T  is brought to the form
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x i =ax ,
(2.1)

Yi=by.

(p )  If  blm=a for a positive integer m, then T  can be brought to the  form
either (2.1) o r (2.2):

xi=ax - F.Yrn ,
(2.2)

Yi=by .

W e refer to Lattès [ 1 0 ] for the proof. See also Sternberg  [ 1 7 1 ;  and Reich
[15], [16] for the case of many variables.

3 .  The set of fixed points ; invariant curves of Poincaré.

3 .1 .  In studying the intrinsic structure of a transformation T  it is funda-
m ental to  find objects w hich are  invariant under T .  T h e  simplest of such
objects are the fixed p o in ts . W e  f ix  a  domain o f  definition V  o f  T  with a
coordinate system (x, y). T  is expressed in the form (1.1). A point P  in  V is
sa id  to  b e  a  fixed point of T  if  T (P )= P . The set of all fixed points in V  is
denoted by J. T h e  s e t  J  i s  th e  common zero of the holomorphic functions
f(x, y)—x and g(x, y)—y; therefore J  is  an  analytic s e t  in  V  containing the
origin O .  Hence either (i) 0  is isolated in J ,  (ii) J  is  of dimension 1  a t  0 , or
(iii) J= V.

In  th e  c a se  (iii), T  is  the identity transform ation. In the case (ii), letting
q(x, y )  be the defining equation of the curve J ,  the transformation T  is written
as

(3.1)
J x i =x+q(x, y)h(x, y ),

y i =y+q(x, y)k(x, y ).

We see from this expression that, when J  is singular at 0 ,  T  is of type (1, 1).
When J  is non-singular at 0 , we can choose a  coordinate system (x, y )  so that
q(x, y)=y, j. e. J coincides with the  x -a x is . T  takes the form

x i =x+yh (x , y ),
(3.2)

1 y1 •=y(1+ k(x, y)).

T  is of type (1, b), b=-1+k(0, 0). Under this situation assume th a t  T  is semi-
attractive or semi-repulsive : l b #0, 1. Then we can find an  appropriate coordi-
nate system (x, y) relative to which T  takes the form

(3.3)
I x i = x

yi =by .

For the proof see Nishimura [11].

3 .2 . Consider a  holomorphic mapping F  o f  a  neighborhood of the origin 0
of the complex line C into C2 satisfying the conditions
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(i) F(0)=0;
(ii) T(F(C))=F(cC), for a constant c-,L-0 ;
(iii) dFldC(0)#0.

B y  differenciating th e  equation (ii), w e  o b ta in  dT(0) dFI cg (0)=c dFldC(0).
Hence dF1c1C(0) is  an eigenvector of dT(0) w ith  eigenvalue c. W e w ill c a ll F
t o  b e  the Poincaré mapping corresponding to the eigenvalue c (relative to  the
transformation T  a t  0 ) .  W e denote by C either the image under F of a  neigh-
borhood of C=0 or its  g e rm . C will be called an invariant curve (of Poincaré).
If there exists a Poincaré mapping C—*F(), then C— F(k) is a lso , for any k #0.
T h e se  a re  th e  a l l  Poincaré m appings corresponding to the same eigenvalue.
The invariant curve C is uniquely determined.

The following theorem is fundamental in  a ll of our investigations :

Theorem 3.1. (Poincaré [14], see also Lattés [9], P icard  [13]). L et a,b the
eigenvalues of  dT(0 ). I f  la i  #1 and airt#b  f o r any  integer m then there is
a  Poincaré mapping F  corresponding to the eigenvalue a.

3 .3 .  M aking use of the invariant curves some of the transformations can
be brought to a  simpler form.

( a )  Attractive or repulsive case : W hen T  is of the form  (2.1), the  x- and
y -ax es are  the  invarian t curves corresponding to the eigenvalues a and b, re-
spec tive ly . T here  is  no other if a#b; all lines x: y=const. are invariant curves
if  a = b . W hen T  is  of the form  (2.2), the  x-axis is the only invariant curve.

()5) Case of suddle type : We can take a coordinate system (x, y) so that the
x -  a n d  y -ax es are  invariant curves corresponding to the eigenvalues a  and b
respectively, and  t h a t  T  reduces to  linear :  (x, 0)—*(ax, 0), (0, y)--- (O, b y ) on
these axes, namely,

x1=ax+xyh(x, y),
(3.4)

y i =by+xyk(x, y).

(r) Semi-attractive or semi-repulsive case : W e can  take  a  coordinate sys-
tem  (x, y ) so  th a t the  y-axis is the invariant curve and th a t  T  is linear :

xi=x+xh (x , y),
(3.5)

t  yi -#by+xk(x, y).

If, furthermore, 0  is  a non-isolated fixed point, then T reduces to the form (3.3).

4 .  Simply convergent points and uniformly convergent points.

4 . 1 .  Let T  be a local analytic transformation a t O E  C2 . A s  a  dom ain of
definition of T  we choose and fix a  bounded domain V in C 2 . L e t  P  be a point
in  V  a n d  T (P )  i t s  im age (consequent) under T .  If  T (P ) lies in V , then  the
consequent point T 2 (P ) of T(P) can be defined. If w e can  continue this process
indefinitely, we will have the sequence
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P , T (P ), T 2 (P), • • • , Tn(P), • • • .

Such a point P  is called stab le . A stable point P  is  ca lled  sim ply  convergent if
this sequence Tn (P ), n=0, 1, 2, ••• , is  convergent. Obviously every fixed point
is  s im p ly  convergent and every consequent point of a simply convergent point
is  a ls o . A  simply convergent point P  is called uniform ly  convergent if  there is
a  neighborhood W of P  in  V consisting of simply convergent points on which
the sequence of the holomorphic mappings T ' W , n = 1 , 2, ••• is uniformly con-
vergent.

Let S , K  and U  denote the sets of a ll stable, sim ply  convergent and uni-
form ly convergent points in V .  T h en  U  coincides with the  interior K °  of K.
Indeed, it is clear by definition that every uniformly convergent point is  in K ° ;
on the other hand, since the sequence Tn K° , n=0, 1, 2, ••• , constitutes a normal
family and is sim ply convergent, it is uniform ly convergent on compact sets in
K° b y  Vitali's theorem.

L e t T "  deno te  th e  lim it of the sequence Tn 1K; T00(P)=1im Tn(P), P E K.
n

T00(P) is  sa id  to  be  the lim it point of P .  Obviously T "  is  holomorphic o n  U.
T "  is  the identity mapping on the set J  of the fixed points. Since T oT"-=T",
every lim it point is  a  fixed point. In particular, if 0  is  the  only fixed point of
T  in  V , then  T "(K )=  {0 }

4 .2 .  It should be em phasized that the definitions of stable , simply conver-
gent and uniformly convergent points depend upon th e  choice of the domain of
definition V .  W e can n o t ev en  d e fin e  a  concep t a s  " the  germ  of the set of
simply (or uniformly) convergent points".

H ow ever th e  follow ing properties fo r  T  are obviously independent of the
choice of V :

( i ) 0  is  a  uniformly convergent point.
(ii) 0  is  the  lim it o f a  uniformly convergent point.
(iii) 0  is  the lim it o f a  simply convergent point o ther than  O.

Let us examine these properties according to the classification given in  1.
( a )  Suppose th a t  T  is  a ttrac tive . W e assume th a t  T  is  o f  th e  form  (2.1)

or (2.2). If the  domain of definition V  is sufficiently sm all, then we can find a
constant k, 0< k< 1, s u c h  th a t  x 1 I If fo llow s that 0  is  a
uniformly convergent point and the limit of every point in the vicinity of 0  is O.

(f3) Suppose th a t  T  is repulsive, and of the fo rm  (2.1) or (2.2). Choosing
a  sufficiently sm all V , w e  c a n  f in d  a  constan t K>1 such that Ix 1 I >K1x1,
IY11>K1371. It fo llow s that 0  is  the only stable point in the vicinity o f O.

( r )  Suppose tha t T  is of saddle ty p e . To fix the ideas we choose a coordinate
system  (x, y ) and a  domain of definition V of T  in  such a  w ay that

V ={1x1<p , 13/1<p}

and th a t  T  takes the form  (3.4) w ith  la l< 1< lb l.
Obviously the points on the x-axis : y= 0 are simply convergent. These are
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the only stable points in V . T o  show th is  notice first there  is  a  number K>1
such that y 1 I K y  I  for a ll P=(x, y ) in  V , by choosing p  sufficiently small.
If  P is  a stable point in V , then  Tn(P) are a ll in  V and Iy KnyI. There-
fo re  y=0, i .  e . ,  P  i s  on the x-axis. C onsequently  there is no uniformly con-
vergent point in V.

(3 )  Suppose th a t  T  is  sem i-rep u lsive . T h ere  is  n o  uniform ly convergent
p o in t  in  a  sufficiently small neighborhood V  o f O .  Indeed, since I MO) I >1,
there  are  a  neighborhood V and  a  constan t K > 1 s u c h  th a t  Ifr(P)I -'1C on  V.
Let P be any stable point in V .  Consider the sequence of Jacobian determinants
Jrn(P) o f  T n ,  n=1, 2, ••• . W e  have Ifrn(P) = I./T(7' 1' 1 (P)) • •• Jr(T(P))Jr(P)1

Therefore J T .(P )  is  non-convergent and hence P  is not a  uniformly con-
vergent p o in t. (P m ay be a  simply convergent point.)

B y (ri) ,-, -, (3), w e obtain the following

Proposition 4.1. I f  0 is  the lim it o f  a uniform ly  convergent point, then T
is attractive, semi-attractive or neutral.

Proposition 4.2. Suppose that 0  is a  uniformly convergent point. Then T
is either (i) attractive, (ii) semi-attractive and the set J of  fixed points is a  curve,
(i. e., it can be brought to the form  (3.3)), or (iii) the identity.

Pro o f . Letting a, b, b e  the eigenvalues of dT(0), the  sequences a ',  b",
n=0, 1 , 2 , • • , a re  convergen t. Consequently (  a I < 1  o r  a=1) and ( I b I < 1  or
b = 1 ) . Consider the sequence of the Jacobian determinants Jrn(P), n=0, 1, 2,
which converges uniform ly to  Jr .(P ) on  U .  Since J ( P )  a r e  non-vanishing,
the  lim it J r -(P ) is non-vanishing or identically O. I f  a=b=1, th e n  J 2, -(0)=1
a n d  hence  T°' is invertib le . T herefore  a  neighborhood o f 0  is covered by the
image under T -  o f  U, hence by the set J of the fixed p o in ts . T h u s  T  i s  the
id e n tity . In  th e  o th e r  cases J r -(0)= 0, and  hence Jr-(P )= 0  identically o n  U.
Therefore is  a  m apping o f  rank 1. If ( a = 1 , I b I < 1 )  or ( I a  <1, b=1),
th e n  T -  i s  o f  r a n k  1  a t  0  and hence on  a  neighborhood o f O .  T - (U) is  a
curve w hich is regular a t O .  Since T - (U) is contained in J, w e  g e t  the case
(ii). I f  I aI, IbI < 1 , then  T  is  attractive by definition, q. e. d.

5. Global transformations.

5 .1 .  Let 9Irt b e  a  complex manifold of dimension m and T  a holomorphic
mapping of 931 in to  itse lf . W e  are concerned with the behavior of the points in
912 u n d e r th e  ite ra ted  m appings T n ,  n=1, 2, • •- . A  p o in t P  in 911 is called
sim ply convergent if the sequence of the points Tn(P), n=1, 2, ••-, is conver-
g e n t .  P is called uniformly convergent if there is a  neighborhood W of P  such
th a t the sequence of mappings T n jW, n=1, 2, • •-, is convergent in compact-open
topo logy . P is  ca lled  normal if  there  is a  neighborhood W  of P su ch  th a t the
set of the mappings T 3  IW is relatively compact in compact-open topology. The
s e ts  o f  a ll f ixed , s im p ly  convergent, uniformly convergent, normal points are
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denoted by 2 = 3 (T ), Q = (T ) ,  11=11(T), 91=91(T), respectively. I t is  o b v io u s
that II, 91 are open sets and that agg ,U Ç , lig  9 1 .

For any integer q>0, we have correspondinng concepts for transformation
Tg.

( a )  It is clear that
91(P )= 9 (T ) , for all q

R (T I)gR (Tv ), 11(T9g11(Tq'), if  q ' is a multiple of q.
(13 )  The sets a(P), R(Tg), are invariant in the sense : T(a(p))

gZs(P ), T (R (T ))çg (Tg ), T (11 (T ))g  11(T'), T(N)g.N.
(7') We decompose 91 into connected components : 9 1 = U T 2 .  If T 2 n ( T )

= 0 , then Z2 g l i ( P ) .  This an immediate consequence of Vitali's theorem. In
other words, for every q, 1.1(T) is composed o f some o f the  connected com-
ponents of 91.

Proposition 5.1 . Suppose that 9J1 is  a Stein m anifold. T hen 91 i s  a  Runge
domain in  911. Hence so are all the connected con ponents Z 2  o f  91. In particular
they are all Stein.

Pro o f . There a re  holomorphic functions ço,, j= 1 , •• , k, on 9)1 such that
(ço,)if, is a  holomorphic imbedding of V  into C k . Denote by 91, the region of
normality o f th e  fam ily of functions { ,,(Tn(P)(, n=1, 2, •••}. Then 91 is the
intersection of the regions 913 . By the theorem of Cartan and Thullen [3], each
of 91, is  a  Runge domain ; hence 91 is a Runge domain. (In the original theorem
of Cartan and Thullen, 3)1 is supposed to be an  unramified domain over the
space of complex variables m=dim O . This theorem is generalized to the
case 9)1 is a Stein manifold, using the method of Docquier and Grauert PG)

(5 )  Let T - : S'1',-931 denote the limit of the sequence T n  Every limit point
T - (P ),  P E E , is a  fixed point.

Example. L et 9)1 b e  the product o f two Riemann spheres with inhomo-
geneous coordinates x, y :

911= {1 x 1 . 0 0 , IY15. 0 0 }

and let T  be an automorphism of 911

x i =x+1

y 1 = by

w ith  0< b  < 1 .  There a re  two fixed points (00, 0) and (00, 00). The fixed
point (00, 0) is semi-attractive of type (1, b) and (o0, 00) is semi-repulsive of type
(1, 1/b). Every point in 932 is simply convergent. The points (x, y ) with y*co
have (00, 0), and the points (x, 00) have (00, o0) as limit points respectively.
The points (x , y ) with x# 00, y#co  are uniformly convergent to  (00, 0). The
points (00, y ) ,  y # 0 0 ,  a re  interior to the set of simply convergent points with
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lim it (00, 0), but they  a re  not uniformly convergent.

5 .2 .  Now we consider the case w here T1 is  of dim ension 2  a n d  T  i s  an
automorphism of 9)1 having a  fixed point O.

Suppose t h a t  0  i s  an  a ttrac tive  fixed p o in t. L e t 5.) denote the  connected
component o f 11(T) containing O .  Then is  th e  s e t  o f  a ll sim ply  convergent
points w ith  lim it O .  Bieberbach [2] show ed that this dom ain is  biholomor-
phic to  C2 . (See also Kodaira [8].) W e n o te  th a t  7) is  a  Runge domain if  9)-1
is  Stein b y  Proposition 5.1. Incidentally, th e  author does not know  w hether a
domain in  C2 w h ic h  is  biholomorphic to  C2 is  a lw ay s a  Runge domain.

Now suppose th a t  0  is  a  fixed point su c h  th a t th e re  is  an  invarian t curve
o f  Poincaré w ith  c e n te r  0  corresponding to a n  eigenvalue a, a I 1. The
mapping F is analytically continued to an injective holomorphic m apping o f  C
(c-plane) into 911 by m eans o f the  functional equation T(F(C))=F(aC). T h e  an-
alytic curve g= F (C ) is not generally a  closed se t in  931. In  v ie w  o f  4.2. (r),
w e  in fe r  th a t , w h e n  0  is  a  hyperbolic fixed point of type (a , b), a I <1< I b I ,
th e  curve g  is  th e  se t o f simply convergent points w ith  lim it O.

5.3. (A ppendix). I n  connection w ith  t h e  exam ple o f  Bieberbach, we will
point out a  property o f  th e  boundary o f  a  domain in  a  complex manifold of
dimension 2 w hich is biholomorphic to  C2 .

Proposition 5 .2 .  L et 9J1 be a complex manifold of dimension 2 and a sub-
set o f  911. A ssume that, f o r every point P  in  Q, there ex ist a parabolic Riemann
surface .42. and a non-constant holomorphic mapping f  of into 9J1 such that
f (2 1 )ç g . T hen the  se t  E\(g, nam ely  the set of  all ex terior points of  g , is a
pseudoconvex region (if  it is not em pty ). In particular, if  911 is S tein, then 9J1\Q
is also Stein.

Corollary. If is  a domain in  C2 biholomorphic to  C .  T hen C2 \ Z  i s  a
region of  holo7norphy. I f  F  is a non-constant holomorphic mapping o f  C into C2

then C2 \F(C) is a  region of  holomorphy.

Proposition 5.2 is  a  va rian t o f theorems o f Suzuki [18, Corollaire au lemme
8] and Nishino-Suzuki [12, Théorème 1 ]. T h e  proof is done in  the  same way :
Consider an open set W in  911 biholomorphic to  th e  dicylinder {Ixi, 'yI <1} and
a  subset W* of W  defined by

W*=-{Ixl<r, 13 , 1< l}U { Ix ' <1, s< , (0<r, s<1),

such  that W *ng =0. The proposition is proved if  we show th a t T vn = o  under
th is situation. Suppose th a t  W n g  Ø. T hen there  are a point P WflI a n d  a
holomorphic m apping f  o f  a  parabolic Riemann surface R  in to  TI such that
f - '(W) is  a  non-empty region in Consider the subharmonic function 1/1 xo fl
o n  f  '(W ) .  T his function takes th e  boundary value 1 at every  boundary  point



A nalytic transformations 241

of f  '( F f ) .  B y the maximum principle for a parabolic Riemann surface (see, for
exam ple, Ahlfors a n d  S a r io  [1 , Chap. IV, §  1 , 6 ]), w e  h a v e  1/ x f  I < 1  on
[A T V ). This contradiction proves the proposition.

B . Sem i-attractive transform ations and semi-repulsive
transform ations of type (1, b),.

6. Reduction of local coordinates.

Let us consider a local analytic transformation of type (1, b), w ith  lb  *0, 1.
W ith  respect t o  a n  appropriate local coordinate system (x , y), the  linear part
dT(0) of T  is  diagonalized and T :  (x , y ) ,-->(x1, yl) takes the  form

x i= f  (x , y )=x +
(6.1)

Y i=g(x , .Y )=by + E bo x i yi
i+ j2 2

W e w ill first reduce the expression of T  as simple as possible by means of
successive changes of local coordinates. If l b  >1, then we consider the inverse
T - '  in place of T ;  a n d  w e assume T  to be semi-attractive : 0<  I b I <1.

(a )  W e take a  coordinate system (x , y) with respect to  w hich the  Poincaré
mapping F takes the form  C-->(x, y)=(0, C). Then T  is expressed by the power
series in  x :

xi=a1(Y )x+a2(Y )x2+ ,( a , ( 0 ) 1 ) ,
(6.2)

t Yi=b3H- bi(Y)x± ••• ,

w here a i (y ) and b ( y )  are  holomorphic functions of the  variab le  y  on  a  neigh-
borhood of y = 0 .  (See 3.3, (r).)

(i9) I n  the expression (6.2) w e can  assume that a i (y) 1, by choosing an
appropriate coordinate system . To see this w e consider a  new coordinate sys-
tem  (X, Y) defined by

J x =P(Y )X , f  X =x IP(y ),

.Y=Y 1 Y =3),

where P(Y) is  holomorphic on  a  neighborhood of Y=0 and P (0 )= 1 . The trans-
formation T  of the form  (6.2) is expressed w ith respect to  (X, Y) as

1 1 
P(h ) P(by + ...) { ( 1 1 ( 3 0 x +

1 la,(Y )P(Y )X + ••-}

P(Y ) =a,(Y ) P ( b Y ) X + ( t e r m s  containing X 2),

P(bY ± •••)

Y i =bY-Kterms containing X ).

In order tha t the coefficient of  X 1 ,  the function P(Y ) should satisfy the equa-
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tion

This has a unique solution
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P(Y )/P(b Y )=1 /a 1 (Y ).

P(Y)=1/ f i  a i (bnY ).
n=0

The infinite product is convergent since a 1 (0 )= l a n d  I b  < 1 .  This show s our
assertion.

(r) For any integer i 2, we can choose a  coordinate system  w ith respect
to  w hich a2(Y), • a i ( Y )  are all constants. We prove this by induction. Supopse
th a t a  coordinate system (x, y) is already chosen so that T  has the form

Jx 1 = x + a 2 x 2 + ••• •-• ,

y i =by + •-• .

We introduce a  new  coodinate system (X, Y) by

J
 x = X + P i (Y ) X i ,  f  X = x — Pi(y )x i +

31 = 1 7 f  Y = y ,  ,

w ith  respect to  w hich T  takes the form

= x + a 2 x 2 + •••  +a i _1 x 1 - 4 +{ a i (y)— P1 (by )Ix i + •-•

= X + a , r +  • • •  - Fa1-1X i '± {P i(1 7 )+a1(Y) — P1(bY)a i +  « ,

Y i =bY + ••• .

We should determine P i (Y) satisfying the equation

P i (Y )— Pi (bY )= a i (0)— a i (Y ) .

The solution is g iven by the convergent series
CO

P i (Y)= E { a i (0)— ai (bnY")} +(arb itra ry  constant) .
n=0

(3) Furthermore, for any integer .7 1 we can choose a  coordinate system
w ith  respect to  w hich bi(Y ), ••• , b ( y )  are all [linear monomials : b1(3)=b1Y, ••.,
b ( y ) = b y .  W e  p ro v e  th is  b y  induction. Suppose that a  coordinate system
(x , y )  is already chosen so that T  has the form

f x 1 = x + a 2 x 2 + ••• +a i x i +  ,

Y 1=b31 - k b1y x + ••• +bi-iy x j - ' +bi(y )x '+- ••• , ( j 1).

We introduce a  new coordinate system (X , Y ) by

f x =X , f  X =x  ,

1  y = y + Q ; (Y)Xj,J  Y=Y — Q1(37)x i - 1-  • • •  ,
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w ith  respect to  w hich T  takes th e  form

X ,=X +a,X 2 + ••• -Ha i • • •  ,

=by -Fb i y x + •••  + b,_ i y xJ - 1 4- fb,(Y) — Q ,(by)}  x i+ •••
- - - bY -Fb l Y X + ••• X j-1+{bQ ,(Y )+1),(Y )— Q.,(bY)}  +  •  • • •

W e should determine Q,(Y) satisfying the  equation

bQ ,(Y )— Q ,(bY )= V (0 )— b,(Y ).

To solve this equation w e put

b,(Y)=130 - F13IY±P2P+ •••, (Pi=b/(0)),

Q ( 7 )= 9 0 + 0 7 +421' 2 +  ••• .

Then th e  above equation reduces to

E (b— bn)q n Yn=— )90 — E [30 7 n .
n=o n=o

Hence q n = Anl(b n  —b) fo r  n  1 ,  w hile  q i  i s  arbitray. T h e  p o w e r  series thus
determined is convergent since

19.1=- 113nIllb n — bl- .111b 2 — bl•

(s) Remark and definition. Thus w e can obtain , fo r any  i ,  j ,  a  coordinate
system (x , y ) w ith  respect to  w hich T  takes th e  form

x 1 =x-Fa 2 x 2 4- ••• + a x i d-a i +1 (y )x 1 +1 + •-• ,
(6.3)0 JY i=bY - Fbiy x + ••• +b ,y x i +b , + ,(y )x)+1 +

W hen T  is  o f  th e  form  (6.3) 0 ,  th e  in v e rse  T - 1  h a s  a  sim ilar form  w ith
respect t o  t h e  sam e coord ina te  system . S o  our resu lt is  va lid  fo r any trans-
formation of type (1, b) w ith  lb  #0, 1.

I f  w e  adm it a  change of coordinates by means o f  form al power series, it is
possible to  reduce all a2(Y ), a3(Y ), ••• to constants and a ll b i ( y ) ,  b2(Y ), ••• to linear
monomials. However these formal power series are not generally convergent, as
w e shall see later.

W e will divide th e  class o f a ll transformations of type (1, b), b i  #O, 1, into
subclasses. Suppose th a t  T  is expressed, relative to  a  certa in  coordinate system
(x , y ) ,  in  the fo rm  (6.3)„, i n  su c h  a  w a y  th a t  a 2 .= ••• = .-a k = 0  and a k + , 0
(k -1 -1 _ i) . T hen , fo r any coordinate system  (x , y )  w h ic h  expresses T  in  the
fo rm  (6.3) 0 ,  th is  condition for coefficients is  in v a r ia n t . Such a transformation
T  is sa id  to  be  o f type  (1, b),,. If , fo r  any coordinate  system  w ith  arbitrarily
large i ,  w e have ••• =a 1 = 0 ,  th en  T  is  sa id  to  be  o f type  (1, b ) . .

In  th e  sequel w e treat the  case of type (1, 6)1, j .  e., a ,  * 0 .  T h is  c o n d itio n
is equivalen t to  say  that a , *  0  in the original expression (6.1).
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(C ) Finally we make the change of coordinate system

x=1/z,
 J

z=1/x ,

ty= w, w y ,

and regard T  as a local analytic transformation defined on a neighborhood of
the point (00, 0) in the product space

Oxc={1z1.0, Iwl<00}.

The expression (6.3) 0  is brought to the form

z ,=z +A o+A dz + ••• ,
(6.4)

w1=bw+b1w1z+ ••• ,

where /10 =— a 2 , A 1 =a 2
2 —a 3 , •••

7. Base of uniform convergence.

7.1. Let us first introduce the concept of bases of convergence in a some-
what general situation. Let T  be an invertible local analytic transformation at
0  and suppose that 0  is an isolated fixed point. A t first we fix a  domain V
of T .  An open subset D  of V  is said to be a base of uniform convergence of
T  if it satisfies the conditions :

( i ) Every point in D  is uniformly convergent to O.
( ii) For every uniformly convergent point P  in  V , th ere  is  a  sufficintly

large number n, such that T ° ( P )  is in D.
(iii) T(D) D.

This definition does not depend on the choice of V  in the sense of (a) of the
following lemma.

Lemma 7.1 . (a)  L e t D  be a base of uniform convergence relative to a domain
V , and let V ' another domain o f  T  containing D. Then D  is a  base o f  conver-
gence relative to V ' also.

( P )  I f  D  is a base of  uniform convergence, then T(D) is also.
(7) I f  D , and D , are bases of uniform convergence, then D i U D , and D1nD2

are also.

P ro o f. To prove (a), it suffices to verify the condition (ii) relative to V'.
L et P  be a  uniformly convergent point in V '.  Then by difinition there is a
number n , such that T n (P )e V n V ' for a ll n n i . Then TnI(P) is a  uniformly
convergent point in V, and consequently Tnl+no(P)E D for some no . Thus (a) is
shown. Assertions (48) and (r) are obvious.

W e have the corresponding concept for simple convergence. A subset
(which need not be open) E  of V  is said to be a base of simple convergence of
T  if  it satisfies the conditions :
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( i ) Every point in E  is sim ply convergent to  O.
(ii) For every sim ply convergent point P  in V, th e re  is  a  sufficiently large

number n o  such  that  T"°(P) is  in  E.
(iii) T (E)ÇE.

The properties corresponding to the above lemma hold for E.

7 .2 . N ow  w e re turn  to  the semi-attractive transformation T  of type (1, b)1.
W e use the expression (6.4) with changed notation :  T  is  a transformation

(7.1) Jz ,=z-l- -Fa o a i l z+ a 2 (w)1z 2 +

w 1 =bw +biw lz +b 2(w)lz 2 + •-•

of a  neighborhood o f 0 = (co, 0) satisfy ing the conditions 0<lb 1 <1, a o = O. As
the domain of definition o f T  we specify a  neighborhood V  o f 0  of the form

V ={ R '<lz 1 0 0 ,1w l<P} .

The domain V  is assum ed to be so chosen that T  is analytically continued to a
neighborhood of the closure of V and injective there , and th a t th e re  is  no fixed
point other than  O .  By C we denote the portion of the invariant curve in  V,
i. e.,

C={z=00, 1w1<p}.

Our purpose is to construct bases of uniform and simple convergence for T.
Let K „ K , be positive numbers such that

Iz1—z—a01=1a1lz-Fa2(w)1.22+
and that

Iwi— bw1=Ibiwlz+b2(w)lz 2 + --I<K211z1

o n  V .  L e t  a  deno te  th e  a rg u m en t o f  au =la u le i a. W e take and fix a  real
number 0  w ith  10—a 1 <7r/2. Let R =R (0) be a  sufficiently large number such
that

: =1 a o lcos (0 — a)— Ki l R>0 ,
and

blp+K 2IR <p.

We define the  domain D  in  V  by

(7.2) D=D0,R= {Re (e - 0 8 z )>R , lw  I <pl,

nam ely , th e  product o f  a  half plane in the z-plane and a disk  in the w-plane.
The invariant curve C lies in the boundary of D.

Proposition 7.2. (i) T h e  domain D  is  a base o f  uniform  convergence. (ii)
The set DUC is a base of simple convergence.

W e prove this proposition in the steps (a) ,--(a).
( a )  F irst w e  notice the following : I f  1z(P)1>R, Iw (P)l<p , then
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(7.3) Re (e - 1 0 z1 )=Re(e - i 8 z)+Re(e - "a o )-FRefe - "(a i lz+ ••-)1

(e - i 8 z)-Flaol cos (0 —a)—IC,IR

=Re (e1 ez)±3,
and

Hence, in particular, if  P D ,  then T ( P ) E D ; e., T(D) D .  Since T(C)gC,
we have T(DUC)gDUC.

(p) Next we show that th e  sequence T n (P)=- (zn, wn), n=1, 2, • •• , is uni-
formly convergent to 0 , (00, 0) on D .  Suppose that P D .  U s in g  the inequality
(7.3) n  times, we obtain

Re (e - zez„).Re(e -  z)d-n.3_Rd-n3

T h is  proves that z„—>C0 a s  n—>00 uniformly on D .  To prove that w - 0, w e
choose s >0 such that I b I s <1. We claim that, fo r  any integer v >0, there
exists a  number n(v) such that if n > n(v) then I wn < ( I bid- e)' p. This is shown
b y  induction on v. For 11=0 , it suffices to put n (0 )=0 . Suppose that n(v) is
already determined. W e  t a k e  n(v +1) s o  la r g e  t h a t  n(2.'+ 1 )>  n (v ) and
K 2 l((R±(n(v+1)-1)3)<e(Ibi+s)Pp. Then, for n > n(v +1), we have

_ Ibi(Ibl - FE)'p - FK21(R+(n-1)6)

The above assertion is thus  ishown.
(r) I f  PE V\C i s  a  simply convergent point, then there exists an  integer

no such that T '°(P) D .  Indeed, since z--+00 by hypothesis, there is a n  n'
such that if then Izn I> R .  For I z,, I > R , we have by (7.3)

Re (e- "zn + i) Re (e - 1 0 z,i )+6
Hence

Re (e - i'z.)...Re (e - ) + ( n — n ') 6

Therefore, for sufficiently large n , w e have Re (e' z . ) > R  and hence Tn(P)=
(z„, w n ) ED.

(3 ) It follows from (r) that every simply convergent point in V \C  is also
uniformly convergent.

(s) Every point on C is a  simply convergent point but not uniformly con-
vergent. To see this le t us return to the coordinate system (x, y ) and the ex-
pression (6.3)„ of T :

x1=x+a2.x 2 +a3(Y)x 0 ± ••• , a2 #0,

t y1 =b 3 H - bi(Y )x ± b2(Y )x 2 + ••• .

The iterates T n ,  n=1, 2, • • • , have the expressions
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x n = x+ n a 2x 2 + •-• ,

T Y n
=bn y+ ....

Every point P=(0, y) C is simply convergent since Tn(P )= (0 , bny). If P  were
uniformly convergent, then the sequence of functions x n , n=1, 2, • ••, would be
uniformly convergent on some neighborhood o f  P  and the sequence a2x7daf,
n=1, 2, •••, w ould be also. But this is not the case because 02.x„/ax 2(P)=2na 2 .

Proposition 7.2 now follows from the observations (a)-- ,(6).
I t  i s  impossible to obtain practically the  se t o f all uniformly convergent

points. B ut the following remarks a re  im portan t and  useful : F o r  every  0
satisfying I 0— al <7r/2, there exists a base of uniform convergence of the form
D R .  I f  D0 1 , R 1 a n d  Do,,R, are bases of uniform convergence, then their inter-
section and union are also.

8 .  Abel's functional equation.

Now we shall construct a  holomorphic function yo(P) on  a  base o f  uniform
convergence D=D0, R  satisfying Abel's functional equation

(8.1) ço(T(P))=çD(P)+ao.

T h e  coordinate function z  satisfies approximately this equation. Among the
solutions of this equation we shall single out the c lass of solutions w hich are
approximated by z  (c f . F a to u  [5 , Chapitre 1 1 ]) . Such a  function ço together
w ith w will form a  coordinate system on D.

8 .1 .  We choose and fix a  branch of log z on D .  Then

log z 1 —log z= log (1+ a
z

° + • • •\ — a° + • • •) z

is a  holomorphic function on V .  We put

(8.2) z1—cli log z 1 —a0 --z—  lo g  z + A (P ).
<20a o

Here A (P ) is  a  holomorphic function on V such that I A(P)1 1(11z1 2 with a suf-
ficiently large number K .  If  w e replace P = (z , w ) b y  T '(P )= -(z , w ,) in  (8.2),
then we have

log z ,— a o = z , ,—  log z + A (T '(P ) ) , v=0, 1, 2, •-• .aoa o

Summation for 2 =0, 1, •-• , n -1  yields

(8.3) zn—l• log zn —na o = z - 1  log z+ A (P (P ) ) .
aoa o ,=0

This expression converges uniformly on D as n—>c>0. Indeed, we have, by (7.3),

(8.4) 1z, (e-i°z Re (e -  z )+va  ;



248 Tetsuo Ueda

and hence

(8.5) E IA(P(P))1-KE1/1z 2

1., =() v= o

1/(Re (e - i
 

)41.)6) 2

K C
d x 

— /„K {3(Re (e -  z ) -6 ) } .
< 3 . . e coo z) -a x - 

Thus w e obtain as the  lim it of (8.3) a  holomorphic function on D

a,
(8.6) ço,(P).= urn (z„— +  log z — n a 0)

n — '0 0 ao

z  cl i  log z+ A(T'(P)) •ao

Definition. A  function of the form  yoo (P )+  constan t is sa id  to  be  a n  Abel-
Fatou function (A-F function, for short).

T h e r e  is  a n  arb itrariness of an additive constant in  the definition of çao

caused by the choice of the branch of log z. This arbitrariness is absorbed into
the constant in the definition of the class of A-F functions.

Proposition 8 .1 .  A -F  functions satisfy Abel's functional equation.

Indeed, we have

wo(T(P ))= lim (z„,—  '1  log z„,,— na o )a

= lim (zn+i— —

a 1  

log z (n+l)a  0)d - a 0a

=-Çoo(P) - F a o ;

hence the proposition is  tru e  for every A-F function. q. e. d.

Let yo(P) be any solution of Abel's equation (8,1) defined on a base of uni-
form  convergence of any  fo rm . Then yo(P) is analytically continued to a  single-
valued function on the set U  of all uniformly convergent points, by putting

yo(P)=ço(T"(P))—na o ,

w here n is  a  sufficiently large in teg e r su ch  th a t T n (P )E  D . In particular, the
A -F  functions a r e  defined o n  U  independently of the choice of D=D0, E . (It
m ay however happen that A-F functions a re  continued analytically beyond the
boundary of U  and yield multiple-valued functions.)

B y (8.5) and (8.6), every A-F function yc, h a s  the form

(8.7) ç o (P )= z —  log 2+ B(P) , P=(z , w)E U ,
ao
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w here B(P) is  a  holomorphic function which tends to  a  c o n s ta n t  uniform ly as
Re (e - ' 6'z)-->00 fo r a n y  0 with I 0 - a l<r1 2 .  Since

aç,  _ 1 a i  1 +  aB aço aB
az a, z az ' aw aw

w e have, estimating Cauchy's integral representation o f  B(P),

(8.8) k 1 açpo  ,az aw
uniformly o n  th e  same cond ition . Further from (8.7) we obtain rough estimates

(8.9) ça(P)—z(P)1=0(1z(P)1')

Iço(P)1=0(1z(P)1 1 ÷ 9 ,

lz(P)1=0(Iya(P)1'+') , fo r a n y  s >0 .

8 .2 . L e t  01 ,  0 ,  b e  re a l n u m b e rs  w ith  a  --7r/2 < Oi < 60,< a +  7-72, and  s a
positive num ber <7r/2. W e take a  base  o f uniform convergence of the form

D=De i ,RUDo,,R •

Denoting by z* the intersection point of the lines Re (e - i8 1z)=R and Re (e - 1 °2z)
= R  in  the  z-plane, D  is  th e  product o f  th e  angular domain

J1={ 0 1 -7r/2<arg (z—z*)< 02 ±7r/2}
and  the  disk

Il wl<p}.

We choose and  fix  a n  A-F function çp. Taking R sufficiently large , w e  assume
th a t  ço is  e x te n d e d  to  a  continuous m apping o f  th e  closure D o f D  into the
Riemann sphere Cr1 =CU { 00} and that I arg k/az I < s o n  D .  T h is  is  possible by
the  estimate (8.8).

W e w ant to  show th a t , fo r every  w  w  <p), the mapping ypv , o f „I into C
(s-plane) defined by z,--s=ço„,(z)=ç9(z, w) is  in je c tiv e . T o  see  th is , w e  examine
th e  im a g e  u n d e r  ço„, o f  th e  c o n to u r  ac.,1 o f  th e  angular dom ain  A . W hen z
traces the ra y  arg (z—z*).-= 0,-7/2 from z* to 00, i ts  im age g,,,(z) in  th e  s-plane
traces a sim ple curve from  ço,„(z*) to  00 lying in  th e  angular domain

arg (s— ço.(z * )) — (ei — r/2) I < s .

T his is because the  deviation o f  th e  d ire c tio n  o f  ta n g e n t t o  th e  im a g e  curve
fro m  th e  d irec tio n  o f  th e  ray  arg (z—z*) -= 0 —7r/2 does not exceed s at every
p o in t . In  th e  sam e m anner, w hen z tra c e s  th e  r a y  arg (z—z*)---0 2 -1-7r/2 from
Co to z*, its  im age  in  the  s-plane traces a simple curve from 00 to  go„,(z*) lying
in  the  angular domain

I arg (s—ço(z*))—( 02 + 7/2) < s .

T hus the contour SA tra c e d  in  th e  positive sense  is m apped  to  a sim ple closed
curve go,„,(a,A) o n  th e  s-sphere and  bounds a  dom ain J „, ly in g  o n  t h e  le f t  of



250 Tetsuo Ueda

wu ,(5,11). This domain dw  contains the angular domain

01 -7r/2 + < arg (s—w w (z*))< 0 z + r/2— s

and is contained in  the angular domain

(8.10) 01-7/2— s<arg(s— ww(z*))<02-1-z12-Es.

T o  show  t h a t  ww  m a p s  „ A  injectively onto zlw  w e  re ly  on the argument
princ ip le . Let L  be a  sufficiently large number and consider the im age of the
contour of ,Âni z I < L  I .  W hen z  traces the portion of the circle  lz I = L  lying
in ‘A in the positive sense, its  image traces w ith increasing argument a simple
c u rv e  ly in g  in  th e  angu lar dom ain  (8.10). This image curve tends to  00 as
L — >00 b y  (8.9). From  this we see that the winding number of the image of the
contour of ,An{ iz < L } re la tive  to  a point s  is  1 or 0 according a s  sEd w  o r
sEEZI„, fo r  sufficiently la rg e  L .  This shows th a t ww  i s  an injective mapping
of „A onto 4 .

Let us consider the  mapping (w, w) of D o 1 , R U D 0 2 , R  in to  C2 .

v)=(go(P), w(P)).

W e  k n o w  b y  th e  above observation th a t th is  m ap p in g  is  injective. Let
O'=0 1 - 7:12- 1- s and 0".= 02 +7/2—s. T hen  w e have

a— r<0'<a<011<a-Pir.
W e put

B= n isECIOff<arg(s—w w (z*))<OIII,
I w l< P

w hich has the form  of an  angular domain

(8.11) B=IsECIO'<arg(s—s*)<0"1.

Since for every w, w  I < p, the image of „A under ww  co n ta in s  g ,  the image of
Do.,RUD0 2 ,Ry under (w, w) contains g x {lv l<  p } . T h u s  b y  p u tt in g

(8.12) D [g ]=IPE U * (P)E

(w, w) is  a  biholomorphic mapping of D [g ] onto a x ilv i<  p l. W e  c a n  regard
(9), w) as a  coordinate system on D [ g ] .  W hen w e do so, the le tters s ,  y  will
b e  u s e d  in place of w, w. It is  c lea r th a t D [g ] is  a  base of uniform conver-
g e n c e . The transformation T  is expressed with respect to the coordinate system
(s, v) in  the form

si=s+ao ,

v ,=g'(s, v )

where g '  is  the function determined by gi(s(z , w), w)=g(z, w).

8.3. The following proposition characterizes the class of A-F functions:

Proposition 8.2. L et ço be a holomorphic function defined on the set U  o f  all
uniformly convergent points and satisfy ing A bel's equation (8.1). The conditions
(i), (ii), (iii) are  equivalent to one another:
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( i )  ç o  is an  A-F fnnction.

( ) ayo 
 (P)— >1'

 ayc,
>0(P )—  uniformly as Re (e - iez(P))—>oo,

az 
(iii) For every uniformly convergent point P,

251

(T n (P ) )  - - -> 1,• (Tn(P))O ,oz aw as n—>00

Pro o f . We have seen at the end of 8.1, tha t (i) implies (ii). Condition (ii)
implies ( i i i)  because Re (e - iez„(P))—*co a s  n—>00. It remains to show that (iii)
implies (i).

Denoting by s(P ) an  A-F function and setting 7r(P)=-Ço(P)—s(P), the condi-
tion (iii) is equivalent to

a7ra 7 r  (iv) (Tn(P)), (T n (P ))- ->  0 a s  n—>00
az aw

Note tha t the Jacobian matrix for change of coordinate systems from (z, w)
to  (s, v) has the form

(as/az 6s/6w\

0 1 )

and tends to  the identity matrix as Re (e - ' 8 z(P))—>00. H ence  w e m ay  replace
6r/6w by 5'716s, alrlav respectively in the condition (iv).

( a )  If for any P E U , the sequence 0r /6v (Tn(P)), n=0, 1, 2, ••• is bounded,
then 7 (P ) depends only on  s (P ) .  Indeed, since 7 (P ) is  invariant relative to  T,
w e have

a ( z o T n ) 6 7r 
(P)= (P)ov n=0, 1, 2, •-• .

On the other hand, since 6s 1/6v (P) -- - 0, w e have

a(7T oTn) (F, a ( r o T n - 1 ) ( 7 ,( p , ) a v i  
a y a y j av

Hence, by induction,

az ra(ZoTn)a n ' a V  1 aV 1 aV 1
-, (P)= -, (P ) =  - ,  (T n (P)) -, ( T l (P)) (T(P))n -  (P).av ov ov av av ay

The right-hand side tends to  0 a s  n—>co, because ar/av(Tn(P)) is bounded and
I avdav(T n (P)) I < I b I -i-E <1 for sufficiently large n .  This shows that 0r/6v (P)=0
and tha t z(P ) depends only on s(P).

(13) If  moreover 57/6z(Tn(P))—>0 a s  n - - > 0 0 ,  then 7 (P ) is  a  constant. This
is because

57a ( 7 r o T n ) 57r
(P)= (P)= (Tn(P))•as as as

Combining (a)  a n d  (p ), w e know  that (iv) implies that 7r(P) is  a constant
and that go(P) is an  A-F function. Thus Proposition 8.2 is proved.

(8.13)
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9 .  Coordinates on the  fibers o f Abel-Fatou function.

T o  re d u c e  the expression of T  on a base of uniform convergence D  to  a
simpler form, w e w ant to  construct an invariant holomorphic function which,
together w ith the A-F function, w ill form  a  coordinate system on D.

9 .1 .  W e begin with constructing, on the set U  of all uniformly convergent
points, a non-vanishing holomorphic 2-form Q w hich is invariant relative to  T,
i. e ., T*S2=S2. In view  of th is  invariance relation, it  su ff ic e s  to  c o n s tru c t Q
on a base of uniform convergence. To fix the ideas w e take a base of uniform
convergence D = D [g ]  equipped with the coordinate system ( s , v )  as in  8 .2 .  We
use the notations

P = (s(P ), v (P ))= (s, v ),

T n(P )= (s(T n(P )), v(T n (P ))= (sn (P ), vn (P )), n= 0 , 1, 2, ••• .

B y (8.13) the Jacobian determinant of T  relative to  the coordinate system (s, v)
is  e q u a l  to  av i / a v . I f  w e w rite  S l(P )= e(P )d sA dv  w ith  a  non-vanishing holo-
morphic function e (P )= (s , v ) , then the invariance condition is expressed by

(9.1) e(T(P)) a v i  ( P )= (P )av

We define Q = 4(P)ds A d v  by

(9.2) e(P)= c lim  b-s(Tn(p» iaos(T .(p))-boaob  avn  (p)
aV

a o

=- aaVviC b - s ( P ) / " S ( P ) - 6 1 1 a ° 5 1 1 0  b ( 1 +  s(T n (P )) 
) - b l i a 0 b ( T n ( P ) ) } .

Here, (10 , b , b , are the coefficients in (7.1); c  is  an  a rb itra ry  non-zero constant ;
b- 8 ( P ) /a0 =exp {— (s(P)la o ) log b l  a n d  s(P) - tiia0b=expl —(b i l a o b) log s(P )}  w ith  a
fixed choice of log b  a n d  a  branch of log s ( P ) .  The tw o expressions in (9.2)
are equivalent, since s(Tn(P ))= -s(P )± na o and

( P ) = ( T ' ( P ) ) (T(P))
ay,a y , a y ,

a v n
l (P ) .av av av

Besides Q we define a  holomorphic 2 - f o r m  = -(P )d sA d v  by

v b i l a o b  ay(9.3) (P )= {  —1 a + as(T n(P ))) a; ( T ' ( P ) )n=0 b 

so  tha t the following relation holds :

Q=c b - 0 ( P ) Iaos(P) - b1lnobS2 .

Let us assume the convegence of (9.2) and (9.3) fo r a  w h ile . W e  have ob-
viously the following

Proposition 9 .1 .  T he  2-form Q  is invariant relative to T .  f j  satisfies the
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equation

a, i /a0b
(9.4) T * D (P )= 4

s (P )
y1+ f2(P) .

There is som e arbitrariness in  th e  definition of Q .  I f  w e  replace log s(P)
by another choice, then the  new 2-form differs from the original one by  a  con-
s ta n t  fac tor, w h ic h  c a n  b e  a b so rb e d  in to  the constant c. If  w e replace the
value of log b b y  log b+27riv w ith  an  integer y , the  new  form  differs from  the
original b y  th e  fa c to r  e - " i" (P " a o . W e  w ill  c a ll  a n y  holomorphic 2-form D
w hich can be expressed by (9.2) a  canonical invariant 2-form. Q  is determined
up  to  a constant factor w hen log b is specified.

On the other hand, D is determined if the A-F function s (P ) is determined.
W e w ill call .D normalized 2-form.

9 .2 .  N ow  w e show the convergence of the infinite product (9.3). The con-
vergence of (9.2) fo llow s from  th is. W e put

1 ( \-bilaob
)7 (P )=— s(P ) ) av (P )b 

and make an estimate of log n (P ).  Firstly  w e have

log ( 1 +  
ao  )bilaob b, 1 1  

+ 0
s(P) b  s (P ) (1s12)•

N ext w e notice that

ay,a w , a w , aw, aw_ _
ay ay a z  ay aw ay

and, in view  of (7.1), that

aw, b,to ± 0(  1a z  = ow ,az z2 Izi2) ay
aw, 

= b + b , ±  0
(  1 

aw z 1z12

It follows that

, 1 av, b,n (  1   \
lo g a v bz - E L ' I z 1 2 ) •

Therefore, in view  of the estimate (8.9), we obtain

log r ) (P )= 0
(1 s

i
 1 2 )

for A > 1 .

This, combined with (8.4), shows the convergence of

(P)= 7,170 72(Tn(P))

Further, this estim ate im plies that - (P)—>1 uniformly as Re (e -  ez)-00 .
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Proposition 9.2. L et D.=-(P)dsAdv be a holomorphic 2-form on U satisfy-
ing the equation (9.4). The following conditions are equivalent to one another:

(i) D is the normalized 2-form.
(ii) . (P )-4  uniform ly  as Re (e'z)—>co.
(iii) For any PEU, .-(Tn(P))—>1 as n—+oo.

Pro o f . We have already shown that (i) implies (ii). ( i i )  implies (iii) because
Re (e- 1 z)—>00 as n--->00. It remains to prove that (iii) implies (i). By iterating
the equation (9.4) we have

' . ( 1 ) ) = - ( T 4 ( P ) ) :1-_50 {7,1 ( 1 +  s(Ta'(°P)))bil b a
avvi

(
r , ( p ) ) } .

If (iii) is satisfied, letting n—>oo we see that D = (P )d sA d v  i s  the normalized
1-form, q. e. d.

9.3. Consider the expressions

oi=Q1ds=e(P)dv, ,

(D= D ld s= (P )d v .

They are regarded as families of holomorphic 1-forms on the fibers of the A-F
function s (P ) depending holomorphically on  s. Correspondingly to D and D,
these 1-forms h av e  th e  properties T*co=co, T*6)=- 6(1+ ao/s ( p ) ) b i l  a ob (o)._

c b- s ( P ) l a o s ( p ) - b i l a o b a j .

We define a  holomorphic function 0(P)=-0(s, y) on D [g ]  in  the following
manner : For a point P=(s, v) in D [g ] ,  we denote by P the point (s, 0). We
put

r v
0 (P )= .ÇP  w= .Ve(s, v)dv, j (P )= .1 '6)= -(s , v )d v , ,

P 0 P

where the path of the integrals is a  curve joining P  to P  on the fiber of the
A-F function s. 0  and j  satisfy the relation

(9.5) o ( p ) =  b - s i a o s - b i l a o b j ( p )

They behave under T  as

0(T(P))=0(P)+K(s(P)),
(9.6)

j(T (P ))--b (1+   s (apo ) )0 1 1a00j ( p ) + k . ( s ( p ) ) ,

w here (s), k-(s) are holomorphic functions on g
vi

,c(s)=\ e(s+ao, v)dv , k(s)=- .r(s - kao, v)dv
JO

with v1=v(T(s, 0)).
L et s be a  sufficiently small number >0 and assume that g  is so chosen
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th a t  1 (P ) -1  <  s  on D [ g l .  Consider, for every s  in  g ,  the holomorphic map-
ping j s o f  iv i  < p l  into C (il-plane) defined by j,(v )=-J(s, v). This mapping j ,
is  injective and its  image contains the  d isk  { u I < po } , p o =(1— s)p.

Consequently the holomorphic mapping (w, s-1;) of D [g ] to  c2

P , ( s ,  7 7 ) — ( Ç9(P), .65(P))

is  injective and its  image contains the  product domain .B>ofil<pol. In view
of the relation (9.5), the holomorphic m apping (w, 0 ) of D [g ] is a lso  injective
and its  image contains the  domain

{ (s , u )IsE g , lu  < p o c  b- siaos - bvaabl I.

T hus w e can  regard (w, 0 ) and (w, 43) coordinate systems on D[ .B]. When we
do so, the notations (s, u), (s, it) w ill be used. W ith  respect to these coordinate
systems, the transformation T  is expressed as

s ,=s +a o ,

u,=u+Ic(s); 1 si = s+ a 0 ,
aor/a02 _

fii =b (1 + —

s
U+K(S).

W e notice th a t K(s), k(s) have no canonical meanings, since they depend on
the coordinate w--=v. The coordinate u  is  so  fa r canonically determined except
for a factor of the form  const. exp (-27riv sla 0 ) and  transla tions on  the  fibers
of s= w . T h e  coordinate u  is determined except for translations on the fibers
(w hen s  is fixed). W e w ill later exclude this arbitrariness.

1 0 .  Application to global transformations.

1 0 .1 . Let 911 be a complex manifold of dimension 2 and T  a holomorphic auto-
morphism of U .  Suppose th a t th e re  is  a  fixed point 0  in 911 of T  and th a t  T
i s  sem i-attractive of type (1, b)1 a t  O .  Let ( r e s p .  denote the set of all
uniformly (resp. simply) convergent points w hose lim it is O .  Let denote the
invariant curve of Poincaré w ith  center 0  and corresponding to the eigenvalue
b. U nder th is situation w e show a result analogous to the example of Bieber-
bach : The domain i s  biholomorphic to  C 2 . M ore prec ise ly , w e  p rove  the
following

Theorem 1 0 .1 .  T here  is a holomorphic function so : 1).-->C which satisf ies the
equation so(T(P))=ço(P)+1 and  induces a structure of  f iber bundle ov er C with
fibers C .  F u rt h e r t h e re  i s  a holomorphic function 0*  on w hich  is  invariant
under T  and induces on ev ery  f iber of  so a biholomorphic m apping onto C.

The proof is done in  the  steps (a) , , , (s).
( a )  W e choose  a  neighborhood V  o f  0  together w ith a local coordinate

system  (z , w) a s  in  7 .2 . Here in the expression (7.1) w e  suppose a 0 = 1 , which
is  possible by replacing z  b y  a oz.

If  D  is  a base of uniform convergence to  0 ,  then T ( D ) ,  n = 0 ,  1, 2, • •., is
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a n  increasing sequence of domains in 9J1 which exhausts Z, i .  e., Z= U  T - n(D).
11= 0-

Similarly, i f  E  is  a base of simple convergence to 0 ,  then U T - n(E).
n = o

W e take D  and  E  as in  8 .2 : D =D [g 3 ],  E =D u C . We notice that, since
C is  in  the boundary o f D and  T - n is an automorphism for every n, T - n(C) is  in
th e  boundary o f T - n(D ). Therefore i s  in  th e  boundary o f Z.

(i3) T he  A-F function T,(P) on  D  satisfies th e  equation

(10.1) yo(T(P))=Ço(P)-1-1,

for P D .  B y  p u ttin g

ço(P)=çc,(Tn(P))—n , PE T - n(D) ,

we can extend ço to  a ll of Z .  T he equation (10.1) is then valid for all PEZ.
T he  differential dço o f ço is  an invariant holomorphic 1-form on Z : T* dço(P)

=d (ç o .T ) (P)=4 (P) . Since dço is non-vanishing o n  D ,  it is non-vanishing
everywhere on Z .  In  other words yc): Z--C is a  mapping o f rank 1.

T h is  mapping 0 : Z—*C is surjective ; and  fo r every s E C  th e  fiber ço- '-(s)=
{PEZ1yo(P)=s} is connected and simply connected. In  fac t, th e  fiber yo- 1 (s) is
exhausted by th e  increasing sequence

yo- '(s)nT - n (D )=IP T - n(D)Içc,(P)=s1,

each of which is biholomorphic to

n)nD=- {PE D lgo(P)= s±n} ,

n=0,

n=0 , 1,

1,

2,

2,

•••,

v ia  t h e  automorphism Tn . When n  is sufficiently la rge  so that S + 7 /  g ,  this
s e t  is non-empty a n d  biholomorphic to  th e  d is k  y I < p ; hence connected and
simply connected. Therefore g9 - '(s) is also.

( r )  We choose and fix a  canonical invariant 2-form D a n d  th e  1-form co=
Q 1 4  on  D .  They can be extended to the whole 5) by means of the invariance
relation.

T h e  holomorphic function 0  on  D  defined in  9.3. can be extended to ço- 1 (g )
in  t h e  following manner : F o r  a  p o in t  P  with ço(P)=sE g, le t P denote the

point in D  with so(P)=s, w (P)=0. We define 0 (P)  b y  th e  integral 0(P)=

over a  path which joins P to P on  the  fiber yo- 4 (s). The relation

(10.2) 0(T(P))=0(P)+K (s), s=ça(P)E g

remains true fo r this extended function.
We claim that, fo r every sG g ,  the restriction of 0  to th e  fiber q)-- '(s) is  a

biholomorphic mapping o f  yo- 1 (s )  onto C .  F or the  proof we consider first the
restriction of 0  to çc- 1 ( s ) n r - n(D ). We use the relation derived from (10.2) :

0(P)=.0(Tn(P))— x(s)— x(s+1)—  ••• —K(s+n---1) .

H ere rI ( s ) n T - n(D) is m apped  by T n  biholomorphically onto yo- 1 (s+ n)nD,
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w hich  is m apped by 0  in to  C  injectively a n d  i t s  im age contains th e  disk
u l<p o Ib +Th)(s+nY b1l }. Consequently so- 1 (s)(1T - n(D) is mapped by 0 into

C injectively and its  image contains the  disk

ilu+K (s)± -i- x (s+n - 1)1<p0lb - " " ) (s+n) - b 1 / b I} .

The radius tends to infinity a s  n-400. The assertion is proved.
It follows that ço- '( g )  is  biholomorphic to g  x C via the mapping (ço, 0).
(3 ) We denote by g— n the angular domain in  C (s-plane) obtained by the

translation of g  b y — n:

g — n =is— n lseg l={ 0 '<arg (s— s* +n )<0 "1 .

We consider o n  th e  domain so- 1 (g— n)=T - n(ço- 1 (g ) )  th e  holomorphic function
0 (T n (P)) . T h e  p a ir  o f  functions (ÇO, 0.T n ) i s  a  biholomorphic mapping of
yo- - '( g— n) onto (g—  n)x C .  This is so because every fiber so- 1 (s) , se  g— n , is
biholomorphic to so- 1 (s+n ) via  T n  a n d  ço- 1 (s+n) is  biholomorphic to C via 0.

The collection of the mapping ço : 5:)—C, the open covering c— n} 0 o f C,
and the fiber coordinates 0 ° T n  o n  so- i(g— n) defines on a  s t r u c t u r e  o f  com-
plex analytic fiber bundle, with base C and fibers C .  In view  of the relation

sb(Tn(P))=0(Tm(P))+K(Ço(P)-Fm)-F ••• +K(so(P)+n-1),

the structure group is the translations of C.
(e) This fiber bundle is trivial, i. e., th e re  is  a  holomorphic function 0*

o n  T ,  which induces on each fiber a  biholomorphic mapping onto C .  Further
we can choose as such 0* an invariant function under T.

W e remark that this assertion is equivalent to say that the difference equa-
tion

(10.3) 2(s+1)-2(s)=f f (s), s e  g  ,

has a  so lu tion . Indeed, if  2(s) is  a solution to (10i3), then we put

sb* (P)=-0(P) - 2(ÇD(P)), Peço - 1 (g ) .

b y  (10.2) a n d  (10.3) w e fin d  th at 0*(P) is  invariant under T ; and hence ex-
tended to a  holomorphic function on a ll of 5) with the  desired properties.

Instead of solving (10.3) directly, we deduce as follows : Let <T>-= {TIne Z }
denote the group of automorphisms of generated  by T ,  a n d  consider the
quotient m anifold T A T >  w ith  the projection (a : 5 )-1 )A T > . T h e  function
exp 27riç0(P) on 5) i s  invariant relative to  T. H ence there is a  holomorphic
function 

ç
 o f  T A T > onto C* such that ço.6-,(P)=exp 2riy o(P). This mapping s-0

defines on TAT> a structure of fiber bundle with base C* and fibers C . This
fiber bundle is trivial since the  first cohomology group of C* with coefficients
in  holomorphic functions I-11(C*, 0 )= 0 . Therefore there is a  holomorphic func-
tion 0  on TAT> which induces on every fiber a  biholomorphic mapping onto
C .  Then 0*=0*.a ., has the  desired property.

Thus the  proof of Theorem 10.1 is completed.
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1 0 .2 . W e  w ill show  that, roughly speaking. the  fiber go - 1 (s) converges to
the  Poincaré invariant curve as Re s—>+00.

W e extend the A-F function go to ZU q by letting so(P)=00 for w is
a  mapping onto e (s-sphere). Let us w r ite  _k=-2U{ 00} and restrict our con-
siderations to ço- i( )=-go- 1 (2 ) . A .  W e take the holomorphic function j  on D [g ]
(introduced in 9.3). j  can be extended to a  holomorphic function on ço- 1 (g ) by

the  re la tion  (9.5). W e  e x te n d  g-b  to  so- 1 (00)=q as follows :  For PEC=4r1U,
w e let j(P )= w (P ). T hen  w e  have, in view  of (7.1), J(T (P ))=b j(P ) for P C .
U sin g  th is  relation, g-5 is extended to all of ço- .1 (00). W e notice th a t (j1Q) - 4  is
the  Poincaré mapping F: C—>q. W e  have  th u s  a  bijective mapping (so, j )  of
ço- 1 (g3) onto _43x C, which m aps so- 1 (_B) biholomorphically onto  g x C.

Theorem 1 0 .2 . ( i )  F o r any  positiv e num ber A l, the restriction of  (w, j) to
so- IA N  1j1 <m} is  a  homeomorphism onto .43 X {I'it' < M }. (ii) T he inverse of
(w, j) is a continuous bijective m apping o f  _ ><C onto w- 1 ( ).

P ro o f .  F irs t w e  c o n s id e r  the restriction of (go, j )  to  D [ ] = D [ ] U C .  so
is continuous on D [.. ] as w e have seen in section 8. A s  f o r  s-b", w hen P  ap-

proaches C in  D [g ], we have ".(P)—>1, and hence J(P )= .çv
o

l (s, v)dv—>v(P)=w(P).

Hence ç.b.' is  continous on D [C .
I n  th e  functional equation (9.6) w e  let k. (0 0 )= 0 . T hen  IC is  a  continuous

function on ; and  the  equation (9.6) rem a in s v a lid  fo r a ll P  in D[43]. For
a n y  M, th e  se t yo- 1 (.43)n {ljl<m } is m apped homeomorphically in to  D E C  by
with sufficiently large n. Therefore, in view  of (9.6), the assertion (i) is  true.

The assertion (ii) i s  tru e , since  fo r  every M>0, the inverse of (ço, g5) is
continuous on 43x {1 17 <M } . q. e. d.

Remark. This argument does not imply that (go, s75) is continuous on
For, the sets ço- 1 ( )n{ 1j1 < M } m ay  be  non-open in so- 1 (.43).

1 0 .3 . N ow  w e w ant to  show th a t n o t ev e ry  local an a ly tic  transformation
appears a s  th e  g e rm  a t a  fixed point of an automorphism of a  complex mani-
fold.

Let us first prove a  lem m a i n  a  slig h tly  g ene ra l situa tion . L e t 911 be  a
complex manifold of dimension 2 and 5) a  (schlicht) domain in  U .  Let (so, 0)
be a pair of holomorphic functions on a) w hich yields a  biholomorphic mapping
of 5) onto C2 . By analytic continuation of go we get a  holomorphic function g',3
in its domain of existence t .  By definition, t  is  an  unramified domain over 911
containing in  a  canonical manner so that "y3 I Z=ço. U nder this situation we
have

Lemma 1 0 .3 .  t  is  a schlicht domain in  931 and t\ Z  is e ither em pty  or an
analy tic se t o f  pure dim ension 1. Further, i f  911 is  a S te in  m anifold and is  a
Runge dom ain in  M, then t= T ,
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T :  

r i _ e g , x + b y ) x , Ix=e-g(x1+21) ,
T - 1  : 1 1y = -

6
y ,+—

b
(1— e-"i+v o)x „Y  =by  + (1— e g  x+b y)) x
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Proof. Suppose th a t 15 \ is non-empty. When PET approaches any
boundary point of 1) in  15 then ç9(P) tends to a finite value and I w(P)1 2 + Igh(P)1 2

—co ,  hence 10(P) I -->co. Therefore, i f  w e set 0(P)=- 0(P) for P D  a n d  "O(P)
=00 for PE 1)\ 15, we get a  continuous mapping 0 (P) o f  I ) in to  the Riemann
sphere e. B y  R ad6's theorem ç i s  meromorphic. 7 )  is the set of poles of
çb, therefore an  analytic set of dimension 1. Consequently /5 i s  sch lich t. The
first assertion is shown. Since any domain of the form (domain) \ (non-empty
analytic set) is not a  Runge domain, the second assertion follows, q. e. d.

Proposition 1 0 .4 .  Let T  be a  sem i-attractive local analy tic transformation
of type (1, b)1 . I f  th e  analy tic continuation of an A -F function çt)(P ) yields a
multiple-valeud function, then T  is not a germ  at a f ixed point of a automorphism
of a complex manifold.

This follows immediately from Lemma 10.3. Examples of such local analytic
transformations will be given later.

Proposition 1 0 .5 .  L e t T  be a semi-attractive tvansformation of type (1, b)1
which has an expression (7.1) with a i (w )=0 fo r  all z >.1. T hen T  is not a germ
at a fixed point of an automorphism of a Stein manifold.

Pro o f . Suppose th a t T  is  the germ of an  automorphism of a Stein mani-
fold 9R at a  fixed point O . L e t  Z, and V have the same meaning as in  10.1.
T h e  coordinate z  i s  a n  A-F function. We can continue z  analytically to the
whole Z. Since i s  a  Runge domain by Proposition 5.1 , T  i s  th e  domain of
existence of z. Consequently Tr -117=V This contradicts the fact that i s
a  Runge domain ,q .  e .  d.

We remark that, in  the  example in Section 5.1, T  satisfies the condition of
the proposition but M = e 2 is not Stein.

1 0 .4 . Now let us give some examples of automorphisms of C 2 :

Example 1.

{ x i =x +f (x ± b y ) , { x =x i— f (x i+Y i),
T : T ' : 1 1

y i =by — f(x ±by ),  y = —
b

y1+—
b

f(x1-f-Y 1),

where 0< I b l < 1, and f (z )  is an entire function o f a  complex variable such that
f (0 )= P (0 )= 0 , f " (0 )0 . The simplest of such f  is z2 . The origin 0  is a  semi-
attractive fixed point of type (1, b)1.
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w here g(z) is  an  entire function o f  a  complex variable z w ith  g(0)=0, g'(0)=0.
T he  orign 0  is  a semi-attractive fixed point of type (1, b) i . The invariant curve

w ith  c e n te r  0  i s  th e  y-axis. Therefore, denoting by Z  the  se t o f all uni-
formly convergent points w ith  lim it 0 , the  y-axis is contained in  th e  boundary
of the  dom ain  Z . W e can  consider Z  a lso  a s  a  subdomain o f  C*x C .  (Cf.
Kodaira [8], Nishimura [11]. )

Incidentally, t h e  author does not know  w hether there  is a n  analytic auto-
morphism o f (C*)z w hich has an  a ttractive or a  sem i-attractive fixed p o in t .  It
seem s even unknown whether there is a domain in (C*) 2 w h ic h  is  biholomorphic
to  C 2 .
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