Notes on the resolvent set

Dedicated to Professor Sigeru Mizohata on his sixtieth birthday

By

Teruo IKEBE and Takashi YOSHIOKA

The resolvent set $\rho(A)$ of a linear operator A in a normed linear space X is defined as follows: A complex number λ is in $\rho(A)$ if and only if $(A-\lambda)^{-1}$ exists and is a bounded, densely defined operator (Stone [2], p. 129; Taylor-Lay [3], p. 264). As is mentioned in most functional analysis textbooks, if X is a Banach space and A is closed, then $\operatorname{Ran}(A-\lambda)=X$ (Ran=range) for $\lambda \in \rho(A)$, and $\rho(A)$ is open. This statement for general, not necessarily closable operators is treated, as far as we know, in Akhiezer-Glazman [1] (pp. 349-351) and Taylor-Lay [3] (p. 273). Akhiezer and Glazman treat the Hilbert space case and exploit the fact that if $A-\lambda$ has a bounded inverse, then $\overline{\operatorname{Ran}(A-\mu)}$ (-=closure) has the same codimension as $\overline{\operatorname{Ran}(A-\lambda)}$ for μ close to λ , which follows from an observation on the aperture or opening between two closed subspaces. Taylor and Lay work in a normed linear space and use the fact that if $A-\lambda$ has a bounded inverse, then $\overline{\operatorname{Ran}(A-\lambda)}$ for μ close to λ , which is based on Riesz' lemma (Taylor-Lay [3], p. 64).

We want to add here another two proofs that the resolvent set of a linear operator is open. The first proof depends on the Hahn-Banach theorem and the second on the Neumann series construction of a linear isomorphism between $\operatorname{Ran}(A-\lambda)$ and $\operatorname{Ran}(A-\mu)$.

Theorem 1. Let X be a normed linear space and A a linear operator in X. Then $\rho(A)$ is open.

Proof. Let $\lambda \in \rho(A)$ so that $(A-\lambda)^{-1}$ exists and is a densely defined bounded operator in X. The boundedness of $(A-\lambda)^{-1}$ implies that there exists a constant k > 0 such that $||(A-\lambda)u|| \ge k||u||$ for $u \in \text{Dom}(A)(|||=\text{norm}, \text{Dom}=$ domain). Therefore, for μ sufficiently near λ , $||(A-\mu)u|| \ge ||(A-\lambda)u|| - |\lambda-\mu|||u|| \ge$ $(k-|\lambda-\mu|)||u||$, $u \in \text{Dom}(A)$, which implies that $(A-\mu)^{-1}$ exists and is bounded. So, it remains to show that $\text{Ran}(A-\mu)$ is dense. Suppose the contrary. Then by the Hahn-Banach theorem (Taylor-Lay [3], Theorem 3.4, p. 136) there should exist a nonzero bounded linear functional $f(\cdot)$ on X such that f(x)=0, $x \in \overline{\text{Ran}(A-\mu)}$. Thus for any $u \in \text{Dom}(A)$, $f((A-\mu)u)=0$, i. e., $f((A-\lambda)u)=$ $(\mu-\lambda)f(u)$. By the definition of the norm ||f|| of f and the density of

Received July 3, 1985

Ran $(A-\lambda)$, for any $\varepsilon > 0$ there exists a $u \in \text{Dom}(A)$, $u \neq 0$, such that $|f((A-\lambda)u)| \ge (||f|| - \varepsilon)||(A-\lambda)u|| \ge k(||f|| - \varepsilon)||u||$. Therefore, $|\mu - \lambda| ||f|| ||u|| \ge k(||f|| - \varepsilon)||u||$. But this leads to a contradiction if we choose ε small enough. q. e. d.

Theorem 2. Let X and A be as in Theorem 1. Let \hat{X} be the completion of X. Assume that $A-\lambda$ has a bounded inverse, and that there exist bounded projections (idempotents) P_{λ} and Q_{λ} of \hat{X} onto $\overline{\operatorname{Ran}(A-\lambda)}$ (closure in \hat{X}) and its complementary subspace, respectively, such that $P_{\lambda}+Q_{\lambda}=1$. Then for μ sufficiently close to λ , there exists a linear isomorphism $T_{\lambda\mu}$ on \hat{X} such that $(A-\lambda)^{-1}T_{\lambda\mu}$ (whose domain is $T_{\overline{\lambda}\mu}^{-1}$ $\operatorname{Ran}(A-\lambda)$ contained in X) is the bounded inverse of $A-\mu$, and $P_{\mu}=T_{\overline{\lambda}\mu}^{-1}P_{\lambda}T_{\lambda\mu}$ and $Q_{\mu}=T_{\overline{\lambda}\mu}^{-1}Q_{\lambda}T_{\lambda\mu}$ are bounded projections on \hat{X} onto $\overline{\operatorname{Ran}(A-\mu)}$ and its complementary subspace, respectively, verifying $P_{\mu}+Q_{\mu}=1$, so that $\overline{\operatorname{Ran}(A-\lambda)}$ and $\overline{\operatorname{Ran}(A-\mu)}$ have the same codimension.

Proof. Let us put $R_{\lambda} = (A - \lambda)^{-1}$. Define an operator $T_{\lambda\mu}$ in \hat{X} by $T_{\lambda\mu} = \sum_{n=0}^{\infty} (\mu - \lambda)^n (\tilde{R}_{\lambda} P_{\lambda})^n (\sim)$ = closure (smallest closed extension) in \hat{X}), where we note that the Neumann series converges to a limit in the operator norm topology (since \hat{X} is complete) for μ close enough to λ . $T_{\lambda\mu}$ is an everywhere defined (in \hat{X}) bounded linear operator inverse to $1 - (\mu - \lambda)\tilde{R}_{\lambda}P_{\lambda}$, and thus is an isomorphism of \hat{X} onto \hat{X} . Define $S_{\mu} = R_{\lambda}T_{\lambda\mu}$ so that $\text{Dom}(S_{\mu}) = T_{\lambda\mu}^{-1}\text{Dom}(R_{\lambda}) = T_{\lambda\mu}^{-1}\text{Ran}(A - \lambda)$ and $\text{Ran}(S_{\mu}) = \text{Ran}(R_{\lambda}) = \text{Dom}(A)$.

Now for $f \in \text{Dom}(S_{\mu})$ we have $(\sharp)(A-\mu)S_{\mu}f = (A-\lambda)R_{\lambda}T_{\lambda\mu}f - (\mu-\lambda)R_{\lambda}T_{\lambda\mu}f = T_{\lambda\mu}f - (T_{\lambda\mu}f - f) = f$. Here, we have used the Neumann series definition of $T_{\lambda\mu}$ and the facts that $T_{\lambda\mu}f \in \text{Dom}(R_{\lambda})$ and that $R_{\lambda} = \tilde{R}_{\lambda}P_{\lambda}$ in $\text{Dom}(R_{\lambda})$. Next, take $u \in \text{Dom}(A)$. Then $T_{\lambda\mu}(A-\mu)u = \sum_{n=0}^{\infty} (\mu-\lambda)^{n}(\tilde{R}_{\lambda}P_{\lambda})^{n}(A-\lambda)u + (\lambda-\mu)T_{\lambda\mu}u = (A-\lambda)u + (\mu-\lambda)\sum_{n=1}^{\infty} (\mu-\lambda)^{n-1}(\tilde{R}_{\lambda}P_{\lambda})^{n-1}\tilde{R}_{\lambda}P_{\lambda}(A-\lambda)u + (\lambda-\mu)T_{\lambda\mu}u = (A-\lambda)u + (\lambda-\mu)T_{\lambda\mu}u = (A-\lambda)u$, where we have used $\tilde{R}_{\lambda}P_{\lambda}(A-\lambda)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = \sum_{n=0}^{\infty} (A-\lambda)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\lambda)u = R_{\lambda}(A-\lambda)u = u$ for $u \in \text{Dom}(A)$. Thus we have $T_{\lambda\mu}(A-\mu)u = R_{\lambda}(A-\lambda)u = R_{\lambda}(A-\lambda)u = R_{\lambda}(A-\lambda)u = R_{\lambda}(A-\mu)u = R_{\lambda}(A-\mu)u = u$, $u \in \text{Dom}(A)$. From (#) and (##) we can conclude that for μ close enough to λ , $(A-\mu)^{-1}$ exists and equals $S_{\mu} = (A-\lambda)^{-1}T_{\lambda\mu}$ which is bounded on $Ran(A-\mu)$, and $T_{\lambda\mu}$ serves as an isomorphism between $Ran(A-\lambda)$ and $Ran(A-\mu)u = Ran(A-\lambda)$, as we have shown above.)

Now if we define P_{μ} and Q_{μ} as stated in the theorem, they are easily seen to be idempotent. If $f=P_{\mu}f$, then $T_{\lambda\mu}f=P_{\lambda}T_{\lambda\mu}f\in\overline{\operatorname{Ran}(A-\lambda)}$ and hence $f\in T_{\lambda\mu}^{-1}\overline{\operatorname{Ran}(A-\lambda)}=\overline{\operatorname{Ran}(A-\mu)}$. Conversely, if $f\in\overline{\operatorname{Ran}(A-\mu)}$, then $T_{\lambda\mu}f\in\overline{\operatorname{Ran}(A-\lambda)}$ and, by the definition of P_{μ} , $P_{\mu}f=f$. Therefore, P_{μ} is a projection onto $\overline{\operatorname{Ran}(A-\mu)}$. Since $Q_{\mu}=1-P_{\mu}$, the rest of the assertion is obvious. q. e. d.

Remarks. 1) Theorem 1 is an immediate consequence of Theorem 2. For, if $\lambda \in \rho(A)$, we can put $P_{\lambda} = 1$ in Theorem 2.

2) Although R_{λ} is invertible, \tilde{R}_{λ} may have a nontrivial null space. \tilde{R}_{λ} is

invertible if and only if A is closable (Taylor-Lay [3], Problem 5, p. 276). More generally: Suppose T is closable and invertible. Then \tilde{T} is invertible if and only if T^{-1} is closable. Indeed, let \tilde{T} be invertible. Let $u_n \in \text{Dom}(T^{-1})$, $u_n \to 0$ and $T^{-1}u_n = v_n \to v$. Then $Tv_n \to 0$. Since T is closable, $v \in \text{Dom}(\tilde{T})$ and $\tilde{T}v = 0$. Since \tilde{T} is invertible, v=0, which shows that T^{-1} is closable. Conversely, let T^{-1} be closable. Let $\tilde{T}v=0$. Then there exist $v_n \in \text{Dom}(T)$ such that $v_n \to v$ and $Tv_n \to 0$. Put $u_n = Tv_n$. Then $u_n \to 0$. Since T^{-1} is closable, $T^{-1}u_n = v_n \to 0$ and hence v=0.

3) For $\lambda, \mu \in \rho(A)$ the resolvent equation holds: $\tilde{R}_{\lambda} - \tilde{R}_{\mu} = (\lambda - \mu) \tilde{R}_{\lambda} \tilde{R}_{\mu}$. But, if we assume only the boundedness of $(A - \lambda)^{-1}$ and $(A - \mu)^{-1}$, we cannot expect it to hold either for \tilde{R}_{λ} and \tilde{R}_{μ} or for $\tilde{R}_{\lambda} P_{\lambda}$ and $\tilde{R}_{\mu} P_{\mu}$.

4) If one defines $\rho(A)$ as the totality of λ such that $(A-\lambda)^{-1}$ exists and is an everywhere defined bounded operator, then every nonclosed operator has empty resolvent set. Ordinarily, this definition is not adopted, but $\rho(A)$ of a closable but nonclosed operator A is *defined* to be $\rho(\tilde{A})$. According to our definition there exists a nonclosable operator with nonempty resolvent set (Taylor-Lay [3], Problem 6, p. 276).

> DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY (T.I.) DEPARTMENT OF MATHEMATICS RITSUMEIKAN UNIVERSITY (T.Y.)

References

- [1] N.I. Akhiezer and I.M. Glazman, Teorija lineinykh operatorov v gil'bertovom prostranstve. Nauka, Moskva, 1966.
- [2] M.H. Stone, Linear Transformations in Hilbert Space, Amer. Math. Soc. Coll. Publ. Vol. 15, Providence, 1932.
- [3] A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, John Wiley, New York, 1980.