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1. Introduction.

This note contains three purposes :  First, we present an alternative solution
to our previous problem on  gap series raised in  th is journal (K yoto University
1978). Second, we give a short proof of Fuchs Theorem on gap series. Finally,
we correct three o f  our theorems which were pointed out by Gavrilov (from
Moscow State University) to whom th e  author is indebted.

L et D= {z : z I  <1 } be the  un it disk, C =  {z: I z  =1} th e  u n it circle, and f (z)
a  function meromorphic in  D .  A s in  K . Noshiro [19, p. 87], w e say that f (z )
is norm al in D  if  and  only if

(1 - I z 12 )1 f (z)1 / (1+ If(z)I 2 ) M ,f o r  a l l  zE D ,

where M  is  a constant independent of points z  in  D.
In  this journal [11, Theorem 7 ] ,  we proved t h e  following necessary and

sufficient conditions of gap series to be norm al in D.

Theorem 1. Let f.(z)=E17=on'k"z n k, where n k + 1 l n k - 4 0 0 ,  a s  k—>00, then f
is normal if 771- 0 and f

m
 is  no t normal if

We conjectured [11, p. 188] that f m  is  norm al if and  only i f  m where
n k ,,In k —>q>1. We posed this problem fo r q=o9 in D etroit M eeting and it was
solved by L. R. Sons [ 2 3 ] .  T h e  general case q > 1 w as finally so lved by the
following theorem of Sons and Campbell [24].

Theorem 2. Let f ( z )  be a Hadamard gap series defined by

-

( 1) f  (z )= E  ckek, nk+i/nk?=q>1,
k=0

w here  th e  s e rie s  is  convergent in D , then f  is n o rm a l if  a n d  o n ly  if
lim sup I C kl < o e .

Communicated by Prof. Kusunoki Nov. 12, 1984
am  indebted to Pommerenke fo r  many valuable comments in  this work.
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With regard to gap series, th e  class of norm al functions is disjoint from
that of annular functions. Recall that a  function f ( z )  is annular if and only
if  there is a  sequence of Jo rdan  curves j n,  in  D  such that each J„, lies in the
interior of J n + 1 ,  min{ izi : z —4, a n d  min { f(z)I : zE J,„}--›oo, as n— >0. I n
[24, p. 117], the authors ask the question whether sup I c k  I = co  implies that f  is
annular, where f  i s  a  gap series defined i n  Theorem 2. This problem was
recently solved by the  author and Campbell in [13, Theorem 1 ] as follows.

Theorem 3. Let f  be a gap series defined in  Theorem 2 , then f  is annular
if  and only if  f  is not normal.

T h e  proof i n  [1 3 , Theorem 1 ]  re lie s  o n  th e  following theorems :  K. G.
Binm ore [2, Theorem 1 ] ,  J .  W arren [2 5 , Theorem 1], a n d  D. D. Bonar [3,
Theorem 4 ] .  We shall present an elementary proof of Theorem 3 which is dif-
ferent from the one in [13, Theorem 1].

Our original intention is to consider a type of multiple gap series introduced
by Ch. Pommerenke [20], that is

CO

f(z) .= E (ckznk+ ±c,±pznk+p)
k =o

n k+ i /n k >1

where p is a  non-negative integer.
The key point here depends mainly o n  whether the following theorem of

Binmore [2] can be extended to the multiple case ? Based on his recent work
[21], Pommerenke conjectured (to the author) the  answer to be negative.

Theorem B .  L et f ( z )  be a function defined by (1 ), then there is a constant
M (q) such that

( 2 ) kl 5._M(q)suP1 f (41 (k =0 , 1, ...) ,
ze /'

where is an arbitrary path lying in D  and tending to C.

In fact, Pommerenke's comment yields the following.

Theorem 4. Theorem B  is false for the m ultiple gap series.

2 .  Proof o f Theorem 3.

Necessity. If f  is annular, then f  is not normal since it h as Koebe arcs.
By our previous theorem [1 1 , Theorem 4 ]  t h e  non-normality o f  f  implies
lim sup I ck I =00.

Sufficiency. Let lim sup I ck I = co. We define Cn = { z  : lz1 =1 —1/(n +1) } and
{z : z D  and  I f (z )1 < n } .  Then clearly we have

( 3 ) f (z)I n , for D — G.

Let G 7,  be decomposed into components
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w h e r e  G r1G 7 0 = - 0  ,  i = j

By the maximum principle each component G „, i s  a  simply connected domain.
Binmore's bound (2) and the assum ption that lim sup I ck I=09 preven t a  compo-
nent from  going to  C .  T hus each  com ponen t lie s  s tr ic tly  in s id e  D .  B y the
minimum principle each G n i  con ta ins a t least one zero of f .

W e now  beg in  w ith  n= 1 . W e p rove  tha t the first circle C, m eets at m ost
finitely many components G1 ,. Suppose on the contrary  that C, meets infinitely
many components, say Gi i , i=1 , 2, ••• . T h e n  b y  Binmore's theorem  w e find
th a t  a l l  t h e  G1 ,  a r e  forced to  lie strictly  in the interior of some circle C N  (1),

w here N (1 )>1 . Since each G1 ,  contains at least one zero of f ,  it fo llow s that
the interior of C N ( i )  conta ins in fin ite ly  m any zeros o f  f ,  in  violation t o  the
analyticity of f .

N ext, w e  w ant to  p rove  tha t there  is  a Jordan curve J i c D  whose interior
contains C, and further satisfies

( 4 ) f(z) I a. 1,f o r  e a c h  zGii •

For th is, w e  le t R , be the ring between C , and  C  N ( l ) .  Since each component
meeting C, must lie stric tly  in  the interior of Civ (n, it then follows that no com-
ponents G1 ,  can m eet both C, and C N  (1)• Since R i  contains only finitely m any
components, we thus conclude that the complement

( 5 ) S1=121—U

contains a Jordan curve J i  su c h  th a t C, lies w ithin the  interior of J 1 . Further-
m o re , f ro m  (5 ) w e  c a n  s e e  th a t  i f  z  J i , th e n  z€E G ,, s o  b y  (3 ) w e  have
1 f (z) I 1. This proves (4).

W e now consider CN ( , ) in  place of C1 . By th e  sa m e  argum en t as before,
there  is  a  circle CN ( , ) ,  w here N(2)>N (1), such that all com ponents G2 ,  meeting
C  v  ( 1 )  must lie strictly  in  the  interior of CN(2)• T h u s , n o  com ponents G2 ,  can
meet both CN(1) and C  N  (2 ) , so  th a t the  complement

S2=R2 -  G 2 1 = R 2  G 2

where the domain R , is  the ring between C N ( i )  and C N ( 2 ) ,  c o n ta in s  a Jordan
curve J2 whose interior contains C N ( 1 )  and

I f (z) I 2 , fo r  e a c h  z G./2 •

B y  co n tin u in g  th is  process, w e fin a lly  o b ta in  a  sequence of disjoint Jordan
curves J„ such that

J—C a n d  f(z)—>.00 o n  J n , a s  n—>00 •

This shows th a t the function f  is annular and the proof is complete.
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3. Proof o f  Theorems 1-4.

W e first prove Theorem 2. Let the coefficients c k  be  bounded, then by [11,
Theorem 4] the  function f  is  Bloch and therefore is normal.

Conversely, if  th e  c o e f f ic ie n ts  a re  unbounded , then  by  T heorem  3  the
function f  is annular and  hence is not norm al due t o  a  theorem  o f  Bagemihl
and Seidel [1, Theorem  1].

N ext, w e prove Theorem  1. W e need only observe th a t the coe fficients n7,4

is bounded if  and  only if  m._0 and hence the function f  is  norm al if and only
if  irt 0.

Finally, we shall prove Theorem 4 . It suffices to construct a  sum f  o f two
Hadamard gap series such that the coefficients of f  is unbounded, but the range
f (z )  is bounded o n  [0, 1). This construction is  due to  W . Rudin [22]. In fact,
we may choose

f  (z )= E k(znk— (nkAnk+1))znk+ 1 ) ,  n k ± 1 / n k > = q > 1 ,
k = 1

4. Fuchs Theorem.

In  [7, Theorem 4.1], W. H. J. Fuchs proved that if  f  is  a  gap series defined
i n  Theorem 2  a n d  i f  lim sup  ck > 0 ,  th e n  t h e  func tion  f ( z )  assum es every
complex value infinitely often in  every sector 4(a, 13)-= {z D  and  a< arg z< /3}.
T h e  o r ig in a l p roof o f  F u c h s  is very com plicated w hich relies mainly on the
Petrenko form ula [7, Lemma 4.3] i n  Nevanlinna theory. L a te r , I. L . Chang
[4] g av e  a  different proof, bu t still com plica ted . I n  [10], w e  gave  a  sim ple
proof of Fuchs Theorem provided th e  coefficients a r e  bounded. W e now  w ant
to  com ple te  t h e  p ro o f  o f  F u c h s  T h e o re m  b y  re la x in g  t h e  boundedness of
coefficients.

Theorem 5. L et f  be a  Hadamard gap series defined by (1). I f  lim sup  ck I
>0, then the function value f (z )  assumes every complex v alue infinitely often in
every sector 4(a,

To prove Theorem  5, w e shall need th e  follow ing theorem  o f  M u ra i [17]
which answers affirmatively a  problem in  th e  MacLane class [15].

Theorem M . L et f  be a Hadamard gap series defined by (1 ) with lim sup I ck I
=00 . Then f  has an  asymptotic value 00 at every point of  C.

Note th a t th e  above Theorem M cannot be extended to the case of multiple
g a p  se r ie s  d u e  to  a  recent result o f  Pommerenke [21, Theorem 2 ] .  However,
w e believe that in the m ultiple case the function f  should h av e  the  asymptotic
value co on a dense subset o f C.
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5. Proof o f Theorem 5.

Let f  be  a Hadam ard gap series defined by (1). If  th e  co e ffic ien ts  ck a r e
bounded  then  th e  a sse r tio n  w as a lread y  p ro v ed  i n  [ 1 0 ] .  W e may therefore
assume th a t the coefficients ck a r e  unbounded, so that Theorem M  is  applicable.
To prove the assertion, w e  suppose on the con tra ry  tha t f (z )  assum es a  value
y  fin ite ly  o ften  i n  a  sec to r  4(a, 13). T hen by  T heorem  M  and the standard
method (see [1 2 ]) th e re  c a n  b e  c o n stru c te d  a  path l y i n g  i n  4(a, 13 )  and
tending to C such that

f (z)—>v , a s  I z 1 a n d  z  r.
It follows from Theorem B  th a t the coefficients ck  a r e  bounded, a contradiction.
T his concludes that th e  function f ( z )  assum es every  com plex  v a lu e  infinitely
often in  every sector.

6. Pommerenke's Theorem.

A s  a n  a p p lic a t io n  o f  T heorem  5 ,  w e  h a v e  th e  fo llow ing  theorem  of
Pommerenke [20].

Theorem 6. L e t f  be a Hadam ard gap series def ined by  (1). If  the function
value f (z ) is def ferent from  0 throughout D , then the coefficients c k —o:).

Pro o f . Suppose on the contrary  that lim sup ck I > 0 .  T hen by  T heorem  5
the  function f (z )  assum es the value 0  in fin ite ly  o ften  i n  D .  T h is  contradicts
the  hypothesis and  the  theorem is proved.

W e  re m a rk  th a t  th e  o r ig in a l theorem  o f  Pommerenke [20] i s  t r u e  for
multiple g a p  se r ie s . T h is  w o u ld  b e  a  consequence of the conjecture w e made
a t  the end of Section 4.

7. Paley's Conjecture.

In  [16], Murai solved a  conjecture o f Paley by show ing th e  following.

Theorem M'. L e t  f  b e  a  gap series defined in  Theorem 2. I f  E IC k t = o e ,

then the function f(z) assumes every complex value infinitely often in  D.

M urai [16, p. 155] rem ark ed  th a t th e  sam e  lin e  p ro o f a s  i n  Theorem M'
gives th e  following extension.

Theorem 7. Under the hypotheses o f  T heorem  M ', the function value f (z )
assumes every complex value infinitely often in  every  sector 4(a, p).

Pro o f . Instead o f  th e  same line proof (20 pages), w e  s h a ll  g iv e  a sim ple
one based upon Theorem M ' o n ly . B y  a  ro ta tion , w e  m a y  assum e th a t  a  =0.
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Choose a positive integer p such that 27r/p < 8 .  Let z= w 1  and g(w)= f(wliP),
then we have

c0

g(w)= E c k w n " , w h e re  (nk+i/P)Ank/P).q> 1

k O

w h ic h  is  holomorphic in  D— {0 } .  A  careful checking i n  [161 w e see  tha t
Theorem M' is still true no matter the positive numbers nk  a r e  integer or not.
It follows that the function g(w) assumes every complex value  infinitely often
in  D—{0}, so does the function f(z ) in  4(0, 27/p). This proves the theorem.

A s a  consequence of the above theorem, we obtain immediately Theorem 6.
Also note that Theorem 7 should be extended to a m ultiple gap series instead
of a single one.

8 .  Errata and corrections.

We recall the definitions of Julia points and p*-points. Following Collingwood
and Piranian [6], w e say that el°  is  a Julia point of a function f(z ) if  in  each
Stolz angle having one vertex a t  et° the function f (z ) assumes all values on the
Riemann sphere D except possibly two.

Also as in  Gavrilov [9], we call a  sequence of points iz n I in  D , lz„1-4, a
p-sequence (o r P-sequence) o f  a  function f (z )  i f  a n y  s >0 a n d  any infinite
subsequence {z „,}, the  function f (z ) assumes in the set U k IzED, p(z, z„,)<}
each value in D infinitely often, with at most two exceptions, where p(a, b)=
(1/2)1n[(1+ u)/(1 — u)], u=1(a — b)/(1— db)1. W e then call e "  a  p*-point of f(z)
if  each Stolz angle w ith one vertex a t  el

°
 possesses a  p-sequence.

F o r  each function f (z ) ,  w e  le t  J ( f )  a n d  p * (f )  b e  the set of Julia and
p*-points of f (z ) respectively. In  [11, Theorem 3], we proved the following

Theorem. T here is a fun ction  f(z) holomorphic i n  D  su ch  th a t p* (f)=25
and mea. J(f)=27r.

It was pointed out by Gavrilov few  years ago that we m ad e  a  mistake by
using the Gross-Iversen Theorem to conclude the asymptotic value a t a  Plessner
point w hich  is  no t a  Ju lia  po in t. Unfortunately, we have  no t been  ab le  to
prove the above Theorem. W hat we can do here is to apply som e theorem s
o f  Gavrilov to  g iv e  a  desired meromorphic function instead o f a  holomorphic
one.

Theorem 8. There is a function f(z) meromorphlc in  D  such that p * (f )= 0
and mea. J(f)=27c.

P r o o f .  Let f (z ) be a norm al meromorphic function o f  genus one  in  the
sense of Noshiro [18]. T h e n  b y  a  theorem o f  Gavrilov [8], w e  have  that
p*(f)=95 . Moreover, th e  last assertion mea. J (f)= 2 r follows from [9, Theo-
rem 3].
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Finally, we shall correct two theorems in  th e  same paper [11, Theorems
12 and 131. This requires only a change of definition. Recall that a point e' 0

is called a Meier point of a function f  if  (i ) the cluster set C (f, e '° ) a t  eze is
subtotal (i. e. a  proper subset of D) and (ii) the chordal cluster set C, ( 0) (f, , ei°)
=C (f, e 1 0 )  for all values of ç  i n  [--7:12, 2r/2], (see [5, p. 153]).

We now omit the first condition and we call e1°  a  weak Meier point if the
above condition (ii) holds. Denote by M * (f )  the  se t o f a ll w eak  Meier points
of the function f .  With this definition, what we have proved in  [11, Theorems
12 and 13] are  the following.

Theorem 9 .  I f  f (z )  is  meromorphic in  D , then all points of C except a set
of f irst category belong to M * (f )U p * (f )  and therefore to M * (f )u f ( f ) .

Theorem 1 0 .  I f  f (z )  is normal in D, then all points of C ex cept a set of
f irst category belong to 111*(f).

Note that the set M * (f )  cannot be replaced by M (f ) ,  th e  s e t  o f  a l l  Meier
points, in the above theorems. For instance, the elliptic modular function f  is
normal for which the  c luste r se t C (f, e " )= Q  fo r  a l l  e 'e  except at m ost a
countable subset of C, so that the set M (f )  is at most countable. Hence both
Theorems 9 and 10 are no longer true if  M * (f )  is replaced by MU).

9. Open problems.

In closing this n o te , le t  u s  p o se  th e  following three problems regard  to
multiple gap series.

Problem 1. I f  f ( z )  i s  a multiple gap series w hose coefficients are both
bounded from above and below , is it true that mea. J(f)=27r.

Problem 2 .  I f  f (z )  is  a multiple gap series w hose coefficients are bounded
from  below , is it true that f  has radial lim it 00 on a dense subset of C.

Note that if the coefficients of f  a r e  bounded above then th e  answer is
affirmative due to [1, Theorem 3], so that Problem 2 needs to be answered
only for the  unbounded case.

Finally, we shall m ention  a  problem o n  automorphic functions a n d  gap
series. In  [14, Theorem 4], we present a n  answer to a  problem of Rubel as
follows :

If  G is  a  Fuchsian group with EDD as its domain o f  discontinuity, then
there does not exist a non-constant Hadamard gap series f (z )  which is auto-
morphic on G and meromorphic in E.

Recently, in  a  private communication, Pommerenke asked the  following

Problem 3 .  Is  the above theorem  still true i f  th e  function f ( z )  is m erely
holomorphic in  D  (not over I).
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In  fac t, Pommerenke attributed this problem to the  orig inal question  of
Rubel.
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