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Precise informations on the poles of the scattering
matrix for two strictly convex obstacles

By

Mitsuru IKAWA

1. Introduction.

In the previous papers [3, 4] we considered the scattering matrix for two strictly
convex obstacles. To say more precisely, let 0;, j=1, 2, be bounded and strictly
convex open sets in R3 with smooth boundary I';.  Suppose that

@_1 ﬂ@2=¢.

Set 0=0,U 0,, Q=R3—0,'=I'; UI',. Consider an acoustic problem

_ 0%u _ .
Ou= FTE —Au=0 in Qx(—o00, o)
(1.1 !
u=0 on I x(—o0, 0),
3 P2
where 4= —6‘1—2 Denote by #(z) the scattering matrix for this problem. About
j=1 0Xj

the definition of the scattering matrix see for example Lax and Phillips [7, page 9].
We showed in [3, 4] the following facts:
(i) There exist positive constants ¢, and ¢, such that for any >0

{z; Imz<co+e,—e}— U B;

j=—©
contains only a finite number of poles of &(z), where

Bj={z; |z—z;/<C(L +|j)~1/?},
z,.=ic0+%j, d=dis(0,, 0,).

(i) For large |j|, B; contains at least one pole.

The purpose of this paper is to give very precise informations on the poles in B;.
Namely, we shall show the following

Theorem 1. For large |j|
(a) every B; contains exactly one pole of #(z),
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70 Mitsuru Tkawa
(b) denoting by p; the pole in B; we have an asymototic expansion
1.2) pi~zp+p it +Baj i+ for |jl— oo,

where B, B,,..., are complex constants determined by 0,
(c) in B; #(z) is represented as

F@f =Ly +#(Df  for all fe LX(S?)

where n; and ;€ L*(S?) such that n;#0, y;#0, (-,-) stands for the scalar product
of I*(S?) and s#(z) is an £L(L*(S?), L¥(S?))-valued holomorphic function in B;.

In order to prove Theorem 1 we adopt a means to consider a boundary value
problem with.a complex parameter p

(u2—Au=0 in Q

(1.3) v
u=g on I

for ge C*(I'). For Re >0 (1.3) has a solution u uniquely in N\ H™(Q). Denote
m>0
the solution by U(u)g. Then U(p) is holomorphic in Re u>0 as £(C*(I'), C*(Q))-
valued function. We shall prove the following theorem on U(u).
Theorem 2. Set for ke R—{0}
Gy={ne C; |u+ik|<cot+cy, Rep> —co—(log [k))7'}.
Then for large |k|, U(w) is represented in G, n {ue C; Re u>0} as

(L4) U= h S ) R k+ 0, .

Here

(i) B(-, u, k) is a C*(Q)-valued holomorphic function in G,,

(i) P(u)=1—Ale 24x,

where A, 1 are constants determined by O such that 0<A, A<,

(iii) y(u, k) is a complex valued holomorphic function in G, such that

N-1 21
(1.5) [P )= % (3 Paa+ k)N < Colk|

holds for ue G,, where y,, are complex constants,
(iv) F(u, k) is a holomorphic £ (LX), C)-valued function in Gy,
(v) U, k) is a holomorphic #(LXI), C*(Q))-valued function in G,.

It follows immediately from Theorem 2 that

Corollary. U(u) can be prolonged analytically as #(C*(I'), C*(Q))-valued
function into

U (Gr—{u; 2(W)—y(u, k)=0}).

|k|:large
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Another result on a boundary valued problem (1.3) is the following
Theorem 3. Suppose that |k| is large and that 2(u)—y(u, k)=0. Then we have
(1.6) dim {u; p-outgoing solution of (u2—A)u=0in Q, u=0o0n I'}=1.

By recalling the relationships between the poles of &(z) and those of U(u) shown
in Lax and Phillips [7], we can derive easily Theorem 1 from Theorems 2 and 3.
But we postpone the derivation of Theorem 1. Now we would like to give a remark
on the method to prove Theorems 2 and 3. The procedure of the proofs is a
slight modification of the one in [3,4]. As in the previous papers, first we construct
an asymptotic solution of

Du=0 in Qx Ra
u=ekW@-nf(x t) on I'xR,
suppuc g X {t, t>0}

for fe CF(I'x(0, 1)). Here we require only a first order approximation of the
boundary condition, that is,

lu(x, t)— kW0 f(x, t)| < Ce o'k~ on I xR.

This permits us to obtain an asymptotic solution u(x, t) in a simpler form than
in [3]. By using this simpler form of asymptotic solutions we can reduce the problem
(1.3) to an integral equation on I';, which is also of a simpler form. Consequently
we can solve the integral equation by the Neumann series and obtain a representation
(1.4) by a rearrangement of the Neumann series. This representation (1.4) is crucial
for this paper.

The results of this paper and an outline of the proofs were announced in [6].

2. Remarks on the behavior of broken rays.

We generealize Lemma 3.3 and its corollary of [2] to a form containing a
parameter k. Hereafter we use freely the notations and results on the broken rays
of §3 of [2], and §4 of [3].

Lemma 2.1. Let ¢ be a positive constant. For large k>0 every broken ray
Z(x, &) such that xe I' — S(k~¢), £ € Xf and Z(x, &) n S(k™¢)=¢ satisfies

2.1 (x, £)<1+Celogk,
where C is a constant independent of ¢ and k.

Proof. The strict convexity of 0;, j=1, 2, implies
2.2) n(x) -x'>c|x'|? (¢>0).

Let x(s) be a representation of Z'(x, £) by a parameter s the length of the broken
ray from x. For x(s)e L;
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d ’ ’ Ll -~
which shows that %lx(s)’l2 is increasing on (1;, 1, ), and that

_d_ 12 _ -l

Similarly we have

d ! ’ —
PO

Thus

d_ '2} _lili— '2}
2.3) (2] = e -i-0
=2X5-(8,= 5, ) =H—n(X))-E;- In(X))- X > | X2,

First step. Suppose that x"- £ >0. On L,, since

d , d / o
RO xer ] =xes0,

we have

(2.4) [ X1 > x>k

By the monotonicity of %Ix(s)'l2 and (2.3) we have on L;, j>1

A |x(s) > 2elX;12,

which implies that | X, 12— |X |2 >2¢cl;| X |2, namely

[X 112> (14 2cd) | X2
Combining this estimate with (2.4) we have

[ X 541122 (14 2cd) k=28,
Therefore j such that | X, | < diameter of @ must satisfy

Jj<2Celogk,
which shows (2.1).
Second step. Consider the case of x'-¢'<0. Lemma 3.3 of [2] shows that, if
(x, &) nS(k~®)=g, |x(s)| > o0 as s> 0. Then there exists j, such that
|Xjol?=min | X}> (=k72).
j>0

Note that

(2.5) X0 1 E)_1 <O,

J
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(2'6) jo+l ‘-'jo+l>0
Indeed, if (2.6) does not hold we have from (2.3)
_‘.i__ /(2 k—Ze L
ds |x(s)|?< —c on Lj,
which implies
1 X o+ 112 <X 0l2

This contradicts with the choice of j,. (2.5) may be shown by the same argument.
Now by using the first step we have from (2.6)

2.7) *(x, &)< jo+2Celogk.

Consider a broken ray Z(X;,, —Z; _,). This ray follows the reverse course of a
part of Z(x, ¢) from x to X;. Note that =Z(X;,, —&;,_,)=—E;,_,, and X
Eio-1>Xjo-1-Ej—,. Then

jo’ —Ejo-l) . (Xm’ _Ejo—'1)=Xlio-l'(_Ejo—2)>X jo—1°~ ( 10 1)>0

This implies that

Jjo—1°

X(X;

"T(X,, —Ej,-1)<1+4Celogk.

Jo?
Therefore we have j,<1+4Celog k. Combining this with (2.7) we have (2.1).

Corollary 2.2. If we choose 6 >0 sufficiently small, then for any x e S((1+ 6)k™¢),
Ee Xt such that X (x, &) e S((1+8)k™%)— S(k~%) we have

*(x, &)1+ Celogk.
Proof. Suppose that
d
2.8 [— '2} —X;-&>0.
28) SOr| =X

Then we have from (2.3) X{-Z]>ck™?. Taking account of |Xi|>k™* we have
from the first step of the proof of Lemma 2.1
*o(x, &)<1+Celogk.
When xeS(k™®), X, eS(1+8)k ®)—S(k~®), |X{|2>|x'|> and the monotonicity
£ -4 |x(s)12 imply (2.8).
Thus the remaining case is that [%ix(s)’lz] <0 and x& S(k™%). By
lo—0

s=lo—
using the monotonicity of —gs—lx(s)’l2 we have

R LG IS T I P L A

From (2.3) and | X | > k¢ we have

d , v oo 26\, 3¢
,:ds x(s) |2:L=’0+0—X,-H1><c—7>k .
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If we choose 6> 0 so small we have

(2.9) X, B L k2

)

By applying the first step of the proof of Lemma 2.1 we have the assertion.

Remark. Under the assumption of Corollary, since (2.9) holds, we have |X}|?—
|X712 >2d%k‘25. from which it follows that

| X5 =(1+dc)! 2kt > (1+)k®
when ¢ is sufficiently small.

Corollary 2.3. Let xe S((1+0)k™®). Then for any broken ray Z(y, &) such
that X (y, &)=x, y € S((1+0)k™*) we have

Xy, ©eS(k™)  for j=1,2,...,q9—1

Proof. Suppose that ¢ >2. If X, eS((1+0)k*)—S(k™¢), we have X, & S((1+
8)k~¢) from the above remark. Thus we have X,eS(k™*). Repeating this
argument we have the assertion.

3. Construction of asymptotic solutions (I).

Hereafter we fix ¢ as 0<e<1/2. Let x;, j=1, 2, 3, 4 be real valued smooth func-
tions defined on R such that

1 I<1+(j—-1)d,
x(D=
0 Ix>14jo,
and let w,, 1, vy, 6, be functions in C*(I'";) defined by
wi(x(0)) = x4(lo|k?),
m(x(0))=13(lo1k?) .
v(x(0)) = x2(I0]k?),
0(x(0))=x1(la|k?).
Let h(t) e CX(0, d/2) satisfying h(f)>0 and

3.1) S h(t)di=1.
R
Let m be an oscillatory boundary data defined by
(3.2 m(x, t; k)=e*V&™0 f(x, 15 k),

S, 13 k) =wy(x)h(t—j(x)),

where Y(x) e C*(S,(8,)) satisfying Condition C of §7 of [2], and j,(x) is the one
introduced in Lemma 5.4 of [3].
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We construct an asymptotic solution for m of the problem
Ou=0 in QxR
u=m on I' xR
3.3)
u=0 on ;xR
suppuc Qx{t; t>0}.

The procedure of construction is substantially same as in [3], but the treatment
of the boundary condition is different.

From now on we denote Si(k™¢), S;((14+8)k~¢), S(k™¢) and S((1+8)k~*) by
Sk §jyk, S, and S, respectively, and by w(d) a domain surrounded by Si6), j=1, 2
and a cylinder {x; dis(x, L)=4}. First fix a large integer N and construct uyx, t; k),
q=0, 1, 2,... in the form

ux, t; k)y=eik(ea® 0y (x, 1; k),
N

v(x, 13 k)= v x, t; k) (k).
j=o

Since ¥ satisfies Condition C of [2] we can construct successively a sequence of
phase functions @4, @, @,,... following the process in pages 136 and 137 of [3].
Note that we have the following

Lemma 3.1. It holds that
(3.4 [902,(+) = (@u(-)+2pd+do)|(0(3p)) < Ca??  (0<a<l),
@3.5) 1025410 ) = (P -) +(2p+ 1)d + dp)| ((Jg)) < C,02P,

where @, are , are functions independent of  and d, is a constant depending
smoothly on .

Proof. Recall estimates (7.9) and (7.10) of [3], and remark that we have
do=dy+d from their definition. Since [P @al=1,1Fp,l=1in w(d,) and 3’02” >0,
66(/)00 >0 on §,(60), and estimate (7.9) on S,(d,) implies (3.4). We have (3.5) from
(7.10) of [3]. Q.E.D.

Following [3] we set

0

T,=25-+20 ¢, F +40,.

a
We define v, 5, =0, 1,... as follows:

(3.6) Tpo,=0 in wxR,
and

(3.7) vo,o(X, 13 K)=f(x,t; k) on §,(60)x R,
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for p>1

38) Vo,2p-1(X, 15 k)=0g,2,-2(x, t; k) on S,(0y)%x R,
o,25(X, t3 k)=0(x)vg,2,—1(x, t: k) on S,(6y) % R.

For j>1 we define {v; ,} 5=, successively by

(3.9) Tpj,=0v;-1,4 in wxR forall g,
(3.10) v; (x, t; k)=0 on S,(8,) xR,

(3.11) 0 2p+1(X, t: k)=0;,,(x, t; k) on §,(6,)x R.

In Section 3 of [3] a function j(x) on S;(d,) U S,(d,) was introduced.

we extend it to j(x) and j(x) by the following two ways:

(3.12) JG)=je(+1  for x=y+1Fo,(y), yeS(do),
(3.13) JX)=jo(y)+1 for x=z4+1F@(2), ze€S,(d).
Recalling the proof of Lemma 5.3 of [3] we have
J(x)=j(x)+d on S,(),
Jx)=j(x)+d on S,(8,),
and Remark 3 of [3] can be written as
(3.14) Jx)=h(x)+j( X2 (x))—d for xe€S,(60),
(3.15) JxX)=h(x)+j( X2 (x)—d for xeS,(d¢).-

Now

We extend a(x) and d(x), which are defined in [3] as functions on S,;(d,) and S,(d,)

respectively, to functions in w(é,) by
a(x)=[G,.(y+ 1V 9 (»)/G,.(y)]'?a(y),
d(x)=[G;.(z+1F $ (2))/G;..(2)]"/?a(2),
where y and z are linked to x by the relations in (3.12) and (3.13).
Lemma 3.2. Set
Vo,x(X, 13 k)=v(»)a(x)h(t—j(x)),
To,(X, t; k)=Av(2)A(x)h(t—J(x)),
where y and z are linked to x by relations in (3.12) and (3.13) respectively.
Gap+1(X 15 k) =00,2541(x, t; k)
—bw(Ag) (A)Pvg,o(x, t—2dp—j(Ag)—dy; k),
Gap+2(X: 15 K)=00 254 2(x, t; k)
— bw,(Ag) (A)PTg, (X, t—(2p+ 1)d — j(Ag) —d; k),

Putting



The poles of the scattering matrix 77
where A, X, b, Ay are the ones in Proposition 5.6 of [3], and d, denotes d .0, We have
(3.16) |9,lm(@(82)) X R) < Cq(2Ax)912M,,,
where o is the one in Proposition 5.6 of [3] and

M, =] f1.(S1(80) X R).

Proof. Let xe8§,. If X _ o q(x, Vgoq)éigl,k, we have from the consideration
in Lemma 5.3 of [3]

Uo’q=0.

When X _,_(x, V¢q)e§,,k, by applying Corollary 2.3 we have X_(x, Fo,) €S,
for 1>j>q, which implies that v(X_(x, Fo,))=1 for 1<j<q when X_;er,.
Therefore the representation (5.9) in [3] is also valid. Thus we have from the proof
of Proposition 5.6 of [3]

3.17) V0,2, — (AA)PW(Ag)a(x)bh(t — j(x) — 2pd — j(A) — d )| (S2 4 X R)
< C(AAa)PM,,
(3.18) Do, 254+ 1 —AMAAPW(AQ)E(X)bh(t —J(x)—(2p+ 1)d — j(A0) = doo) (S 1 4 % R)
< C(AMM)PM,,,.
Let x e w(d,) and g=2p. Denote by y the point in S;(J,) such that
x=y+1p,,(y).

Then

00,25(X; 15 K) =[Gy, (x)/Gy,, ()] 20(yIv0,2(y, t—Ix—yl; k).

By combining Lemma 3.1 and (3.17) we have the assertion for g=2p. For g=2p+1
a proof is done by the same way. Q.E.D.

Remark 3.1. Since a(x), d(x), j(x) are determined only by @, vy ,, ¥y, are
independent of Y and w,.

Remark 3.2. Set

T.=2 0 420, F +4o.,
0 . -
Tw=2-5t—+27<pw-V+A<pw.
Then we have
(3.19) Tolo, (X, t; k)=0 in w(dy)x R,
(3.20) T olo(x, t: k)=0 in () x R,

and
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(3.21) Vo,w(X, 11 K)="1p (X, t—d; k) on S§,,xR,
(3.22) Bo.00(X, 13 k)=2AAvg o(x, t—d; k) on S;,xR.

Though these are obvious from the process of the definitions of a, d and j, j, we give
some explanation. It is evident from the formula (5.2) of [3] and the way of
extention of a(x) and j(x) that v, ., satisfies

Tv=0 in  w(dy) xR,
v=v(x)a(x)h(t—j(x)) on S,(8,)x R.
Then by formula (5.3) of [3] we have for x € S,(d,)
Vg, 00(X, 15 k)= A (x)a(XZ(x)h((t = h (x)) — j(X _ (X))
by Remark 2 of page 156 of [3] and (3.14)
=2d(x)h(t —j(x)— d) =Dy, o(x, t —d; k).

Let v; , and ¥; ,, be functions satisfying

(3.23) I Totjo=00j-1 in  @3;)xR,
| D)oo =0 on S,(6,)xR,
(3.24) [ Tobj0=00;-1, in w(d;)xR,
| 00 =Vj o0 on S,(6,)xR.

Lemma 3.3. For j>1, we have

(3.25) ol 15 K)= F ;x5 RO — (),
(3.26) b o(x, t; k)= éo a;(x; kYhtO(t —j(x)),

where a;; and d;,; are functions independent of Y. Especially on S, ; we have
3.27) U;,0(x, t; k)= éo a9 ,(x)hO(t—j(x))
where a9 (x) is a function independent of k.
Proof. First consider the case of j=1. Note that |Fj(x)|=1. Then
Ove,o(x, 13 k)= —h'(t—j(x) {27 - F(v,a)+ 4j - (v,a)} —h(t—j(x))4(v,a).
Putting

v(s)=vl,no(y+sy(poo(y)’ I+s; k), )’551(52)-

From the definition of j(x) we have j(y+sF ¢ (¥))=j(y)+s. Then it follows that

(3.28) 24 (5) 4 (40.) (v + 57 9 (¥)0(s)
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=(To01,0) Y+ 5V 0 (¥). t+5)

=—h'(t—jyNb(y+sV @ (y)—h(t—j(y)bo(y + 5V ¢ (¥))

where b (x)=Q2Fj-FV(va)+4j-va)x), by(x)=A4(va)x). By the integration of
(3.28) we have

o)== 3 Hm(—j) || by +IP o) ge= T 0=0 1)
m= Poo Y -

> A(t+5— (9 + 57 (Y1 5+ 57 93

m=0

Indeed,

1

Viw(X, )= 2 h™(t—j(x))a; .(x; k).

m=0

Thus (3.25) is proved for j=1. Repeating this argument we have (3.25) for j>2.
For (3.26) the proof is done by the same way.

Since y=X2®)(x)e S, for xe§,,, it follows that v (x)=1 near y. Then in
(3.28) we may regard v, =1 for all s namely

A s)= —W(t—jON(2P]-Pa+ 4j-a}eeyesppmiy
—h(t—j(y)(da)(y+sV o,(»),
from which we have (3.27). Q.E.D.

By using a representation formula (6.6) of [3] for solutions of the transport
equations and Lemmas 3.1 and 3.2 we have the following lemma by induction in j.

Lemma 3.4. For j>1, it holds that
(3.29)  [bw(Ao)(AA)Pv; o(x, t—2pd — j(Ag) —d o k)—v;,,(x, t; k)|(w(5,) x R)
< Cm,jp(;[z“)pMm-»zj )
(330) bWy (AQNAD?D, o (x, = 2p+ 1)d —(Ao) — oy K) =0, 21 1(x, 1 K)]o(0(8,) X R)
< Cm,jp(j'za)pMm+ 2j-
Since the transport equations (3.6) and (3.9) are satisfied we have for all g
(3.31) Ouyx, t; k)=e*@a=0(ik)"NJoy , .

Similarly, by setting

. N .
UlX, 15 K)=e M@= 3 0, (x, 13 k) (ik) 7,

sr g N ~ . .
aoo(x! t; k):elk(¢oe(x)—f) Zo vj,oo(x’ t; k)(lk)—l,
j=

we have
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(3.32) Ou(x, t; k)y=ek@=x0(il)"Noy ,
(3.33) Ol o (x, t; k)=ek@="0(k)y"NOby .
Now combining Lemmas 3.1, 3.2 and .34 we have

Lemma 3.5. [t holds that

(3.39) |eik(do=i(4or=dw) by (Ao )WAL)Pu o (x, t—2pd — j(Ap)—d o ; k)
— (%, 15 )l(@(85) X R) < Cokem(AT)? ,-io M,k
(3.35) |k (o= (40)=d) iy, ( A YAZ)PR (%, 1 —(2p+ 1)d—j(Ag)—d.: K)
g1 1 (%0 13 )] (@(85) X R) < Ckm(Ad)? go Moy sk,

(3.36) |eik(do=itd0)=de) hy (A WA Ou (X, t—2pd —j(Ag)—do,; k)
— Ouap(x, 15 k)l p(@(85) X R) < Couk ™M+ 1(2J0)" My 4
(3.37) |eik(do=itA0)=d=) by (A WA o(x, t—(2p+ 1)d — j(Ao) — dow; k)
—DOugps (X, 15 K)|p(@(8;) X RYK Cuk N+ 1(AT0)P My 4y, -

Note that ¢, can be extended into a neighborhood in R? of w(d,) verifying [ ¢,|
=1. Denote one of such neighborhoods by @. Then v;, are also extended into
@ verifying the transport equations. Similarly we extend @, @y, j 0, 7, by the
same way. Thus we may suppose that the relations and estimates (3.29)~(3.37)
hold in &@.

Let x(x)e CP(R?) such that its support is contained in @ and y=1 on w(d,).
Evidently we have from (3.36) replaced w(d,) by @

(338)  |eikomi U0 by (Ao) A Y(X) Dt o(x, t—2pd —j(Ag) —d: k)
—x() Tz p(x, 13 )R> x R) < Cpk M m*1(AT0)PM 5 4 -

Denote by uj,(x, t; k) the solution of

Ow= —x(x)Ou,, in R3>xR

suppwe R3x {t; 1 >0},

and by ul(x, t; k) the solution of

Ow=—x(x)Ou, in R3xR

suppwce R3x {t; t>0}.

Since supp x(Ou,,<= @ x(2pd — Ry, 2p+R,), we have from the Huygens principle
(3.39) supp us, < {(x, t); t—=2pd — Ry < |x| <t+2pd+ Ry, t >2pd—R,} .

From (3.31) it follows
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(3.40) [Usplm( R? % R)< Cpk™N+m+3(AA0)P M 5 4 -
From (3.38) we have
(3.41) |eik(do=j(40)=d=) by, (A W AL)Puln(x, t—2pd — j(Ag) —d o k)

—uly(x, t; k)| u(R? % R) < Crk™N*m+3(AJ0)P M 3y 4 -
Evidently we have the same type estimate for g=2p+ |, namely
- (3.42) |eik(do=i(A0)~d=)py (A WALYPil (X, t—(2p+1)d —j(Ag) —d,; k)
— Uy 1(X, 15 k) W(R3 X R) Cruk™N*m*3(AJ0)? M 5 4 -

4. Construction of asymptotic solutions (II).
Let m be an oscillatory boundary data of the form
4.1) m(x, t; k)=exW™=0f(x t; k), feCP x(T, T+d/2))

where € C*(I',) is a function satisfying Condition C of or 6(x, 1, B) of Lemma 7.1
of [2].

Lemma 4.1. For a positive integer N we have a function u(x, t; k)=u'(x, t; k)
+u"(x, t; k) satisfying

“4.2) Ou=0 in QxR,

4.3) suppu’'c U L(x, t; Vo)
(x,t)esupp f

(4.4) [u'],(Rg, 1) < Cpr€ NP Yy n k™!

x ,i:o k=3t =T)|eTf(-, s 21 X R),

(4.5) " |2, 1) < Cpre™ | Py wr kN1
x(t=T)NeT f(-, )y +m(I'y X R),
(4.6) lu—ml, (I, )< Cpe™ Py k=N

x(t=T)NeTf(-, )|y 4ml'y X R).

Proof. We follow the process of the proof of Proposition 8.1 of [2] except
an argument on estimations of the amplitude function of w®™ in §8. Namely,
instead of the estimate in §8 we use a precise asymptotic formula proved in sections 5
and 6 of [3].

Corollary 4.2. Suppose that m of (4.1) verifies
4.7 *Z(x, Fo(x))< logk for all x e Proj, suppf,

where @(x) denotes the one in the definition of Condition C or 0+%p3/2. Then we
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have a function u(x, t; k) satisfying (4.2), (4.3) and
(4.8) [t/ Rps ) < Cpr™ [V @l n k™!

x £ (k- (log k-+ RIVIecoT (I’ < R).

(4.9) |2, 1) < C,e™ |V @lps n(k™'(log k+ R))=N™
x |e<oT fly-+m(Fy X R),
(4.10) lu—m| (I, 1)< Ce P @lysn(k '(log k+ R))=N+m
x|eT fly sml'1 X R).
Moreover
4.11) supp u|rxr= ' X [T, T+d logk+2py], (po=diameter of 0).
Proof. We have from (4.3) and (4.7)
supp u’ < {(x, 1); t<T+dlogk+po+1x|},
which implies
t—T<dlogk+R+p, on suppu N(QgxR).

Thus (4.9) follows from (4.4). Recalling the process of the construction of u”, which

corresponds to u’ in the previous section, we have (4.9) and (4.10). Q.E.D.
Set
(4.12) my(x, t; k)=e'k(02r)70f (x, 1; k),

S 13 D=1 =0,0) X, 03301 15 YR
4.13) m(x, t; k)y=ek@=(0"0f (x, t;k),
Ful 15 K)=(1=0,0)) 2 03l 1 (R,

Then (3.17) and (3.29) imply that
(4.14) [bw (AN AP fo(x, t=2pd —j(Ag) — d o k)eikd="ilA0)7do)

5. 15 Ry X R < Coup 20?3 KM

Note that we have from Corollary 2.2
(4.15) (X, Py (%), *Z(x, Vo(x))<log k for all xesupp(l1—80,).

By applying Corollary 4.2 to m, and m,, and we get z, and z,, verifying (4.2), (4.8)
~(4.11), where T=0 for z,, and T=2pd for z,. Remark that since e c02d=)7 it
holds that



The poles of the scattering matrix 83
|e2pdeof |y x R)<C,M,, for all p.

Since the process of the proof of Lemma 4.1 indicates the continuity of a corre-
spondance from {y, f} to u, we have from (4.14) and Lemma 3.1 the following

Lemma 4.3. It holds that
(4.16)  |bw(Ag)eiktdomith=d=y(ATypz (x, t—2pd —j(Ag) —d o k) —2,(x, t; k) (Qgs 1)

~ N . .
< Gy r(Ada)Pemcott=2p0fm* 1 50 k=I(log k)M ;4 pm,
i=o

4.17) Oz,=0 in QxR
(4.18) supp z,|rxr<=T x[2pd, 2pd+ dlog k+ p,].
Set
(4.19) ro(X, 1 k)=u,,(x, t; k) +up,(x, t; k)—u,,. (x, t; k)

— U i(X, t5 k) —z,(x, t; k),
(4.20) Hx, k)= 3 rx. t: k)
p=0
and
4.21) FolX, 15 k)=eiktdomitdo=do)ly (x 11 k)—uw(x, t; k)
_(aoo(x’ t_d’ k)_ﬁ:x)(x* t—da k))_zoo(x’ t; k)}°
We have from (3.34), (3.35), (3.41), (3.42) and (4.16)
Lemma 4.4. It holds that
(4.22)  [bw(A)ADPr(x, t—2dp—j(Ag)—d4; k) —1y(x, t; k)|,(Qg X R)
< Cm,R(/lza)pka ZN: k™iMyjipm.
=o

Next we consider the behavior of r(x, ¢; k) on the boundary. Taking account
of (3.8) we have on I',

0 N
(4.23) r(x, t; k)—m(x, t; k)= pgo {eik(e22=1)0, (x) j‘él j,2p+10ik)~7

F(my(x, t; k)—z,(x, t; k) —uy,(x, t; k) +uj, ., (x, t; k)}.

From (3.8), (3.11) we have on I',
(4.24) r(x, t; k),= ZO{—u'zp(x, t k) +us,yq(x, t; k)—z,(x, t; k)}.
o=

Summing up the argument up to now we have
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Proposition 4.5. For an oscillatory boundary data (3.2) we have a function
r(x, t; k) defined by (4.20) verifying

(4.25) Or(x, t: k)=0 in QxR
and (4.22), (4.23) and (4.24).

5. Laplace transform of asymptotic solutions.

We consider the Laplace transform of r(x, t; k) with respect to #, that is,

5.1) Px, s k)=§°°

e~ #p(x, t; k)dt.

First we restrict u in {u; Re u>0}. Evidently the integral of the right hand side of
(5.1) converges absolutely. Therefore #(x, u; k) is an H>(Q)-valued holomorphic
function. It follows from (4.25) that

(5.2) (u2—Ap(x, p; k)=0 in Q.
Set
s(x, 15 K)=r(x, 15 k)= bw(Ag) T (DPro(x. 1=2pd—j(Ao)=dus K)

and we have from (3.39) and (4.22)

N
(5.3) I5l(Q> 1) < Cpn,r(log k)e™(corent=R=Cetog kofemt 30 k™IM .

j=o

Thus it follows

N
(54) 1506 15 RI(@R) < Cppelerten Celonkemmst 5 k=iM;.,

j=0
for pe?,.={u;Reuz—co—c,+¢'}.
On the other hand

Se—w $ (Aypro(x, t—2pd—j(Ag)—dop; K)dt

p=0

= f (ADype=n2pdt+i(Aoy+d=)p (x, u; k)

p=0

= P(p) tewUUADITdP (x ps k),

where
P(u)=1—Ale 24x,
Lemma 5.1. The Laplace transform of r(x, t; k) is of the form

(5.5) P(x, 13 k)= bw,(Ag)P(p)~te A d=p (x, p: k) +3(x, 3 k)
where #.(x, u; k) is a C*(2)-valued entire function and $(x, u; k) is C*(Q)-
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valued holomorphic function in 2={u; Re u> —cyo—c,} verifying an estimates
(5.4) for any R>0 and ¢ >0.

Proof. Beside the fact that r is entire, Lemma is already proved. The esti-
mations on the support of r.(x, t; k), namely (3.39) for u;, and i, (4.18) for z,,
imply that for any x € Qg the support in t of r,, is contained in a fixed bounded set,
from which we have the entireness of r. Q.E.D.

Next we consider the form of # on the boundary.

Lemma 5.2. On I’y we have

(5.6)  PCx, i k)=ri(x, u: k)+ bw,(Ap)e rtJ (Aortde) g,%”) P ool 13 k) +38,(x, p; k),

where §,(x, u; k) is C*(I";)-valued holomorphic in 2 and satisfies estimates
(5.7 18,(x, u; k)| <Co(O(x) log k+ k™ Nk*N WMy, for pe 2,
(5.8)  18,(x, u; KIS CO(x)k™ +k~NkeN'YM . for Reu> —cy—2d(logk)~1.
Proof. On I'; we see from the definition
Fo(X, 15 k)= eik(do=i(40)=d=) foik(@=(x)=Dg (x)
N

=2 (k)T o(x, t—d; k) —ui(x, 13 k)+du(x, t; k)}.

Jj=0
Set
sy(x, t; ky=r(x, t; k)—m(x, t; k)

= bwi(Ag) £ ()Pro(x, 1=2pd —j(Ao) = dos K).
Then it follows from (4.23) that

si(x 15 6= 3 [0,00e PR CETREND)

—eiktoa+2pa+do(AI)P5, (x, t—(2p+1)d; k))}
+{(m,—z,)x, t; k)— bw(Ao)AL)P(m  — 2z )(x, t—2pd—d,; k)}
+{uy,(x, 13 k) — bw(Ao)AD)Puls(x, t—2pd —d ,; k)}
+{uhp e 1(x, 15 k)= bw(Ag)AD)Pil(x, t—(2p+1)d —d,; k)}

=1+, +13+]1,.

First consider I,. Set
Iy, =0(x)eiker®u, 5 i(x, t; k)
—elk@a()+2patdo)( ATy, (x, t—(2p+1)d —d 5 k)
=0,(x) (eiko2p — eik(0=+2pa+d0) A TV05, (x, t—(2p+1)d —d; k)
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+0(x)eikoze{v; 5 1 (X, t; k)—().l)"ﬁj’m(x, t—Q2p+1)d—d,; k)}
=I1; ,+111;,.
By using (3.4) we have
[11; |,y x R)< C,, max (ka2?, 2) (AL)PM,,,, , ;0,(x) .

Then, by setting

p=0 p=0 p=logk

we have
IV < CO(x)e~<o" logk and supp I1" (0, 2d log k+ p,).

Then it follows that

P 2d log k+po
I, 3 k)| < CO,(x) log k S e-cotg—Re uid

0
< Cek(x)e—Zd log k(—Re pu—co) log k.

Therefore we have

|ﬁ§-l (x, u; k) <CO(x)logk if Rep>—co—2d(logk)1.
It is evident that
TID(x, u; k) <CO(x)  for Rep< —co—c,/2.
On I,, 1=3, 4, estimates (3.41) and (3.42) imply
[T(x, u; k)| < Ck~NkeV forall pe 2,
and on I, the process of the construction of z, assures
|1,(x, u; k)| <Ck~NksN' for all pe 2.

Combining these estimates we have (5.8).
If we use an estimate |1 j,plgek(x)k(ali)" for all p (5.7) follows immediately.
Q.E.D.

Next consider # on I',.

Lemma 5.3. On I', we have

(59 P(x, p; k)=bw,(Ay)en(i(A0rd=) g,l(u) P, s k) +35(x, p3 k),

where 8, is a C®(I',)-valued holomorphic function in 2, and satisfies an estimate
for ne 2, (¢ >0)

(5.10) P (s 15 K)lm+1820%, 113 K)lm < Cok™ MmN My, .\, o T
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Proof. Set
so(x, 13 k)=r(x, 15 k)— bwy(A) ,20 (AD)Pr o (x, t—2pd—j(Ag)—d.: k).
Then we have
sy(x, 13 k)= ,20 {=2,(x. 13 k) + bwy(Ao)AT)Pz o (x, t—2pd — j(Ag)—d.,; K)

+us,(x, 15 k) —bw(A) AR u(x, t—2pd —j(Ag) —d; k)
sy (x, 15 k)= bw(A)ALPi (X, t—2pd —j(Ap) —do; K)} .

Thus estimate (5.10) on 8, is done by the same way as for I,, [=2, 3, 4 in the previous
lemma. For 7. recall that r =z _ on I',, and we have the desired estimate.

Set
QD=R3—-0,.
Denote by U?)(u)g for Re u>0 and g € C*(I";) the solution of
W—Hu=0 in Q2
u=g on I,,
ueL((Q®).
Then U)(u) can be prolonged analytically into
{#; Re > =B, [W1>Cy} (=2§?)
for any >0, where C; is a constant depending on f.  Moreover,
|ul ()< Crpllglimer, — for pea@.
Set
e, 5 k)= (e I h(u-+ 1K) (Fx. 13 )= UD(IC-, w3 1),
Now we shall show the following
Proposition 5.4. Let y be a function verifying Condition C. Then there
exists e(x, p; k) of the form

(5.11)  e(x, u; k)=ﬁbwk(Ao)eikdoe—(u+ik)(f(Ao)+doo)el(x, w; k) +e,(x, u; k)

verifying the following:
(i) e, and e, are C(Q)-valued holomorphic functions defined in 2 and e,
is independent of , and they satisfy estimates

1) See for example, Ikawa M., Mixed problems for the wave equation, IIT, Exponential decay of
solutions, Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978), 71-110.
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N
(5.12) le(x, p; k) w(QRp) < C,p gkt ZO k™IM ;4 m
I=

Jor pe Dyy={u; |Im p+ik|<|k|71/2, —co—logk<Repu< |1}, and ef-, u; k)e LA(Q)
for Re u>0,

(i) (u2—Ae(x. p; k)=0in Q,

(iii) e(x, u; k)y=0o0n I',,

(iv) on T eis of the form

e(x, p; k)= e b, (x) + [_9}”) bw,(Ag)eikdog=(n+ik)(j(Ao)+des)

ABu(getro=) S 8 8 (i) I+ )1+ 1(x, s K0} | bt s ),

where b, and b, are C*(I'y)-valued holomorphic function in @ and b, is inde-
pendent of . Moreover they satisfy estiamtes

(5.13) 1b1(- 5 )T ) <Crk™*"M .y
(5.14) [ba(x, p; k)| < k™16,(x) log k+ Ck=(1=N,

Proof. Form the definition of e(x, u; k) (ii) and (IIT) follow immediately.
Note that we have

|A(u+ik)| >c>0 forall peg,,
where c is a constant independent of k. Set
8y(x, 11 ) =(Pox, 13 K) = UD) (P o, 15 k) )06+ 10O R+ k)1,
ea(x, us K)=(Cx, u3 k)= UDB,(-, p; k)(x)) (e W+ h(u+ik))~1,
From the definition (4.21) of r_, and (5.5) we have
g, =eikdog=(utik)(j(dotd=)e, = ¢, is independent of y.
Lemmas 5.2 and 5.3 imply (5.12). Now we show (iv). From the definition we have
Po(X, p; k)=eik(omitdor=dd{y (x, p; k)—fi(x, p; k)
— e (x, 5 )= i, 3 K)—2(x, 3 B},
and by using (3.21), (3.22), (3.23), (3.24) and Lemma 3.3
B(x, 3 K)—e il (x, p; K)
=0, (x)etke=(x) ,ﬁl (ik)~4 l%;l;) a; (x; k) (u+ik)le~(++i0i®h(p+ k).
Thus by putting

by(x, 5 k)=(—tiiax, 3 )+ diialx, 115 k) — UD@)(P (-, 13 k)l )(X))
(e WHRI®h(pu+ k)1,
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by(x, i k)=(8,(x, 5 k)= UD(u)85( -, p5 k))(x))- (e Wil i h(p+ik))1,

we have (5.13) and (5.13) from (3.32), (3.33) and the definition uy(x, t; k) and d,(x,
t; k), and (5.10). The representation is immediately derived from the definition of e.

6. Definition of Uy (ze).

Let g(x)e CP(S{((14+38)k=¢)). Then we have by the Fourier’s inversion
formula

4(x(0)) =(2n)2 SS ¢ie=0)8g(x(0"))do"dE

= [ wistonen=-gaeerkad,

where

§©=@m2 et tg(x(o)do.
Define ¥(x, &) € C(S,(J,)) by
Y(x(0), §)=0-¢.
When [£| <1—6 (0>0), Y(x, &) satisfies Condition C and if [£] >,
& (x. P olx, ) <K

holds for some fixed K. By using §7 of [2] and U®Xu) we have immediately the
following lemma

Lemma 6.1. For |£| >0, there exists e(x, u; k, &) verifying
(p?— Ae(x, p; k, £)=0 in  Q,
(6.1) e(x, u; k, £)=0 on I,,
e(x, pu; k, )=e*tw () +by(x, u; k, &) on Ty,
where e3 is homomorphic in Re u> —cy—c, and ee L% Q) for Re u>0, and
(6.2) le(-, p3 ks O)Im(Rr) < C gk,
(6.3) 1ba(+5 15 Ky O)lml(Iy) <Cpuk™N*m.

Apply Proposition 5.4 for y(x)=y(x, &), |£|<d,. Denote e(x, u; k), do, d,
b, A, in Proposition in 5.4 for y(x, &) by e(x, u; k, &), do(&), d (&), b(&), Ax(&) re-
spectively. Set

(Ui D))= elx. s k, OJkORAE.

Taking account of the independency of e, on { we have from (5.11) that
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Uitni kig= €15 M5 Py kg + U (us g,

where

Folu; k)g= S|¢|<a Wi(Ao(E))b(E)eikdo(D)e=tutik) i (AoEN+dw (D G(kE)k2dE,

Ustus kg = balx, s ke OG(KEN?E.

From Proposition 5.4 and Lemma 6.1 we have

Lemma 6.2. U,(u; k) is L(CX(S,((1+38)k~%)), C*(R))-valued holomorphic
function defined in @ —{u; P(u)=0}, and satisfies

(W2—=MU,(u: k)g=0 in Q,
Ui(u: k)g=0 on T,.

Moreover we have
U(u;: k)ge L Q)  for Reu>0.

Now consider the boundary valued of U,;g on I';. From (iv) of Proposition 5.4
and (6.1) it follows that for xe I',

Ust: kg = emvssim(g(kekedg
+ By 100atx, )+ by(x. i K} Folus kg
+{ balx, i k DgkDRE

=90+ g Ers g+ Ex: kyg.

Lemma 6.3. For ue 9, we have

6.4) I1E,(u; gl L2y < Ck™2|1 gl L2(ry) -
Proof. From (5.14) and (6.3) we have

[, 1Egeorax<2 (600185 jgkekeae) ax
+2 &,(Sm KNKN (k) K2dE dx

<2 (logk)zek(xydxg oo keag | de
r, R2 |¢|<do

+c<k-~+1+e~)2g k2|g(k&)|2de
[&|<do

<2(log k)*k~*llgl| 72+ Ck™N2||g] 2. Q.E.D.
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With the aid of Lemma 2.4 we introduce U,(u; k) as a slight modification of
U,(u) in §9 of [2], namely

Lemma 6.4. There exists an operator U,(u; k) which is £(C™(I',), C*(Q))-
valued entire function verifying

U,(u; k)ge LA(Q)  for Reu>0

(6.5) W—MU,(u; k)g=0 in Q for all u,

(6.6) U,(u; k)g=0 on ',  forall p,

(6.7) 1U2(k; K)glr e,y <CKNGl L,y »

(6.8) (1= )(U (5 k)G — @l ) < Ck™NtmelcomRemlos kgl 5 p ).

Now define an operator Uqy(u; k) e L(C(T';), C*(2)) by
(6.9)  Up(u: k)g=U,(u: k) (g — v, Ua(ps kY1 =g r, )+ Uy(us k) (1-ni)g.
Let us set
M(u; k)g=Uo(u; K)glr, .
B, (u: k)g=nux)g,
By(u: k)g = —vi(x)U(u; &Y (1 =n)g |y, -
Then we have
(6.10) Mg=g+2(u)'E(B,+B)g+E,B,+B,)g+Esqg,
where
Es(u: k)g=1—v)Ux(u; k)1 =n)g |, .
It follows immediately from (6.8)
(6.11) IE3g !l mry < Cok ™™gl L2ry -
We set
Ey(p; k)=E(u; k)(By(u; k) + By(u; k),
Fius k)=Fo(u; K)Bj(u; k), j=1,2,
Fu; k)=Fy(u; k)+Fau; k),
H (u; k)=2W)~"0dx)a(x, p; k)F(u; k),
Hy(u; k)=2(W)1b(x, u; k),
H(u: k)= H (i3 k)% Hop; k).
Remark that from the definitions it follows that

(6.12) (B, +B,)H,=H,,
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(6.13) (B]+32)EZ=E2.
If we use the above notations (6.10) may be written as

(6.14) M=I+H,+H,+E,+E,.

7. Explicit representation of U(u).

Lemma 7.1. Suppose that A and B are bounded operators in a Hilbert space
X such that

A =A+A2+A%+., #=B+B!'+B2+-..
converge in the opreator norm and |[(#)/ || <Cn’/ (0<n<1) holds. Set
C\=A+ARB+ARBAL+ABARB+ -,
C,=B+BA+RARB+BABA+ -,
C=%,+%,.
Then we have
(A+B)¢=%—(A+B).
Proof. By using
Ad =o' —A, BB=%—-B
we have
A, =(A - A)+H (A - A B+ (A —A)BAL + -
=%, —A—A%,.
Similarly we have
B%,=%,—B—B¢%,.
Thus
(A+B)(%,+ €,)=A%,+B€,+B%,+ A%,
=%,+%,—(A+B). Q.E.D.
Now apply the above lemma to the operators in the previous section.
Lemma 7.2. There exists a bounded operator &(u; k) in LTI',) such that
(7.1) (E;+E3)6=6—(E,+E,).
&(u, k) is holomorphic in Re u> —cy—log k and satisfies
(7.2) 1€ = &2(By+ Bo)l < Ck™,

where
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= E,+ B3+ B3+
Proof. From (6.13) we have
E{=E{(B,+B,),
then (6.4) assures the convergence of &, and
&,=6,B,+B,).
It is evident from (6.11) that
&=E;+E3+E}+.-
converges and
€31l L2y < Ck™M.
Thus by applying Lemma 7.1 we have immediately (7.1) and (7.2). Q.E.D.
Set
Yi(p; k)=Fo(By+B,) (O(x)a(x, u; k)+b,(x, p; k))
=Fo0(x)alx, u; k)+ Fo(By +B2)by(x, u; k)
=y11(1; K)+v12u; k).
Then we have

(7.3) X=H+H2+H3+---

=t (£(360) )= sui=5 "

Lemma 7.3. There exists an %(L¥T ))-valued holomorphic function #(u; k)
in Re u> —cy—log k satisfying

(7.4) (H+E,+Ey)#=4—(H+E,+E;).
Here, # is of the form

a+Ea

F(1+¢),
where
o(x, p; k)=0y(x)a(x, u; k)+by(x, p; k),
y is a complex valued holomorphic function.
Proof. Set
y,=Fo(By+ By)Eax, p; k)
=Fo(B; + B,)(65(B, + B,)0,(x)a+(& — &,(B, + B,))0,a+ &b,)
=Foé,0,a(x, u; k)+{F(& —&,(B, +B,))0,a+F&b,}

=Y20+72¢-
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Since we have ||&,] < Ck™*/2 from (6.4) we have
(7.6) 720l < Ck™e/2,
From (7.2) and (5.13) we have
(1.7 P21 <Ck™N*+2,
Now from (7.3) and the definition of y, it follows that
(E#) =(P(1)—y,)/y5 2EaF (B, + B,).

Then
X .
N =3 (EH#)
iz
converges in the operator norm and it has the form

1
N =
P(U)—y1—72

SaF (B, +B,).

Put y=y; +y,, and we have

(7.8) y=Foa+F&o=F(I+&)a.

Then we can apply Lemma 7.1 and
M=H+HE+HEHX+ - +EFEHA+EHE+ -

converges and it satisfies (7.4). Since we can rewrite it as

M=H(1+E)+H(EH +(EH)+ - )I+E)+E+H(EH +(EL) + ) +68),

we have
(7.9) I+ M=1+E+- (#) , FU+8)
a S
Yoy, 20— Uy =y FU+O)
=(I+&)+- E(i,)‘_gLF(l+é’) Q.E.D.

Proposition 7.4.  In 2,,n {u: Re u>0} U(p) is represented as

(7.10) U(u)=?(%()i’~%ﬂu k) (I+ & k))+ O(us k),

where (-, p; k) is C*°(Q)-valued holomorphic function in Dy, and O(u; k) is
L(C>(I'y), C*(Q))-valued holomorphic function in Dy,.

Proof. Set

(7.11) Uus ky=Uo(p; k) + A (p; k).
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From the definition (6.9) of U, and Lemmas 6.2 and 6.4 we have
U(u; k)g e LXQ) for Reu>0,
W2—=MHU(u; k)g=0 in
U(u; k)g=0 on T,.
On the other hand on I'; we have
U(u: k)g=U+H+E,+E;)(I+.4)g=y¢g.
Thus from the uniqueness of the solution it follows that
(7.12) U(u; k)=U(p) in Dy, n{n: Repu>0}.
Now substitute (6.9) and (7.5) into (7.11) and use (6.4), and we have

Ui k)= FO(B,+BZ)<I+6"+—g(:)é’_)°; F(I+ é"))
. (I+&)a
+ 0, k)(B,+BZ)<I+é"+fg,(#) 2 F(1+é’)>
. _ (I+ &)
+ U, (s k(1 nk)<1+é’+——-y(u)_yF(l+é")>

=—97(_#l)‘;*ﬂ(X. w; KFI+&)+T(u; k),

where

B=e +U(By+By)(I+&)a+Uy(1—n)(I+ &),
O=U,B;+B)U+&)+Uy(1—n)I+¢).

From these formulas we have the required assertion.

8. Proof of Theorems 2 and 3.

First we consider an asymptotic form of y for k—oco. From the definition of
F, and a(x, p; k) we have

@8.1) Tl = § emsatsrens-aeirononpio, ¢, k. wkidzdo,
where
(82)  plo, & k, )= bW AE)e U (x(0)) 3. Ty o (x(@) (K.

Then if we restrict p in

@ ={u: lu+ik|<C}, C=co+c,+2n/d,
it holds that
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8.3) |00 p(o, &, k, p)| < Ck!lzl+1Bhe forall o, fe N2
Set
Do, §)=do(8)— 0 - L+ (9 (x(0)).
Lemma 8.1. It holds that
(8.4) dy(€)<0.
Proof. By the definition of dy(&) we have

dof( &) =lim (inf {([a, — (27~ D| + [x(2P71) 4 X@P=D| 4.4 |x(1) — xO| ~2pd})
p—©

where inferium is taken over x(2p~1, x(2p=3)  x(Del, x(2p=2) x2r=4)  xel,
and x©Qe %, (a;). Since dis(ay, €,y ¢(a;))<d for £#0, by choosing
x(2p=1) = x(2p=3) — ... =x(1)=a2’ x(2P=2) — x(2p—4) — ... =x(2)=al we see inf{lal —
xZ2P7D| 4o [x(D —x® —2pd} <O for E£0. This implies (8.4). Q.E.D.

Evidently dy(£)=0 for £=0. Therefore we have from (8.4)

(8.5) [a%aéjdo(é) |g=0]i,j= 1,2 <0.
From Remark 2 of §3 and Remark 1 of §5 we have
(8.6) [agjajww(x(a))|a=0]i,j=l,2>K>0-

It is easy to check that 6=£=0 is a stationary point of . Since

P, P, 02d, -1
det =det < -1,
Py P lo=z-0 -1 0%pp Jo=¢=0

o=¢=0is a unique stationary point and it is non-degenerate. Thus we can apply
the stationary phase method to an oscillatory integral (8.1). Because of @0, 0)=0
we have

V= 5 eAD2p(o. & k. 10),-g- ok

<Ck! D3 ep(o, &, k, wlk?dode

%)
|v|<2i+5

< Ck—l+£(21+5)’

where 7 is a constant determined by @. Since 040,(x(0)),-,=0 for B0 we see that
N v .
D24p(o, & k. Wamg—o= 3, (3 calut ilh) (ik)

and we know ¢}, =0 for |v| odd. Thus we have

Lemma 8.2. It holds that

2J

8.7) Yl D~ 3 (F ur ik for k—s oo,

Jj=1 h=0
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where c\!), are constants.

In order to obtain an asymptotic expansion of y,, we have to go back to the
definition of 632. Denoting by u,(x, t; k, §) the one constructed following the
process of §3 for

m(x, t; k)=e'(e ¢ Dw (x)h(t— j(x)).

Set
(8.8) I(x) =S g eik(92p 1 1(x. )= D) gika-SHikom(x(aN ] k2dadE,
N .
h,= j; Vj2p+1(%, 15 k, &) (ik)™I0(x(0))a(x(0), 1, k).
Set

Py(x, &, 0)=03p41(x, ) —0 -+ 0 (x(0)).
Lemma 8.3. Let (¢, 6,) be a stationary point of ®,. Then
(8.9) P (x, &y 0,) =P (x)—(2p+1)d.
Proof. Note that from the definition of ¢y(x, &) we have
- {=0o(x(0), £).
As in Lemma 8.1 we have
Prps1(X, E)— - E=inf {|x—xPD] 4 .o [x(D — x O]}

where infimum is taken over x(2p*1 x(2p=D_ x(W e[, x(2p) x(2p=2)  x e[,
and x € €,..¢(x(6)). Denote by x{, x{,..., x{27*V the ponts which give the
value of the infimum. By the argument in Lemma 4.1 of [5]

0 (@2p41(x, ) —0 - O =lim |x§* —x{7|/4¢;

where x{0=%,. e+4¢,(x(0)) N line passing x{» and x{". Then if x(g)#x{ it
follows that 0M¢@,,+(x, §)—0-)#0. Since we have from (Fg,)(x(0), &)—
(P 9o)(x(0))#0 that 0,(¢o(x(0), &) — @, (x(0))#0, if ({,, g,) is a critical point of
@, it holds that

(8' 10) V(pO(x(ap)9 €p) = V(poo(x(ap)) ’
and x(a,)=x{ gives
(8.11) @2p+1(x, &p) = @ol(x(0,), &,)

=inf {|x —x(2P* D] 4 |[x(2P¥D — x@P)| 4 ... 4 |x(D — x(0,)[} .
By taking account of (2.3) of [4] we have from (8.10) and (8.11)
@2p+1(%, &) = 0o(x(6,), £,)=(@ (%) +(2p+ 1)d) — 0 (x(0,)).
Thus we have (8.9). Q.E.D.
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Lemma 8.4. It holds that

®© 2j ,
(8.12) Vaol k)~ 3 (3 et ik)k.
=1 h=

Proof. By the same argument as in Lemma 8.1 we have

Pop+ ay, ©)—oolay, )< (2p+2)d
and

@2p+1(ag, 0)—@ola,, 0)=(2p+2)d.
Therefore we have

[6%.~§,((P2p+ (a, &) —oolay, £)1<0.

Then we have from (8.4) and the above inequality

r ((pp)a:f ((pp)a{ :|
det { < -1
(¢p)a¢ (¢p)§§

Note that {F¢,,,}%, is a bounded set in C*(w(5)) and F¢,,, >V @, as p—o0
in C*(w(5)). Therefore @, can be transformed into a quadratic form uniformly in
p. Thus by applying a stationary phase method to (8.8) we have

IIp(x)_eik(2p+1)deik¢w(x)’1p Cou
|v<2!

(Dyehy(x, 0 & s K)oy I < C.
§=¢&p

For xeS;((14+0)k™®) we have X%,(X)eS,(k™9), |£5;(x)'|<Ca? for j>1. Thus
60,=1 near x(o,). By using ¢ ,(x)=¢(x)+d on I';, we have for xeI';

. . N . I —1 _
() =ik ae 2idgihenton, 3, DS 00,0 (1K) k112 < Ch

Since (7 @2ps1 =7 Poolm< Catt??. 1My~ sl 105, = € | <Co22, [E,| 410, < Co?? we
have

(Bay) () ~eto=1 5 (51 ¢, () k)1 DK.

Recalling the definition of &, we have from the above expansion the required ex-
pansion (8.12). Q.E:D.

By combining (7.8), (8.7) and (8.12) we have
N=1 2J X .
(8.13) lp(u, k)— ng (Eo ¢+ ikyk—I| < Cyk.
Proposition 8.5. For an integer l we set k=mlld. When |l| is large, an equation

inp
2(w)—y(u, k)=0
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has exactly one zero p._;y in Dy={u; |u—p_|<CA+|I)"12}, p_= —c0+i%(—l).
Moreover we have an asymptotic expansion of y_,

(8.14) = (o + G+ G2+ LMK G,
where {;, j=1,2,..., N, are complex constants.

Proof. Note that 2(u_,)=0 and %(W—y(-,k)) >2d—C|I]-, —‘%(9’(;1)—

y(u, k)) is bounded in Reu> —cq—c,. By applying the implicit function theorem
we see the unique existence of zero in D,. From (8.13) we have (8.14). Q.E.D.

Let u(x)#0 be an outgoing solution of
(i y—Au=0 in Q

(8.15)
u=0 on TI.

Since we have u(x)e C*(Q) from the regularity theorem for 4, u(x) can be
extended into O so that it is also in C*(R3). Denote by #i(x) the extended one. Set

(8.16) (g, —Ai=f(x) in R3.
Then from (8.15) f(x) e C*(R3) and

(8.17) suppf <.

Let g(x, u) be an outgoing solution of

(8.18) (w2—Au=f in R>.

Note that (8.18) can be solved for all pe C. From the uniqueness of the outgoing
solutions of (8.18) we have

(8.19) g(x, p—p)=1d(x) in R3.
Set
va(x, W=Ux(w [9(-, W]r,,

h(x, p)=g(x, ) |r, —v0x, W, .
We have from (8.19)

(8.20) v(x, p-y)=0 in R3-0,,
(8.21) h(x, p-y)=0 on TI,.
Set

U(X, ﬂ)=v1(x, ﬂ)+02(x’ )u)’
0306, w)=U(; Oh(-, )=(B(2 —y) ' FU+ &)+ O)h(-, ).

Evidently v is outgoing and satisfies
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(u2—4p=0 in Q
v=g on I,

for 0<|u—p-,l<C(logk)~'. Applying once more the uniqueness of the outgoing
solutions we have

o(x, w=g(x, ) in Q for O<|u—p,H<C(logk)".

Since h is C®(I')-valued holomorphic function in Reu> —cy—c, (8.21) implies
the existence of

(8.22) lim (2()—y(u, k)" h(x, p)=he(x) € C=(I'y).

[l e
Thus (2(u)—y(u, k))~'h(x, p) is holomorphic at y=p_;,. Then v (x, p) is holo-

morphic at y=p_,. Therefore lim v(x, u) exists and it satisfies
HHC-T)

v(x, pe—py)=[B(x, p; K)F(u, KXI+&(p; k)Dho(x)]y= i, -
Since
o(x, ) =g(x, pp)=u(x) in Q,
recalling the fact F(I +&)hy e C, we have
u(x)=cB(x, p-y, nl/d), ceC.
This shows that

dim {u: outgoing solution of (8.15)} =1.

9, Derivation of Theorem 1.

By using Theorem 5.1 of Chapter V of [7] we have the assertions (a) and (b)
of Theorem 1 from Theorems 2and 3. Then it suffices to show (¢). By Theorem 5.4
of Chapter V of [7] we have for ce R

F@=1+7(0). F@N=(2)| K. 0:0r0)d,
where K(w, 0; 6)=s(—0, w; o),
v_(rf, w; a)~f—i:—r~s(9, w; 6) as r—— 00,

v_ is the incoming solution of
(62+4p=0 in Q,

©.1)
v=e ioxe on T.

Note that

v_(x, w, 6)=v,(x, —w, 6),
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where v, is the outgoing solution of (9.1). Thus we have
v, (r, —o, a)~£_;iK(—9, w, 0).

Setting z=0+ iv we see that v, is analytic in z for Im z<0 and
v4(x, w, 2)=U(iz) (e7"**"*|;)(x).

Taking account of (4.20) and (4.21)’ of page 127 of [7] we see from (1.4) that K(0, w,
o) is prolonged analytically into {z; U(u) is holomorphic at =iz}, and has a pole of
order 1 at z=ip,,. Since we have

SL@)=(L @) =(U+H(2)*)",

we have from the argument of §4 of Chapter 9 of [11],

S(2)f= mM; o ?}} ”—“)-(f, Yn)+#(z)f near z=i"lpg.

On the other hand Corollary 3.2 of Chapter 111 of [7] says that
dim [null space of (uI — B)]=dim [null space of #*(ij1)]
=dim {eigenvector of o#°(ij1)* for eigenvalue —1}
=dim {p-outgoing solution of (u2—A)u=0in Q, u=0onTI}.

Therefore we have M =1 from Theorem 3. This proves (c).
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