Notes on the resolvent set

Dedicated to Professor Sigeru Mizohata on his sixtieth birthday

By

Teruo Ikebe and Takashi Yoshioka

The resolvent set $\rho(A)$ of a linear operator A in a normed linear space X is defined as follows: A complex number λ is in $\rho(A)$ if and only if $(A-\lambda)^{-1}$ exists and is a bounded, densely defined operator (Stone [2], p. 129; Taylor-Lay [3], p. 264). As is mentioned in most functional analysis textbooks, if X is a Banach space and A is closed, then $\operatorname{Ran}(A-\lambda)=X$ (Ran=range) for $\lambda \in \rho(A)$, and $\rho(A)$ is open. This statement for general, not necessarily closable operators is treated, as far as we know, in Akhiezer-Glazman [1] (pp. 349-351) and TaylorLay [3] (p. 273). Akhiezer and Glazman treat the Hilbert space case and exploit the fact that if $A-\lambda$ has a bounded inverse, then $\overline{\operatorname{Ran}(A-\mu)}(-=$ closure) has the same codimension as $\overline{\operatorname{Ran}(A-\lambda)}$ for μ close to λ, which follows from an observation on the aperture or opening between two closed subspaces. Taylor and Lay work in a normed linear space and use the fact that if $A-\lambda$ has a bounded inverse, then $\overline{\operatorname{Ran}(A-\mu)}$ is not a proper subset of $\overline{\operatorname{Ran}(A-\lambda)}$ for μ close to λ, which is based on Riesz' lemma (Taylor-Lay [3], p. 64).

We want to add here another two proofs that the resolvent set of a linear operator is open. The first proof depends on the Hahn-Banach theorem and the second on the Neumann series construction of a linear isomorphism between $\operatorname{Ran}(A-\lambda)$ and $\operatorname{Ran}(A-\mu)$.

Theorem 1. Let X be a normed linear space and A a linear operator in X. Then $\rho(A)$ is open.

Proof. Let $\lambda \in \rho(A)$ so that $(A-\lambda)^{-1}$ exists and is a densely defined bounded operator in X. The boundedness of $(A-\lambda)^{-1}$ implies that there exists a constant $k>0$ such that $\|(A-\lambda) u\| \geqq k\|u\|$ for $u \in \operatorname{Dom}(A)(\|\|=$ norm, Dom $=$ domain). Therefore, for μ sufficiently near $\lambda,\|(A-\mu) u\| \geqq\|(A-\lambda) u\|-|\lambda-\mu|\|u\| \geqq$ $(k-|\lambda-\mu|)\|u\|, u \in \operatorname{Dom}(A)$, which implies that $(A-\mu)^{-1}$ exists and is bounded. So, it remains to show that $\operatorname{Ran}(A-\mu)$ is dense. Suppose the contrary. Then by the Hahn-Banach theorem (Taylor-Lay [3], Theorem 3.4, p. 136) there should exist a nonzero bounded linear functional $f()$ on X such that $f(x)=0, x \in$ $\overline{\operatorname{Ran}(A-\mu)}$. Thus for any $u \in \operatorname{Dom}(A), f((A-\mu) u)=0$, i. e., $f((A-\lambda) u)=$ $(\mu-\lambda) f(u)$. By the definition of the norm $\|f\|$ of f and the density of
$\operatorname{Ran}(A-\lambda)$, for any $\varepsilon>0$ there exists a $u \in \operatorname{Dom}(A), u \neq 0$, such that $|f((A-\lambda) u)|$ $\geqq(\|f\|-\varepsilon)\|(A-\lambda) u\| \geqq k(\|f\|-\varepsilon)\|u\|$. Therefore, $|\mu-\lambda|\|f\|\|u\| \geqq k(\|f\|-\varepsilon)\|u\|$. But this leads to a contradiction if we choose ε small enough.
q. e. d.

Theorem 2. Let X and A be as in Theorem 1. Let \hat{X} be the completion of X. Assume that $A-\lambda$ has a bounded inverse, and that there exist bounded projections (idempotents) P_{λ} and Q_{λ} of \hat{X} onto $\overline{\operatorname{Ran}(A-\lambda)}$ (closure in \hat{X}) and its complementary subspace, respectively, such that $P_{\lambda}+Q_{\lambda}=1$. Then for μ sufficiently close to λ, there exists a linear isomorphism $T_{\lambda \mu}$ on \hat{X} such that $(A-\lambda)^{-1} T_{\lambda \mu}$ (whose domain is $T_{\lambda_{\mu}^{1}}^{-1} \operatorname{Ran}(A-\lambda)$ contained in $\left.X\right)$ is the bounded inverse of $A-\mu$, and $P_{\mu}=T_{\lambda_{\mu}}^{-1} P_{\lambda} T_{\lambda \mu}$ and $Q_{\mu}=T_{\lambda_{\mu}}^{-1} Q_{\lambda} T_{\lambda \mu}$ are bounded projections on \hat{X} onto $\overline{\operatorname{Ran}(A-\mu)}$ and its complementary subspace, respectively, verifying $P_{\mu}+Q_{\mu}=1$, so that $\overline{\operatorname{Ran}(A-\lambda)}$ and $\overline{\operatorname{Ran}(A-\mu)}$ have the same codimension.

Proof. Let us put $R_{\lambda}=(A-\lambda)^{-1}$. Define an operator $T_{\lambda \mu}$ in \hat{X} by $T_{\lambda \mu}=$ $\sum_{n=0}^{\infty}(\mu-\lambda)^{n}\left(\tilde{R}_{\lambda} P_{\lambda}\right)^{n}(\sim=$ closure (smallest closed extension) in $\hat{X})$, where we note that the Neumann series converges to a limit in the operator norm topology (since \hat{X} is complete) for μ close enough to $\lambda . T_{\lambda \mu}$ is an everywhere defined (in \hat{X}) bounded linear operator inverse to $1-(\mu-\lambda) \tilde{R}_{\lambda} P_{\lambda}$, and thus is an isomorphism of \hat{X} onto \hat{X}. Define $S_{\mu}=R_{\lambda} T_{\lambda \mu}$ so that $\operatorname{Dom}\left(S_{\mu}\right)=T_{\lambda_{\mu}}^{-1} \operatorname{Dom}\left(R_{\lambda}\right)=T_{\lambda \mu}^{-1} \operatorname{Ran}(A-\lambda)$ and $\operatorname{Ran}\left(S_{\mu}\right)=\operatorname{Ran}\left(R_{\lambda}\right)=\operatorname{Dom}(A)$.

Now for $f \in \operatorname{Dom}\left(S_{\mu}\right)$ we have $(\#)(A-\mu) S_{\mu} f=(A-\lambda) R_{\lambda} T_{\lambda \mu} f-(\mu-\lambda) R_{\lambda} T_{\lambda \mu} f$ $=T_{\lambda \mu} f-(\mu-\lambda) \tilde{R}_{\lambda} P_{\lambda} T_{\lambda \mu} f=T_{\lambda \mu} f-\left(T_{\lambda \mu} f-f\right)=f$. Here, we have used the Neumann series definition of $T_{\lambda \mu}$ and the facts that $T_{\lambda \mu} f \in \operatorname{Dom}\left(R_{\lambda}\right)$ and that $R_{\lambda}=\tilde{R}_{\lambda} P_{\lambda}$ in $\operatorname{Dom}\left(R_{\lambda}\right)$. Next, take $u \in \operatorname{Dom}(A)$. Then $T_{\lambda_{\mu}}(A-\mu) u=\sum_{n=0}^{\infty}(\mu-$ $\lambda)^{n}\left(\tilde{R}_{\lambda} P_{\lambda}\right)^{n}(A-\lambda) u+(\lambda-\mu) T_{\lambda \mu} u=(A-\lambda) u+(\mu-\lambda) \sum_{n=1}^{\infty}(\mu-\lambda)^{n-1}\left(\tilde{R}_{\lambda} P_{\lambda}\right)^{n-1} \tilde{R}_{\lambda} P_{\lambda}(A$ $-\lambda) u+(\lambda-\mu) T_{\lambda \mu} u=(A-\lambda) u+(\mu-\lambda) T_{\lambda \mu} u+(\lambda-\mu) T_{\lambda \mu} u=(A-\lambda) u$, where we have used $\tilde{R}_{\lambda} P_{\lambda}(A-\lambda) u=R_{\lambda}(A-\lambda) u=u$ for $u \in \operatorname{Dom}(A)$. Thus we have $T_{\lambda \mu}(A-\mu) u$ $\in \operatorname{Ran}(A-\lambda)=\operatorname{Dom}\left(R_{\lambda}\right)$ and (\#\#) $S_{\mu}(A-\mu) u=R_{\lambda} T_{\lambda \mu}(A-\mu) u=u, u \in \operatorname{Dom}(A)$. From (\#) and (\#\#) we can conclude that for μ close enough to $\lambda,(A-\mu)^{-1}$ exists and equals $S_{\mu}=(A-\lambda)^{-1} T_{\lambda \mu}$ which is bounded on $\operatorname{Ran}(A-\mu)$, and $T_{\lambda \mu}$ serves as an isomorphism between $\operatorname{Ran}(A-\lambda)$ and $\operatorname{Ran}(A-\mu)$. ($T_{\lambda \mu}$ is defined on \hat{X}. But when we restrict it to $\operatorname{Ran}(A-\mu)$, its values lie in $\operatorname{Ran}(A-\lambda)$, as we have shown above.)

Now if we define P_{μ} and Q_{μ} as stated in the theorem, they are easily seen to be idempotent. If $f=P_{\mu} f$, then $T_{\lambda \mu} f=P_{\lambda} T_{\lambda_{\mu}} f \in \overline{\operatorname{Ran}(A-\lambda)}$ and hence $f \in$ $T_{\bar{\lambda} \mu}^{-1} \overline{\operatorname{Ran}(A-\lambda)}=\overline{\operatorname{Ran}(A-\mu)}$. Conversely, if $f \in \overline{\operatorname{Ran}(A-\mu)}$, then $T_{\lambda \mu} f \in \overline{\operatorname{Ran}(A-\lambda)}$ and, by the definition of $P_{\mu}, P_{\mu} f=f$. Therefore, P_{μ} is a projection onto $\overline{\operatorname{Ran}(A-\mu)}$. Since $Q_{\mu}=1-P_{\mu}$, the rest of the assertion is obvious. q.e.d.

Remarks. 1) Theorem 1 is an immediate consequence of Theorem 2. For, if $\lambda \in \rho(A)$, we can put $P_{\lambda}=1$ in Theorem 2.
2) Although R_{λ} is invertible, \tilde{R}_{λ} may have a nontrivial null space. \tilde{R}_{λ} is
invertible if and only if A is closable (Taylor-Lay [3], Problem 5, p. 276). More generally: Suppose T is closable and invertible. Then \tilde{T} is invertible if and only if T^{-1} is closable. Indeed, let \tilde{T} be invertible. Let $u_{n} \in \operatorname{Dom}\left(T^{-1}\right), u_{n} \rightarrow 0$ and $T^{-1} u_{n}=v_{n} \rightarrow v$. Then $T v_{n} \rightarrow 0$. Since T is closable, $v \in \operatorname{Dom}(\widetilde{T})$ and $\widetilde{T} v=0$. Since \tilde{T} is invertible, $v=0$, which shows that T^{-1} is closable. Conversely, let T^{-1} be closable. Let $\tilde{T} v=0$. Then there exist $v_{n} \in \operatorname{Dom}(T)$ such that $v_{n} \rightarrow v$ and $T v_{n} \rightarrow 0$. Put $u_{n}=T v_{n}$. Then $u_{n} \rightarrow 0$. Since T^{-1} is closable, $T^{-1} u_{n}=v_{n} \rightarrow 0$ and hence $v=0$.
3) For $\lambda, \mu \in \rho(A)$ the resolvent equation holds: $\tilde{R}_{\lambda}-\tilde{R}_{\mu}=(\lambda-\mu) \tilde{R}_{\lambda} \tilde{R}_{\mu}$. But, if we assume only the boundedness of $(A-\lambda)^{-1}$ and $(A-\mu)^{-1}$, we cannot expect it to hold either for \tilde{R}_{λ} and \tilde{R}_{μ} or for $\tilde{R}_{\lambda} P_{\lambda}$ and $\tilde{R}_{\mu} P_{\mu}$.
4) If one defines $\rho(A)$ as the totality of λ such that $(A-\lambda)^{-1}$ exists and is an everywhere defined bounded operator, then every nonclosed operator has empty resolvent set. Ordinarily, this definition is not adopted, but $\rho(A)$ of a closable but nonclosed operator A is defined to be $\rho(\tilde{A})$. According to our definition there exists a nonclosable operator with nonempty resolvent set (TaylorLay [3], Problem 6, p. 276).

> Department of Mathematics
> Kyoto University (T.I.)
> Department of Mathematics
> Ritsumeikan University (T. Y.)

References

[1] N.I. Akhiezer and I. M. Glazman, Teorija lineinykh operatorov v gil'bertovom prostranstve. Nauka, Moskva, 1966.
[2] M. H. Stone, Linear Transformations in Hilbert Space, Amer. Math. Soc. Coll. Publ. Vol. 15, Providence, 1932.
[3] A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, John Wiley, New York, 1980.

