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harmonic morphism in Rn
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Introduction.

B. Fuglede [10] gave a characterization of the harm onic  morphism i n  Rn
as follows :

Theorem A  (Fuglede). F o r  a  continuous mapping w  f ro m  a  domain U
(CR n  i t 2) into R nt (772 2), the followings are equivalent:

( i ) so is a harmonic morphism on U.
(ii) The components go ;  of go (1_ 11), w i go;  (i* j) and w7— go, are harmonic

in  U.
(iii) The components go ;  of w (1._.< m) are harmonic in  U , and 77çor7w i =

3 o17çoil 2 o n  U.

Recently Fuglede introduced the notion of finely harmonic functions in the
potential theory on harmonic spaces and he studied finely harm onic morphisms
(cf. [7 ], [8 ] and [9]).

In th is paper w e trea t a  problem of the same type as Theorem A  for finely
harmonic morphisms in  R n .  And w e obtain the following theorem which is an
extension of Theorem A.

Theorem 1. F o r a finely continuous mapping w  from  a finely open set U
(ER", 12. 2) into R 'n  (m 2 ) ,  the followings are equivalent:

(i) ço is a finely harmonic morphism on U.
(ii) T he components go;  of  w  (1 P m ) ,  wi g();  ( i*  j )  an d  g).7— go, are  finely

harmonic in  U.
(iii) The components w ;  of  w  (1 . 1*- 772) are finely harmonic in U, and

'5Vi'VY0i = 3 1;17 Çoil 2a .  e. on U ,

where 7go1 is  the gradient defined in Proposition 1  of  §1.

This theorem  w ill be proved by a  probabilistic  m ethod. F o r  that purpose
w e give a  probabilistic characterization of the finely harmonic morphism in R".
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For n=2, B . O ksendal [15] gave the following characterization.

Theorem B  (O ksendal). For a f inely  continuous m apping ço from  a f inely
open set U (c R 2 )  into R 2 ,  the followings are equivalent:

(i) go is a finely harmonic morphism on U.
(ii) For each x GU and for each Brownian motion B(t, co) issued from  x ,

lça(B(t))}„ t< ,  i s  a  conform al m artingale, w here r  is  the f irst ex it time of B(t)
from  U.

(iii) cc  preserves the paths o f  Brownian motion.

Furtherm ore he rem arked that fo r  a  finely harmonic morphism i n  R n ,  his
characterization in  R 2 w ill rem ain valid  under a n  appropriate modification. We
introduce the notion of diagonal m artingales and extend Theorem B to the case
o f higher dimensions as follows :

Theorem 2. F o r a  f inely  continuous m apping go from  a finely open set U
(c R n )  into R ni, the followings are equivalent:

(i) go is a finely harmonic morphism on U.
(ii) For each x eU and f o r each Brownian motion B(t, co) issued from  x ,

fço(B(t))1 ° <, is  a diagonal m artingale, w here r  i s  the f irst ex it time of B(t)
from  U.

(iii) cc  preserves the paths o f  Brownian motion.

Oksendal proved Theorem  B  by D ynkin 's fo rm u la . We prove Theorem 2
by  the m artingale method.

In § 1 we provide some definitions and  results from potential and probability
theories which a re  u se d  in  t h e  n e x t  s e c t io n . In  §  2  w e  g iv e  t h e  p roofs of
Theorems 1 and 2.

T h e  author wishes to express his deepest gratitude to Professors Y. Kusunoki
an d  T . F u ji'i'e  fo r their valuable suggestions and com m ents. A n d  th e  author
also thanks to D octors N . K ono, S. K otani and M . Taniguchi fo r their advices.

§  1 .  Preliminaries.

1. L et R n (n - .2 )  be the n-dimensional E uclidean space. H. C artan  intro-
duced a  topology o n  R n  w h ich  is  f in e r  th an  th e  Euclidean topology and the
coarsest o f a ll topologies for w hich all the positive superharmonic functions are
continuous. T h is  topology is called the fine topology in  R n  (cf. C artan [3] and
Brelot [1]).

L e t V (C R n , n be a compact set (in the sense of the Euclidean topology),
and for x Œ V , s ,  b e  the D irac m easu re . W e  d en o te  by  eg .' t h e  sw ept-out of
E x  o n  th e  complement CV o f V , and  call E .7 th e  harmonic measure relative to
the fine interior V ' o f  V  an d  x.

Definition 1  (Fuglede [71). L e t  U  b e  a  fine ly  open set in  R 2 . A  finely
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continuous function f: U --41 is  ca lled  to  be  finely harmonic i n  U  if  the  fine
topology o n  U  h a s  a  b a s e  consisting o f finely open sets V  w ith  ^V  (the fine
closure of V )c U  such  tha t f  is eS''-integrable  fo r  every  x e V  and

f ( x )= ) . f ds,v for e v e r y  x  V .

Combining Fuglede's Theorem ([8], Theorem 4.1) which Debiard and Gaveau's
Theorem  ([5], Theorem  2), w e have the following proposition.

Proposition 1. Let U be a finely open set in Rn, and f be a finely harmonic
function on U. Then there exists an Rn-valued measurable function h=-(hi)i n
on U  satisfying the following condition:

For every xEU, there exist a compact (in the sense of the Euclidean topology)
fine neighbourhood V(x) of  x  with V(x) C U  and a sequence of  harmonic functions
f„ (each defined in  some open set V, with V, V(x)) such that f,—+f uniformly on
V (x ) and f o r each i, af,/ax,--->h, in  L 2 (dv, V(x)), where dv is th e  n-dimensional
Lebesgue measure.

This proposition m eans the  generalized differentiability of finely harmonic
functions. W e denote such a  generalized gradient h  by  V f-= (a f/ a x ),,„ .. We
rem ark  that 7 f is independent of any selection of a compact fine neighbourhood
V (x ) and a  sequence IfAr,,.

N ex t w e sta te  the definition of finely harmonic morphisms.

Definition 2  (F u g led e  [9 ]) . A  finely continuous mapping y9 from a  finely
open  se t U  (c R n )  in to  R'n 2) is called a finely harmonic morphisrn if for
any finely harmonic function h  defined on a  finely open set W  (cR 'n ), hoço is
finely harmonic in  so- i(W).

W e rem ark that Fuglede [9] called  finely  harm onic m orphism s by finely
harmonic mappings.

2. L e t  (Q, g ,  P )  b e  a  p ro b a b ility  sp a c e  w ith  a  right-continuous and
in c re a s in g  fa m ily  {  g tI to  o f  su b  a-fields of F .  L e t  B(t, c o ) (= B (t)) b e  an
n-dimensional g t -Brow nian m otion (cf. Ikeda and W a ta n a b e  [1 2 ]) . If, f o r  a
point X ER n , P(wE S2, B(0, w)=x)=1, B(t, co) is called an n-dimensional Brownian
motion defined on (Q , g , g t, P ), issued from  x  and w e denote P  b y  P .  T h e
harmonic measure is characterized by a  Brownian motion.

Proposition 2  (Debiard and Gaveau [ 4 ] ) .  L et U  be a compact (in the sense
of  the Euclidean topology) set in Rn, ET  the  harmonic measure relativ e to  the
fine interior U' of  U  and a point x (E U '), and r  the first ex it time o f  B(t) from
U, namely 1-=-inf ft>0; B (t, w )E C U l. Then, dEF(C)=Px(B(T)EdC).

Rem ark. F o r  n = 2 , D e b ia rd  and G aveau proved  th e  ab o v e  proposition.
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Their proof is valid for a ll  n.

N e x t w e  s ta te  tw o  p ro b a b ilis tic  notions b y  w h ic h  th e  finely harmonic
morphism in  Rn is characterized.

Definition 3 (Bernard, Campbell and Davie [2 ], and Oksendal [15]). Let U
be a  finely open set in R n . Let ço: (m .2) be a finely continuous mapping.
T hen  w e  say  tha t ço preserves the paths of Brownian motion if, for each x o EU
and for each Brownian motion B(t,w) defined on a probability space (D, gt ,

issued from x o , the  following conditions are fulfiled :
( i ) T here  is  a  mapping a(t, a)) (=a (t)): [0, 00)x (2--)[0, 00] s u c h  th a t  for

e a c h  w EQ , th e  func tion  a(*, w): [0, r(w)).-4[0, 00) is  co n tin u o us a n d  strictly
increasing, a n d  s u c h  th a t  fo r  each t h e  m apping a (t , *) : —>[0 , 00] is
measurable with respect to  g t A r , w here r  is  the first exit tim e of B(t) from  U,
tAr=m in{t, r} and gtA r= {A E g ; A n f t A r s }  g t  fo r  a ll sGEO, 0 0 )I.

(ii) e(w)-=limt-,--049(B(t, 0))) e x is t s  f o r  alm ost every  (D E  {0); 0*(7(0)), (0)
0)))< +001.

(iii) There exists an  m-dimensional Brownian motion A t, (0) defined on  a
probability space (D, g , g t ,  /3 0 ), issued from 0 such  tha t the  stochastic process
{A(t, w , 6 ) } t a o ,  o n  th e  product probability space (DX D, cr cF, icon- X ge,
Px o X Po), defined for t -_0 and (co, )m Q x Ô  b y

ço(B(6 - 1 (t, w), (n)), if t< c(r(w), (o)

1 w*(a))+P(t)-1-3(a(r(w), w), 6)), if t o- (r(w), co)

is  an in-dimensional Brownian motion issued from (p(xo).

Before we introduce another probabilistic notion, w e  s ta te  th e  following
proposition.

Proposition 3 (Meyer [1 4 ]). Let (Q , g , P ) be  a  probability  space w ith a
right-continuous and increasing f am ily  { g t i t o  o f  sub 6-f ields of F .  L e t
{X(t, w)} 0 0 and Y(t, (0)1 to be real continuous martingales w ith respect to {g t h, o .
T hen there ex ists the unique process {A(t, w)} 0 0 satisfy ing conditions: ( i )  For
alm ost ev ery  co a D , A (0 , (0=0  and A (t, w ) i s  o f  bounded v ariation. (ii)
{X(t, co)Y(t, w)—A(t, w)} 0 0 i s  a  real continuous local m artingale w ith  respect
to  1g t}

W e denote  A(t, (o) in Proposition 3  b y  <X, Y>(t, co). W h e n  {X(t, (1))}, > ° =
{Y(t, w)} 0 , 0 , <X, Y>(t, co) is denoted by <X>(t, co).

Definition 4 .  Let (D, g , P ) be a  probability space w ith a  right-continuous
and increasing family { gt} of sub a-fields of E. T h e n  an Rm-valued stochastic
process {Z(t, w)=Z(0, co)-F(X t (t, 0))), , „ , } t , 0 d e f in e d  o n  t h e  probability space
(D, g , P ) is called a  diagonal martingale w ith  respect t o  { g t} to  i f  {X i (t, co)} t o
(1 - i - m) are real continuous local martingales w ith  { gtitt, and

A(t, w , 6))=
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<Xi , X ; >(t, w)=30 <X1Xt, w) a. e. o n  [0, 00)x Q ,

where 30  i s  Kronecker's delta.

Remark. This notion can be extended to the case of processes on  [0, r),
w here r  i s  a  previsible stopping time (cf. Getoor and Sharpe [1 1 ] ,

 p. 279 and
p. 297). In the next section, such a  extended process is considered.

§ 2. Main Theorem and the proof.

We summarize Theorems 1 and 2 as follows.

Main Theorem. L et U  be a f ine dom ain (f inely  open and finely connected
set) in R n . Then, for a non-constant finely continuous mapping yo: U—+Rni (m 2 ),
the followings are equivalent:

(i) F o r each x 1.1 an d  f o r each B row nian motion B(t, defined on a
probability  space  (I g, gt, Ps), issued  f rom  x , W B (t))}trt< , i s  a diagonal
m artingale w ith respect to i g t A s I t o ,  where r  is  the f irst ex it tim e o f  B(t) from
U, tAr=m in{t, r} and g t A r = fA c  g , An I tA r _ s lE g „  f o r all s ECI, 0 0 )1.

(ii) so preserves the paths o f  Brownian motion.
(iii) so is a f inely  harmonic morphism on U.
(iv) T he  components yoio f  ço, smo i  ( i#  j )  and g4--ço, are finely

harmonic in  U.
( y )  T h e  components yot, of  io are f inely  harm onic i n  U  and, f or

almost 'every x e U  w ith respect to the n-dimensional Lebesgue measure dv,

7soi7s9;=atil7çoi I ,

where 3„ is  Kronecker's delta.

P ro o f . ( i  ) ( i v ) :  For each zE U, let B(t, w) be a  Brownian motion issued
from z and r  be the first exit time of B(t) from U . Suppose th a t the statement
o f  ( i) holds. F r o m  Proposition 3, w e  s e e  t h a t  Isoi(B(t))10t<=
ITz(B(t))p,(B(t))lose<, ( i#  j )  an d  1 0 ( B ( 0 ) - 0 ( B ( t ) ) 1 0 g t < 2 -  a r e  continuous local
martingales w i t h  respect t o  { gtAr} cal). C onsider t h e  stochastic process
Içoi(B(t))}0t<r. Since it is a  continuous local martingale with respect to { g stAr}cao,

there exists a sequence of stopping times r, (<r) such that for almost every wE Q,
r(w)-4r(w) increasingly and Is9,(B(tAr.))1to i s  a  continuous martingale with
respect to  { fftn.-„}tzo. Since ço is  f in ite  and finely continuous, fo r each  x EU,
there  ex ists a compact fine neighbourhood U(x) of x  such that so, is bounded
on U (x ).  Now we restrict z to  a point containing in the fine interior U (x)' of
U (x ).  Let r '  b e  th e f irs t  ex it  tim e  o f B (t) fro m  U (x ) .  Then, for each y,
iwz(B(t Ar,Ar'))1,, 0 i s  a  continuous martingale w ith respect to { gtAA, , }t>0. By
Lebesgue's bounded convergence theorem and Proposition 2, w e have



228 Hiroaki Masaoka

Soi(z)=limlim E z(g i(B(t Az  Ar')))

E z (wi (BW)))

=lpi(C)dsFu '' ) (C) for a l l  zG U (x )'.

This m eans tha t soi a r e  finely harmonic in  U. Using th e same
argument as above, we see that so,so, (i#j) and 0—so; a re  finely harmonic in
U , since Isoi(B(t))so,(B(t))}0st<, ( i* / ) and ist)(B(t))— p,(B(t))1 ost<, are continuous
local martingales w ith respect to  { gtAt}tm,. Thus (iv) is established.

(iv) ( j):  Assum e the statement o f (iv ). Since each component so, o f st)
i s  a  finely harmonic in  U ,  b y  Proposition 1 , fo r a n y  x E U , there exists a
compact fine neighbourhood V (x ) of x  su c h  th a t, fo r each  zE V (x ) ' and for
each Brownian motion B(t, w ) issued from z , iso,(B(tAr'))1 t , 0 i s  a  continuous
martingale w ith  respect t o  { gme }tao, and moreover Debiard and  Gaveau's
Theorem ([5 ], Theorem 2) states that

wi(B(tAT')> w=i(z)+ .çt
o

A r 'Vpi(B(s))dB(s) ,

where r ' is  the first exit time of B(t) from V (x ) and  the above in tegra l is a
stochastic integral (cf. Ikeda and Watanabe [ 1 2 ] ,

 and Mckean [13]). From the
representation of p i (B(t As-')) and Doob's quasi-Lindelbf principle [6 ],  we see
that there exists a sequence of stopping times 1-, (< r) with respect to  { g t } t , o such
that for almost every we Q, r, (w)—*r(u)) increasingly and {soi(B (tAra t a o  i s  a
continuous martingale w ith respect to { gtArdtzo. This means that Iso1(B(0)}0t<,
(1 are continuous local martingales w ith respect to  { gtAr} tao. Using the
same argument as above, we see that {p(B(t))w,(B(t))} ost<, (i * j) and Isg(B(t))
—so3(B(0)}0t 6 ,  are  continuous local martingales w ith respect to  { gtAr}tko since
sot sof  ( i # j )  and so; are finely harmonic in  U .  H ence by  Proposition 3 , we
have

<pi(B(*)), w,(B(*))>(0=5<so 1 (B(*))>(t) a. e. o n  [0, r) x  . (1 )

Thus ( i )  is established.
( j  )<=>(v): From the well-known results of stochastic integrals (Ikeda and

Watanabe [12], Chap. H Example 2.1 and Proposition 2.3), we see that ( i )  is equi-
valent to the following :

( i )' For each x G U  and for each Brownian motion B(t , w) issued from x,
{w.(B(t))10v<, are continuous local martingale w ith respect to { gtn-}to
and

ç t(B(t))7 ; ,;(B(t)) -= w1(B(0)12 a. e. o n  [0, r) X Q,

where r  is the first exit time of B(t) from U , tAr=m init, r} and

giA,= {A G  g ;  A n f t E ff3  for all s [0, 09)1.

Hence we prove that ( i)' and (y) are equivalent.
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(V)  ( i )' : Using the same argument as in the proof of implication : (iv) i),
we see that the former part of ( i )' holds. We need to prove the latter part of ( i )'.

For any point x E U , let B(t, 0)) be a  Brownian motion issued from x .  We
take a compact fine neighbourhood V (x ) of x  as in Proposition 1. Let r ' be
the first exit time of B (t) from V (x ) .  Then it is easily seen that P x (B(t)edz,
t< t - ')  is absolutely continuous with respect to  th e  n-dimensional Lebesgue
measure d v (z ). We denote by p(t, x , z ) the density of P x (B (t )E d z , t< r ') with
respect to d v (z ). For i, j=1 , 2, ••• , m, we set

EV= {(t, w)E [0, r'(w))x Q  ; 7 1g),(B(t))•7ço,(B(0)>bi l l7g0i(B(t))1 2 1

EV = {(t, co) m [0, r'(w))x Q ; Vçoi(B(t))•7go,(B(0)<ai,17y0i(B(t))1 2 }

P li={ z  V(X) ;  7ÇO,(2)•7ço,(z)>5„17ço i (z)1 2 } ,

and

Ê =  {z aV (x) ; ç  i (z ) . 7 Wi(z)< 17 çoi(z)1 2 }

Then we have, for k=1, 2,

( - 1) (7T,t(B(t))'74Q7(B(t)) — a1iI7So1(B(t))1 2 )X(E13 )dtdP., (2 )
0

— 1) k n(7y0,,(B (t)) . 74D.)(B(0) — aii 7Sol(B(t)) 2 )X(B")dPxdt0

= ( - 1 ) 1T7ça,(z) - 7ço,,(z) - 31,17çoi(z)1 2 )X(Ê ik') :P(t, x, z)dtdv(z), (3 )

where X(E) generally stands for the defining function of a set E .  If, for some

j  and k, .fX(EV)dPx dt>0, (2) is positive, while (3) is  zero from the latter
0

part of (v). This is a contradiction. Thus ( i ) is established.
( i )/ v  ) :  Using th e  sam e argum en t as in  the proof o f  implication :

(i ) (iv), we see from Proposition 2 that the former part of (v )  holds. Using
the equation (2)=(3) in the proof o f implication : ( v ) (  i  ) ' ,  w e can prove the

latter part of (v), since p(t, x, z)d t>0, for a l l  z  which is contained in the
0

finely connected component of V(x)' containing x, and the n-dimensional Lebesgue
measure of a finely open set in Rn is positive. Thus (v ) is established.

( Let u be a  finely harmonic function on a finely open set W  in
R .  B y  Proposition 1, fo r an y  x ço - - 1 (W ), there exist a compact fine neigh-
bourhood V  of so(x) with VEW  and a sequence of harmonic functions u, (each
defined in  some open set V , w ith  V ,D V ) such that u„—>u uniformly on V.
Since ço is finely continuous in  U, uogo is finite finely continuous in  yo- '(W).
Hence there exists a compact fine neighbourhood U (x ) of x  w ith  U(x)Ey9 - '(V )
such that u oço is bounded on U (x ) .  For any point z E U (x )', let B(t, w) be a
Brownian motion issued from z and r ' be the first exit time of B (t) from U(x).
Then we see from (ii) that {(u,oso)(B(6 - 1 (t) Ar'))1 2 , 0 is  a martingale with respect
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to  { go—Icone}o, w here  a(t, w) is  th e  sam e function a s  th a t  o f  Definition 3.
Hence {(u.w)(B(a - 1 (t) Ar')) } tap  is  a  m artingale  w ith  respect to - a  1 ( t ) A r '  t

By Lebesgue's bounded convergence theorem and Proposition 2, w e have,

(u.yo)(z)=limE z ((uoço)(B(a - 1 (t) Ar')))t-.

=.E,((uoço)(B(r')))

-='-(u °)(C )d E r ( x ) (C), for all zE U(x)'.

This means that u cv is finely harmonic in r'( W ) .  Hence ço is a  finely harmonic
morphism on  U.

( iv ) :  This is obvious from the definition of finely harmonic morphisms.
(iv) ) : Assume the statement of (iv). For each x  U ,  le t B(t, (o) be a

Brownian motion issued from x and r  be the first exit time B(t) from U .  Since
( i )  and (iv) are equivalent, fçoi(B(t))}0v< is  a  continuous local martingale with
respect to  { gtA,}tzo. We denote <yoi(B(*))>(t Az, w) by a(t, w ). In  the  proof of
implication : (iv) ( i ) ,  we obtained the equation (1 ) . Hence from the well-known
results of stochastic integrals (cf. Ikeda and Watanabe [1 2 ] , Chap. II Example

-

2.1 and Proposition 2.3), we see that a(t)=-
t A

 I7yo i (B(s))! 2 ds. On the other hand,0
using the same argument as in the proof of implication : we see from
It6's formula (c f . Ikeda and  Watanabe [1 2 ] , Chap. II Theorem 5.1) th a t  (iv)
means (iii), since ( i)  and (iv) are equivalent. Therefore, from Fuglede's Theorem
(En  T h e o re m  6 ) , w e see  tha t I 7ço1(z) I  i s  positive except an  finely nowhere
dense set, since (iv) and (v) equivalent. This means that for almost every coE,S2,
a(t, w) is strictly increasing. Thus, from the well-known fact (c f . Getoor and
Sharpe [1 1 ] , Theorem 6.7 or Ikeda and Watanabe [12 ], Theorem 7.3'), we see
tha t a(t, w) satisfies the conditions of Definition 3, since (i ) an d  ( iv )  a re  equi-
valent. q. e. d.

DEPARTMENT OF MATHEMATICS
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