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On the Levi condition for Goursat problem
By

Yukiko HASEGAWA

We consider the Goursat problem in the class of C®-function. First, we
consider the case of constant coefficients. We give a Levi’s condition which is
analogous to A. Lax’s theorem [2] for the hyperbolic operator. Next, we consider
the case of variable coefficients. In this case we give a sufficient condition for
wellposedness of Goursat problem.

Part 1, constant coefficients

§ 1. Introduction and results.

Let us consider the following differential operator.

(.1y P(D,, D,, D)= i CiD,, D,)Dr=J, t=0, xeR', yeR",
=
_ .0 __.0 (_:;0 _ .0 _. 00
D, = oy D,=—i ,Dy—( lay,’ layz,..., zayn)where
C4(¢, n) is a polynomial with constant coefficients of order <j and C(1, 0)=1 (C, is

the homogeneous part of degree | of C)).
Let us consider the following problem (we say Goursat problem).

Pu=0, t=0, xeR', yeR"
(P) Diu(O, x. y)=¢i(x. y)€ ey 0SiSm—1-1

Diu(t, 0, y)=y;€8,,, 0Zj<I-1, 120
where we impose among {¢;} and {y;} the following compatibility condition;
(C) Dig{0, y)=Diy(0, y), 0<ism—I—-1, 0<j<I-1, yeR"

We say that the Goursat problem (P) is &-wellposed if for any data {¢,}, {¥;} with
compatibility condition (C), there exists a unique solution u(t, x, y) e Eirxpy 120,

T. Nishitani [3] investigated the above Goursat problem (P). Some of his
results are the following:
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Theorem 1.1. In order that (P) is &-wellposed it is necessary and sufficient
that the following condition (G) is fulfilled.

There exists a positive constant ¢>0 such that for
G) every 6 with 0<|é|<e, P(D,, D,, D,) is hyperbolic with
respect to (1, 6, 0).

Theorem 1.2. If (P) is &-wellposed, then the principal part P, of P is
decomposed as follows:

Pm(r7 C# n)zél(C’ r’)Qm—l(T* C, '7) .

i.e. Cj(C, n) (the principla part of Ci({. n)) is divisible by ¢ n). And moreover
Q.. is hyperbolic with respect to (1, 0, 0).

Theorem 1.3. If (P) is &-wellposed then there exists a positive constant L,
the root (&, n; r) of P(z, E+ir, n)=0 has the following estimate;

(1.2) Im(& n; r)>—K|rl, (&, n)eR"!, reR', |r|>L,
where K is constant which is independent of (£, n).

Theorem 1.3 is correspond to Hadamard’s inequality for hyperbolic operator.
Theorem 1.3 is due to Corollary 3.1, p. 184 in [3].

Theorem 1.4. (P) is &-wellposed then C(D,, D)) is hyperbolic with respect
to (1, 0).

According to Theorem 1.2 and Theorem 1.4, if (P) is &-wellposed then P, is
the following;

(13) Pae. &= F1 €= 1,00 -

:V.‘. vi=1, :vd pi=m—I
i= i=1 :

where 4,(), 1((, n) are homogeneous degree 1 and real for neR", ({, n)e R"*!
respectively.
Here we assume that the multiplicity of roots are constant. Namely

Am#A;(m)  for j#j, neR", n#0,

wl,m#w(l ) for i#i', ({,meR™, (( n#0,0).
Let

(1.4) P=P,+> P,_,

where P,,_, is a homogeneous part of degree m —k of P.  Our result is the follouing;
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Theorem 1. Under the assumption (1.3) and (A), in order that (P) is &-well-
posed it is necessary and sufficient that P, _, is the follouing

(15) Pm—k(t’ C’ 71)
S )Y § [ DR § (AN
kytka=k j=1 i=1

where 0<k, <max v;=V, 0k, <max p;=p
J i

(C—Ay) k=1 Jor v;—k,=0,
(t—1)ri~ka=1 for p;—k,=0
and g, (t, {, n) is polynomial of (z, {, n).

Before proving this theorem we make the reduction of the operator P. First,
let us put m—I=m’. The order of 7 of P,,_, is at most m’. Then we can write

(1.6) P=C1,"_I]1(T—ff)”‘+§l P

where the order of t of P,,_, is at most m'—1. Let C,, be the homogeneous part
of degree |—h of C,,

.7 C,=C+C +C++Cy.

Because of Theorem 1.4 and A. Lax’s theorem, C,, is divisible by ﬁ (E—=4y)n
j=1

Let us write

IA

°
V.

(18) Cun=au@ D ITC=2)*  for

n”

Remark 1.1. The homogeneous part of degree m—k of C, [](t—1)r" is

i=1

divisible by [T (¢— )+ Tz -,
i=1 i=1

§2. The proof of necessity of Theorem 1.

At first we prove the following:
Proposition 2.1. If(P) is &-wellposed then P,,_, is divisible by I""[ ((CP Dt
Jj=1
for k<.

Proof. Let us give a rouch sketch of the proof of the proof of Prop. 2.1.
We assume (P) to be &-wellposed. If for some k and j,, P,,_ (7, {, n) is not divisible

n’ vjky n”
1) According to the theorem of analytic functions [1({—4,) - IT (z—7;)°i7*2 is polynomial of
j=1 i=1

(z, &, 7).
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by ({—A;,)"o7**! then we can find a root (¢, ) of P(z, {, n)=0 which does not
satisfy the inequality (1.2) in Theorem 3.1.
Without loss of genelality, we can consider jo=1. Put

2.1 Bt &om=C =4 Qe i(x, Lon)

I GO NONFIENN Y

s

Then

22) PG, (. m=C, 11 (=)

+ F, C— 21 QW (. Lo )

vy vi—k

35 C=2m) @t M+ Ry, (T L 1)

k=1 s=0

Where R,,—,,-1(t. {, n)= S Pk
k=v;+1

Being A,(7) homogeneous degree 1, we have

(2.3) M =Ini(w), neR", weQ={n;|nl=1}.
Put
(2.4) {=nlAy(w)+ir+é

where r, f are real and |r|> L (appear in Theorem [.3). And consider the root of
2.5).

@.5) P(z, InlAy(@)+E+ir, n)=0

If we show the following two lemmas, the proof of Prop. 2.1 is complete.

Lemma 2.1. If ¢\, _(t, ) %0 for some (k, s) with 1 <k <v, and 0Ss<v,—k,

m—k—s

then there exists t, a root of (2.5), which has the following expantion in the neithbor-

hood of |n| =0 for some r. é and w.
(2.6) T=clpl*+cn* +cnle +
a>a' >a -, a>1, Imc<O.

Lemma 2.2. If ¢%), (1, n)=0 for some k (1<k<v,). then for some r, é and w,

m=yvji

there exists a root of (2.5) which has the following expansion in the neithborhood
of Inl=co.

2.7 t=clpl+cInl* +c"nl*" -

1>a'>a">--+, Imc<O.
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Proof of Lemmas. Dividing P(t, {, n)=0 by C,, we have
(2.8) IT(z—1)%

FKE M 3 O (5 =20 TTE=4)")

vi vi—k

FK 3 (e =207 TTC=4))

k=1 s=0

+KRm—v1-l(t’ C’ r’)/ l:[(c_)'_,)vj=0

where K(¢, n)=C(¢, m/C(L, n).
Because of (1.7), (1.8), for |ir+¢| large, K({, n) has a limit when |g|—oc0. Let

(2.9) llilm K(nlA (@) +E+ir, n)=R(E+ir, w).
n|—o
Moreover we have
(2.10) Clim K@E+ir, w)=1.
|&+ir|—>o

For fixed w e Q, let us write
Pks
(2.11) gt n)= Y dieptInn e
=

where p,,<min{m'—1, m—k—s} and a,,,, #0. Let (2.6) be the root of (2.8)
and let substitute (2.6) into (2.8). The highest order of [n| in [T(z—1)? is m'a.

The order of |5| in the second and fourth terms in (2.8) is less tl{an a(m’'—1). By
(2.11), the highest order of |n| in g%¥, _(x, n)/{(—A)"~* I;[ (E—2,)4} is
J#+1

(2.12) appst+m—k—s—p,—(1—vy)
Let o, be the o, which is obtained by (2.12)=m’a. Namely

(2.13) o={m'=pi+ (v, —k)=s}[(m' = p) =1 +{(v =k =3)/(m" = p))} .

Notice that a,,>1 for 0<s<v,—k. Let

(2.14) a= max s
15kSvi,0Ss<v,—k
(2.15) A={(k, 5); m,=4},
then
(2.16) Aps+m—k—s—p,—(1—v,)<am’, for (k, s)éEAo.

Let a=4a in (2.6), the coefficient ¢ of |n|a is determined by the follouing equation;

@17) 4K T ey, [lir+ 8 T (@)= 1)) 1=0.
J

(k,s)e

We will show that for some r, é the equation (2.17) has root ¢ with Imc<0. Let
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(2.18) max, pi,=p.
(k,s)eA
(2.19) A'={(k, 5); (k, s) € A, pys=P}.

Differentiating (2.17) p times by ¢, we have

(2.20) P +RK, T apllir+§ne=0,

»S)e

where K, is constant independent of r and é (but depends on w). By (2.13)

(2.21) k=(1—&)(m' —p)+v,—s, (k, s)eA"

Namely when (k, S)Efi', if s is fixed then k is determined unique. Then

Y Ay 5/(ir+ &1 is polynomial of 1/(ir+&) and is not identically zero.
(k,s)eA’

When m’— p=3, there exits a root of (2.20) such that Im c<O0 for r, i with
2. a,‘,s,;’,/(ir+é)"l‘s¢0. In the case m'— p<2, considering (2.10), for proper r,

(k,s)eA
% with |ir+¢| large, (2.20) has a root ¢ with Imc¢<0. Because of Lemma 8.1 in

Appendix, (2.17) has a root ¢ with Imc<0 for some (r, E)ERZ. This complete
the proof of Lemma 2.1.

Next let us prove Lemma 2.2. Because of Lemma 2.1, g%, _ =0 for k+s#v,.
Then (2.8) becomes the following;

(2.8) U (T—T)
FRE M) ¥ O (e &I =20 T (=A™

FK 3, (e mIC—A) TT (=)
k=1 J#1
+ KRy -, -1(t, L mTT(C=2;)"1=0.

Let (2.7) be a root of (2.8'). Substituting (2.7) into (2.8), the highest order of |z| is

’

m'. Consider the coefficient of [|™". Because of (2.22),

(2:22) i(InlAy (@), M) = Inlt (A (@), @),

the coefficient ¢ of || in (2.7) is determined by the following:
(2.23) ITc—%)»
j=1

+R 3 g2, (e, o)flir+ 8 TT {h(@) = A@)) /=0

where 7;=1,(4,(w), w). For proper (r, é)eRz, there exists a root ¢ with Im ¢#0.

If we replace w by —w, ¢ becomes —c. Then for some (r, £)e R? and w e @, (2.23)
has a root ¢ with Im¢<0. Thus we complete the proof of Lemma 2.2.
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Next, we prove the following:

Proposition 2.2. Let us consider P,,_(z, {, n) be a polynomial of t—1; (=%).
If (P) is &-wellposed then the coefficient of T#1=5 is divisible by ({—A7n))*i~**s for
1<j<n’ and 1<i<n", where p;=s2=1 for 1Sk<v; and p;2s>k—v; for v;<k<
Vj+p,'.

Proof. Without loss of generality we can consider i=1, j=1. And let us
write v and p instead of v, and p, respectively. In the case 1 <k=<v, by Proposition
2.1 and the theory of analytic function we can write

(224) Pk = (= L) 127 g2, L)
+ 3= ) *0g, 4L ),

Qi (A (m). M) =0, w(k, s)2v—k+1,
where w(k, s) is not negaive integer and

v—k+1+p—1+ order g, , =m—k,
(2.25)

p—s+w(k, s)+ order q, ;=m—k.

In the case v<k <v+p, we can write

(2-26) Pm—k=fp_(k_v)qk,k—v(f’ C’ '7)

+ 3 A )etog, (L),

s=k—v+1
where q;,(2,(n), ) =0, and
p—(k—v)+ order g ,—,=m—k,
2.27)
p—s+aw(k, s)+ order g, ;=m—k.

We are going to prove

(2.28) w(k, s)=2v—(k—s).
Let
. -~ Voo v+p—1
2.29) PG+7, G =Put 3 it 3 Poit Ry,

where P, =C, ]"'[ (t—1)ri=Cji*r Q (f+7,—1,)?. Substituting (2.24) and (2.26)
i=1 i#+1
into (2.29), we have

@30 P=Ppt 3 (= hm) g7 L)

+ z éf”"‘(c — 2 ()**9q, (€, n)
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v+ﬂ—1~ -
+ Z Tp_(k—‘,)qk,k—v(r$ C’ ,1)

k=v+1
vtp—1 4 - .

+ 2 2 Tp_s(c_ll(”))w(k’s)qk,s(c’ )1)+ Rm—(v+ p)*
k=v+1 s=k—v+1

Let there exist (k, §) and & € Q such that

(2.31) gio(A(d), d)#0, w(k, §)<v—(k—35).
Putting

(2.32) n=n'®, n'eR!

(2.33) =M () +ir+E=na(d)+ir+E,

and consider the root T of (2.34),
(2.34) P(+1, {, n)=0.
If we show the following lemma, the proof of Proposition 2.2 is complete.

Lemma 2.3. When (2.32) and (2.33) hold, (2.34) has a root ¥ which has the

°

following expansion in the neithborhood of n'= oo for some r, £,
(2.35) F=cn'etc'n'® ' + -
a>o' >o" >+, O<a<l, Ime<O.
Proof of Lemma 2.3. Dividing P(i+1,, {, n)=0 by C({, 1), we have
(2.36) f”il;ll (T-%){K(, )/ l:[ (L—4;)"7} %

X {3 (= hn) 12 1g 0 (E )

+ 3 £ - Amr 0 )

v+ﬂ—1~ . -

+ T° ( v)qk,k—v(ta C* 'l)
k=v+1
vt+p—1

p
+ XX -4 g (L A Ry} =0,

k=v+1 s=k—v+1

where T,=1;—1,. Substituting (2.32), (2.33) and (2.35) into (2.36), we consider the
highest order of #’ in the each term of (2.36). The order of n’ of 7# [J (T —1;)r: is
i1

ap+m’'—p. The order of ' of the secound, the fourth and the last terms of (2.36)
are less than ap+m’'—p, and moreover are not equal to ap+m’'—p. The order of
n' of the third and the fifth terms are a(p—s)+order g, ,—(1—v). By (2.25) and
(2.27)

(2.37) a(p —s)+order g, ,—(I—v)
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=a(p—s)+m—k—wk, s)—p+s—1+v
=ap+m —p—as+s+v—k—w(k, s).

When w(k, s)=s+v—k, (2.37) <ap+m’—p. Then, in this case, c=0. When
w(k, s)<s+v—k, let a(k, s) be o which satisfy the following:

(3.38) ap+m —p=ap+m —p—as+s+v—k—w(k, s).

Namely

(2.39) ak, s)y=STV-k—wk,s) _ | ktwlk, )=y
s s

We have

(2.40) O<ak, s)<1 for w(k, s)<s+v—k.

The first inequality of (2.40) is obvious. Let us prove a(k, s)<1. In the case v
k=1, by Proposition 2.1 w(k, s)=v—k+1, then afk, s)<1. In the case v<k,
because of w(k, s)=0, obviously we have k+w(k, s)>v. Then a(k, s)<1. Let

(2.41) a=max a(k, s)
(k,s)

and let

(2.42) r={(k, s); a=o(k, s)}.

We have (2.37)<dp+m’'—p for (k, s)§ I'.  Let a=d in (2.35), coefficient ¢ of n'# is
determined by the following:

(2.43) e [T(—%)»
i#1

+R X ers(ir+ Eekng, (A(d), d)/{(ir+ &) x

(k,s)ell

X [T(A(d)—Af))"7} =0,
Jj¥#1

where #;=%,(1,(®), ®) and K~1 for |ir+é°| large. We want to show that (2.43)

has a root ¢ with Im ¢ <0 for some (r, E)e R2. For(k,s)erl, a=1 —w,

then

(2.44) w(k, s)—v=s(1-a)—k, (k,s)er.
Let

(2.45) §= min s

(k,s)el
By (2.36), §=2. Differentiating (2.43) p—3 times by ¢, we have
(2.46) S+K Y K(k, 5)(ir+Eetan—r =,
r

(k,s)e
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where K(k, §) is constant which depends on k, § and @ but independent of r, f
By (2.44), (2.46) becomes (2.46).

(2.46) S+K Y Kk, §)(ir+Epu-ak=0.

(k,5)el

Inthecase §=23 ors=2and §5(1 —a)—k#0, (2.46") has a root ¢ with Im ¢ <0 for some

suitable (r, 53 € R2. Let us consider the case §=2 and §(1—a)—k=0. Namely
k=2(1—a). Because of that 2(1 —a) is positive integer and 0<da < 1, we have o‘i=%
and k=1. In this case if we replace ' by —#’ in (2.32), K(k, §) (in (2.46’)) becomes
—K(k, 5). Then (2.46') has a root ¢ with Im ¢ <0 if necessary replacing ' by —#n'.

By the Lemma 8.1 in the appendix, (2.43) has a root ¢ with Im ¢ <0 for some (r, f) €
R? if necessary replacing n” by —n'.

The proof of necessity of Theorem 1. Paying attention to the multiplicity of the
roots t;, we put

[Te-)r={—t) - 1) (= )} =T a) (=T}

AT =T, ) (T T )
where ny=n",
PI=P2= =Py =01 > Py g | = =Py, =03> >, gy = =p, =0,>0.
And let us write
(2.47) P,_i(t.ln)
= [T@—0) g, (. Lo+ [T -1 a5 Lom)

+ U(T_Ti)p‘—3q3(1' C» '7)+

+(@—1y) (1= 1,045, -1(T, & M+, (7, & 1)
where [](t—1;)?*~2q, is not divisible by [](r—7;)?"" and the order of tof [T(z—
‘ti)f’i"qu2 is less than the order of H(t—;i)Pf", ]'.I(‘z:—‘t:,-)"""q3 is not divisiiﬂe by
‘ ]:I(r—-ri)"i‘2 and it’s order of 7 is lless than thelorder of ]'i[(r—r,-)f’f‘z,..., q,, is

not divisible by (t—1,)(t —7,)---(t — 7,,,) and the order of 7 of g, is less than n,. The
order of 7 of g,, is at most n; —1.

(2.48) Pt &m=q,,(t, &), i=1,2,....n,.
by Prop. 2.2, P, _.(t;, {, ) is divisible by ]'](C—lj)"f‘k+“'. Then g, (1, £, ))=0
J
mod [T({—A;)" 7k, i=1, 2,..., n;. By the Lemma 8.2 in the appendix,
J

q6|(T’ C» 7])50 mod l:[ (C—lj)vi—k*'al.
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Let us use the induction. Assuming that g, be divisible by [ ({—4;)/7**" for
h=a,,0,—1,...,a'+1. We want to show that q,. is divisible bly H(C—lj)“f‘k+“'.
Let | ’

@49 [H—e)r Ty == a) (= n) (= ).

The order of t of g, is at most r'—1. By the Prop 2.2 and the assumption of the
induction we have

(2.50) (%)m-d'ﬁm_k(t, o) leme,
E(Pt—G/)!Jl;li(fi—Tj)”’_""qa'(‘fi, &Lm=0
mod ]:[ C=Apikre, i=1,2,.., 1.
Then by the Lemma 8.2 in the appendix
q,(t, {, )=0mod l,_[ (t—1j)rsk*e,

Thus we complete the proof of the necessity of the Theorem 1.

§3. The proof of sufficiency of Theorem 1.
We prove the following (cf. Theorem 1.1)

Proposition 3.1. P,,_, has the form (1.5), then there exists >0 such that
P(t, ¢, 1) is hyperbolic with respect to (1, €, 0) for any € with 0<|e| <&°.

Proof.
(1.3) oz, =T (s=nt, e T1 €=
Then
(3.1 P,(t,e1+&, n)= l:[ (t—1,(eT+¢&, n))Pr IJI (et +&—A(m)*.

At first we study the root 7 of P,(t, et+¢&, n)=0. Namely consider
3.2) T—1,(et+ &, n)=0.

1,(¢, n) is analytic in ({, n)e C"*1, n#0, and is homogeneous degree 1 with respect to
(¢, n). Then by the theorem of the implicit function, (3.2) is written by the following
(for small ¢2)).

(3.3) =1 15 0.

n+1

-1
2) 3.3 s valid for |¢| <{ sup %n(e, v)l} .
v70
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And %,(&, n; €) is real for (¢, n) e R**1.  So (3.1) becomes

(3.4) P, (1, et+¢&, n)=Cle) l;[ (t—14(& n; ) T1 (t— A& n; €)™,
Tt

where

33 IE =LA
The root 7 of P, (t, et+¢&, n)=0 are

(& nie), h=1,2,...n",
(3.6) N

A& i), j=1,2,....n"

Let us consider the multiplicity of the roots (3.6). First, by the assumption (A),
we have

BT & n;e)Ft(E nie)  for h#h. (& m)eR", (& n)#(0, 0)

Secondary,

Jy=dyp =L@ m=apm).
then by (A), we have
(38) S e)ELE mie)  for j#j n#0, (£ meRm
and »
(3.8) JfE 05 0)=1;08, 0 9)=—>=.
Finally let us consider the case
(3.9) A8 =18 n3 8).
If (3.9) hold, by (3.5) we have
(3.10) &= —er(A(n), n).
Conversely if (3.10) is valid, we have (3.9). Let
G.11) &) =2,(0) —er(Aw), @), wel.
Then (3.10) becomes (3.10).
(3.10") E=& (@) nl.

We remark that &, () is real and for small g, Enj(w)=E,(w) if and only if h=p
and j=q. Hereafter we study for fixed we Q. So let us write n=n'w, n'€ RL. By
the above consideration we have the following;

(3.12) J(E nw; A& nwre)  for E£E @),
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(3.13) A& no; )=t nws 8)  for E=E, ().
Let
(3.14) :1;(6, n'w; e)—1(& nw; &)=(—=&m)»PHNQ, (& n').

Where p(h, j) is positive integer® Q,(&, n') is homogeneous function of degree

1—p(h, j) and Q,;(&, n')#0 for |(¢, n')|=1. Then there exist positive constant m,,
M, such that

(3.15) my <|Qyi(C M)<M,,  for |(¢ n)I=1,
h=1,2,..,n", j=1,2,..,n".

The root t of P,(z, e1+¢&, n’'w)=0 are real for (¢, ) e R2. Where R:={(&, n');
(&,n')eR?, p'20}. Then using Rouche’s theorem, we are going to prove that if
P,._, has the form (1.5) then the roots 7 of P,(t, et+¢&, fw)+ ¥ P, _i(t, 1+ &, n'w)

k

=0 are near the roots t of P, (7, e+ &, n’'w)=0. More precisely
[Im (&, n')| <constant (independent of (£, ') e R%).
To avoide complication we introduce new notation. We arrange {£,;} in order of

] (1) (2) ) 1) ) ®
size. Let max¢,;=¢, the next be £,..., the last be . Where {>¢&>--->&=min¢,;,
h,j h,Jj

(i) (s)
{¢h;}=1{¢&} and n'n"=p. In (3.14), let us write p, instead of p(h, j) if £,;=¢.
We separate R? into some parts and in each part we use Rouche’s theorem. Let

Bo={(&, n'); I(&, )| =My, n' 20},

Do={(& n); (&, n)I2M, 0=n’<ao},

Dg={(& n): &, mMI=zM, n"Zae, EZbn'},

DE={(&, n); & n)2My, n'Zaq, E<bgyyn'}
fori=1,2,..., B

(i)
D;={(&, n); IS, "N 2My, n' 20, [E—=En'| S al(E, n')|pi=Diri}
W)
Df ={(& n): [(& m)Z My 0’20, ' +ail(E, n)l =P <E<ba’,

(i)
Dy ={(& n): & n)ZMy, ' 20, by n' SESEn' —ail(E, n)|Pim DI},

I(€, n)l={I&]2+In"|2}1/2
Where

(1 2 )
(3.17) b;>¢>b, >8> >8>by,y, pi2l,

3) This follow from the fact that },(G,n; e)—1,(&, 7; €) is analytic for #0.
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and M, >0, a;>0, the size of M, and g, are defined later. And obviously we have
BoUDgyuUDg U D(’;ig)1 (D;u Df U Dy)=R3.

Let g,,_, be the homogeneous polynomial of degree m —k and has the form
(3.18) In-®: & M) =21, & ) [T (x—z,)n 7k l:[ (L=4y)rihe,
where y(z, {, n) is the homogeneous polynomial. Put

(3.19) S(1)=Gqm-i(7, eT+&, M)/ P,(1, e1+&, ).
First we consider the case (&, n)e Df. Without loss of generality we can consider

(1) .
¢=¢;1. Let us consider the value of S on the circle with center 4, and radius R in
the t-plane. Namely

(3.20) 1=+ Rei®
(3.21) S(i,+Rei®
= {(Rew)v‘_kz(jn =T+ Re TG kgt ek}
{(Rei®)¥1(i, — 1, + Rei®) 11 (A4 —4;+ Rei®)s y! (3, — %+ Rei%)oi}
Jj¥1 i1
where the order of 4, is at most p. We have
(3.22) 34(&, m)— A€, m)~ const ' ~ const. |(¢, 1)
n=n'ow, (& n')eDi.
By (3.14) and (3.15) we have

(3.23) (& 1) = 48 I =1 = Epr PP B D0, (E, 1)
> (G &P D, (€, )1 0D ~ const. (€, 1)
° (1)
(3.24) Iy — 1] =1 — )70, (& )l
> {a,|(&, )| @=DIyoim, [I(E, n')P=t =(ay)rim, .
We require
(3.25) (a,)?'m,>2R.

When p, =2k, and v, =k, we have

(3.26) IS(4, + Rei®)| < const. R-tk1+ka),
In the another case, namely p, <k, or v; <k,, we have
(3.27) IS(L; + Rei®)| < const. |(¢, n')|~".

Then if we take R and M, large, |S(/f1 + Re!%)| becomes small. In the nearly same
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way |S(t,+ Re'?)|, IS(ij+Re“’)| (j=2,3,....n), |SE,+Re% (h=2,3,..,n")
become small if we take R and M, large.
When (&, n') is in D} (i#0) or D;, we requir

(3.25) (a)Pim;>2R.
When (&, ) is in Dy or D}, we reiquire
(3.25") const. ag>R.

In these case |S(t,+ Rei®)| and |S(1,~+Re“’)| become small if we take R and M,
(and a,) large.
Next, (&, n')is in D;i=1, 2,..., B, we require

(3.28) R'>2M ,(a;)"

In this case (for example in D, and(él)=<§1,) %, is in the circle with center )tl and radius
R'. The estimate S on the circle with center 4; j=1, 2,...,n" or 1, i=2,3,...,n"
and radius R’ are obtained in the nearly same way as the above case. In the case
(&, 1) is in D,, we require

(3.28) R'>ﬁgﬂ, where M= sup_|1(w)-2w)|.

1,J,WE€,

When (&, n') € By, obviously P(t, et+¢&, #)=0 has a root with [t(£, n)]<R". After
all by Rouche’s theorme we conclude that if we take M, R, R’, R” large with (3.25),
(3.25"),(3.25"), (3.28) and (3.28'), then P(t, et +¢&, n)=0 has a root with |Im (&, n)| <
max {R, R’, R"}. Thus we complete the proof of Prop. 3.1.

Part 2, variable coefficients

§4. Introduction and results.

Here we show a sufficient conditin of the C*-Goursat problem with variable
coeflicients.

Let us consider the operator L.
4.1) L=PQ—R
P, Q and R are the following. First, we explain about P.

(4'2) P= +jZSm aij(t, X, ¥, Dy)D:D;,

1

where a;i(t, x, y; D,) is a pseudo differential operator of order m—(i+j). We
assume

(4.3) aij(” X, .VQ '7) € S'l",_()(i+j)

(t, x) is considered as parameter and (1, x)—a;(t, x, y; n) € ST+ is smooth for
(t, x)eRLx R!. Let P, be a principal part of P. i.e.
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44 Pueicom=_ % dult, x, yime/et

where d, is of homogeneous of degree m —(j+k) in 5. Let

4.5) Pt & n)= n (t—1,(t. x, y; &, M.

Here we assume

(A-1) Theroottof P,(t, &, n)=0isreal and it’s multiplicity is constant. Moreover
there exists a positive constant é (which is independent of (7, x, y) and (&, ), but
depends on (T, X)) such that

4.6) |ti(t, x, y; & ) —(t, x, yi & ) 20, 0l for j#k,
(t, x, y)€[0, TIx[—X, X]xR", T, X>0, (£ n)eR*'~{0}.

(A-2) P is hyperbolic* with repect to the dirction t. Namely the lower order
terms of P satisfy the Levi conditions.
Next we explain about Q.

! .
@7 Q0= ,go b{t, x, y; D,)Dj

where t is considered as paremeter. b(t, x, y: D)) is a pseudo differential operator
of order I—j. We assume
(t, x) is considered as parameter and (t, x)>b(1, x, y) € S{7§ is smooth for (1, x) €

RT x R'. Let Q, be a principal part of Q.

(49) 0k M= 3. b1, x, yi

where Bj is of homogeneous of degree |—j in . Let

(4.10) 0 =TG4t x yi )™

(A-3) The root 4 of Q(4; n)=0 is real and it’s multiplicity is constant. Moreover
there exists a positive constant 6’ such that

4.11) 1At x, yi )= At x, y5 )| =6'|n]
(t,x, )el0, TIx[—X, X]xR", neR"~{0}.

(A-4) Q is hyperbolic with respect to the direction x. Namely the lower order
terms of Q satisfy the Levi conditions (refer to A-4')
Let us write

(4.12) D~ 21, x, y; D,)=0;.

4) About the definition “hyperbolic” refer to (A—4").
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0162' ) ‘6qv = r(qv)
alaz"‘aq.,_, =I(q,-)
(4.13)

0,0,:0,,=T(qy)
where 159,=¢,<---=q, and
A14z,..., 4, are v-tuple roots
Agi+15--+» Ay, are (v—1)-tuple roots

(4.14)

Agy_1—1---» A4, are simple roots.

The assumption (A-4) is equivalent to (A-4') (Levi condition (in this paper) means
that Q has the form of (4.15)).

(A-4") Q is the following:

(4.15)  Q=TI(g)(qy-1)--T(q,)+A(q,— DI (q,- ) (q,-2)-T(q,)
+A(q,+4q,-1—2DI(q,-5)--T(q,)+ -
+A@G,+4q,- 1+ +a,—(v=1))(q,)+ A —v)

where A(k)=A(k;t, x, y, D,, D,) and it is the pseudo differential operater with
respect to y and differential operater with respet to x, of total order k.
Finally we explain about R.

(A-5) R is the following

(4.16)  R=B(m—-nI(q,)(q,-,)-I'(qy)
+B(m—r+q,—DI(q,-)I(q,-,)T(q,)
+Bm—r+q,+q,-1=2I(q,-2)I(q,-3)T(q,)+"
+B(m—r+q,+q,_(+-+qg,—(v—1)I(g)+B(m—r+1—v),

where B(k) is differential operator with respect to ¢ and x, pseudo differential operator

with respect to y, and it’s total order is at most k. Moreover the order of D, in B(k)

is at most m—r. And r is the multiplicity of the root t of P,,=0. Namely r=max

Pj !
Let us consider the following problem:

Lu=(PQ—Ryu=fe &(HZ,),
Dil,oo =¢dx, y)eH®,, 0Zism—1,

X,y

(4.17) _
Dile-0 =Y t, y)e&(HY), 0=j<I-1,

Di¢0, y)=Dy 0, y), 0<ism—1, 0<j<I-1,
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where A® ,={fe C’O‘O-V;S Sl ‘ |D:D’ f|2dxdy < oo for Ya, VB, VX >0}
R"J|x| <X

Theorem 2. If we assume (A-1)~(A-5) then Goursat problem (4.17) has a
unique solution in &(HZ ).

We prove this theorem by the induction. For this we need the domain of
dependence.

§5. Domain of dependence and estimate.

Let
(5.1) Toax = max [tdt, x, y; & 0)
te[0,T], |x|SX,yeR", |§]|=1
(5‘2) Q(IO’ x0)={(t'v X, .V)Z |X"‘X0| <Tmax(t0_t)s tgo}
(5.3) Qto. Xo)= \J_ D(tg, Xo), Xo>0.
|xo| < Xo

Take a point (¢,, X,) and fix it. Putting
(54) Qty, Xo)=Q.
And denote Q(s) the intesection Q and the hyperplane t=s. Namely
(5.5) Qs)=2n{(s. x, y)}.
Proposition 5.1.
(5.6) Po=fe &(A%,)
Div|,_o =ix, y)e A2, 0<i<m-—1.

Under the assumption (A-1) and (A-2), the solution of the Cauchy problem (5.6)
has the following estimate;

—r+

m p .
(5.7) ZO “D;v”k+m—r+p—i,D(t)

m—1
<Cy(k, P){;Z.O ||¢i“h+m—1+p—i.9(0)
t P . v v
{0 2 ID s p-saodsy  for Vp k.

where || fl2on= X S |DiD%2dxdy, and C(k, p) is a constant depending on
j Q(1)

jtlalsk
k, p and €(t) but independent of f and {¢;}.
This propoition is proved by the following tow lemmas.

Lemma 5.1. Let us consider (5.6). We assume (A-1), (A-2) and moreover
fe&(H? ), ¢;€ HY, then the solution of (5.6) has the following estimate;
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m—r+p
(5.7 )y

”va”k+m—r+p—i
i=0

S Cutk D) (S Wil epit (! 3 ISy ids)

Lemma 5.2.  In the Cauchy problem (5.6), the domain of dependence of a point
(to. X0, ¥) is D(to, xo). Namely if f=0in D(t,, x) and ¢, =0 at D(ty, x0) N {t=0},
then v=0 in 2(t,, x,).

Next, let us consider the solution of Qu=u.

Proposition 5.2,

(5.8) Qu=ve&(H?,)

Diul.—o =Y (t, y)e &(HY), 0<j<I-1.

Under the assumption (A-3) and (A-4), the solution of the Cauchy problem (5.8)
has the following estimate;

o
(5.9 EO ||D:'{r(qv—i)“‘r(41)“} ”q'(i)+k+p'—h,ﬂ(t)

P 1-1
SCyk, p){XE Z ”Df'l//j(t, y)||y,k+p’+l—1—j-h
h=0 j=0

.
+ hz_:() Dol p—naw) OSi<v

lal sk
sV12dy, Cy(k, p') is constant depending on k, p' and (t), but independent of v
and {y;}.

where q'()=q,+q,- 1+ +q, s —i=1—(q +q2++q,_)—i, [Y|2,= ¥ S
|Ds
Especially when i=v, (5.9) is the following;

>
(5.10) hgo IDfUlli- vt k4 p— 2oy

poI-1
=C,(k, p) {hz=:o ,Z:o ”D:le(t’ J’)Ily,k+p'+t—1—j—h

-
+h§.0 DYl 4+ pr =020}

The proof of Proposition 5.2 is in §7.

§6. Proof of the Theorem 2.

Let
6.1 Qu=v.
Then Lu=PQu — Ru=f is equivalent to (6.2).
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Qu=v
(6.2)
Pv=Ru+f.
Let us rewrite
(6.3) Di(Qu) ;=0 = éo Cu(x, y: Dy, D)oy(x, )= dilx, y),

where C,;, is differential operator with respect to x, peudo differential operator with
respect to y and it’s total order is at most I. Now, let v, be a solution of

(6.4) Po,=f, Div,|,—o=¢dx,y), 0Zism—1.
And u, be a solution of

(6.5) Quy=v;, Diuy le=o=Wt, y), 0<jSI-1.
In general, for p=2, v, be the solution of

(6.6) Pv,=Ru,_,, Div,|,-o=0, 0Zism—1.

And u, be the solution of

6.7 Qu,=v,, Diuyl,-o=0, 0Zj<I-1.

We want to prove that the serise u, +u,+--- converge. Take k and p in (5.7)
and fix them. By Prop. 5.1, we have

m—r+p R
(6.8) > ||DfU1||k+m—r+p—i.n(r)

m—1 t P .
<C{ igo I@illictm—1+p-i00)F SO EO IDLf(S)lk+ p—i,05)dS} -

By Prop. 5.2, we have the estimate of u;. In (5.9), let k be the same in (6.8) and p'=
m—r+p. Then

m—r+p
(6.9) ’Zb ”Df'{r(qv—i)"'r(‘h)ul}||q'(i)+k+m—r+p—k,n(z)
m—r+p 1=1
<Gy hz;b Jél ”Dtll//j(t, Wkt mertpri—1—j—h

m—r+p A .
+ h;) ”Drvl|lk+m—r+p—h,ﬂ(r)}’ 0§’§v-

Let
m—1
(6.10) 2 ||<5i||k+m—1+p—i.n(0)=M1 ’
i=0
P .
(6.11) sup {Z IDLf (k4 p-i,00) =K,
0SssT i=1
m—r+p l—1
(6.12) . j=0||DN/j(t» Wyssmrspri-1-j—n=M3.

h
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Because of (6.8) ~(6.12), we have
m—r+p
(6.13) h;) ||Df'{r(qv—i)"'r(‘11)u1}||q'(i)+k+m—r+p-k,o(:)

§C2M2+C2C1M1+C,C2S; Kds=Cy,M,+C,CiM,+C,C,Kt.
By the assumption (A-5), and (6.13) we have

p
(6.14) hz=:o ||D:'(R“1)”k+p—h,rz(r)

v m—r+p
éclaigo hgo “Dr{r(qv-—i)"'r(ql)}”k+p—h+m—r+q’(i),9(r)’
Putting Cy;=(v+1) x Cj}, by (6.13) and (6.14) we have
P
(6.15) Eo IDEHRU i+ p-hauySC2C3M,+CC,C3M +C,C,C5Kt.

In general, by induction we have

Proposition 6.1. The solution u, of the problem (6.7) has the following esti-
mate;

m—r+p
(6.16) hg(.) ”Df'{r(qv—i)"'r(‘h)“p}||q'(i)+k+m-r+p—h,r)(z)

S(CLCAC {(CaMa+Co M) oy + CiC R

( l)'
Especially when i=v, (6.16) is the following;

' m—r+p 5 1 P 1 ~ t
617) " S UDN iy -ha S(CiCaCap ML+ R

where M=C,M,+C,C,M,, K=C,C,K.

Therefore f‘, Diu, (O=h<m-—r+p) is convergent in H!~v*+mr+k+p=h (Q(t)),
p=1

Putting

Ms

(6.18) u=>3 u

| p

p

then Dfue H'"vim-rtk+r=h(Q(1)), 0Sh<m—r+p. Where k and p are arbitrary
then by Sobolev’s lemma u € C®(Q(¢)). It is obvious that this u is the solution of
the Goursat problem (4.17).

Uniqueness of the solution. Let u( and u(® be the solution of (4.17). And
let w=u®—u®), Then w satisfies

(6.19) Lw=(PQ—R)w=0,

Diwl;=o =0 0<ism-—1,
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Diwl,-o=0 0<j<I—1.

By Prop. 5.1 we have

(6:20) S IDIQWln- - S Ca | [RW s

In Prop. 5.2, Putting p’=m—r and k=0, we have

(6:21) 1D (y-T@OWH iy -
<Cr % [DIQWln-sonoy OSiSy.

By the assumption (A-5),

(622) "Rw”f?(s)é C3 ig() hz=:0 “D:’{r(qv—i)'"r(ql)}wllq'(i)+m—r—h,9(s) N
Let
629 3 S UDHIG ) T @ s =MD,

then, by (6.21) ~(6.23) we have

(6.24) My S+ 1CC, | [Rwlagds
<(v+ 1)clc2c3g; M(s)ds.

Let 1\7I3=02L'115)TM3(t) and (v+1)C,C,C;=C, we have

(6.25) M3(t)§CS;M3(s)ds§C]\7I3t.

Then M4(f)<S CM;t. By (6.25) we have

(6.26) M(H)< cgo CHMysds— czmsg!_.

In general for arbitraly j=1, we have

(6.27) M3(t)§Cf1\7I3%.

Then M,(t)=0. This means w=0. Thus we complete the proof of Theorem 2.

§7. Proof of Proposition 5.2.

(5.8) Qu=ve&(A3,)
Diul,—o =Y(t, y)e&(HY) 0=t<T, 0<j<I-1.
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Q is hyperbolic with respect to the direction x. Here we consider that ¢ is parameter.
Because of the theory of hyperbolic equations we have the following lemma:

Lemma 7.1. The Cauchy problem (5.8) has the unique solution ue &(HY)
and it has the following estimate.
q’' (D)+p

(7.1) Z “D.{{r(qv—i)r(qv—i—1)'"r(ql)u}”y,k+q’(i)+p—j

Jj=0

<k, DY UZ Wt Dlyasper-1-5

P .
CL N SN LI co RvA2)

|x"|=]x] j=0
Proof of Prop. 5.2. For fixed t, let
(7.2) X()= max |x].

(t,x,y)ef(t)
By (7.1), putting k=0 we have

q'(i)+p

(7.3) IDIAT(qy- ) (gy-i- ) - T(q)u}} gy + p- A%

Slxléx(') Jj=0

-1
N N o 7 GO Fy

[x] SX(

Sleé?((') j=0

The left hand side of (7.3) equals |I'(g,-;)---T'(q)ul %+ pow- And

a 50 DL - ) dx

|x| X (1) j=0

p
= 12d IS Di, |2 _.d /}d
_S {glx’lélxl * IX'I§|x|” o5 p- %" dx

[x[=X(1) j=0

'S_S i {ZX(t)S |sX

|x] =X (1) j=0 [x"]

DL, - jdx’}dx
t

< {2X(0)} 0] 2,00 -
Then

(7.5) ”F(qv—i)"'r(ql)u||:2;’(i)+p,ﬂ(t)
SCO. P RXO L, Wt M per-1-5+ CXOP Il 00)-

If p’=01in (5.9), (5.9) is equivalent to (7.5).

Next, let us consider the estimate of the derivative of ¢t direction. Notice that
in (5.8) t is a parameter. We differentiate (5.8) by . And in the nearly same way
we have the estimate of the derivative of t direction.
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§8. Appendix.

Lemma 8.1. Let P(z) be the polynomial of order n;
8.1 P(z)=z"+a,z"" '+ +a, a;eC.
1; (i=1, 2,..., n) are the roots of P(z)=0. Let I' is a convex hull of {1;;i=1,
2,...,n}. Then the root of% P(z)=0 is contained in I

Lemma 8.2. Consider the following polynomial of t:

(8.2) B(z; {, m=ao(l, mM"+ay(C, M~ 4 +a,(C, 1)

where { € Ct, ne C' and a({, n) (i=1, 2,..., n) is holomorphic function in a domain
DcC,  Let h((, ) is a holomorphic function in D. There exist holomorphic
function (in D) (¢, n) (i=1, 2,..., n+1) such that

8.3) B(t(l, n); &, )=0mod h({, n),  for i=1,2,...,n+1
and
8.4 {¢&m; €& meD, t(, M- n=0}
n{¢ m; . meD, W, M=0}=¢,  for i#j, i j=1,2,...,n+l

Then B(z; {, n)=0mod h({, n). i.e. ay{, n)=0mod h({, n), j=0, 1,..., n.
Where f({, n)=0mod h({, n) means that there exists holomorphic function (in D)
9(C, n) such that f(, n)=h({, Mg(L, n).

Proof of Lemma 8.2. We have
B(ti; {, m)—B(ty; L, )
=ao(tf -t +a,(t} =i )+ +a, 4 (1—1y),
then B(t;; {, n)— B(ty; {, n) is divisible by 7,—7,. Let
(8.5) {B(t;; {, m)—B(ry; {, M}(ti—1)=BD(1;5 L. )
=agh(t)+a, bV, (1) + - +a,_,b"(t)+a,_, i=2,3,...,n+l

where  b{(z)=(t1 —tD(mi—1,), B (r) = (e =Ty (= 1)), DE(T)= (e —
)/(r;— 1) =1;+71,, i.e. b(1) is a polynomial of t of degree k—1 and the coefficient
of t*~1is 1. By (8.4), we have

(8.6) BU)(t;; ¢, )=0mod h((, n), i=2,3,...,n+1.

Next, we consider B)(t;; {, n)—B"W(1,; {, n), i=3,4,....,n+1. By (8.5) we
have .

BM(1;; {, n)—BM(ty; {, 1)
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=ao{bP(t;) — bi(1))} +a, {biy (1) = by (1)} + -+
+a, -, {by" (1) — b (12)}
BW(z;: £, n)— BM(t,; ¢, n) is divisible by 1;—1,, i=3,4,...,n+1. Let
(8.7 {B(t;; §, m)—BM(1: {, mY(ti— 1)
=B 1;; {, N)=ahP(t)+a, b (r)++a,_,.

b{?(7) is a polynomial of degree k—2 and the coefficient 7¥~2 is 1. By (8.4) and
(8.6) we have

(8.8) B®(1;; £, 1)=0mod h({, n).

In general we put

(8.9) {BE"Y(t;3 {, m)— B I(ry: L m}(1i— 1) =B®(z;5 {, m)
=agh®(t)+a, b2 () ++a, 5 i=s+1,s+2,...,n+1.

bi?(t) is a polynomial of degree k—s and the coefficient of 775 is 1. And we
have

(8.10) B&)(z;; {, 1)=0mod h({, n).
Last of all we have
B"(t;; L, n)=a, for i=n+1, B"(t,.,;{, n)=0modh({, n).
Then a,=0mod h({, n). By (8.9) and (8.10) we have
B=U(1;; £, n)=aob" V() +a,=0mod h((, n), i=n, n+1.

Then a, =0mod A({, 7).
In this way we have a,=0mod h((, ), az;=0mod h({, n),..., a,=0mod h({, n).
After all we have B(t; {, n)=0mod h({, #). qg.e.d.

R106. TORIIMAE 8-5
ENMYOJI, OYAMAZAKI-CHO
OTOKUNIGUN, KyoTo
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