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Notes on the resolvent set

Dedicated to Professor Sigeru Mizohata on his sixtieth birthday

By

Teruo IKEBE and Takashi YOSHIOKA

The resolvent set p(A) of a linear operator A  in a normed linear space X
is defined a s  follows : A  complex number 2 is in p(A) if and only if  (A -2 ) - '
exists and is a  bounded, densely defined operator (Stone [2], p. 129; Taylor-Lay
[3 ], p. 264). As is mentioned in most functional analysis textbooks, if X  is a
Banach space and A  is closed, then Ran (A—A)=X (Ran=range) fo r il p(A),
and p(A) is open. This statement for general, not necessarily closable operators
is treated, as far as we know, in Akhiezer-Glazman [1] (pp. 349-351) and Taylor-
Lay [3] (p. 273). Akhiezer and Glazman treat the Hilbert space case and exploit
the fact that if  A -2  has a bounded inverse, then Ran (A—p)( — =closure) has the
same codimension as Ran (A -2 ) for p close to A, which follows from an observa-
tion on the aperture or opening between two closed subspaces. Taylor and Lay
work in a normed linear space and use the fact that if  A -2  has a  bounded in-
verse, then Ran (A—p) is not a  proper subset of Ran (A -2 )  fo r  p  close to 2,
which is based on Riesz' lemma (Taylor-Lay [3], p. 64).

We want to add here another two proofs that the resolvent set of a linear
operator is open. The first proof depends on the Hahn-Banach theorem and the
second on the Neumann series construction of a linear isomorphism between
Ran (A -2 ) and Ran (A—p).

Theorem 1. L et X  be a normed linear space and A  a linear operator in  X.
Then p(A) is open.

P ro o f . L et 2E p(A) so  th a t (A -2 ) - '  ex ists an d  i s  a  densely defined
bounded operator in X .  The boundedness of (A -2 ) - 1  implies that there exists
a constant k>0 such that IRA k f o r  u  Dom (A)(il ii=norm, Dom=
domain). Therefore, for p sufficiently near 2, II (A - — te)u II?_II (A — 2)u — IA— p ill u 11

u  Dom (A ), which implies that (A—p) - ' exists and is bounded.
So, it remains to show that Ran (A—p) is dense. Suppose the contrary. Then
by the Hahn-Banach theorem (Taylor-Lay [3], Theorem 3.4, p. 136) there should
ex ist a  nonzero bounded linear functional f ( )  on X  such that f(x )=0,
Ran (A— p). T h u s fo r  any u D om  (A), f ((A— p)u)=0, j. e., f ((A -2 )u )=
(p- - 2)f (u). B y  th e  definition o f  th e  norm 11If  11 of f  and  the density of
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Ran (A -2 ), for any s >0 there exists a u eDom (A ), u#0, such that I f ((A — 2)u)I
(II f  II —)11(A-2)u k(Ilf 1( - 6 )11u II. Therefore, I p— 2111 f k (If s)iiu

But this leads to a  contradiction if  we choose s small enough. q. e. d.

Theorem 2 . L et X  and A  be as in  Theorem 1. L et g  be the completion of
X .  Assume that A -2 has a bounded inverse, and that there exist bounded projec-
tions (idempotents) P 2  and Q 2  o f  g  onto Ran(A-2) (closure in  g )  and its com-
plementary subspace, respectively, such that P a +Q 2 = 1 .  Then f o r p  sufficiently
close to 2, there exists a linear isomorphism T 2 „ on g such that (A -2 ) - '7'2 ,, (whose
dom ain  is T V  Ran(A-2) contained in X ) is  the bounded inverse of  A—p, and
Pp =r1,113

2 T 1 ,  and Qp = T IN 1 T 2 p  are  bounded projections on g  onto Ran(A—p)
an d  its com plem entary  subspace, respectiv ely , v erify ing Pp -I-Qp = 1 , so that
Ran (A —2) and Ran (A—p) have the same codimension.

P ro o f . L e t  u s  p u t  R 2=(A -2) - i. Define an operator T 2p  in g  by T 2 ,,=

(p--2)n(P aPar ( - -=closure (smallest closed extension) in g ) ,  w here  w e note
n=0

tha t the Neumann series converges to a limit in the operator norm topology (since
g  is complete) for p close enough to A. T 2 / ‘  i s  a n  everywhere defined (in g)
bounded linear operator inverse to  1— (p-2)P' 2 P2 , and thus is an  isomorphism
of g  onto g .  Define S p =R 2T 2 p  so that Dom (S,)= T it! Dom (RA)= Tifl Ran (A -2)
and Ran (Sp )=Ran (R 2 )= Dom (A).

Now for f EDom(Sp ) we have (#) (A— p), S p f =(A— 2)R 2 T Ap f  —(p-2)R A T  p f
= T 2 p f— (p -2 )P 2 P2T2 p f= T 2 p f—(T2 p f — f ) = 1 .  H e re , w e  h a v e  u s e d  the
Neumann series definition o f  T2 t ,  and the facts that T 2 p f  EDom (R 2 ) and that

-
R 2=P2P2 in  Dom (R 2 ). N ext, take  u EDom (A ).  Then T A p (A—p)u=E(p —

n=O

2)n(r? 2 13
2 )n (A -2)u + (2— p)T 2 p u = (A -2)u ±  (p -2 ) (p — A) "

- 1 (R 2 Pa )m- 1 P 2 /3
2 (A

7 t= 1

—2)ud-(2—p)T2 p u= (A -2 )u+ (p -2 )T2 p ud-(2—p)T 2 p u = (A -2 )u , where we have
u s e d  2 13

2 (A-2)u=.12 2 (A -2 )u = u  for u EDom (A ).  T hus w e have T A ,(A—p)u
ERan (A-2)-=Dom (R2) a n d  (P ) S p (A—p)u=R a T a p (A—p)u=- u,uEDom(A).
From (#) and OW we can conclude that for p  close enough to 2, (A—p) - '  exists
and equals Sp = (A -2 ) - 1 T2p  which is bounded on Ran (A—p), and T2 p  serves as
an  isomorphism between Ran (A-2) and Ran (A — p). (T2 4,  is defined on g .  But
w hen  w e  restric t it to  R an  (A — p), i t s  values lie in Ran (A -2 ), as w e have
shown above.)

Now if  we define P i,  and Q , ,
 a s  stated in the theorem, they are easily seen

to be idem potent. If f = P p f ,  th en  T2 p f= P 2 T 2 p f R a n  (A -2 )  and  hence f e
T;Til Ran (A —A)=Ran (A— p). Conversely, if f E Ran (A— p), then T l p f  G Ran(A —A)
a n d , b y  th e  definition o f  P,„ Pp f = f .  Therefore, Pp  i s  a projection onto
Ran (A — p). Since Qp =1— Pp ,  the rest of the assertion is obvious. q. e. d.

R em arks. 1 ) Theorem 1 is  an  immediate consequence of Theorem 2. For,
if  2ep(A), we can put P2 =1 in Theorem 2.

2 ) Although R 2  is invertible, 1 m ay have a nontrivial null space. P2 is
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invertible if and only if  A  is closable (Taylor-Lay [3 ], Problem 5, p. 276). More
generally : Suppose T  is closable and invertible. Then I" is invertible if and
only if T - 1  is closable. Indeed, let

 1A
 be invertib le . Let u n Dom (T ' ) ,  u„—>0

and T - Itt„=v n — v. Then T v .-4 0 . Since T  is closable, v E Dom (t )  and t  v=0.
Since I" is invertible, v = 0 , which shows that T - 1  is closable. Conversely, let
T - 1  be closable. Let Tv=0. Then there exist vn E Dom (T )  such that v7,—÷v
and Tv.—>0. Put u n = T v . .  Then S i n c e  T - 1  is closable, T - 1 u n =v„—>0
and hence v=0.

3) For 2, pE  p(A ) th e  resolvent equation holds : P2 -P,, , (2-p)P l f?'„.
But, if we assume only the boundedness of (A -2) - 1  a n d  (A—p) - 1 ,  we cannot
expect it to hold either for PA and P , or for P2 P A and

4) If one defines p(A ) as the totality of A such that (A -2) - 1  exists and is
an everywhere defined bounded operator, then every nonclosed operator has
empty resolvent set. Ordinarily, this definition is not adopted, but p(A) of a
closable but nonclosed operator A  is defined to be p (A ). According to our defini-
tion there exists a  nonclosable operator with nonempty resolvent set (Taylor-
Lay [3], Problem 6, p. 276).
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