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Remarks on null solutions of linear
partial differential equations

By

Katsuju IGARI

Introduction.

Null so lution . Let P (x ;  x )  be a  linear partial differential operator of order in
defined in a neighborhood of the origin in  R d .  Let 9(x) be a  real-valued function
such that 9(0)=0 and 9 ( 0 ) 0 0 .  Let S stand for the hypersurface defined by 9(x)= 0.
We assume S is characteristic to P(x;a x ), i.e., P„,(x; 9(x))= 0 on S .  Here Pm  denotes
the principal part of P.

We call a solution u of Pu =0 a  null solution if {0} e supp [ u ]  fx; 9 ( x )  01.
We are concerned, in the present paper, with the question firstly raised by Petrowski
whether there exists a  null solution of Pu =O . W hen all the coefficients of P  and
9(x) are analytic, the question is related to the inverse of Holmgren's uniqueness
theorem . Since null solution is non-analytic at S , the existence of null solution
implies also that the operator is not analytic hypo-elliptic.

M ultiplicity. By the way, we defined the multiplicity of characteristic hyper-
surface, [5]. Let x e S,

A x = au, fi); x(x))0

k=min + f} , fo r  (a , 18) e Ax

1=min WI, f o r  (a, fl)E Ax n flotl+IM
Here P ) (x ;  )= a 0 V „ , (x ; and if Ax  is empty, we put k =1= oo. We call the
pair (k, Ox  the multiplicity of the characteristic hypersurface S at x E S. Evidently,

This is an invariant notion with respect to  the change of
variables and also to the choice of 9(x), see [5].

Already known facts. Let us assume that all the coefficients of P(x; ax ) and
9(x) are analytic and the multiplicity (k, 1) of characteristic hypersurface S is con-
stant on S itself. I f  1<k , whatever the lower order terms are, there exists a  C"
null solution which is analytic for x  S. This fundamental theorem was proved
by S. Ouchi [10] preceded by the works of S. Mizohata [8], L. H6rmander [2],
J. Persson [12], H. Komatsu [7 ], and so o n .  However, when 1=k, the question
seems to take a different a sp e c t. Among such operators there are Fuchs type ones
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defined by M. S. Baouendi and C. Goulaouic [1], see also [5]. W e have con-
structed null solutions for them. [4]. They are distributions in general but analytic
for x ik S. We note that there are no C " null solutions for Fuchs type equations,
see [1]. Except Fuchs type equations, the author knows no general results yet.

If we don't assume the multiplicity to be constant on S , the problem becomes
naturally much more delicate and difficult. We know only some typical examples,
see, e.g. F. Trèves [14], S. Mizohata [9], and so on.

A im . In the present note, restricting ourselves to the first order equations, we
make further investigation into the question and reveal its new aspect. We will
need there a certain class of distributions (pseudo-functions), which will be defined
by means of improper integrals.

§ 1 .  Results.

1.1. Null solutions when the multiplicity is constant. Let P(x , y ; ax , ay ) b e  a
first order linear partial differential operator defined in a neighborhood of the origin
(x, y)=(0, 0) in R x R d .  We assume the hyperplane x=0 to be characteristic to
the operator P, namely P 1 (0, y; 1, 0)=0. Then we may write

(1.1) P=axmax+ bx"a y +c , ( x ,  y) G  R x Rd

where m , n, d e N = { 0, 1, 2,...}, m 1, ax =alax , b=(b ,,..., b d ) , a y =(a,,..., ad ) ,

ai =alay i , bay = b,0 1 + ••• + b d ad , and the coefficients are defined in a neighborhood
of the origin. We assume the coefficients to be analytic, or to be of C" class when a
and bi  are real-valued. For convenience, in this paper, the operator is said to be
analy tic in the former case and to be hyperbolic in the latter case.

We consider the homogenuous equation

(1.2) Pu=0.

We call a solution u of (1.2) a null solution if

(1.3) (0, 0) e supp [u] c: { x O} .

If we assume the multiplicity of the characteristic hyperplane x =0 to be constant
on itself and moreover to be finite (when all the coefficients are analytic, it is always
finite), then the following three cases occur.

C a se  A : 1=m a(0 , 0 )  O.

Case B: m  n, a ( 0 ,  0)0 O.

Case C: n  <m , b 1 (0, 0)0 0 for so m e  J.

The multiplicity of the characteristic hyperplane x=0 is (1, 1) in the case A, (m, m)
in the case B, and (n + I, n) in the case C.

Theorem A .  In the case A , there exists a  g ' (distribution) null solution which
is analytic (Cm) f o r x 0 when the equation is analytic (hyperbolic respectively).



Linear partial differential equations 49

There are no C  null solutions.

To state the result for the case B, we define { 4 0 } k =  m , . . . , 2  and {ck (x,
by the recurrence relations

(1.4) c(0, y)+(—k+ 1)a(0, y)4(y)=0,

ck _ ,= {c k + (— k+ l)a4+bx" - m+'03/1k (y)}x - '

where cm = c .  Besides, we put

(1.5) Q(x, y)=4(y)x - m + • • • + ). 2 (y)x - '.

Theorem B .  I n  the case B , the follow ing 1), 2) an d  3) hold, provided that
the condition c(0, 0)00 is assumed in 2) and 3).

1) If  f or any  integer v>0, there are  two constants 0<6, 6<1  (6  does not
depend on y) such that

(1.6) Re Q(x, y).y log x, f o r  0 < x  < 6 ,  IA < 6 ,

then there ex ists a  C ' null solution which is analy tic f o r x00  when the equation
is analytic.

2) If  there are two constants C>0 and 0< 0< 1  such that

(1.7) Re Q(x, y) C log (1/x), fo r 0  <  x <6, y i< 6 ,

then there ex ists a  g '  null solution w hich is analy tic (C ") f o r x 0 0  when the
equation is analytic (hyperbolic respectively).

3 )  If  f or any  integer v>0, there are  two constants 0<6, 6<1 (6 does not
depend on y) such that

(1.8) Re Q(x, y) .>v log(1/x), f o r  0 < x < 0 , ,  ly i  <6,

then even a distribution null solution does not exist.

Theorem C .  In  the case C, there exists a  C ' null solution which is analy tic
f or x00 when the equation is analytic.

Remark 1. En the case A, the equation is said to be of Fuchs type. When the
equation is analytic, the former part of Theorem A is a special case of K . Igari [4],
the latter part is of M. S. Baouendi and C. Goulaouic [1], and Theorem C is of
S. Ouchi [10].

Remark 2. Though Q(x, y ) is a polynomial in x - 1 , if  we admit for Ai (y)
functions, it can actually occur that

sup Re Q(x, y)=C log x - '(1 +  o(1)), a s  x +0,
bd<6

where C and 6 are some positive constants. We show it by an exam ple. Let

f ( y ) =  y - 3 e- 2 /Ydy, f o r  y > 0 ,  = 0 f o r  y
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Y
g(y )=5 .

o
y - 3 e - 1 1 Ydy, f o r  y >0, = 0 f o r  y. 0,

Re Q(x , y )= — f (y )x - 2 +g(y )x - 1 .

Then, by an elementary calculation, we see that

sup Re Q (x , y )= 1  log x  +   3a s  x + 0,
iyl<6 2 4 '

where 5 is a small positive constant.
Contrarily, when all k i (y) are polynomials in  y , such a  logarithmic behavior

doesn't happen, instead does an algebraic one, see e.g. L. H6rmander [2], Appendix.

We note that a part of the results stated above were announced in [3].

1 .2 .  Introducing a kind of pseudo-functions. There are apparently differences
among the three cases A, B and C. In the former two cases, one can find some
similarities to the ordinary differential equations. The main part of this article is
Theorem B .  We explain the idea to construct null solutions in the case B by con-
sidering as an example the ordinary differential equation

du (1.9) x2
d x  

+(a —  b x ) u  =0 , x  R,

where a 0 0 and b  are complex constants.
The function ea/xxb is its solution. The conditions (1.6) and (1.7) in Theorem B

correspond to  Re a< 0  and Re a = 0  respectively. In the former case, there are no
problems, because lea/xxbl x , 0 is evidently a  C  null solution of (1.9), and so we
consider the second case, writing a=  ia ,  i=  — 1 ,  ŒE R.

W e  a re  to  d e f in e  a  distribution (pseudo-function) Pf. (e ix /x x b )„„ as an
analoguous one to  the pseudomonomial Pf. (xm)x , o , m e  C, which is a distribution
defined through the notion of finite part (partie finie) due to J. Hadamard, cf. [13].
We want to define it in the form

(1.10) Pf. (e i x / x x b ).> o = aW (. — "keicqxxb)}x>0

where i t  is  an  appropriate non-negative integer and the differentiation is in the
distribution sense.

To complete the definition, we must define before-hand a (
x

- P) (eia/xxb), a kind of
improper integral. If Re b> — 1, we define

0 (
x

- 1 ) (ei"/xx b) = 1 x  e ia/x x bdx .

Integrating by parts, we have

3(x-11)(eiœ /xXb)—  
— 1

  e icc/xxb+24_ b + 2  at-o ( e i.xixx b+i)
ict icx x

for Re b > — 1 .  Let us remark that the right hand side has a definite meaning for
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Re b > — 2 . W e define the left hand side for Re b > —2 b y  th is  relation. The
right hand side has, in turn, a definite meaning for Re b > — 3 . Using the relation
(1.11) again, we define the left hand side for Re b > — 3 . Repeating this argument,
we define 0 (

x
- 1 ) (eia/xxb) for a ll b e C .  We define furthere 0(

x
- - 0 (e ( 1 /xxb) for every

e N  and b E C in the same way.
We see then that

a (x — ft)(eia/ x x b )=  (OR e b+210) a s  x +0.

Taking a non-negative integer y  satisfying Re b+21.1> —1, we define Pf. (eia/xxb)„„
by the relation (1.10). We are able to  show that this definition doesn't depend on
the choice of I), and that the pseudo-function Pf. (eia/xxb) x "  coincides with eiŒ/xxb
for x > 0  and satisfies the equation (1.9) in the distribution sense.

By the way, the equation (1.2) has a solution of the form

eQ(x , Y )xlioof (x, x log x , y)

where 2,,(y)= —c 1 (0, y)/a(0, y), f (x , y) is a function (analytic or C ") defined in a
neighborhood of the origin (x, y ) = ( 0 ,  0 ,  0 )  in  R x R x R d ,  and we can take
f(0, 0, y ) arbitrarily. W e w an t to  define  a  pseudo-function corresponding to the
above solution under the condition (1.7) and to show that it satisfies the equation in
the distribution sense. For this purpose, in §2, we will introduce in  a systematic
way a  class of pseudo-functions by means of improper integrals and state some
fundamental properties of th em . W e  note that such an idea as this has already
appeared in Y. Kannai [6].

1.3. Variable multiplicity case, An exam ple. Concerning the case of variable
multiplicity, we only add a simple exam ple. Let us consider the equation

(1.12) axinexu+ bynay u= 0, (x , y )e R 2 ,

where a, b e C, b 0; m ,  n  N , 1. The line x=0 is characteristic to the
equation; its multiplicity is (1, 0) for y 0  0, but a t the origin it is equal to (m, m)
when m - .n  and to (n + 1, n) when m >n.

Proposition D .  A bout the equation (1.12), the following 1) and 2) hold.
1) When n  is even, there is a Ce° null solution.
2) W hen n  is odd, if  alb is not real-positive, there is a  C "  null solution; on

the contrary , if  alb is real positive, even a  continuous null solution does not exist.
Here null solution is a solution (local) such that (0, 0) e supp {x 0}.

§ 2. A kind of pseudo-functions.

As stated in the paragraph 1.2, we introduce a kind of pseudo-functions, which
will be used in the following section to prove Theorem B, 2). The author believes
they will be useful to some other problems.

Let 0 4. = { 0< x< 6 , < 6 }  and 52= { x< 6 , Here x e  R , y =(y i ,...,
y d ) E R d, de N , 0< (5 <1 is a constant.
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Definition 2 . 1 .  L et a e R .  W e say  tha t a  function a(x, y )  defined in  0 +
belongs to A ,  a e A a , if  a(x, y) and all o f its derivatives with respect to x  are
continuous in 0 + and satisfy the inequalities

(2.1) 1.0.?,a(x, y)I i x- -  ,  (x, y) E  0 +

for every j E N .  Here C i  a re  some constants which may depend on j. We denote
A = U „ R  / 16

Proposition 2.1. 1) If  a G A a  and m e R, then x'na e

2) If  a E A a  and b E An" , then ab E A a + a  a n d  a + b E 246 "  c r  =min {a, .

3) If fE (Q + ) , then f E A°.

4 )  If  a E A a , then 0„a e An - 1 .

The proof is evident.
Let Q(x, y ) be a  continuous function defined in Q .  W e  assume it to satisfy

the following condition:

Condition (0 ).  There exists a  real constant K such that

(2.2) Re Q(x, y).. K log (1 /x), ( x ,  y ) e  0 +

and 2) 1 2 . = ( 8 / a x ) Q  does not.vanish in Q + a n d  there is a constant in >  1 such that
Q„e A - 'n and Q; 1 =11Qx  E

We define a kind of improper integral.

Definition 2.2. —0 (
x

- n) (eQa), a e A , p E N —
We define

(2.3) 0;,° ) (eQa)=

a(x . - -
0

( eQa)=1
0  

••

for e v e ry  a e A

• 1el2 ( x, Y)a(x, y)(dx)n,
0

f o r  p e N

and a e U , > K _ By integration by parts we have

(2.4) 0(x- P) (eQ a) = a (
x

- 11+ 1 ) (eQQV a) — (3(
x

-  n) (e ( 2
 x (Q,7' a))

for a E  U , > K - 1 A " .  To define a,c(— 0 (eQa) for all a e A , we make use of this relation,
and concering p, the mathematical induction. Assume tha t a(

x
- n+1 ) (eQa) has been

defined for every a e A .  Given a  real number a ' arbitrarily, we assume also that
Ox

( - 0 (eQa) has been defined fo r  every a e A a .  N ote th a t i f  a e A n, then
QV a e An+nl, ax (Q ;la )e  An+n' - ' ,  and that in> I. W e see then that for a E A a  with
a + m -1 >  a ' the right hand side of the relation (2.4) has a  definite meaning. We
define a (eQa) for a E  A a  w ith  cr >  ' —  m ± 1 by the relation (2.4). Since a' is an
arbitrary number and m> 1, 0.„( - 0 (eQa) is thus defined for all a e A.
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Proposition 2.2. For every p E N,

1) 0,2,0 (
s

- g) (eQ a)=e (2 a, f o r every a E A,

2) at
x

-  ' )  x (e(2 a)=0 (
s

- ti ) (eQa), f o r every a E A.

P ro o f .  1) For p = 0  it is evident. Assume now that the identity is true for
y - 1 .  F o r  p , if a e A a  w ith a> K - 1 ,  it is also evident. Given a  real number
arbitrarily, assume it  is  tru e  for every a E I V  with (7> a'. By the relation (2.4)
we have

ON(s-ii)(eQa)=01.,̀,0(s-P+')(eQQ;ia)— ki)(e(20 (QV a)).

If a + m — 1>a' , we see by the above assumption that the right hand side is equal to

s (eQQ;' a) — eQ0s (QV  a)=

Thus the identity is true for every a e Au w ith  > a' —  m +1. Since u' is an arbitrary
number, we get the claim.

2 )  0 (x - P- I ) 0 x ( e Q a ) = a (x - f i - i ) (eQ (Q s a  + as ))

=0 (
s

- A) (eQa)— 0(
x

-  P- 1 ) (00 (QV  Qs a))+ 0(
x

-  P - 1 ) (eQ  a x )

=0;,- P) (e12a).

Thus we have the second claim. Q. E. D.

Let a E A . U s in g  the relation (2.4), with a  non-negative integer y such that
y (m -1 )>  K - 1 ,  we have

0 (
s

-  ti) (ef2 a)= a (
s

- 1L+1 ) (eQ a,)+1 x  • • • eQr,(dx)P,
o o

where a 1 = Q ' ILL ( r1= (_03,Q ;1)a.

Clearly a, e Ac+m and r, - 1>K -1  A c i ,  which depend on y but not on p .  Moreover,
for every p' E N , there are a,. E A u+mw and rk E U 0 > K _ i Aa such that for every p'

e (
s

- P) (eQ a)=8 ( - A+P" ) (e Q a0 + Ez'=, 1x  ••• eQrk (dx) 4 - k+1 .
o o

If a+ my' > K - 1 ,

(2.5) 0(s- ti ) (eQa)=1 x  • • • 1x
 x

 ) (eQa)(dx)P - A"

and further, 0 (
s

- P" ) (eQa) satisfies the inequality

(2.6) lax(-A")(e2a)l const. x - 1 +1 , (x , y) E 0 +

with some constant a >O.

Proposition 2.3. L et a E A c, and p , p ' be nonnegativ e integers satisfying
and a + m p ' >  K - 1 .  Then as a distribution in D,
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an 0 (
x

-  0 (eQa)} x , 0 =  {in-  A" ) (eQa)} x „ .

Here { f } > 0  stands for the function w hich is equal to f  f o r x > 0  but identically
vanishes for

By the following lemma, this proposition follows immediately from (2.5) and
(2.6).

Lemma 2 .4 .  Let f ( x , y) be a measurable function defined on Q , and satisfy

If(x, const. x- 1 +2 , (x , y )E  0 +

with some constant a > 0 .  Then

{f} x > 0 =a x i f ( x ,  y ) d x } , in g ' (Q) sense.
x>0

The proof is very elementary, and so we omit it.

Definition 2 . 3 .  L et a e A6  a n d  it e N  such  tha t cr+ m y> K  — 1 . We define
the pseudo-function Pf. (eQ a), 0  by

(2.7) Pf. (eQ a)x > o= ana." ) (e (2a)} x>o

which is a distribution in Q.

Surely the right hand side of (2.7) is a distribution in S2 and does not depend on
so this is a well-defined n o tio n . We have from (2.4) an important relation

(2.8) Pf. (eQ a)x> o = l3 Pf. (eQ Q;'Ox >0 — Pf. (e Q 0 x(Q; 10 x > o

Theorem E. The following 1), 2) and 3) hold.

1) ax Pf. (eQa)x , 0 =Pf. tax(eQ a»x>o•

2) Let k E N  and A "  ={ a{a e A ; Ofly a e IPT- Ifil f or 1f31_1(}. Assume QE
Then f or every a e U c ie R A c ;k ,

Pf. (eQa),, 0 = Pf. (0(eQa)) x >0 f o r  IA
3 )  If f  e  .4 ' ( 2), then fPf .(eQa) x > 0 =Pf. (e Q fa)x>o.

P ro o f . 1 )  a x a'ffa (
x

- P) (eQa))x > .0

= a..+ 1 (a ( ' - ' ) ax(eQ a))x>o= Pf. (ax(eQ a))x>o-

Here we used Proposition 2.2, 2).
2 )  F or simplicity we prove the claim only fo r I/31= 1 .  B y  the  assumption,

Ofly a+aaN  E A 6 - 7^, if  a e Acr;k. Hence if a — m > K— 1, what we want to prove is
evident. Now given an arbitrary number a', we suppose the claim is true for o- > a'.
By means of (2.8) we see that if a + m -1 > a', then

al PE (e2 a)x>0

=ax Pf . (8 (e(212 ; 1 0).> o 04(e(20x(Q,Tia)))x> o
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=Pf. (01:,(el2 a))x , 0  .

Thus the claim is true for a>  c' — 1, too. Here we used 1) proved above. Since
a' is an arbitrary number, we get the claim for every a.

3 )  If a e Ye with o- > K -1 , the claim is evident. Now let a' be an arbitrary
number, and assume the claim to be true for o- > a'. I f  a +  m — 1 > o- ', then

f  Pf. (eQa)x > 0 = Pf. 0.(e Q fQ; 1 0 .>0

— Pf. ( O M ; I a)). > o — Pf. (eQ  fa .02V o

= Pf. (eQfd).› o •

Here we used the relation (2.8) and 1) proved above. Since a' is an arbitrary number,
we have the claim for every a. Q. E. D.

§ 3. Proofs.

3 . 1 .  Proof of Theorem A .  W e m ay suppose th a t  a 1 and n =1 , s o  the
equation we consider is

(3.1) Pu = {x0x + xbay + = O.

This is an equation of Fuchs type. When the equation is analytic, the result is a
particular case of K. Igari [4]. and so we consider only the hyperbolic case.

Let n(x, y) be the solution of gx + Iniy =0  with /KO, y )= y . We denote by V'
the change of variables: =  x , = g(x, y), and by V1 - '  its inverse: x = .  y =y (, n ).
The equation (3.1) is transformed into

(3.2) Pv = {0 4 + -e}v= 0,

where E = = n)).
Now let F(z) be the gamma function. We know that 111 (z) is an entire function

of z e C .  Let c(n) be a  C°' function. We define the distribution Kr on a neighbor-
hood of the origin g)= (0, 0) in R x Rd by

(3.3) = .0 '4̀{W ( ") -"/ “ (701) +12 + 014>o

where it is a non-negative integer such that Re o-(0)+p> —  1. Note that a(n) + y + 1
differs from the poles of T(z) in a neighborhood of g = O . It is  easy  to  show the
relations

(3.4) ad"c=17,-1,

By the mean value theorem, we write — n)-= a(n)+ n). Let 8( , g)
be a  C " solution of 04 -  0 = 0  w ith 0 (0 , 0 )0 0 . If we put V= 0( , g)17,7 ,  then  V
satisfies the equation (3.2), and consequantly U = Vo V' is a distribution null solution
of (3.1). Q. E. D.

Remark 3 . 1 .  When d = 0, namely in the case of one independent variable, a in
the definition (3.3) is a complex constant and we can see easily that
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Pf. (xa) x , o /F(a + 1 ), if a  — 1 , —
Y,=

if a= — 1, 2,...,

which is the distribution appeared in  L. Schwartz [1 3 ]. W e no te  further that
{x(dIdx)— o- } K .=0  in the distribution sense fo r every 0 E  C , but
{x(dIdx)— 0 } Pf. (xa).„„ 0 0 when a= —1, —

3 .2 .  Proof of Theorem B .  We may suppose a  1 and m = n .  Put

(3.5) u =u, exp {Q(x, y)}, P ,=x a x +x ba y +c, ,

then the equation becomes

(3.6) Pu ={xmax +xmbay +c} u =x 1n- ' eQP1 u 1 =0.

Note that P , is an operator of Fuchs type.

Lemma 3.1. Let P ,  be analy tic (or hyperbolic). Put A ,(y)= — c 1 (0, y ) .  Then
f or any  analy tic (C  re sp .)  function g(y ), there is an analy tic (C" resp.) function
f (x , y) of (x, y ) e  R x R x  Rd defined in a neighborhood of the origin such that
f (0 , 0, y )=g(y ) and

(3.7) P 1{xA1(3)f(x, x log x , y)} =0, x #0.

This lemma will be proved later. Put

u i (x , y )=.rli(o f (x , x log x, y).

Then eQ( x , Y) u i (x , y) satisfies the equation (3.6) for x > O . U nder the condition (1.6),
eQu, tends to 0 with infinite order as x tends to  +0 . T herefore  if we take g(0)#0,
{eQu 1 }x , 0  becomes a  Cs° null solution of (3.6). We have thus completed the proof
of the first part 1).

We prove next the second part 2). Take 6 small and put o- =sup iy i „  Re /14 y ) .
Then it follows that u, E  A c  a n d  (u 1 )y E r■,,„ A ° . B e s id e s , Q(x, y )  satisfies the
condition (0 ) , and Qy EA - m+1 ;  particularly the existence of Q; 1 is assured by the
assumption c(0, 0)0 0. Thus all the conditions required in  the  preceding section
a re  satisfied. U sin g  T h e o re m  E, w e see  th a t th e  pseudo-function distribution
Pf. (eQu ,)„ 0  satisfies the equation (3.6) in the distribution sense.

Now we prove the last part 3). Let u be a distribution solution of (3.6) vanishing
identically on x <O. Applying Lemma 3.1, we see that there is a function h(x, y)
such that h(0, 0, 0)00 and if we put 0= x - Â.(Y)h(x, x log x, y) w ith  1(y)= — c 1(0, y),
then {xax + xbOy — c i }0= O. W e denote

g = {x - me- Q(x , Y)x - A i(oh(x, x log x, y)}, > 0

r={ e - Q(x , Y)x - 1 1(oh(x , x  log x , y )1„ 0 .

Then because of the condition (1.8), g and r are C ' functions, and further gP =
as a  differential operator with C "  coefficients. Here P0 =0 ., + bay . Since Pu =0,
it follow s that P0 ( ru ) = 0 .  By th e  uniqueness theorem o f the  non-characteristic
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analytic (hyperbolic) Cauchy problem, we see that ru = 0  and consequently u =0
for x00.

Take a  function x(y) e Cnyl <(5/21 w hich is equal to 1 fo r  IA _(5/4. Note
that suPP [Zu] {x = 0 , IYI< 512 }. We see easily that there is an  integer n O such
that

<Xu, (P> =(Xu, kt oY ) ) , for e v e ry  go E g

cf. [2]. We define uk S A Y I < I 5 / 2 1  by

X
k

\X u, k l  til(Y ))=<uk, 0>y , k  =0 , n.

Then for every 9 E 9{1X1 < 6 , y < 5/4 }

0= <xu, 'PO  = kt o <uk , {O'Y  P(p)}(0, yp y .

If we take such go that 01
. 9(0, y)= 0 for every k <n , we have

<un, c(0 , Y)( (P)10 , Y p y = 0 .

If we take 6 small, c(0, y) 0 0  for I y  because of the condition c(0 , 0 ) 00 . It
follows therefore that u,, = 0  fo r I yl 6/4. Repeating the same arguments, we see
that all uk vanish for IA  (5/4. Therefore u= 0 in a neighborhood of the origin.

Q. E. D.

Proof of  Lemma 3.1. Analytic c a s e :  There exists a solution of the form

x i (lo g  x )kr i i ( Y )  E E ,    uik(y)j=0 k=0 IC!

with an arbitrary analytic function uoo (y); the series converges in a neighborhood
of the origin, cf. [4].

Hyperbolic case: We use the same change of variables as in the paragraph 3.1.
The general solution of the transformed equation F', v= { 0+ O i ly =0 is given by

y= (p(ri)exp — (ei lod4
with an arbitrary C " function 9 ( 0 .  We can write

exp { — (0, 17) log } =exp { — c 1 (0, ri(x, y)) log xl

= xA, (Y) exp {h(x, y)x log x},

with a certain C" function h(x, y). Thus we obtain the claim. Q. E. D.

3 .3 .  Proof of Theorem C .  Let p  be an integer m a x  {1, n}. We have

P[exp {x - Pf(x, y)}]

=xn - P exp {x - P f }  {bfy + axn1 - "f x — paxm- n- 1  f+cxP - n} .
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By the assumption, m > n and b; (0, 0)00 for some j. Therefore there is a solution
f (x , y) of the equation

bfy + axm - n f x — paxm- n- 1 f+cx P - n =0

with f(0, 0)=  —1. T h e n ,  {exp {x - Pf (x, y ) } } x , 0 ,  w h ic h  is  a  Cs° function in  a
neighborhood of the origin, is a null solution of the equation (1.2) Q. E. D.

3 .4 .  Proof of Proposition D .  For simplicity we consider only the case tn= n =1.
If a =0, the proof is evident, so we suppose a # 0 .  We show first the sufficiency.
Let z= b log x —a log y and n 1 = {0<x <1, 0 < y <1}. Since alb is not real positive,
there is a constant ). C such  tha t — ir/2< —arg (— ).b)=arg (2a)< n/2. Let a =
larg < n/2, and let A(— Œ, a)= {Z  E  C ; —a < arg z < a } . L et a  be a  con-
stant >1 such that 0  o- a< n/2. We see easily that the function exp — (Ab log x —
.1a log y) 6 } is a solution of (1.12) in n i . We want to prolong it to a full neighborhood
of the origin.

I f  (x , y )En i ,  th en  (,12)6 A(—aa, ou). L e t  K > 0 be  a n  arbitrary constant.
If 1,121a- 1  cos osa we have

Re ().z)°> lAziu cos ac  K lA z1  K Re (Az).

And therefore

lexp —(Az)al < exp — K Re Qz)1= x- K R  e ( A b )  y K R  e ( A a )

Since — Re (Ab)> 0, Re (Aa)> 0, >  1  and cos oc> 0, we see that for any constant
N > 0 there is a constant (5> 0 such that

lexp {—().b log x — /la log y )a ll xNy",

for (x, y)E n {0 < xy< (5 }. Therefore

{exp — (Ab log x — Aa log yr11.,,x>00
,>o

is infinitely differentiable in a neighborhood of the origin and satisfies the equation
(1.12). Here { f } x > .0 4 „  stands for the function which is equal to f  for x >0, y >0
but equal to 0 otherwise.

Now we prove the necessity. We may suppose both a and b are real positive.
In the first quadrant, the characteristic lines are given by

b log x — a log y =constant.

Every point (x , y ) is connected with the origin (0, 0) by some characteristic line.
Let u be a continuous null so lu tion . Since every continuous solution must be con-
stant on each characteristic line, it follows that u(x, y)=u(0, 0)=0 for every (x, y)
of the first q u ad ran t. By changing y w ith — y, we have the same conclusion for
the second quadrant. Q. E. D.
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