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1. Introduction.

This note contains three purposes: First, we present an alternative solution
to our previous problem on gap series raised in this journal (Kyoto University
1978). Second, we give a short proof of Fuchs Theorem on gap series. Finally,
we correct three of our theorems which were pointed out by Gavrilov (from
Moscow State University) to whom the author is indebted.

Let D={z:]z| <1} be the unit disk, C={z: |z|=1} the unit circle, and f(z)
a function meromorphic in D. As in K. Noshiro [19, p. 87], we say that f(z)
is normal in D if and only if

A=1zI01f"@1/A+1f@I1H=M,  for all zeD,

where M is a constant independent of points z in D.
In this journal [11, Theorem 7], we proved the following necessary and
sufficient conditions of gap series to be normal in D.

Theorem 1. Let f,(z)=2%,npz"*, where ny./n,—oo, as k—oo, then f,
is normal if m=0 and fn, is not normal if m=1.

We conjectured [11, p. 188] that f, is normal if and only if m=0, where
Nr+1/Nr—q¢>1. We posed this problem for g=co in Detroit Meeting and it was
solved by L.R. Sons [23]. The general case ¢>1 was finally solved by the
following theorem of Sons and Campbell [24].

Theorem 2. Let f(z) be a Hadamard gap series defined by
(1) f2)= éockzn", Nps1/Ne=g>1,

where the series is convergent in D, then f is mnormal if and only if
lim sup|c, | <oco.
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With regard to gap series, the class of normal functions is disjoint from
that of annular functions. Recall that a function f(z) is annular if and only
if there is a sequence of Jordan curves J, in D such that each J, lies in the
interior of J,.;, min{|z|:z€/,}—1, and min{|f(z)|:z€J,}—c0, as n—oco. In
[24, p.117], the authors ask the question whether sup|c,|=co implies that f is
annular, where f is a gap series defined in Theorem 2. This problem was
recently solved by the author and Campbell in [13, Theorem 1] as follows.

Theorem 3. Let f be a gap series defined in Theorem 2, then [ is annular
if and only if f is not normal.

The proof in [13, Theorem 1] relies on the following theorems: K.G.
Binmore [2, Theorem 1], J. Warren [25, Theorem 1], and D.D. Bonar [3,
Theorem 4]. We shall present an elementary proof of Theorem 3 which is dif-
ferent from the one in [13, Theorem 1].

Our original intention is to consider a type of multiple gap series introduced
by Ch. Pommerenke [20], that is

f(z)=k2=)0(ckz"k+ o Cpep2™ TP, Neer/Me=g>1,

where p is a non-negative integer.

The key point here depends mainly on whether the following theorem of
Binmore [2] can be extended to the multiple case ? Based on his recent work
[21], Pommerenke conjectured (to the author) the answer to be negative.

Theorem B. Let f(z) be a function defined by (1), then there is a constant
M(q) such that

(2) lck|§M(Q)§gIQlf(Z)| (k=0, 1, -+,
where I' is an arbitrary path lying in D and tending to C.
In fact, Pommerenke’s comment yields the following.

Theorem 4. Theorem B is false for the multiple gap series.

2. Proof of Theorem 3.

Necessity. If f is annular, then f is not normal since it has Koebe arcs.
By our previous theorem [11, Theorem 4] the non-normality of f implies
lim sup| ¢, | =o0.

Sufficiency. Let limsup|c,|=c0. We define C,={z:|z|=1—1/(n+1)} and
G.={z:z€D and |f(z)|<n}. Then clearly we have

(3) | f@|=n, for zeD—-G,.

Let G, be decomposed into components
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G,=UGq;, where G,N\Gr;=0, i#].

By the maximum principle each component G,; is a simply connected domain.
Binmore’s bound (2) and the assumption that limsup|c,|=oc0 prevent a compo-
nent from going to C. Thus each component lies strictly inside D. By the
minimum principle each G,; contains at least one zero of f.

We now begin with n=1. We prove that the first circle C, meets at most
finitely many components G,;. Suppose on the contrary that C, meets infinitely
many components, say G;, =1, 2, ---. Then by Binmore’s theorem we find
that all the G,; are forced to lie strictly in the interior of some circle Cy,
where N(1)>1. Since each G,; contains at least one zero of f, it follows that
the interior of Cy(;, contains infinitely many zeros of f, in violation to the
analyticity of f.

Next, we want to prove that there is a Jordan curve J;CD whose interior
contains C; and further satisfies

(4) |f(z)l=1l,  for each ze€],.

For this, we let R, be the ring between C; and Cy(,. Since each component
meeting C, must lie strictly in the interior of Cy(y), it then follows that no com-
ponents G,; can meet both C, and Cy.,. Since R, contains only finitely many
components, we thus conclude that the complement

(5) Sl':Rl_kijGIi:Rl_Gl’

contains a Jordan curve J, such that C, lies within the interior of J,. Further-
more, from (5) we can see that if z€J,, then z&G,, so by (3) we have
|f(z)|=1. This proves (4).

We now consider Cy(, in place of C,. By the same argument as before,
there is a circle Cuy, Where N(2)>N(1), such that all components G,; meeting
Cy, must lie strictly in the interior of Cy,. Thus, no components G,; can
meet both Cy(, and Cy(,, so that the complement

Szsz_ k/ Gzi:Rz‘Gz ,
where the domain R, is the ring between Cy¢, and Cy¢,, contains a Jordan
curve J, whose interior contains Cy, and
|f(z)|=2,  for each z&],.

By continuing this process, we finally obtain a sequence of disjoint Jordan
curves J, such that

J.—C and f(z)—occ on J,, as n—oo.

This shows that the function f is annular and the proof is complete.
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3. Proof of Theorems 1-4.

We first prove Theorem 2. Let the coefficients ¢, be bounded, then by [11,
Theorem 4] the function f is Bloch and therefore is normal.

Conversely, if the coefficients are unbounded, then by Theorem 3 the
function f is annular and hence is not normal due to a theorem of Bagemihl
and Seidel [1, Theorem 17.

Next, we prove Theorem 1. We need only observe that the coefficients np
is bounded if and only if m=<0 and hence the function f,, is normal if and only
if m=0.

Finally, we shall prove Theorem 4. It suffices to construct a sum f of two
Hadamard gap series such that the coefficients of f is unbounded, but the range
f(z) is bounded on [0, 1). This construction is due to W. Rudin [22]. In fact,
we may choose

f@)= R = e/t 1)z, ma/naZg>1, maZh

4. Fuchs Theorem.

In [7, Theorem 4.1], W. H. ]J. Fuchs proved that if f is a gap series defined
in Theorem 2 and if limsup|c,|>0, then the function f(z) assumes every
complex value infinitely often in every sector 4d(a, f)={z€D and a<argz<g}.
The original proof of Fuchs is very complicated which relies mainly on the
Petrenko formula [7, Lemma 4.3] in Nevanlinna theory. Later, 1.L. Chang
[4] gave a different proof, but still complicated. In [10], we gave a simple
proof of Fuchs Theorem provided the coefficients are bounded. We now want
to complete the proof of Fuchs Theorem by relaxing the boundedness of
coefficients.

Theorem 5. Let f be a Hadamard gap series defined by (1). If limsup|c,|
>0, then the function value f(z) assumes every complex value infinitely often in
every sector d(a, B).

To prove Theorem 5, we shall need the following theorem of Murai [17]
which answers affirmatively a problem in the MacLane class [15].

Theorem M. Let f be a Hadamard gap series defined by (1) with lim sup|c, |
=oco, Then [ has an asymptotic value oo at every point of C.

Note that the above Theorem M cannot be extended to the case of multiple
gap series due to a recent result of Pommerenke [21, Theorem 2]. However,
we believe that in the multiple case the function f should have the asymptotic
value oo on a dense subset of C.
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5. Proof of Theorem 5.

Let f be a Hadamard gap series defined by (1). If the coefficients ¢, are
bounded then the assertion was already proved in [10]. We may therefore
assume that the coefficients ¢, are unbounded, so that Theorem M is applicable.
To prove the assertion, we suppose on the contrary that f(z) assumes a value
v finitely often in a sector 4(a, B). Then by Theorem M and the standard
method (see [12]) there can be constructed a path I' lying in 4(a, ) and
tending to C such that

f(z)»v, as |z|—1 and ze[l'.

It follows from Theorem B that the coefficients ¢, are bounded, a contradiction.
This concludes that the function f(z) assumes every complex value infinitely
often in every sector.

6. Pommerenke’s Theorem.

As an application of Theorem 5, we have the following theorem of
Pommerenke [20].

Theorem 6. Let f be a Hadamard gap series defined by (1). If the function
value f(z) is defferent from 0 throughout D, then the coefficients c,—0.

Proof. Suppose on the contrary that limsup|c,|>0. Then by Theorem 5
the function f(z) assumes the value 0 infinitely often in D. This contradicts
the hypothesis and the theorem is proved.

We remark that the original theorem of Pommerenke [20] is true for
multiple gap series. This would be a consequence of the conjecture we made
at the end of Section 4.

7. Paley’s Conjecture.

In [16], Murai solved a conjecture of Paley by showing the following.

Theorem M’. Let f be a gap series defined in Theorem 2. If 3 |c,| =0,
then the function f(z) assumes every complex value infinitely often in D.

Murai [16, p. 155] remarked that the same line proof as in Theorem M’
gives the following extension.

Theorem 7. Under the hypotheses of Theorem M’, the function value f(z)
assumes every complex value infinitely often in every sector A(a, B).

Proof. Instead of the same line proof (20 pages), we shall give a simple
one based upon Theorem M’ only. By a rotation, we may assume that a=0.
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Choose a positive integer p such that 2z/p<fB. Let z=w'? and g(w)=f(w''?),
then we have

gw)=F caws'?,  where (ngu/p)/(ni/p)Zg>1,

which is holomorphic in D—{0}. A careful checking in [16], we see that
Theorem M’ is still true no matter the positive numbers n, are integer or not.
It follows that the function g(w) assumes every complex value infinitely often
in D—{0}, so does the function f(z) in 4(0, 2x/p). This proves the theorem.

As a consequence of the above theorem, we obtain immediately Theorem 6.
Also note that Theorem 7 should be extended to a multiple gap series instead
of a single one.

8. Errata and corrections.

We recall the definitions of Julia points and p*-points. Following Collingwood
and Piranian [6], we say that ¢ is a Julia point of a function f(z) if in each
Stolz angle having one vertex at ¢/ the function f(z) assumes all values on the
Riemann sphere £ except possibly two.

Also as in Gavrilov [9], we call a sequence of points {z,} in D, |z,|—1, a
p-sequence (or P-sequence) of a function f(z) if any ¢>0 and any infinite
subsequence {z,,}, the function f(z) assumes in the set \J.{z€D, p(z, z.,)<e}
each value in £ infinitely often, with at most two exceptions, where p(a, b)=
(1/2)In[(1+u)/(1—u)], u=I|(a—b)/(1—ab)|. We then call ¢!/ a p*-point of f(z)
if each Stolz angle with one vertex at ¢!/ possesses a p-sequence.

For each function f(z), we let J(f) and p*(f) be the set of Julia and
po*-points of f(z) respectively. In [11, Theorem 3], we proved the following

Theorem. There is a function f(z) holomorphic in D such that p*(f)=0@
and mea. J(f)=2x.

It was pointed out by Gavrilov few years ago that we made a mistake by
using the Gross-Iversen Theorem to conclude the asymptotic value at a Plessner
point which is not a Julia point. Unfortunately, we have not been able to
prove the above Theorem. What we can do here is to apply some theorems
of Gavrilov to give a desired meromorphic function instead of a holomorphic
one.

Theorem 8. There is a function f(z) meromorphic in D such that p*(f)=@
and mea. J(f)=2x.

Proof. Let f(z) be a normal meromorphic function of genus one in the
sense of Noshiro [18]. Then by a theorem of Gavrilov [8], we have that
o*(f)=@. Moreover, the last assertion mea. J(f)=2r follows from [9, Theo-
rem 3].
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Finally, we shall correct two theorems in the same paper [11, Theorems
12 and 13]. This requires only a change of definition. Recall that a point ¢*¢
is called a Meier point of a function f if (i) the cluster set C(f, e¢*?) at ¢ is
subtotal (i.e. a proper subset of ) and (ii) the chordal cluster set C,,(f, ¢*’)
=C(f, ) for all values of ¢ in [—=x/2, /2], (see [5, p.153]).

We now omit the first condition and we call ¢! a weak Meier point if the
above condition (ii) holds. Denote by M*(f) the set of all weak Meier points
of the function f. With this definition, what we have proved in [11, Theorems
12 and 13] are the following.

Theorem 9. If f(z) is meromorphic in D, then all points of C except a set
of first category belong to M*(f)\Jp*(f) and therefore to M*(f)\UJ(f).

Theorem 10. If f(z) is normal in D, then all points of C except a set of
first category belong to M*(f).

Note that the set M*(f) cannot be replaced by M(f), the set of all Meier
points, in the above theorems. For instance, the elliptic modular function f is
normal for which the cluster set C(f, ¢*®)=Q for all ¢’ except at most a
countable subset of C, so that the set M(f) is at most countable. Hence both
Theorems 9 and 10 are no longer true if M*(f) is replaced by M(f).

9. Open problems.

In closing this note, let us pose the following three problems regard to
multiple gap series.

Problem 1. If f(z) is a multiple gap series whose coefficients are both
bounded from above and below, is it true that mea. J(f)=2x.

Problem 2. If f(z) is a multiple gap series whose coefficients are bounded
from below, is it true that f has radial limit oo on a dense subset of C.

Note that if the coefficients of f are bounded above then the answer is
affirmative due to [1, Theorem 3], so that Problem 2 needs to be answered
only for the unbounded case.

Finally, we shall mention a problem on automorphic functions and gap
series. In [14, Theorem 4], we present an answer to a problem of Rubel as
follows :

If G is a Fuchsian group with ¥ DD as its domain of discontinuity, then
there does not exist a non-constant Hadamard gap series f(z) which is auto-
morphic on G and meromorphic in 2.

Recently, in a private communication, Pommerenke asked the following

Problem 3. Is the above theorem still true if the function f(2) is merely
holomorphic in D (not over X).
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In fact, Pommerenke attributed this problem to the original question of

Rubel.
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