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Notes on the resolvent set
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The resolvent set p(A) of a linear operator A in a normed linear space X
is defined as follows: A complex number 2 is in p(A) if and only if (A—2)"!
exists and is a bounded, densely defined operator (Stone [2], p. 129 ; Taylor-Lay
[3], p. 264). As is mentioned in most functional analysis textbooks, if X is a
Banach space and A is closed, then Ran(A—4)=X (Ran=range) for i=p(4),
and p(A)isopen. This statement for general, not necessarily closable operators
is treated, as far as we know, in Akhiezer-Glazman [1] (pp. 349-351) and Taylor-
Lay [3] (p. 273). Akhiezer and Glazman treat the Hilbert space case and exploit
the fact that if A—2 has a bounded inverse, then Ran (A— ) (—=closure) has the
same codimension as Ran(A—2) for g close to 4, which follows from an observa-
tion on the aperture or opening between two closed subspaces. Taylor and Lay
work in a normed linear space and use the fact that if A—24 has a bounded in-
verse, then Ran(A—y) is not a proper subset of Ran(A—21) for g close to 2,
which is based on Riesz’ lemma (Taylor-Lay [3], p. 64).

We want to add here another two proofs that the resolvent set of a linear
operator is open. The first proof depends on the Hahn-Banach theorem and the
second on the Neumann series construction of a linear isomorphism between
Ran(A—2) and Ran(A—p).

Theorem 1. Let X be a normed linear space and A a linear operator in X.
Then p(A) is open.

Proof. Let A€p(A) so that (A—A)™' exists and is a densely defined
bounded operator in X. The boundedness of (A—A)~! implies that there exists
a constant 2>0 such that |[(A—A)ul|=k|lu|| for uDom(A)(|| ||=norm, Dom=
domain). Therefore, for g sufticiently near 4, [(A—pul|Z|(A—Dull—|A—pg|llul|=
(B—|A—puDllull, v€Dom (A), which implies that (A—u)~* exists and is bounded.
So, it remains to show that Ran(A—g) is dense. Suppose the contrary. Then
by the Hahn-Banach theorem (Taylor-Lay [3], Theorem 3.4, p. 136) there should
exist a nonzero bounded linear functional f( ) on X such that f(x)=0, x&
Ran(A—p). Thus for any ueDom(A), f(A—pu)=0, i e, f(A—Au)=
(p—A)f(u). By the definition of the norm |f| of f and the density of
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Ran(A—2), for any >0 there exists a u€Dom (A), u#0, such that | f((A—2A)u)]
Z(lfll=ell(A=Dull = k(I fll—e)llull. Therefore, [p—A|lfIllull=kfI—e)llul.
But this leads to a contradiction if we choose & small enough. qg.e.d.

Theorem 2. Let X and A be as in Theorem 1. Let X be the completion of
X. Assume that A—2 has a bounded inverse, and that there exist bounded projec-
tions (idempotents) P, and Q, of X onto Ran(A—2) (closure in X) and its com-
plementary subspace, respectively, such that P;+Q;=1. Then for p sufficiently
close to 2, there exists a linear isomorphism T;, on X such that (A—2)'T,, (whose
domain is Tz} Ran(A—R) contained in X) is the bounded inverse of A—p, and
P,=Ti}P;T1, and Q,=T7.Q:T,, are bounded projections on X onto Ran(A—p)
and its complementary subspace, respectively, wverifying P,+Q.=1, so that
Ran(A—2) and Ran(A—p) have the same codimension.

Proof. Let us put R;=(A—A)"'. Define an operator T,, in X by Ti,=
f}o(y—2)"(ﬁ1P;)"(*=closure (smallest closed extension) in )2), where we note
n=

that the Neumann series converges to a limit in the operator norm topology (since
X is complete) for u close enough to 4. T,, is an everywhere defined (in X
bounded linear operator inverse to 1—(;1—2)1? 1P;, and thus is an isomorphism
of X onto X. Define S,=R;T};, so that Dom (S,)=T7:Dom (R;)=Tj7:Ran(A—2)
and Ran(S,)=Ran(R;)=Dom (A).

Now for feDom(S,) we have (§)(A—u)S,f=(A—DR:T;,f —(u—DR;T1,.f
=T, f—(—DR:PiT2,f =Tauf —(Tauf —f)=f. Here, we have used the
Neumann series definition of T,, and the facts that T,;,fDom(R;) and that

R;=R;P; in Dom(R;). Next, take u€Dom(A). Then Txy(A—#)“:i(/‘—
DHRGPY (A= D+ Q= Tayu = (=2 + (=) F, (=" (RaPo*RaPo(A

—ADu+@A—p)Tru=(A—Du+(p—DT,u+@A—w)T; ,u=(A—2A)u, where we have
used ﬁ;Pl(A—/I)u=R;(A——2)u=u for ueDom(A). Thus we have T;,(A—pu
€Ran(A—A)=Dom(R;) and ##) S(A—pwu=R;T;,(A—pu=u, ucDom(A).
From(#) and (%) we can conclude that for p close enough to 4, (A—p)™* exists
and equals S,=(A—A)"'T,, which is bounded on Ran(A—p), and T,, serves as
an isomorphism between Ran(A—4) and Ran(A—p). (T, is defined on X. But
when we restrict it to Ran(A—p), its values lie in Ran(A—21), as we have
shown above.)

Now if we define P, and @, as stated in the theorem, they are easily seen
to be idempotent. If f=P,f, then T,;,f=P,;T;,.fRan(A—2) and hence fe
T::Ran(A—2)=Ran(A—p). Conversely, if feRan(A—p), then T;,f=Ran(A—21)
and, by the definition of P, P,f=f. Therefore, P, is a projection onto
Ran(A—p). Since Q,=1—P,, the rest of the assertion is obvious.  q.e.d.

Remarks. 1) Theorem 1 is an immediate consequence of Theorem 2. For,
if Aep(A), we can put P;=1 in Theorem 2.
2) Although R; is invertible, #; may have a nontrivial null space. £, is
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invertible if and only if A is closable (Taylor-Lay [3], Problem 5, p. 276). More
generally: Suppose T is closable and invertible. Then 7 is invertible if and
only if 7-! is closable. Indeed, let 7 be invertible. Let u,=Dom (T-Y), u,—0
and T-'u,=v,—v. Then Tv,—0. Since T is closable, veDom(T‘) and Tv=0.
Since T is invertible, v=0, which shows that T-! is closable. Conversely, let
T-' be closable. Let Tv=0. Then there exist vp,€Dom(T) such that v,—v
and Tv,—0. Put u,=Tv,. Then u,—0. Since T-! is closable, T 'u,=v,—0
and hence v=0.

3) For 2, p=p(A) the resolvent equation holds: ﬁx—ﬁf,:(l—y)ﬁlﬁy.
But, if we assume only the boundedness of (A—2)-' and (A—p)"!, we cannot
expect it to hold either for B; and R, or for B;P; and R,P,.

4) If one defines p(A) as the totality of A such that (A—A)~! exists and is
an everywhere defined bounded operator, then every nonclosed operator has
empty resolvent set. Ordinarily, this definition is not adopted, but p(A) of a
closable but nonclosed operator A is defined to be p(/Nl). According to our defini-
tion there exists a nonclosable operator with nonempty resolvent set (Taylor-
Lay [3], Problem 6, p. 276).
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