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On boundary behaviours o f holomorphic functions
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J. S . H W A N G

1. Introduction.

Let D={z: 1z1< 1} and let w =S (z ) denote a n  arbitrary one-to-one conformal
m apping from  D o n to  its e lf . A  function f (z ) ,  m erom orphic in  D, is  sa id  to  be
norm al in D [12, p. 53], if the family o f  functions {f (S (z ))} is norm al in D in the
sense o f M onte l, where convergence is defined in  term s o f  th e  spherical metric.
Following Bagemihl and  Seidel [3, p. 10], we call el° a  F a tou  point o f f  if f  has an
angular limit u (possibly co) at el°. This limit LI will be called a Fatou value of f.

There is a normal meromorphic function in  D which possesses no Fatou points
[1 2 , p . 5 8 ] . O n  th e  o th e r  hand, B agem ihl and  S e ide l p roved  tha t any  normal
holomorphic function f  in D must have Fatou points everywhere dense on the circle
C = {z: 1z1= 1} [3, Corollary 1]. In  fac t, in  [3 , T heorem  3], they  proved  that if
the set of Fatou points off on an arc F of C is of measure zero, then the arc F contains
a  F a to u  p o in t  a t w h ic h  th e  corresponding Fatou v a lue  is cc. M o re o v e r , th e y
constructed a normal holomorphic function f  for which the measure of the set of all
Fatou points o f f  is less than any prescribed small number and the function f  has no
infinite Fatou values [3, T heorem  4]. T hey  then  asked  tha t if  f  is  normal holo-
morphic in D and if there is an arc F on  C such that the measure of the set of Fatou
points of f  on every subarc of r is less than the length of that subarc, does the arc F
contain a Fatou point o f f  w hose Fatou value is cc? T h e  answer turns ou t to be
negative due to  S. Dragosh [6].

A  problem related to the  above one w as asked by M acLane [13]. Follow ing
MacLane [13, p . 8 ] , w e  d e n o te  b y  s i th e  class o f  a ll non-constant holomorphic
functions f  in  D such that f  has asymptotic values on a set S  which is dense in C,
namely, for each pe S, there is a Jordan arc J lying in D and tending to p such that
f (z )  tends to  a value along J. In contrast to the notion of Fatou points, we shall
call a point p E C an asymptotic point off iff has an asymptotic value at p. Let A be
the set of all asymptotic points o f f  on C and let A  be the subset of A containing all
points of A with the  asymptotic value cc. I n  [ 1 3 ,  p. 77], M acLane asked that if
f e d  and if F is an arc on C with F n A co =0, is it true that the arc F contains a subarc
y such that almost every point of y is an asymptotic point o f f .  A g a in , the answer is
negative due to Dragosh (He has not mentioned this assertion in [6]).
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The above two problems give us the motivation to study the following problem
in the positive sense.

Problem . Let T be an arc on C such that 1-  n A co = 0 .  Under what additional
conditions for f (z), would almost every point of r  is a Fatou point off (to avoid the
trivial case we require f  to be unbounded).

In order to answer the above problem, we shall first recall the definition of class
Y  of M acL ane. For a  function f  defined in D and a number >0, we denote by
L(A)={z: z e D and If (z)1 = AI the level set of f ,  and we call C(A) a level curve if it is
a  component of L (A ). We say that a  level set L(2) (or curve C(A)) ends a t  points
on the circle C, if the diameter of every component in the ring {z : r<{zl< 1} tends to
zero as r -4 1 . We then denote by 2 ' (2 * )  the class of all non-constant holomorphic
functions in D such that every level set (curve) L(A) (C(A)) ends at points on C.

We now let D 1())=  {z : z e 1) and  If(z)< A} and D().)= {z: z e D and 1f(z)1>À}
be the lower and upper level domain respectively. We decompose both of them into
disjoint components

1;0 W= k..1 D!,(.1.), w h e re  1=1 a n d  u.

Clearly, each boundary OD(A) of Din ( ) )  consists of two parts: one from the level set
L(A) and another from the circle C .  D enote by W A) the  part from  L(2), then
clearly we have

L(2)=  j  O A ) ,  (i =1 and u)

where each component of /4(.1) can be either a  crosscut or a  Jordan curve. W e
remark that the boundary aD„i(1) is rectifiable if and only if the level set 1, ) is.

For each level domain, we define the associated boundary sets as follows

yi(A)=C n Di() )  and y!,(A)= C n D A ),

where the set G denotes the closure of the domain G .  Clearly, each of the above
sets is closed on  C  and  hence is measurable. For convenience, we shall use I Si
to denote the length of a curve S as well as the measure of a boundary set S and use
T* to denote the smallest simply connected domain containing the set T. As in [11],
w e say that the  number A> 0 is a n  admissible value for f  if the following three
conditions are satisfied:

(1) If y(A )éø, then 10(D)))*1< oo, i e {(, u) .

(2) If {n i } is a  sequence of positive integers such that ni —> co and  4 .1 )=  0
for each j,  then diam

(3) E  IY 1.(A)1+ E IY(A)1 = 2 7 r.

We say that f  is in the class Y i if there exists a sequence {ilk } of admissible values
for f  such that ;.„—*oo. In [11], the author and Lappan proved the following two
results.
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Theorem 1 .  The class 2 ), is a proper subclass of Y .

The notion of this subclass 2 1 allow s u s  to answer the problem we posed as
follows.

Theorem 2 . If  f e  2 , ,  and if  F  is an  arc  on  C w ith F n A .= 0 ,  then almost
every point of F is a Fatou point o f f .

As a consequence of Theorem 2, we see that under the hypothesis of Bagemihl
and Seidel's problem if the function f  there belongs to the class Y i  then the arc F
there contains a  Fatou point of f  whose Fatou value is  c o . W ith  regard to  the
property of Theorem 2, we posed the following question in [11, p. 297].

Question. Let 2 ' 2 = If e Y i a n d  i f  F  is  a n  a rc  o n  C  with F  A c 0 = 0  then
almost every point of F is a  Fatou point of f } ,  can .r2  be characterized in terms of
L(A) or Di(A), i E 11,

In this paper, we shall present a negative answer as follows.

Theorem 3 .  The class ..99 2 cannot be characterized by the recttfiability of L().).
As for Theorem 1, we shall extend it by omitting Condition (1) and relaxing

Condition (3) by

( 4 )  The set y(.1)= y A)} u 11).)} is dense on C.

Theorem 4 . L et Y f  be the class of  all analy tic functions in D satisfy ing (2)
and (4) f or a sequence of positive numbers Ak —> co, then Y , c c

The first inclusion 2 , c  21  is obvious and only the second will be proved.
After Theorem 4 , we study some boundary behaviours o f  MacLane's class. We
then extend some classical theorems of Fatou, Lindell'if, and Riesz from the disk to
a n  arbitrary simply connected domain whose boundary is rectifiable. Finally,
we study a connection between annular functions and MacLane's class.

2 . Proof of Theorem 3.

It suffices to construct a  function f e 2 ' 2 whose level set L(A) is not rectifiable.
In fact, we shall prove that the elliptic modular function M (z) does have the desired
property. W e first observe that the set A  dense on C so that F n A0,00 for any
arc F in C and hence by definition we must have that M e.29

2 .
Finally, the non-rectifiability of L(.1.) for the function M (z ) was proved in the

last remark [11, p. 2 9 8 ] . This completes the proof.

3 .  Proof of Theorem 4.

Let f (z )  be a  function in the class Yr. W e shall prove that f a  Y .  For this,
we need the following theorem of MacLane [13, Theorem I].
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Theorem M. d =. = f ,  w here .q  is the class def ined in [13] which contains
all non-constant holomorphic functions bounded on arcs ending at points of a dense
subset of C.

W e now let r  be an  arbitrary arc  on  C  and  le t 12,1 be a  sequence of positive
numbers satisfying (2) and  (4). Then by virtue of (4), the arc F contains a point p
such that either p  y mi (A i ) or p  7 ( A 1 ) for some in and n. In view  of the definition,
the first case implies that p e ( A i ), so that there is a n  a r c  y  D„,1 (2 ,) ending at the
point p for which the function f  is bounded by A l o n  th e  a rc  y . Since the arc F on C
is arbitrary, if the first case occurs on F, then f e  a, so that f e  due to Theorem M.

It rem ains to consider th e  seco n d  case . In  this case, we have  p E Dun i (). i )  for
som e n 1 . Let D,.(p)={ z: z  e D  a n d  lz —p  < r}. If  there  is a n  0 < r <1  such that
Dr(P) is disjoint from the  level set L(2 1 ), then we have  Dr (p)OED(2 1 ) , so  tha t the
function g =1If  is bounded by 2, in Dr (p). By a simple extension of Fatou's theorem
[5, Theorem 2.1], we see that almost every point on the boundary r r =Dr (p)n c  is a
Fatou point of g as well as f  and we are done. W e may therefore assume that D,(p)n
L(,11 )0 0  fo r each r > O . I n  th is  case , if  the  se t L(2 1 )  contains a n  a rc  ending at
points on l',. for some r> 0, we are done again due to Theorem M .  Thus, we may
assume th a t no  arcs on  L(1 1 ) can end a t  points on Fr . This in  turn implies that
the arc F, lies on the boundary OD;( 11 ) of D ( 1 1 ). Clearly, the boundary d D (2 1 )
consists of some level arcs A 1(1 1 ) (crosscuts), level curves C (1 1 ), a n d  some arcs on
the circle C .  By what we have just assumed, we know that only level curves can
meet D,.(p). Furthermore, from (2) we see that

(5) diam V ; (2,) 0, a s  j  co,

where D (1 1 ) is the interior of C1 (1 1 ).
Let 1 2 >1 1 ,  then by the same argument as before, we may assume that no arcs

on the second level set L(1 2 ) can end at points on the arc r„ so that the arc F, lies on
the  boundary OD 2(1 2 )  o f som e com ponent M (2 2 ). Since 2 2 > 1 1, w e  must have
D 2(22 )OED(2 1 ). Furtherm ore, w e have  the  sam e property a s  in  (5) w ith 22 in
place of A.

Inductively, there can be chosen a sequence of positive integers n k such that

k  =1, 2,...,
(6)

D'„',(2,)D M, 2(22 ) D • • • ,

and (5) holds with 1k in place of A,.
We now let g be an  arbitrary point on Fr  and le t R , be the radius ending at g.

D enote by C1(21)  the  se t of all level curves meeting R q a n d  contained in the ring
1z : 1 —2- k 1z1 <11, where j= j ( k )  and j ,  k =1 ,  2 ,.... W e begin  w ith  k = 1 .  We
replace each portion of R q ly ing  in  the interior o f  C1(2 1 ), j =1 , 2 ,..., by  a  half of
C,(1 1)  which jo ins two points on R q  in  th e  obvious w a y . L e t th e  resulting arc be
denoted by RI!  and  le t 71 n  { z :  z l  < 1 / 2 1 .  By the same argument, we have the
resulting arcs R  a n d  w e  l e t  yk =1214 n {z: I _ 2 f 1  < z <  I —2- k} . Clearly, the
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endpoints of y , and y„ , on the circle 1z1= l - 2  can be joined by an arc yt such
that If (z)1> ilk for all z  yt. Let

Y=Yi U Yr U Y2 u y  u ••• •

Then by (5) and (6), we see that the arc y ends a t the point g and the function f (z )
tends to infinity a s  z—>g a n d  z  y. This show s th a t  g E A ,  so  th a t fe..Q1=.29 .
Hence Y t  is a  subclass of Y  and the proof is complete.

N ote th a t the cases considered in  (5) an d  (6) can actually occur and in fact,
the following function, constructed by Bagemihl, Erdiis, and  Seidel [1]. does have
these properties

(7) f (z )= 
J=1

where nj  are positive integers and ni , 1 In i -4cc.

4. Boundary sets of functions in

In this section, we shall prove the following boundary behaviours of functions
in the class Y  in terms of the boundary sets.

Theorem 5 . Let f  e and le t y(A) be defined in (4). Then f o r each A >O, the
set y(A) is dense on C and the total measure m f (A) on the left side of (3) is not greater
than 27.

P ro o f. The proof of the first assertion will be the same as that of Theorem 4
and therefore we sk e tc h  it . L e t I-  be an arbitrary arc on C .  If either T n y ( , )  0 ,
or f  is bounded below by A in  a  neighborhood of T , we are done, otherwise, T lies
on  the  b o u n d a ry  D (1 ) o f  some component D ) ) .  T h i s  yields that y()t) and
therefore the set y(A) is dense on C.

It rem ains to  show  th a t th e  measure mf (A)<27r. T o  d o  this, we shall first
show that the intersection

I =yt„(A) n w h e r e  i ,  j = /  o r  u,

contains at m ost tw o points for any m, n=1 , 2,.... Clearly, we may assume that
I contains tw o points p i a n d  p2 , otherwise, there is nothing m ore to  p ro v e . L e t
D A )  and D (A ) be  the  associated domains o f y„,i (A) a n d  yW,) respectively. Then
these tw o dom ains m ust b e  disjoint. Since fn  i t  f o l l o w s  t h a t  the  boundaries
of these two dom ains m ust end a t  po in ts on  C .  Hence there can be chosen two
disjoint Jordan arcs J D t r,(2) and J = D )  such that both o f them end a t p i  and
/32 . It follows that there is another Jordan arc J  D  disjoint from  both DLO-) and
M (1), and ending at p i  a n d  p2 . Clearly, this arc J  separates one of the above two
dom ains from  the  other, and  therefore the intersection I contains no m ore points
than the set {p i , p2 }. This in turn implies that the family {y in' ().)1, i= l ,  u, and  m= 1,
2,..., consists o f  subsets o f  C  which a r e  m utually disjoint except tw o points in
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com m on. Hence the total measure m1 (2) of them is not greater than 2 n .  This
completes the proof.

Note that the hypothesis fE..2° is necessary. Without this condition, by using
a  theorem of Bagemihl-Seidel or Rudin (see [5, Theorem 8.11]), there can be con-
structed a  holomorphic function f  which tends to zero along a  sequence of disjoint
spirals in D .  It then follows that for all sufficiently large A the upper level domain
Du(A) contains a sequence of spiral-like components D„u(A), so that

yt,:(A) = C n D;XA)= C o r  ly 2)1 =2n, n =1, 2 ,....

Hence the measure m J O  on the left side of (3) becomes infinite.
Also note that the set AA) is a subset of C so that the measure ly(2)1<2n. This

measure, in general, is different from the total measure mf (2) on the left side of (3)
which can possible be infinite as was shown in the above example.

Now, using the same argument we obtain the following result.

Corollary 1. Let f E .Y, then f o r each A>0 the measures of  the boundary sets
satisfy

E 1401, u.

P ro o f . As before, we know that the family {y:„(2)} is a partition of yi(2) except
a countable set. T h is  gives the inequality.

N ote tha t the  above inequality cannot be replaced by equality. In fact, if
f(z ) is the function defined in (7), then we have

I Y ( 2 )1 =0, m =1, 2,...,

but Iy1(2)1= 2n, because

y'(.1.) = C n Dv) = C ,  w h ere  D'(A)=U DVA).

Similarly, if M(z) is the modular function defined in Theorem 3, then we have

lyu(2)1=27T a n d  ly„(2)1= 0, n=1, 2 ,....

For application, we shall give a  different proof to the  following result [11,
Lemma 2] which was proved via a deep theorem of Bagemihl (see [5, p. 83]).

Corollary 2 .  Let f E Y  and let T(A) be the set of all points on C such that each
point in T(A) belongs to more than one y;'(A), where A>0, i=l, u, and m=1, 2 ,....
Then the set T(A) is at most countable.

Pro o f . F o r  simplicity, we write yi = y A ) .  W e let y l  b e  the  family o f  all
yi  and let the Cartesian product of y4 be defined by

YA x VA = Y.): Y., Y. e YA I

For each p E T(A), we can associate with two members y','„ and yf, from the family



Boundary behaviours of holomorphic functions 121

yA such that both of them contain the point p. We then define the following product

x Yik= {(Yr,„ Y f i): P TO}

Since the family yA x yl is countable, if we can show that each member in the family
x yf repeats at most twice, then the cardinality of TO.) is less than twice of that

of the family yA x yA so that T() ) is countable. Suppose on the contrary that there
is a member in yf x yf repeating three times, say

Y „;)= YP„22)= (Y I:n33, Y P i P.i> °-/*

Since each pair is unordered, we may, without loss of generality, assume that

yPmji  = y ,„  and = y „ ,  j= 1 ,  2, 3.

This in turn implies that

{Pi, P2, P3} Ymfl Yn,

contradicting to what we have proved in  Theorem 5. We thus conclude that the
set T(.I.) is countable.

5. Remark on Condition (1).

We ask whether o r not the simply connected domain in Condition (1) can be
o m itted ?  In other words, whether Condition (1) can be replaced by

(1)' If yf,(A)0 0, then l8D!,(4< 00, j e  II, .

The answer turns out to  be n o . In  fa c t, we shall construct a  function h e 29 ,  for
which Condition (1)' is no longer true for i =  u .  Our construction is analogous to
[1, Theorem 1], but much more complicated than that one.

Theorem 6. The following function he but Condition (1)' is false f o r i =u

(8) h(z )= _

where ni  and p i  are positive integers satisfying

(9) ell4 <(1+ 1/4(n i — 1))" <1.3,

(10) j=  1, 2,...,

(11) p i= jI 2 b ,  i f  j= 2 " ' f o r so m e  m >b ,

= 1 ,  otherwise,

and the positive numbers a and b are large integers satisfying

(12) — 1>5 1 1 2 b

Pro o f . To prove the assertion, we shall need two-side estimates instead of
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one-side in [1]. For convenience, we separate the product in (8) into the following
three subproducts

(13)
3

h (z)=  n  Pp),

where Pq (z ) correspond to  the ranges over 1G j<k — 1, j=  k, and j>  k  +1 respec-
tively, and the number k = 2"' for some m.

We begin with the first product. For this, we let zo  be  an arbitrary point lying
in the ring

1-5/4nk <1.

Then we have

k -1 k - I
(14) H (x1 - 1) 1/),(z0)1 H (4+1),;=,

where x i  = [(1 — 5/4nk)/( 1 — 1/ni )]n j and x7 = 1/(1 — 1 /n)"./. U sing (10) and some
basic inequalities, we get

x j >e(1-514n k )" , >e ' - 3 Hiink>e. 1 - 3 0 ,

and

xl <11(1— 1/n,)" , < 4 ,  j = 1 , k — 1.

Substituting these two inequalities into (14), we obtain

(15) (e 1 -3 1 a p k - I
) < I P I ( Z 0 ) 1 < 4 k - i -

Turning to the second product, we let zi „ t = 1, 2,..., ni , be  the set of all zeros
on the circle

Ci={z: 121 = 1 - 1 /n i },

and let

Di , = {z : j=  1, 2,...,

dkt= {z: Z Zk,  <1/(mn k )}, k=2"1.

We shall prove two key properties, namely, the function h tends to infinity uniformly
on the domain D* complement to all Di , while h is bounded by one inside each dk r

Since the set of all zeros on each circle Ci  is equally distributed over Cp  it follows
that the local properties of h at each zero on Ci  will be the same as at the one on the
positive axis. For simplicity, we denote this zero and the associated disks by zi ,
Di , and di  respectively. W e sha ll devo te  on the index j = k  and we rewrite

(16) Dk-={z: <1/4nk}, <11(mnk)},

where k=2"' and zk = 1 — l/n k . According to the minimum principle we know that
to prove h(z)—,co uniformly on D* it is sufficient to prove this property to be true
on the boundaries ODi t  of Di ,. Since the multiple zeros of h occur only at the zeros
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z i ,  corresponding to the index j=k , w e thus need  only  show  the  above property
to be true on ODk . Let be an  arbitrary point on  ODk , then by (8), (13), and (16),
we have

10 \  I l k '  Pk ,

(17) P 2 (
)

 = (1 + 4 ( k — 1) ) C=zk+e1014n„.

To estimate the lower bound of P2 (a  we first observe from (9) that

e' 14 <(1 + 1
4 ( n ) ) "  =1 + 4 (n -1 ) + 1.3, for e a c h  n> n, .— 

Then by (17), we obtain

(18) n k

4(n k —1) 11S Pk  > (1 5 — I  3 ) P k  5 — P k"

We now consider an  arbitrary point n e C k  n d k . In view of (16), we have

(19) I P2(01 11 — eumlPk < f l Pk, k  =

As for the last product, we have for each ze to k ,

(20) — Y )P -1 _1/3 3(z)1 (1 +y)Pi,
j= k + j= k + 1

where y, = [(1 — 3 /4 k)/( 1 — I /11, d r i .  Since the inequality (10) gives

j=k +1 , k +2 ,...,

it follows that

y1 <4(1 — 3/4n k )'i <4 exp ( — 3n;/4nk)

4 exp ( — 3ai - k/4)= 4 exp ( — 3a'/4), t =1, 2 ,....

This in turn implies that

2 k - 1
(21) E  y i < E 4  ex p (-3 a t/4 )= c 1 <oo,

i= k + 1 e=1

and

(22) E  jy ., < 4(2k + t—l)exp(-3a k ± ' - '/4)=c 2 <co.
j= 2 k t =1

In view of (11), we see that

P1= 1 , f o r  j=k +1 , k +2 ,...,2 k  —1,

fo r  a ll  j=1 ,

Substituting into (20) and then applying (21) and (22), we obtain for each z e b k ,

2 k -1
(23) IP3(z)l -< 1I (1  +Y ; ) f i  (1 + y )'

j=k +I j=2k
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2k -1
< ex p  ( E  y i ) exp ( E  jy 1) _eco- c2=c,

j=k+1 j= 2k

and

11
3

3 ( z ) 1 >
( ci+c2)=c - i.

Finally, by combining (8), (11), (12), (13), (15), (18), (19), and (23), we obtain for
each E aDk and when co,

(24) >(0-310_ otk-I)5-ktzb c -I

0/51/2b , kl[c(e 1 - 3 /a — 1)] oo,

and for each I? E CI, n d, and all sufficiently large m

(25) ihool < 4k- I m — k
i 2 b  C  < 1 ,  w h e re  k='»n.

Since the domain D* contains no zeros of h it follows from (24) and the minimum
principle that the function h(z) tends to infinity uniformly on D * .  It follows from
(16) that (2) holds and further, for each ) > O no arcs on the level set L(A) can go out
to the boundary C, so that the upper level domain Du(A) is connected and is the only
one component in  itself. H e n c e  the set yu(A )=C so that (3 ) holds which is due
to y '(.)=ø. S in c e  (Du(A))* =D, (I) holds and hence h E. .

Finally, we shall prove that the inequality (1)' is false. To do this, it is sufficient
to show that the total length l(A) of L(A) is infinite for all A> I. F o r  this, we let the
lower level domain be D'(A) and let Di t (A) be the component of D'(2) containing the
zero zi t , t = 1, n i .  Denote by li t (A) the length of the level curve 3D11(2). Then
this length is longer than the diameter of the curve. It follows from (16) and (25)
that there is a positive integer m , such that for each A> 1 and each m> m t) , the length

1,(2)> 11(m  n,), k =2" and t =  1 , 2 ,..., n,.

Since there are n„ zeros on the circle Ck , by summing up all of the lengths we get

nk

E  id1>  1/m, m=m o , m0 +1,....
t=i

This in turn implies that the total length

1 nk
l(A )> 

co 1 

k

 ,(A)>
cc.

",=.0 t 1 m
=

= m 0  M

Thus the inequality (1)' is false. H e n c e  Condition (1) cannot be replaced by (1)' and
the proof is complete.

6. Conformal invariance.

In this section, we shall come back to prove our extension of Fatou and Lindeleif's
theorem which was used in the proof of Theorem 4 .  For this, we shall first extend
Riesz theorem (see [5 , Theorem 3 .3 ] ) .  L et w =f (z )  m ap D  conformally onto  a
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domain G bounded by a rectifiable Jordan curve 8 G .  Then by Riesz theorem, we
know that under the  homeomorphism w =f (e 1 0 )  of the  frontiers induced by the
mapping w =f(z ), a set of measure zero on C is mapped onto a set of measure zero on
OG, and vice versa. For our purpose, we shall now extend the above Riesz theorem
from a Jordan domain bounded by a rectifiable curve to a simply connected domain
bounded by a set of curves whose total length is finite. To do this, we shall need to
define the measure of a set on the boundary of the domain considered. For this, we
first observe from Carathéodory's correspondence theorem (see [5, Theorem 9.4])
which says that under a conformal mapping w =f(z ) from D onto a simply connected
domain G, there exists a one-to-one correspondence between points on C and prime
ends on ac. Moreover, for each e' 'e  C , the cluster set C(f , ei°) of f (z ) at e1° and
the impression l(P(e") )) of the prim e end P(e") are the same, that is C(f, e 1 0 ) =
l(P(e")), where we refer the definitions of cluster set, prime end and impression
to [5, p. 3, 168, and 170].

Theorem 7. L et w =f (z ) m ap D conformally onto a simply connected domain
G bounded by a set of  rectif iable curves. T hen f or each e", we have

(26) C(f , ei°)=1(P(e 1 0 ))=f (e 1 0 ), a single point.

Moreover, le t J be the set of  (junction points) all points w e OG such that f o r each
w E J, there are at least two distinct prime ends P(e"9 and P(e 1 6 2) whose impressions
equal w , that is,

(27) l(P(e"9)= l(P(ei°2))= w.

Then the set J is at most countable.

P ro o f .  Suppose on the contrary that there is a  p o in t e1 0  e C  such that the
impression l(P(e")) is not a  single  point. Then it is a continuum so that in any
neighborhood o f  l(P(e")) there is a  sequence of Jordan arcs .In c G  such that the
length

IJI > a> 0, f o r  some a a n d  n=1 , 2 ,....

This implies that the length 10G1=oo, contradicting to the hypothesis. Hence (26)
must be true.

It remains to prove that the set J is at most countable. To do this, we shall need
the notion of plane triod T(see [5, p. 106]), which is the union of two arcs F i and 12

whose intersection is a single point P which is simultaneously an endpoint of I", and
an interior point of 1 2 .  The point P is called the junction point of T .  A theorem of
Moore [14] asserts that any set of mutually disjoint triods in the plane is countable.

Now, from (27), it is easy to see that for any we J, there can be chosen three
disjoint arcs Y i '

y2 , and y , from OG all of them meet at w .  One of them, say Y i  lies
between y2 and y,. Let 1 1 =y i and  1 2 = Y 2  U y3 , then {F t , 1 2 1 forms a triod which
corresponds to only one w e J .  The assertion now follows from Moore's theorem.

From the above Theorem 7, we can now define the measure of an arbitrary set B
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on the boundary aG of a dom ain G bounded by a set of curves whose total length
is finite. Note th a t the second part of Theorem 7  sim ply says that the set J  of
all junction points on OG is countable and therefore is of measure zero. The set B
can be represented by

(28) B=(B n J)0 (B n

where WJ is the complement of J. Clearly WJ consists of countably many disjoint
Jordan arcs F„ whose total length is finite. W e  s a y  th a t  B is a measurable subset
of aG if and only if each intersection B n F„ is measurable in F„, n=1, 2,..., where
the measurability of B n F„ on F„ is well defined because each F„ is rectifiable. If
B is measurable on ac then its measure

(29) 1/31=  E n
1 

With the help of the above definitions, we are now able to state and prove the
following extension of Riesz theorem.

Theorem 8. Let w=f(z) m aps D conformally onto a sim ply  connected dom ain
G defined in  Theorem 7 .  T hen under the one-to-one correspondence between points
on C and prim e ends on aG, a  set of  m easure z ero o n  C is m apped onto a set o f
m easure zero on aG, and vice v e rs a .  Furtherm ore, the total length laG1 satisfies

27r

(30) laGl<5
o

(e") )1d0_ 210G1.

P ro o f .  Let Ez  be  a set of measure zero on C. Then by Theorem 7, the image
E„, of Ez  can be represented by

E„,={f(e'°): ei" e Er } .

Let J and F„ be defined in (28) and (29). Then the measure of En , can be written as

(31) lE = E  1E. n r„I,

where each F„ is a Jordan arc containing no junction points. By joining the two
endpoints of F„ by a Jordan arc k„ lying in G, we obtain a rectifiable Jordan domain
G„c G .  Now, let z =f - '(w) be the inverse of f . S in c e  F„ contains no junction points,
it follows that the image f - 1 (T„) is an arc on C. It is easy  to  see  tha t k„ can be
chosen so  that the image f - '(k„) is  a rectifiable Jordan arc in D .  Therefore the
image f - '( G„) is a rectifiable Jordan domain in D .  It then follows from Riesz theorem
that a set of measure zero on acr, is mapped onto a set of measure zero on
and vice versa. Since

f - 1 (E  n r,,)GEr  a n d  1E,I= 0,

we thus have the measure

(32) lE„, n r„i=o, /I = 1, 2,....
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Substituting into (31), we obtain 1Ew l =0.
Conversely, if lE = 0, then by (.31) we obtain (32). By applying Riesz theorem

again, we have

1.f-'(E„, n r„)1 =0. n = 1 , 2......

so that

lEz1= Ê 11- 1 ( E  n rn )i =0.
n=I

This proves the first assertion.
F inally , w e shall prove (30 ). T o  d o  th is, w e divide th e  boundary i3G in to

inner and outer boundary, that is

(33) aG -=aGi u OG0  a n d  laGI = +lec o l.

It is easy to see that for any open arc A ceG i , there correspond two disjoint open
arcs A , an d  A 2  o n  C such that the images f(A 1 )=.f(A 2 )= A .  From this, we find
that the integration in (30) contains

If(e")1d 0 + 1  If(e " ))1d0=21A1-
A, Az

This together with (33) implies (30), namely

2,,
laG1 1.ne"))1d0=21ac1l +10G0 1_210Gi

o

With the help of Theorem 8, we are now able to extend the  Fatou and Lindell:5f'
theorem (see [5, Theorems 2.1 and 2 .2 ]). For this, we let G be a domain and let f(w)
be a  function holomorphic in  G .  W e say that a  point peaG is a  Fatou point o f f
if for each E > 0 there is a  Stolz angle A(p)c G with one vertex a t p whose subtending
angle is greater than 7r - E  such that the function f(w) tends to  a value when w tends
to  p and W E

Theorem 9 .  L e t G  be a  s im ply connected dom ain  a s  in  Theorem 7 and le t
f(w) be a function  bounded and  holomorphic in  G . T h e n  a lm o s t e ve ry  p o in t on
OG is a  Fatou p o in t o ff.

P r o o f .  L et w=t/7(z) be a  conformal mapping from D o n to  G  an d  le t F(z)—
f(0(z)). Then F  is  a  function bounded a n d  holomorphic in  D .  It follows from
Fatou and Lindel6f's theorem that there is a set S C  su c h  th a t  the measure Si =27r
and each point on S is a  Fatou point of F.

According to a  theorem o f Beurling (see [5, Theorem 3.5]), there is a  se t Tc C
such that the m easure IT= 27r and the derivative 1/(z)0 0 for each z e T. Using the
same argument as ours [7, p . 4 5 4 ] ,  it is easy to see that for each zo e T the mapping
I/7 is conformal at 1, 0 f ro m  the  interior o f C, so  tha t for each e> 0 there is a  Stolz
angle zl(wo ) c G whose subtending angle is greater than m—e, where w0 =0(z 0 ).

N ow , let U =S fl T, then clearly the  measure 10 =27r. Let zo e U . then zo is
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a  Fatou point of F  and the m apping preserves angles at z0 . Hence the function
f  tends to a value when w tends to w, and W E d(wo ). This shows that wo  is a Fatou
point of f  on O G . Since the complement C— U is of measure zero on C, it follows
from Theorem 8 that the image P(C— U ) is of measure zero on OG, so that almost
every point on aG is a  Fatou point of f. T h i s  completes the proof.

7. Annular functions.

In this last section, we shall study a connection between annular functions and
MacLane's class, and then prove that Condition (1) is necessary in  Theorem 1.
As usual, a function f (z )  holomorphic in D is said to be annular if there is sequence
{ J}  of disjoint Jordan curves about 0, converging out to  C, such that

(34) lim min f (z)i = oo
n —co

For instance, the function defined in Theorem 6 is annular.
In  [16, Theorem 1], Sons and Campbell answered our question [8, p . 188] by

showing that any gap series

f (z ) -=  E zk+ilnk>9> I
k=0

is normal if and only if lim sup Ick l < ci, They then asked whether Jim sup Ick l = co
implies f  is annular. We recently answered this question in the affirmative sense
(see [9 ] o r  [1 0 ]). Meanwhile, T. M urai [15, Theorem 1] proved that any gap
series belongs to MacLane's class. Thus any gap series with lim sup Ick l = co is both
annular and in MacLane's class. T h i s  leads to ask the question as to whether any
annular function belongs to MacLane's class. T h e  answer turns out to be no due
to Bagemihl and Erdôs [2, Theorem 3]. In this connection, it is worth to study the
condition under which an  annular function cannot be in  MacLane's class. This
gives the motivation to prove the following result which will be needed in the last
theorem.

Theorem 10. If f ( z )  is annular and omits a value in  a relative neighborhood
of a point on C, then fc

Note that annular functions of this kind do exist due to Barth and Schneider [4].

Pro o f . To prove the assertion, we suppose on the contrary that f E  2 .  Let
f (z) omit the value y and let g(z)=f (z)—  v. Then by Theorem M we see that g E
Clearly, g  is also annular, and has no zeros in a relative neighborhood of a point
on C .  This contradicts a theorem of Bagemihl and Erdiis [2, Theorem 1].

The function described in  Theorem 10 allows u s  to  p rove  th e  necessity of
Condition (2) in Theorem 1.

Theorem 11. If  f ( z )  is annular and f  2 ,  then f  satisfies Condition (3) but
not (2).
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Pro o f . Let A> 0 be given, then by (34) there is an integer 1(A) such that

min I f (z)1> A, fo r  e a c h  n> 1(A) .
zer„

It follows that no components of the lower level domain IY(A) can tend to  C mean-
while the upper level domain Du(.1) is itself a component. By definition, this implies
that

E I YL(2) I = 0  a n d  E I Y())I = I Yu(A) I = 27r,

so  that Condition (3) h o ld s . S in ce  the function f  2 ,  Condition (2) is  no longer
true due to Theorem 1. This completes the proof.

Note that the above theorem says that any annular function not in the MacLane
class will automatically satisfy (3) but not (2).

In  closing this paper, let us pose the following problem related to the converse
o f  Theorem 10. W h a t is  th e  necessary a n d  sufficient condition th a t  a n  annular
function belong to MacLane's class.
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